关闭

Linux下的“锁”事儿

发表于:2016-6-30 13:46

字体: | 上一篇 | 下一篇 | 我要投稿

 作者:禅宗花园...迷失的佛    来源:51Testing软件测试网采编

  (3)试图去获得一个信号量,如果没有获得,函数立刻返回1而不会让当前进程进入睡眠状态。
  信号量的V操作
void up(struct semaphore *sem);
/**
* up - release the semaphore
* @sem: the semaphore to release
*
* Release the semaphore.  Unlike mutexes, up() may be called from any
* context and even by tasks which have never called down().
*/
void up(struct semaphore *sem)
{
unsigned long flags;
spin_lock_irqsave(&sem->lock, flags);
if (likely(list_empty(&sem->wait_list)))
sem->count++;
else
__up(sem);
spin_unlock_irqrestore(&sem->lock, flags);
}
  如果没有其他线程等待在目前即将释放的信号量上,那么只需将count++即可。如果有其他线程正因为等待该信号量而睡眠,那么调用__up.
  __up的定义:
  static noinline void __sched __up(struct semaphore *sem)
  {
  struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list,    struct semaphore_waiter, list);
  list_del(&waiter->list);
  waiter->up = 1;
  wake_up_process(waiter->task);
  }
  这个函数首先获得sem所在的wait_list为头部的链表的第一个有效节点,然后从链表中将其删除,然后唤醒该节点上睡眠的进程。
  由此可见,对于sem上的每次down_interruptible调用,都会在sem的wait_list链表尾部加入一新的节点。对于sem上的每次up调用,都会删除掉wait_list链表中的第一个有效节点,并唤醒睡眠在该节点上的进程。
  互斥锁
  两种形式的制约关系
  1)间接相互制约关系(互斥)
  若某一进程要求使用某种资源,而该资源正好被另一进程使用,并且该资源不允许两个进程同时使用,那么该进程只好等待已占有的资源的进程释放资源后再使用。这种制约关系可以用“进程-资源-进程”的形式表示。例如,打印机资源,进程互斥经典问题中生产者-生产者问题。
  2)直接相互制约关系(同步)
  某一进程若收不到另一进程提供的必要信息就不能继续运行下去,表明了两个进程之间在某些点上要交换信息,相互交流运行情况。这种制约关系的进本形式是“进程-进程”。例如生产者与消费者问题,生产者生产产品并放入缓冲池,消费者从缓冲池取走产品进行消费。这两者就是同步关系。
  区分互斥和同步只需记住,同类进程即为互斥关系,不同类进程即为同步关系。
  临界资源:同时只允许一个进程使用的资源。
  临界区:进程中用于访问临界资源的代码段,又称临界段。
  每个进程的临界区代码可以不同,临界区代码由于要访问临界资源,因此要在进入临界区之前进行检查,至于每个进程对临界资源进行怎样的操作,这和临界资源及互斥同步管理是无关的。
  Linux 2.6.26中mutex的定义:
struct mutex {
/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t                  count;//原子操作类型变量
spinlock_t                wait_lock;//自旋锁类型变量
struct list_head          wait_list;
#ifdef CONFIG_DEBUG_MUTEXES
struct thread_info        *owner;
const char                *name;
void                      *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map         dep_map;
#endif
};
  对比前面的struct semaphore,struct mutex除了增加了几个作为debug用途的成员变量外,和semaphore几乎长得一样。但是mutex的引入主要是为了提供互斥机制,以避免多个进程同时在一个临界区中运行。
  如果静态声明一个count=1的semaphore变量,可以使用DECLARE_MUTEX(name),DECLARE_MUTEX(name)实际上是定义一个semaphore,所以它的使用应该对应信号量的P,V函数.
  如果要定义一个静态mutex型变量,应该使用DEFINE_MUTEX
  如果在程序运行期要初始化一个mutex变量,可以使用mutex_init(mutex),mutex_init是个宏,在该宏定义的内部,会调用__mutex_init函数。
#define mutex_init(mutex)                                                   \
do {                                                                        \
static struct lock_class_key __key;                                 \
\
__mutex_init((mutex), #mutex, &__key);                              \
} while (0)
  __mutex_init定义如下:
/***
* mutex_init - initialize the mutex
* @lock: the mutex to be initialized
*
* Initialize the mutex to unlocked state.
*
* It is not allowed to initialize an already locked mutex.
*/
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
atomic_set(&lock->count, 1);
spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
debug_mutex_init(lock, name, key);
}
  从__mutex_init的定义可以看出,在使用mutex_init宏来初始化一个mutex变量时,应该使用mutex的指针型。mutex上的P,V操作:void mutex_lock(struct mutex *lock)和void __sched mutex_unlock(struct mutex *lock)从原理上讲,mutex实际上是count=1情况下的semaphore,所以其PV操作应该和semaphore是一样的。但是在实际的Linux代码上,出于性能优化的角度,并非只是单纯的重用down_interruptible和up的代码。以ARM平台的mutex_lock为例,实际上是将mutex_lock分成两部分实现:fast path和slow path,主要是基于这样一个事实:在绝大多数情况下,试图获得互斥体的代码总是可以成功获得。所以Linux的代码针对这一事实用ARM 。
  自旋锁
  自旋锁也是实现保护共享资源的一种锁机制,与互斥锁比较类似,都是为了解决对某资源的互斥使用。无论是互斥锁还是自旋锁,在任何时刻最多只有一个保持者。也就是说,任何时刻最多只有一个执行单元获得锁。两者的不同之处是,对于互斥锁而言,如果资源已经被占用,其它的资源申请进程只能进入sleep状态。但是自旋锁不会引起调用者sleep,如果自旋锁已经被别的执行单元保持,调用者就一直循环在等待该自旋锁的保持者是否释放该锁。
  自旋锁一般原理
  跟互斥锁一样,一个执行单元要想访问被自旋锁保护的共享资源,必须先得到锁,在访问完共享资源后,必须释放锁。如果在获取自旋锁时,没有任何执行单元保持该锁,那么将立即得到锁;如果在获取自旋锁时锁已经有保持者,那么获取锁操作将自旋在那里,直到该自旋锁的保持者释放了锁。由此我们可以看出,自旋锁是一种比较低级的保护数据结构或代码片段的原始方式,这种锁可能存在两个问题:死锁和过多占用cpu资源。
  自旋锁适用情况
  自旋锁比较适用于锁使用者保持锁时间比较短的情况,正是由于自旋锁使用者一般保持较短的锁时间,因此选择自选而不是睡眠是非常必要的,因为自旋锁的效率远高于互斥锁。信号量和读写信号量适用于保持时间较长的情况,它们会导致调用者sleep,因此只能在进程上下文使用。而自旋锁适合于保持时间非常短的情况,它可以再任何上下文使用。如果被保护的共享资源只在进程上下文访问,使用信号量保护该共享资源非常合适,如果对共享资源的访问时间非常短,自旋锁也可以。但是如果被保护的共享资源需要在中断上下文访问(包括底半部即中断处理句柄和顶半部即软中断),就必须使用自旋锁。自旋锁保持期间是抢占失效的,而信号量和读写信号量保持期间是可以被抢占的。自旋锁只有在内核可抢占或SMP(多处理器)的情况下才真正需要,在单CPU且不可抢占的内核下,自旋锁的所有操作都是空操作。另外格外注意一点:自旋锁不能递归使用。
  自旋锁的定义及相关API
  自旋锁定义的文件(Linux/Spinlock.h)
typedef struct spinlock {
union { //联合
struct raw_spinlock rlock;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
struct{
u8 __padding[LOCK_PADSIZE];
struct lockdep_map dep_map;
};
#endif
};
} spinlock_t;
  定义和初始化操作:
  spinlock_t my_lock = SPIN_LOCK_UNLOCKED;
  void spin_lock_init(spinlock_t *lock);
  自旋锁操作:
//加锁一个自旋锁函数
void spin_lock(spinlock_t *lock);                                   //获取指定的自旋锁
void spin_lock_irq(spinlock_t *lock);                               //禁止本地中断获取指定的锁
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);      //保存本地中断的状态,禁止本地中断,并获取指定的锁
void spin_lock_bh(spinlock_t *lock)                                 //安全地避免死锁, 而仍然允许硬件中断被服务
//释放一个自旋锁函数
void spin_unlock(spinlock_t *lock);                                 //释放指定的锁
void spin_unlock_irq(spinlock_t *lock);                             //释放指定的锁,并激活本地中断
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags); //释放指定的锁,并让本地中断恢复到以前的状态
void spin_unlock_bh(spinlock_t *lock);                              //对应于spin_lock_bh
//非阻塞锁
int spin_trylock(spinlock_t *lock);                  //试图获得某个特定的自旋锁,如果该锁已经被争用,该方法会立刻返回一个非0值,
//而不会自旋等待锁被释放,如果成果获得了这个锁,那么就返回0.
int spin_trylock_bh(spinlock_t *lock);
//这些函数成功时返回非零( 获得了锁 ), 否则 0. 没有"try"版本来禁止中断.
//其他
int spin_is_locked(spinlock_t *lock);               //和try_lock()差不多
  信号量、互斥锁和自旋锁的区别
  信号量。互斥锁允许进程sleep属于睡眠锁,自旋锁不允许调用者sleep,而是让其循环等待,所以有以下区别应用:
  信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因而自旋锁适合于保持时间非常短的情况;
  自旋锁可以用于中断,不能用于进程上下文(会引起死锁),而信号量不允许使用在中断中,而可以用于进程上下文;
  自旋锁保持期间是抢占失效的,自旋锁被持有时,内核不能被抢占,而信号量和读写信号量保持期间是可以被抢占的。
  另外需要注意的是:
  信号量锁保护的临界区可包含可能引起阻塞的代码,而自旋锁则绝对要避免用来保护包含这样代码的临界区,因为阻塞意味着要进行进程的切换,如果进程被切换出去后,另一进程企图获取本自旋锁,死锁就会发生;
  占用信号量的同时不能占用自旋锁,因为在等待信号量时可能会睡眠,而在持有自旋锁时是不允许睡眠的。
  信号量和互斥锁的区别
  1、概念上的区别:
  信号量:是进程间(线程间)同步用的,一个进程(线程)完成了某一个动作就通过信号量告诉别的进程(线程),别的进程(线程)再进行某些动作。有二值和多值信号量之分;
  互斥锁:是线程间互斥用的,一个线程占用了某一个共享资源,那么别的线程就无法访问,直到这个线程离开,其他的线程才开始可以使用这个共享资源。可以把互斥锁看成二值信号量。
  2、上锁时:
  信号量: 只要信号量的value大于0,其他线程就可以sem_wait成功,成功后信号量的value减一。若value值不大于0,则sem_wait阻塞,直到sem_post释放后value值加一。一句话,信号量的value>=0。
  互斥锁: 只要被锁住,其他任何线程都不可以访问被保护的资源。如果没有锁,获得资源成功,否则进行阻塞等待资源可用。一句话,线程互斥锁的vlaue可以为负数。
  3、使用场所:
  信号量主要适用于进程间通信,当然,也可用于线程间通信。而互斥锁只能用于线程间通信。
22/2<12
《2023软件测试行业现状调查报告》独家发布~

关注51Testing

联系我们

快捷面板 站点地图 联系我们 广告服务 关于我们 站长统计 发展历程

法律顾问:上海兰迪律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2024
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪ICP备05003035号

沪公网安备 31010102002173号