-----突破自我,突破思维定势,突破昨天! 在才智和智慧不相上下的人群中,你拥有更高的热情,并能坚持下去,那么成功便在更大程度上属于你。

发布新日志

  • Web性能测试术语

    2008-09-16 10:17:48


        WEB性能测试主要通过自动化的测试工具模拟多种正常,峰值以及异常负载条件来对系统的各项性能指标进行测试.WEB性能测试中出现频繁的术语主要有并发用户,并发用户数量,请求响应时间,事务响应时间,吞吐量,吞吐率,TPS,点击率,资源利用率等。

      并发用户:并发一般分为2种情况。一种是严格意义上的并发,即所有的用户在同一时刻做

    同一件事情或者操作,这种操作一般指做同一类型的业务。比如在信用卡审批业务中,一定数

    目的用户在同一时刻对已经完成的审批业务进行提交;还有一种特例,即所有用户进行完全一

    样的操作,例如在信用卡审批业务中,所有的用户可以一起申请业务,或者修改同一条记录。

      另外一种并发是广义范围的并发。这种并发与前一种并发的区别是,尽管多个用户对系统

    发出了请求或者进行了操作,但是这些请求或者操作可以是相同的,也可以是不同的。对整个

    系统而言,仍然是有很多用户同时对系统进行操作,因此也属于并发的范畴。

      可以看出,后一种并发是包含前一种并发的。而且后一种并发更接近用户的实际使用情况

    ,因此对于大多数的系统,只有数量很少的用户进行“严格意义上的并发 ”。对于WEB性能测

    试而言,这2种并发情况一般都需要进行测试,通常做法是先进行严格意义上的并发测试。严格

    意义上的用户并发一般发生在使用比较频繁的模块中,尽管发生的概率不是很大,但是一旦发

    生性能问题,后果很可能是致命的。严格意义上的并发测试往往和功能测试关联起来,因为并

    发功能遇到异常通常都是程序问题,这种测试也是健壮性和稳定性测试的一部分。

      用户并发数量:关于用户并发的数量,有2种常见的错误观点。一种错误观点是把并发用户

    数量理解为使用系统的全部用户的数量,理由是这些用户可能同时使用系统;还有一种比较接

    近正确的观点是把在线用户数量理解为并发用户数量。实际上在线用户也不一定会和其他用户

    发生并发,例如正在浏览网页的用户,对服务器没有任何影响,但是,在线用户数量是计算并

    发用户数量的主要依据之一。

      请求响应时间:指的是客户端发出请求到得到响应的整个过程的时间。在某些工具中,请

    求响应时间通常会被成为"TLLB",即"Time to last byte",意思是从发起一个请求开始,到客

    户端接收到最后一个字节的响应时间所耗费的时间。请求响应时间过程的单位一般为"秒"或者"

    毫秒"。

      事务响应时间:事务可能由一系列请求组成,事务的响应时间主要是针对用户而言,属于

    宏观上的概念,是为了向用户说明业务响应时间而提出的。例如:跨行取款事务的响应时间就

    是由一系列的请求组成的。事务响应时间和后面的业务吞吐率都是直接衡量系统性能的参数。

      吞吐量:指的是在一次性能测试过程中网络上传输的数据量的总和。吞吐量/传输时间,就

    是吞吐率。

      TPS:每秒钟系统能够处理的交易或者事务的数量。它是衡量系统处理能力的重要指标。

      点击率:每秒钟用户向WEB服务器提交的HTTP请求数。这个指标是WEB应用特有的一个指标

    :WEB应用是"请求-响应"模式, 用户发出一次申请,服务器就要处理一次,所以点击是WEB应

    用能够处理的交易的最小单位。如果把每次点击定义为一个交易,点击率和TPS就是一个概念。

    容易看出,点击率越大,对服务器的压力越大。点击率只是一个性能参考指标,重要的是分析

    点击时产生的影响。需要注意的是,这里的点击并非指鼠标的一次单击操作,因为在一次单击

    操作中,客户端可能向服务器发出多个HTTP请求。

      资源利用率:指的是对不同的系统资源的使用程度,例如服务器的CPU利用率,磁盘利用率

    等。资源利用率是分析系统性能指标进而改善性能的主要依据,因此是WEB性能测试工作的重点

      资源利用率主要针对WEB服务器,操作系统,数据库服务器,网络等,是测试和分析瓶颈的

    主要参考。在WEB性能测试中,更根据需要采集相应的参数进行分析。


     

  • CMMI

    2008-04-13 18:02:21

    CMMI 的全称为:Capability Maturity Model Integration,即能力成熟度模型集成。CMMI是CMM模型的最新版本。早期的CMMI(CMMI-SE/SW/IPPD)1.02版本是应用于软件业项目的管理方法,SEI在部分国家和地区开始推广和试用。随着应用的推广与模型本身的发展,演绎成为一种被广泛应用的综合性模型。

          自从1994 年SEI 正式发布软件CMM 以来,相继又开发出了系统工程、软件采购、人力资源管理以及集成产品和过程开发方面的多个能力成熟度模型。虽然这些模型在许多组织都得到了良好的应用,但对于一些大型软件企业来说,可能会出现需要同时采用多种模型来改进自己多方面过程能力的情况。这时他们就会发现存在一些问题,其中主要问题体现在:

          n 不能集中其不同过程改进的能力以取得更大成绩;
          n 要进行一些重复的培训、评估和改进活动,因而增加了许多成本;
          n 遇到不同模型中有一些对相同事物说法不一致,或活动不协调,甚至相抵触。

          于是,希望整合不同CMM 模型的需求产生了。1997 年,美国联邦航空管理局(FAA)开发了FAA-iCMMSM(联邦航空管理局的集成CMM),该模型集成了适用于系统工程的SE-CMM、软件获取的SA-CMM 和软件的SW-CMM 三个模型中的所有原则、概念和实践。该模型被认为是第一个集成化的模型。


         CMMI 与CMM 最大的不同点在于: CMMISM-SE/SW/IPPD/SS 1.1 版本有四个集成成分,即:系统工程(SE)和软件工程(SW)是基本的科目,对于有些组织还可以应用集成产品和过程开发方面(IPPD)的内容,如果涉及到供应商外包管理可以相应的应用SS(Supplier Sourcing)部分。

          CMMI 有两种表示方法,一种是大家很熟悉的,和软件CMM 一样的阶段式表现方法,另一种是连续式的表现方法。这两种表现方法的区别是:阶段式表现方法仍然把CMMI 中的若干个过程区域分成了5 个成熟度级别,帮助实施CMMI 的组织建议一条比较容易实现的过程改进发展道路。而连续式表现方法则通过将CMMI 中过程区域分为四大类:过程管理、项目管理、工程以及支持。对于每个大类中的过程区域,又进一步分为基本的和高级的。这样,在按照连续式表示方法实施CMMI的时候,一个组织可以把项目管理或者其他某类的实践一直做到最好,而其他方面的过程区域可以完全不必考虑。

          CMMI各个进程的关键元素

      CMMI自出道以来,它所达到的目标就没有变过,第一个是质量,第二个是时间表,第三就是要用最低的成本。不过特别强调的是,CMMI不是传统的、仅局限于软件开发的生命周期,它应该被运用于更广泛的一个范畴——工程设计的生命周期。TSP的建立,也是为了支持CMMI的这样一个系统。  那么CMMI究竟是什么呢?它并不是一个过程,也不是告诉你怎么去做一件事情。如果用一句话来概括什么是CMMI,它就是各个进程的一个关键的元素,在很多领域里面一个集成的点。它是这样的一个基本架构,能够用来度量你的有效性和实用性;能够找出这样的一些机会,继续改进的机会,包括在商业目标、策略还有降低项目的风险等方面。

    一、CMMI的起源

         随着人们对CMM研究的不断深入,其他学科也结合本系统的特点,陆续推出了自己的CMM模型。例如,人力资源能力成熟度模型、系统工程能力成熟度模型等等:
    (1) SW-CMM (Software CMM) 软件CMM
    (2) SE-CMM (System Engineering CMM) 系统工程CMM
    (3) SA-CMM (Software Acquisition CMM) 软件采购CMM
    (4) IPT-CMM (Integrated Product Team CMM) 集成产品群组CMM
    (5) P-CMM (People CMM) 人力资源能力成熟度模型

         为了以示区别,国内外很多资料把CMM叫做SW-CMM。按照SEI原来的计划,CMM的改进版本2.0应该在1997年11月完成,然后在取得版本2.0得实践反馈意见之后,在1999年完成准CMM2.0版本。但是,美国国防部办公室要求SEI推迟发布CMM2.0版本,而要先完成一个更为紧迫的项目CMMI。

          CMMI(Capability Maturity Model Integration)即能力成熟度集成模型,这也是美国国防部的一个设想,他们想把现在所有的以及将被发展出来的各种能力成熟度模型,集成到一个框架中去。这个框架有两个功能,第一,软件采购方法的改革;第二,建立一种从集成产品与过程发展的角度出发、包含健全的系统开发原则的过程改进。就软件而言,CMMI是SW-CMM的修订本。它兼收了SW-CMM 2.0版C稿草案和SPA中更合理、更科学和更周密的优点。SEI在发表CMMI-SE/SW 1.0版时,宣布大约用两年的时间完成从CMM到CMMI的过渡。

          CMMI项目更为工业界和政府部门提供了一个集成的产品集,其主要目的是消除不同模型之间的不一致和重复,降低基于模型改善的成本。CMMI将以更加系统和一致的框架来指导组织改善软件过程,提高产品和服务的开发、获取和维护能力。

    二、实施CMMI的意义

          很多人认为,实施CMMI的意义在于项目工程走向世界,可以在西方国家接到订单。实际上,这只是我国企业实施CMMI的意义的很小一部分。更为重要的意义则是,CMMI的实施能够提高我国企业的管理水平。降低企业的工程成本。事实表明,企业实施CMMI技术的投入都会得到丰厚的回报。据SEI统计,用于软件项目上的CMMI的投资,其回报率在5:1到8:1之间。由此可见,为什么这么多的企业纷纷实施CMMI项目管理技术。

          近年来,很多软件企业纷纷实施CMMI管理模式,这一方面反映了我国企业在进入WTO后的危机意识,以及与世界接轨的迫切愿望。另一方面则反映出我国软件企业在改进管理方法上所作的努力。但是CMMI到底能够为我们做什么呢?实际上这个问题对不同的人有不同的答案。对采购部门的人员来说,掌握了CMMI技术可以有目的地考察项目实施人员或公司的实施能力,从而保证所采购的项目能够顺利完成。对于项目经理来说,掌握CMMI技术能够提高自己的管理能力,从而能够使项目高质量,低成本,按期限地完成。对于企业老总来说,CMMI还能够引入科学的管理理念,提升企业的整体管理水平。

         在美国,很多企业通过CMMI评估,一方面为了满足承包国防工程或一些大企业的工程的要求,另一方面也是为了提高企业自身的管理能力。美国政府的工程项目,绝大多数都要求承包商有一定的CMMI级别作为参加投标的资格。越来越多的大型企业开始要求其工程承包商具有一定的CMMI级别。级别高的企业在赢得项目的竞标中具有一定的优势。因此,如果没有CMMI的等级评估,企业就会失去很多商机。

    三、CMMI的两种实施方法

          CMMI有两种不同的实施方法,不同的实施方法,其级别表示不同的内容。CMMI的一实施方法为连续式,主要是衡量一个企业的项目能力。企业在接受评估时可以选择自己希望评估的项目来进行评估。因为是企业自己挑选项目,其评估通过的可能性就较大一点。但是,它反映的内容也比较窄一点。它仅仅表示企业在该项目或类似项目的实施能力达到了某一等级。而另一种实施方法为阶段性。它主要是衡量一个企业的成熟度,亦即是企业在项目实施上的综合实力。企业在进行评估时,一定要由评估师来挑选企业内部的任何项目,甚至于任何项目的任何部分。一般地讲,一个企业要想在阶段性评估中得到三级,其企业内部的大部分项目要达到三级,小部分项目可以在二级,但绝不能够有一级。阶段性实施方法的难度要大一些。

          虽然,CMMI的表述方式不同,但其实质内容是完全一样的。是同一种方法的两种不同的表述方式。企业在准备评估时要做的准备工作也是完全一样的。这些工作对企业的管理上的帮助也是一样的。因此,不管企业需要做什么样的评估,企业所获取的实惠应该是差别不大。具体要做连续性评估,还是做阶段性评估则要看企业对等级评估证书的具体要求。

    四、CMMI可以帮助我们做什么

      近年来,很多软件企业纷纷实施CMMI管理模式,不少企业如:东软,托普,华为等企业通过了三级或四级评估。 这一方面反映了我国企业在进入WTO后的危机意识,以及与世界接轨的迫切愿望。另一方面则反映出我国软件企业在改进管理方法上所作的努力。但是CMMI到底能够为我们做什么呢?实际上这个问题对不同的人有不同的答案。对采购部门的人员来说,掌握了CMMI技术可以有目的地考察项目实施人员或公司的实施能力,从而保证所采购的项目能够顺利完成。对于项目经理来说,掌握CMMI技术能够提高自己的项目管理能力, 从而能够使项目高质量,低成本,按期限地完成。 对于企业老总来说,CMMI技术不仅能够提升企业的管理水平,还能够引入科学的管理理念,提升企业的整体管理水平。

         在美国,很多企业通过CMMI评估一方面为了满足承包国防工程或一些大企业的工程的要求, 另一方面也是为了提高企业自身的管理能力。美国政府的工程项目,绝大多数都要求承包商具有一定的CMMI级别作为参加投标的资格。越来越多的大型企业业开始要求其工程承包商具有一定的CMMI级别。级别高的企业在赢得项目的竞标中具有一定的优势。 因此,如果没有CMMI的等级评估,企业就会失去很多商机。另一方面,企业通过CMMI评估也是为了提升企业内部的管理水平,降低企业的工程成本。企业在实施CMMI技术的投入都会得到丰厚的回报。据SEI统计,用于软件项目上的CMMI的投资,其回报率在5:1到8:1之间。由此可见,为什么这么多的企业纷纷实施CMMI项目管理技术。

    五、CMMI的基本表述

      如果一家企业对外宣称自己通过了CMMI三级评估,外行的人会觉得还不错,因为三级比二级要高。 内行的人则要问通过了三级什么? 因为,CMMI有两种不同的表述方式,不同的表述方式,其级别表示不同的内容。CMMI的一种表述方式为连续表述,主要是衡量一个企业的项目能力。企业在接受评估时可以选择自己希望评估的项目来进行评估。因为是企业自己挑选项目,其评估通过的可能性就较大一点。但是,它反映的内容也比较窄一点。它仅仅表示企业在该项目或类似项目的实施能力达到了某一等级。而另一种表述方式为阶段性。它主要是衡量一个企业的成熟度,也即是企业在项目实施上的综合实力。企业在进行评估时,一定要由评估师来挑选企业内部的任何项目,甚至于任何项目的任何部分。一般地讲,一个企业要想在阶段性评估中得到三级,其企业内部的大部分项目要达到三级,小部分项目可以在二级,但绝不能够有一级。阶段性表述的难度要大一些。
      虽然,CMMI的表述方式不同,但其实质内容是完全一样的。是同一种方法的两种不同的表达方式。企业在准备评估时要做的准备工作也是完全一样的。这些工作对企业的管理上的帮助也是一样的。因此,不能企业需要做什么样的评估,企业所获取的实惠应该是差别不大。具体要做连续性评估,还是做阶段性评估则是看企业对等级评估证书的具体要求。

    六、CMMI的五个台阶

          台阶一:CMMI一级,完成级。在完成级水平上,企业对项目的目标与要做的努力很清晰,项目的目标得以实现。但是由于任务的完成带有很大的偶然性,企业无法保证在实施同类项目的时候仍然能够完成任务。企业在一级上的项目实施对实施人员有很大的依赖性。

           台阶二:CMMI二级,管理级。在管理级水平上,企业在项目实施上能够遵守既定的计划与流程,有资源准备,权责到人,对相关的项目实施人员有相应的培训,对整个流程有监测与控制,并与上级单位对项目与流程进行审查。企业在二级水平上体现了对项目的一系列的管理程序。这一系列的管理手段排除了企业在一级时完成任务的随机性,保证了企业的所有项目实施都会得到成功。

          台阶三:CMMI三级,定义级。在定义级水平上,企业不仅能够对项目的实施有一整套的管理措施,并保障项目的完成;而且,企业能够根据自身的特殊情况以及自己的标准流程,将这套管理体系与流程予以制度化这样,企业不仅能够在同类的项目上生到成功的实施,在不同类的项目上一样能够得到成功的实施。科学的管理成为企业的一种文化,企业的组织财富。

          台阶四:CMMI四级,量化管理级。在量化管理级水平上,企业的项目管理不仅形成了一种制度,而且要实现数字化的管理。对管理流程要做到量化与数字化。通过量化技术来实现流程的稳定性,实现管理的精度,降低项目实施在质量上的波动。

           台阶五:CMMI五级,优化级。在优化级水平上,企业的项目管理达到了最高的境界。企业不仅能够通过信息手段与数字化手段来实现对项目的管理,而且能够充分利用信息资料,对企业在项目实施的过程中可能出现的次品予以预防。能够主动地改善流程,运用新技术,实现流程的优化。

          由上述的五个台阶我们可以看出,每一个台阶都是上面一阶台阶的基石。要上高层台阶必须首先踏上较低一层台阶。企业在实施CMMI的时候,路要一步一步地走。一般地讲,应该先从二级入手。在管理上下功夫。争取最终实现CMMI的第五级。

     

  • RUP

    2008-04-13 17:58:06

    RUPRational Unified Process,统一软件开发过程统一软件过程)是一个面向对象且基于网络的程序开发方法论。根据Rational(Rational Rose统一建模语言的开发者)的说法,好像一个在线的指导者,它可以为所有方面和层次的程序开发提供指导方针,模版以及事例支持。 RUP和似的产品--例如面向对象软件过程(OOSP),以及OPEN Process都是理解性的软件工程工具--把开发中面向过程的方面(例如定义的阶段,技术和实践)和其他开发的组件(例如文档,模型,手册以及代码等等)整合在一个统一的框架内。

    一、六大经验

          迭代式开发。在软件开发的早期阶段就想完全、准确的捕获用户的需求几乎是不可能的。实际上,我们经常遇到的问题是需求在整个软件开发工程中经常会改变。迭代式开发允许在每次迭代过程中需求可能有变化,通过不断细化来加深对问题的理解。迭代式开发不仅可以降低项目的风险,而且每个迭代过程以可以执行版本结束,可以鼓舞开发人员。

          管理需求。确定系统的需求是一个连续的过程,开发人员在开发系统之前不可能完全详细的说明一个系统的真正需求。RUP描述了如何提取、组织系统的功能和约束条件并将其文档化,用例和脚本的使用以被证明是捕获功能性需求的有效方法。

          基于组件的体系结构。组件使重用成为可能,系统可以由组件组成。基于独立的、可替换的、模块化组件的体系结构有助于管理复杂性,提高重用率。RUP描述了如何设计一个有弹性的、能适应变化的、易于理解的、有助于重用的软件体系结构

           可视化建模。RUP往往和UML联系在一起,对软件系统建立可视化模型帮助人们提供管理软件复杂性的能力。RUP告诉我们如何可视化的对软件系统建模,获取有关体系结构于组件的结构和行为信息。

          验证软件质量。在RUP中软件质量评估不再是事后进行或单独小组进行的分离活动,而是内建于过程中的所有活动,这样可以及早发现软件中的缺陷。

          控制软件变更。迭代式开发中如果没有严格的控制和协调,整个软件开发过程很快就陷入混乱之中,RUP描述了如何控制、跟踪、监控、修改以确保成功的迭代开发。RUP通过软件开发过程中的制品,隔离来自其他工作空间的变更,以此为每个开发人员建立安全的工作空间。

     

    二、统一软件开发过程RUP的二维开发模型

      RUP软件开发生命周期是一个二维的软件开发模型。横轴通过时间组织,是过程展开的生命周期特征,体现开发过程的动态结构,用来描述它的术语主要包括周期(Cycle)、阶段(Phase)、迭代(Iteration)和里程碑(Milestone);纵轴以内容来组织为自然的逻辑活动,体现开发过程的静态结构,用来描述它的术语主要包括活动(Activity)、产物(Artifact)、工作者(Worker)和工作流(Workflow)。如图1:


    三、统一软件开发过程RUP核心概念

          RUP中定义了一些核心概念,如下图:


          角色:描述某个人或者一个小组的行为与职责。RUP预先定义了很多角色。
          活动:是一个有明确目的的独立工作单元。
          工件:是活动生成、创建或修改的一段信息。

    四、统一软件开发过程RUP裁剪

          RUP是一个通用的过程模板,包含了很多开发指南、制品、开发过程所涉及到的角色说明,由于它非常庞大所以对具体的开发机构和项目,用RUP时还要做裁剪,也就是要对RUP进行配置。RUP就像一个元过程,通过对RUP进行裁剪可以得到很多不同的开发过程,这些软件开发过程可以看作RUP的具体实例。RUP裁剪可以分为以下几步:

    1) 确定本项目需要哪些工作流。RUP的9个核心工作流并不总是需要的,可以取舍。

    2) 确定每个工作流需要哪些制品。

    3) 确定4个阶段之间如何演进。确定阶段间演进要以风险控制为原则,决定每个阶段要那些工作流,每个工作流执行到什么程度,制品有那些,每个制品完成到什么程度。

    4) 确定每个阶段内的迭代计划。规划RUP的4个阶段中每次迭代开发的内容。

    5) 规划工作流内部结构。工作流涉及角色、活动及制品,他的复杂程度与项目规模即角色多少有关。最后规划工作流的内部结构,通常用活动图的形式给出。

    五、开发过程中的各个阶段和里程碑

      RUP中的软件生命周期在时间上被分解为四个顺序的阶段,分别是:初始阶段(Inception)、细化阶段(Elaboration)、构造阶段(Construction)和交付阶段(Transition)。每个阶段结束于一个主要的里程碑(Major Milestones);每个阶段本质上是两个里程碑之间的时间跨度。在每个阶段的结尾执行一次评估以确定这个阶段的目标是否已经满足。如果评估结果令人满意的话,可以允许项目进入下一个阶段。

    1. 初始阶段

      初始阶段的目标是为系统建立商业案例并确定项目的边界。为了达到该目的必须识别所有与系统交互的外部实体,在较高层次上定义交互的特性。本阶段具有非常重要的意义,在这个阶段中所关注的是整个项目进行中的业务和需求方面的主要风险。对于建立在原有系统基础上的开发项目来讲,初始阶段可能很短。 初始阶段结束时是第一个重要的里程碑:生命周期目标(Lifecycle Objective)里程碑。生命周期目标里程碑评价项目基本的生存能力。

    2. 细化阶段

      细化阶段的目标是分析问题领域,建立健全的体系结构基础,编制项目计划,淘汰项目中最高风险的元素。为了达到该目的,必须在理解整个系统的基础上,对体系结构作出决策,包括其范围、主要功能和诸如性能等非功能需求。同时为项目建立支持环境,包括创建开发案例,创建模板、准则并准备工具。 细化阶段结束时第二个重要的里程碑:生命周期结构(Lifecycle Architecture)里程碑。生命周期结构里程碑为系统的结构建立了管理基准并使项目小组能够在构建阶段中进行衡量。此刻,要检验详细的系统目标和范围、结构的选择以及主要风险的解决方案。

    3. 构造阶段

      在构建阶段,所有剩余的构件和应用程序功能被开发并集成为产品,所有的功能被详细测试。从某种意义上说,构建阶段是一个制造过程,其重点放在管理资源及控制运作以优化成本、进度和质量。 构建阶段结束时是第三个重要的里程碑:初始功能(Initial Operational)里程碑。初始功能里程碑决定了产品是否可以在测试环境中进行部署。此刻,要确定软件、环境、用户是否可以开始系统的运作。此时的产品版本也常被称为“beta”版。

    4. 交付阶段

      交付阶段的重点是确保软件对最终用户是可用的。交付阶段可以跨越几次迭代,包括为发布做准备的产品测试,基于用户反馈的少量的调整。在生命周期的这一点上,用户反馈应主要集中在产品调整,设置、安装和可用性问题,所有主要的结构问题应该已经在项目生命周期的早期阶段解决了。 在交付阶段的终点是第四个里程碑:产品发布(Product Release)里程碑。此时,要确定目标是否实现,是否应该开始另一个开发周期。在一些情况下这个里程碑可能与下一个周期的初始阶段的结束重合。

    六、统一软件开发过程RUP的核心工作流(Core Workflows)

      RUP中有9个核心工作流,分为6个核心过程工作流(Core Process Workflows)和3个核心支持工作流(Core Supporting Workflows)。尽管6个核心过程工作流可能使人想起传统瀑布模型中的几个阶段,但应注意迭代过程中的阶段是完全不同的,这些工作流在整个生命周期中一次又一次被访问。9个核心工作流在项目中轮流被使用,在每一次迭代中以不同的重点和强度重复。

    1. 商业建模(Business Modeling)

          商业建模工作流描述了如何为新的目标组织开发一个构想,并基于这个构想在商业用例模型和商业对象模型中定义组织的过程,角色和责任。

    2. 需求(Requirements)

      需求工作流的目标是描述系统应该做什么,并使开发人员和用户就这一描述达成共识。为了达到该目标,要对需要的功能和约束进行提取、组织、文档化;最重要的是理解系统所解决问题的定义和范围。

    3. 分析和设计(Analysis & Design)

      分析和设计工作流将需求转化成未来系统的设计,为系统开发一个健壮的结构并调整设计使其与实现环境相匹配,优化其性能。分析设计的结果是一个设计模型和一个可选的分析模型。设计模型是源代码的抽象,由设计类和一些描述组成。设计类被组织成具有良好接口的设计包(Package)和设计子系统(Subsystem),而描述则体现了类的对象如何协同工作实现用例的功能。 设计活动以体系结构设计为中心,体系结构由若干结构视图来表达,结构视图是整个设计的抽象和简化,该视图中省略了一些细节,使重要的特点体现得更加清晰。体系结构不仅仅是良好设计模型的承载媒介,而且在系统的开发中能提高被创建模型的质量。

    4. 实现(Implementation)

      实现工作流的目的包括以层次化的子系统形式定义代码的组织结构;以组件的形式(源文件、二进制文件、可执行文件)实现类和对象;将开发出的组件作为单元进行测试以及集成由单个开发者(或小组)所产生的结果,使其成为可执行的系统。

    5. 测试(Test)

    测试工作流要验证对象间的交互作用,验证软件中所有组件的正确集成,检验所有的需求已被正确的实现, 识别并确  认缺陷在软件部署之前被提出并处理。RUP提出了迭代的方法,意味着在整个项目中进行测试,从而尽可能早地发现缺陷,从根本上降低了修改缺陷的成本。测试类似于三维模型,分别从可靠性、功能性和系统性能来进行。

    6. 部署(Deployment)

      部署工作流的目的是成功的生成版本并将软件分发给最终用户。部署工作流描述了那些与确保软件产品对最终用户具有可用性相关的活动,包括:软件打包、生成软件本身以外的产品、安装软件、为用户提供帮助。在有些情况下,还可能包括计划和进行beta测试版、移植现有的软件和数据以及正式验收。

    7. 配置和变更管理(Configuration & Change Management)

      配置和变更管理工作流描绘了如何在多个成员组成的项目中控制大量的产物。配置和变更管理工作流提供了准则来管理演化系统中的多个变体,跟踪软件创建过程中的版本。工作流描述了如何管理并行开发、分布式开发、如何自动化创建工程。同时也阐述了对产品修改原因、时间、人员保持审计记录。

    8. 项目管理(Project Management)

      软件项目管理平衡各种可能产生冲突的目标,管理风险,克服各种约束并成功交付使用户满意的产品。其目标包括:为项目的管理提供框架,为计划、人员配备、执行和监控项目提供实用的准则,为管理风险提供框架等。

    9. 环境(Environment)

      环境工作流的目的是向软件开发组织提供软件开发环境,包括过程和工具。环境工作流集中于配置项目过程中所需要的活动,同样也支持开发项目规范的活动,提供了逐步的指导手册并介绍了如何在组织中实现过程。

    七、RUP的迭代开发模式

      RUP中的每个阶段可以进一步分解为迭代。一个迭代是一个完整的开发循环,产生一个可执行的产品版本,是最终产品的一个子集,它增量式地发展,从一个迭代过程到另一个迭代过程到成为最终的系统。 传统上的项目组织是顺序通过每个工作流,每个工作流只有一次,也就是我们熟悉的瀑布生命周期(见图2)。这样做的结果是到实现末期产品完成并开始测试,在分析、设计和实现阶段所遗留的隐藏问题会大量出现,项目可能要停止并开始一个漫长的错误修正周期。

     


      一种更灵活,风险更小的方法是多次通过不同的开发工作流,这样可以更好的理解需求,构造一个健壮的体系结构,并最终交付一系列逐步完成的版本。这叫做一个迭代生命周期。在工作流中的每一次顺序的通过称为一次迭代。软件生命周期是迭代的连续,通过它,软件是增量的开发。一次迭代包括了生成一个可执行版本的开发活动,还有使用这个版本所必需的其他辅助成分,如版本描述、用户文档等。因此一个开发迭代在某种意义上是在所有工作流中的一次完整的经过,这些工作流至少包括:需求工作流、分析和设计工作流、实现工作流、测试工作流。其本身就像一个小型的瀑布项目(见图3)。

     

     

    图3 RUP的迭代模型

      与传统的瀑布模型相比较,迭代过程具有以下优点:

      降低了在一个增量上的开支风险。如果开发人员重复某个迭代,那么损失只是这一个开发有误的迭代的花费。

      降低了产品无法按照既定进度进入市场的风险。通过在开发早期就确定风险,可以尽早来解决而不至于在开发后期匆匆忙忙。

      加快了整个开发工作的进度。因为开发人员清楚问题的焦点所在,他们的工作会更有效率。

      由于用户的需求并不能在一开始就作出完全的界定,它们通常是在后续阶段中不断细化的。因此,迭代过程这种模式使适应需求的变化会更容易些。

    八、统一软件开发过程RUP的十大要素

    1. 开发前景
    2. 达成计划
    3. 标识和减小风险
    4. 分配和跟踪任务。。
    5. 检查商业理由
    6. 设计组件构架
    7. 对产品进行增量式的构建和测试
    8. 验证和评价结果
    9. 管理和控制变化
    10. 提供用户支持

    让我们逐一的审视这些要素,看一看它们什么地方适合RUP,找出它们能够成为十大要素的理由。
     
    1. 开发一个前景
          有一个清晰的前景是开发一个满足涉众真正需求的产品的关键。 前景抓住了RUP需求流程的要点:分析问题,理解涉众需求,定义系统,当需求变化时管理需求。 前景给更详细的技术需求提供了一个高层的、有时候是合同式的基础。正像这个术语隐含的那样,它是软件项目的一个清晰的、通常是高层的视图,能被过程中任何决策者或者实施者借用。它捕获了非常高层的需求和设计约束,让前景的读者能理解将要开发的系统。它还提供了项目审批流程的输入,因此就与商业理由密切相关。最后,由于前景构成了“项目是什么?”和“为什么要进行这个项目?”,所以可以把前景作为验证将来决策的方式之一。 对前景的陈述应该能回答以下问题,需要的话这些问题还可以分成更小、更详细的问题: ? 关键术语是什么?(词汇表) ? 我们尝试解决的问题是什么?(问题陈述) ? 涉众是谁?用户是谁?他们各自的需求是什么? ? 产品的特性是什么? ? 功能性需求是什么?(Use Cases) ? 非功能性需求是什么? ? 设计约束是什么?

    2. 达成计划
            “产品的质量只会和产品的计划一样好。” (2) 在RUP中,软件开发计划(SDP)综合了管理项目所需的各种信息,也许会包括一些在先启阶段开发的单独的内容。SDP必须在整个项目中被维护和更新。 SDP定义了项目时间表(包括项目计划和迭代计划)和资源需求(资源和工具),可以根据项目进度表来跟踪项目进展。同时也指导了其他过程内容(原文:process components)的计划:项目组织、需求管理计划、配置管理计划、问题解决计划、QA计划、测试计划、评估计划以及产品验收计划。

          在较简单的项目中,对这些计划的陈述可能只有一两句话。比如,配置管理计划可以简单的这样陈述:每天结束时,项目目录的内容将会被压缩成ZIP包,拷贝到一个ZIP磁盘中,加上日期和版本标签,放到中央档案柜中。 软件开发计划的格式远远没有计划活动本身以及驱动这些活动的思想重要。正如Dwight D.Eisenhower所说:“plan什么也不是,planning才是一切。” “达成计划”—和列表中第3、4、5、8条一起—抓住了RUP中项目管理流程的要点。项目管理流程包括以下活动:构思项目、评估项目规模和风险、监测与控制项目、计划和评估每个迭代和阶段。

    3. 标识和减小风险
          RUP的要点之一是在项目早期就标识并处理最大的风险。项目组标识的每一个风险都应该有一个相应的缓解或解决计划。风险列表应该既作为项目活动的计划工具,又作为确定迭代的基础。

    4. 分配和跟踪任务
          有一点在任何项目中都是重要的,即连续的分析来源于正在进行的活动和进化的产品的客观数据。在RUP中,定期的项目状态评估提供了讲述、交流和解决管理问题、技术问题以及项目风险的机制。团队一旦发现了这些障碍物(篱笆),他们就把所有这些问题都指定一个负责人,并指定解决日期。进度应该定期跟踪,如有必要,更新应该被发布。(原文:updates should be issued as necessary。) 这些项目“快照”突出了需要引起管理注意的问题。随着时间的变化/虽然周期可能会变化(原文:While the period may vary。),定期的评估使经理能捕获项目的历史,并且消除任何限制进度的障碍或瓶颈。

    5. 检查商业理由
          商业理由从商业的角度提供了必要的信息,以决定一个项目是否值得投资。商业理由还可以帮助开发一个实现项目前景所需的经济计划。它提供了进行项目的理由,并建立经济约束。当项目继续时,分析人员用商业理由来正确的估算投资回报率(ROI,即return on investment)。 商业理由应该给项目创建一个简短但是引人注目的理由,而不是深入研究问题的细节,以使所有项目成员容易理解和记住它。在关键里程碑处,经理应该回顾商业理由,计算实际的花费、预计的回报,决定项目是否继续进行。

    6. 设计组件构架
          在RUP中,件系统的构架是指一个系统关键部件的组织或结构,部件之间通过接口交互,而部件是由一些更小的部件和接口组成的。即主要的部分是什么?他们又是怎样结合在一起的? RUP提供了一种设计、开发、验证构架的很系统的方法。在分析和设计流程中包括以下步骤:定义候选构架、精化构架、分析行为(用例分析)、设计组件。 要陈述和讨论软件构架,你必须先创建一个构架表示方式,以便描述构架的重要方面。在RUP中,构架表示由软件构架文档捕获,它给构架提供了多个视图。每个视图都描述了某一组涉众所关心的正在进行的系统的某个方面。涉众有最终用户、设计人员、经理、系统工程师、系统管理员,等等。这个文档使系统构架师和其他项目组成员能就与构架相关的重大决策进行有效的交流。

    7. 对产品进行增量式的构建和测试
          在RUP中实现和测试流程的要点是在整个项目生命周期中增量的编码、构建、测试系统组件,在先启之后每个迭代结束时生成可执行版本。在精化阶段后期,已经有了一个可用于评估的构架原型;如有必 要,它可以包括一个用户界面原型。然后,在构建阶段的每次迭代中,组件不断的被集成到可执行、经过测试的版本中,不断地向最终产品进化。动态及时的配置管理和复审活动也是这个基本过程元素(原文:essential process element)的关键。

    8. 验证和评价结果
          顾名思义,RUP的迭代评估捕获了迭代的结果。评估决定了迭代满足评价标准的程度,还包括学到的教训和实施的过程改进。 根据项目的规模和风险以及迭代的特点,评估可以是对演示及其结果的一条简单的纪录,也可能是一个完整的、正式的测试复审记录。 这儿的关键是既关注过程问题又关注产品问题。越早发现问题,就越没有问题。(原文:The sooner you fall behind, the more time you will have to catch up.)

    9. 管理和控制变化
          RUP的配置和变更管理流程的要点是当变化发生时管理和控制项目的规模,并且贯穿整个生命周期。其目的是考虑所有的涉众需求,尽可能的满足,同时仍能及时的交付合格的产品。 用户拿到产品的第一个原型后(往往在这之前就会要求变更),他们会要求变更。重要的是,变更的提出和管理过程始终保持一致。 在RUP中,变更请求通常用于记录和跟踪缺陷和增强功能的要求,或者对产品提出的任何其他类型的变更请求。变更请求提供了相应的手段来评估一个变更的潜在影响,同时记录就这些变更所作出的决策。他们也帮助确保所有的项目组成员都能理解变更的潜在影响。

    10. 提供用户支持
          在RUP中,部署流程的要点是包装和交付产品,同时交付有助于最终用户学习、使用和维护产品的任何必要的材料。 项目组至少要给用户提供一个用户指南(也许是通过联机帮助的方式提供),可能还有一个安装指南和版本发布说明。 根据产品的复杂度,用户也许还需要相应的培训材料。最后,通过一个材料清单(BOM表,即Bill of Materials)清楚地记录应该和产品一起交付哪些材料。 关于需求 有人看了我的要素清单后,可能会非常不同意我的选择。例如,他会问,需求在哪儿呢?他们不重要吗?我会告诉他我为什么没有把它们包括进来。有时,我会问一个项目组(特别是内部项目的项目组):“你们的需求是什么?”,而得到的回答却是:“我们的确没有什么需求。” 刚开始我对此非常惊讶(我有军方的宇航开发背景)。他们怎么会没有需求呢?当我进一步询问时,我发现,对他们来说,需求意味着一套外部提出的强制性的陈述,要求他们必须怎么样,否则项目验收就不能通过。但是他们的确没有得到这样的陈述。尤其是当项目组陷入了边研究边开发的境地时,产品需求从头到尾都在演化。 因此,我接着问他们另外一个问题:“好的,那么你们的产品的前景是什么呢?”。这时他们的眼睛亮了起来。然后,我们非常顺利的就第一个要素(“开发一个前景”)中列出的问题进行了沟通,需求也自然而然的流动着(原文:and the requirements just flow naturally.)。 也许只有对于按照有明确需求的合同工作的项目组,在要素列表中加入“满足需求”才是有用的。请记住,我的清单仅仅意味着进行进一步讨论的一个起点。

    九、总结

      RUP具有很多长处:提高了团队生产力,在迭代的开发过程、需求管理、基于组件的体系结构、可视化软件建模、验证软件质量及控制软件变更等方面,针对所有关键的开发活动为每个开发成员提供了必要的准则、模板和工具指导,并确保全体成员共享相同的知识基础。它建立了简洁和清晰的过程结构,为开发过程提供较大的通用性。但同时它也存在一些不足: RUP只是一个开发过程,并没有涵盖软件过程的全部内容,例如它缺少关于软件运行和支持等方面的内容;此外,它没有支持多项目的开发结构,这在一定程度上降低了在开发组织内大范围实现重用的可能性。可以说RUP是一个非常好的开端,但并不完美,在实际的应用中可以根据需要对其进行改进并可以用OPEN和OOSP等其他软件过程的相关内容对RUP进行补充和完善。

Open Toolbar