数据处理类系统功能测试探索

发表于:2020-4-17 10:26  作者:雷陈芳   来源:51testing软件测试网原创

字体: | 上一篇 | 下一篇 |我要投稿 | 推荐标签: 测试效率 功能测试

  摘要
  随着大数据、数据挖掘、人工智能等技术的快速发展,企业愈加重视数据资产的价值,积极打造从数据采集、汇总、处理加工至应用的数据应用闭环。数据质量是数据应用领域建设的重中之重,数据处理类系统是数据质量的重要影响因素,面对繁杂海量的数据与加工规则,系统测试如何在时间与资源的限制下保证质量与效率值得探索。本文介绍了一套数据处理类系统的功能测试方法,并提出测试执行策略,以提高测试质量与测试效率
  一、引言
  信息技术的广泛应用使得企业生产经营变得更加高效,同时也沉淀了大量的数据。随着大数据、数据挖掘、人工智能等技术的快速发展,企业愈加重视数据资产的价值,将数据中隐藏的信息与规律转化为企业的生产力,使数据成为企业的决策依据。当前,数据应用能力已成为企业的核心竞争力,支撑经营决策、客户营销、产品创新、绩效管理、风险管控、监管报送及信息披露等诸多场景。因此,各企业积极打造从数据采集、汇总、处理加工至应用的闭环,建设大数据平台、数据仓库、数据集市、数据湖等各种形式的“数据中台”,实现海量数据的快速聚集汇总与处理加工,为企业发展增速提供动力。
  本文所述数据处理类系统是指根据业务目标与需求对数据进行汇集、拼接、整合、统计、加工等直接处理的纯后台系统,例如大数据平台、数据仓库、数据集市、数据湖等。此类项目无前台界面,多为批量程序,由调度系统控制定期运行,处理结果以及数据文件或数据库表等形式存储,供下游应用使用。
  数据是数据应用的基础,数据质量对于数据应用至关重要,数据处理类系统是数据质量的重要影响因素,测试作为系统质量保障的最后一道防线,面对繁杂海量的数据加工规则需求,如何在有限资源的条件下兼顾测试质量与测试效率值得探讨。
  本文根据过往项目经验整理了一套数据处理类系统的功能测试方法,对其中重要的目标表检查进行详细梳理,根据检查点来源将目标表检查内容分为了技术层面与业务层面,建议测试人员按照从技术层面到业务层面、从简单到复杂、从宏观到微观的测试执行策略。
  二、数据处理类系统功能测试
  目前数据处理类系统常用的功能测试方法主要有两类,一是白盒测试,主要使用代码检查方法,由测试人员根据业务需求对系统批量程序的代码或脚本进行检查,较容易发现一些直观的问题,比如判断条件中的比较符号写反、判断条件的遗漏、边界值的遗漏等。此外,代码检查有助于加深测试人员对数据处理功能的理解,进行黑盒测试案例设计时更有针对性。



版权声明:本文出自《51测试天地》第五十七期。51Testing软件测试网及相关内容提供者拥有51testing.com内容的全部版权,未经明确的书面许可,任何人或单位不得对本网站内容复制、转载或进行镜像,否则将追究法律责任。 

评 论

论坛新帖



建议使用IE 6.0以上浏览器,800×600以上分辨率,法律顾问:上海信义律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2021, 沪ICP备05003035号
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪公网安备 31010102002173号

51Testing官方微信

51Testing官方微博

扫一扫 测试知识全知道