WebLOAD JavaScript Reference Manual

Version 6.0

RadView Software

The software supplied with this document is the property of RadView Software and is furnished under a licensing
agreement. Neither the software nor this document may be copied or transferred by any means, electronic or
mechanical, except as provided in the licensing agreement. The information in this document is subject to change
without prior notice and does not represent a commitment by RadView Software or its representatives.

WebLOAD JavaScript Reference Manual
© Copyright 1998-2003 by RadView Software. All rights reserved.
November 1998, RadView Publication Number WL-0898-PG03
Revised: June, 2003

WebLOAD, TestTalk, Authoring Tools, ADL, AppletLoad, and WebExam, are trademarks or registered trademarks of
RadView Software IBM, and OS/2 are trademarks of International Business Machines Corporation. Microsoft
Windows, Microsoft Windows 95, Microsoft Windows NT, Microsoft Word for Windows, Microsoft Internet
Explorer, Microsoft Excel for Windows, Microsoft Access for Windows and Microsoft Access Runtime are trademarks
or registered trademarks of Microsoft Corporation. SPIDERSESSION is a trademark of NetDynamics. UNIX is a
registered trademark of AT&T Bell Laboratories. Solaris, Java and Java-based marks are registered trademarks of Sun
Microsystems, Inc. HP-UX is a registered trademark of Hewlett-Packard. SPARC is a registered trademark of SPARC
International, Inc. Netscape Navigator and LiveConnect are registered trademarks of Netscape Communications
Corporation. Any other trademark name appearing in this book is used for editorial purposes only and to the benefit of
the trademark owner with no intention of infringing upon that trademark.

LRADVIEVW

For product assistance or information, contact:

Toll free in the US: 1-888-RADVIEW

Fax: (781) 238-8875

World Wide Web: http://www.radview.com
North American Headquarters: International Headquarters:
RadView Software Inc. RadView Software Ltd.

7 New England Executive Park 2 Habarzel Street

Burlington, MA 01803 Tel Aviv Israel 69710
Phone: (781) 238-1111 Phone: +972-3-765-0555
Email: sales@radview.com Fax: +972-3-647-1406

ii RadView Software

Table of Contents

Object Model Table List.......cccceeemeeciiiiiiiiiiirirccc s xviii
How to use this boOK..........co i Xxix
Before you begin..........oovuiiiiiiiiic e, XiX
About this guUIdecooeiiii Xix
WebLOAD documentationccoooviiiiiiiiiiiieeceeee e XX
Where to Get More Information.............oorriieciiiic s XXi
ON-liN€ Help ..., XXi
Technical SUPPOIt.....cccoe e XXi
Technical Support Web Siteccooooeiiviiiiiiicie, XXi
Chapter 1: Introduction to JavaScript Agendas........ccccccccerrrrrenneen. 3
1.1 What are Agendas?ccccovvmreeciiimmcecssersesssseeeennnns 4
1.2 WebLOAD Agendas work with an extended
version of the standard DOM...........cccccuneeiiiinnnnns 5
1.21 What is the Document Object Model? 5
1.2.2 Understanding the DOM structurecccceeee. 6
1.2.3 DOM objects commonly used in an Agenda............. 9
1.2.4 WebLOAD extension set...........cooovveiiieiiieiieeeeiiiinnn, 10
1.3 When would | edit the JavaScript in my
Agendas? ... 12
1.4 Accessing Agenda components.........cccceeeuniinnn. 13
1.5 Editing the JavaScript code in an Agenda.......... 16
1.5.1 Accessing the JavaScript code within the Agenda
TrEE e 16
1.5.2 Using the IntelliSense JavaScript Editor 17
Chapter 2: WebLOAD Actions, Objects, and Functions............... 19
F= Lo 1ToT I o] fo] 011 o 1Y) FU P 19

WebLOAD JavaScript Reference Manual iii

X o2 { oY o 1= 20

Add() (Method)cccoeeeeeeeeeee 21
addProperty() (method)cooveeiiiiiiiiie e 22
AdjacentText (property)......cccceeeeieeiie 23
F Y L o]] 01T 1 42 23
area (ODJECE) . ..uveieiiiiiiiii s 24
Automatic State Management for HTTP Protocol Mode ... 25
AutoNavigate() (action)cceeviiiiiiiiice 26
Back() (ACtion)........coooiiiiiii 27
BeginTransaction() (function)ccoouviiiiiiiiiiiiceeee, 28
bitrate (Property)........oeueeeeiiiiiiiiiiiieeeee e 30
Browser configuration components.............ccccrrveeencccennn. 30
BrowserCache (Property)ccccooeeeiiieeiiiieiieeeeeeeeeeeeee e 33
Button (0bJect)......coooiiii 34
CEll (ODJECE) ... 35
(o711 gTo =3 Q{ o] o] o1=Tu 4V A 37
Checkbox (ObJECL) ...oevviiieiieeeeeece e 38
checked (Property)ueeeueeueuiiiiiiiiiiii e 39
ClearAll() (Method).......uuceiiiieiieeeecee e 40
ClearDNSCache() (method)uuueiiiiiiiiiiiiiiiiiiiiis 41
ClearSSLCache() (method).......coovvvvieeiiiiiiiiicee e, 42
ClientNum (variable)uuuuuiuiiiiiiiiiiiiiiiiiiiieees 43
Close() (fuNCtion)...........eueiiieeieieeecee e 45
CloseConnection() (method)uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiees 46
L0 oY] (=T 2 (o o - 47
COIS (PrOPEITY) ..ttt 48
Compare() (Method).......ccooveiiiiiieccce e 49
CompareColumns (Property)..........cccccueeeemmmmmmmmmmeiiiiiiiieninnnennns 51
CompareROWS (Property)coeeeuruuieiiieeeeeeeeeiiiee e e e e e eeeeanns 52
connectionBandwidth (property)..........cccccccciiiiiiiiiiiiiiiiiiiies 53
ConnectionSpeed (Property)ooouvveeeeiieeeeiieeeiiciee e 54
ContainerTag (Property).............eeeeeeeeemmmmmmiiiiiiiiiiiiiiieiiiennneenens 55
ContainingMap (Property).........ooeeuiueieeiiieieeiieeecee e 55
CONLENT (PrOPEITY) ..ttt 56
(07eTo] yo ST { o] fo] 01T 1 1Y) PRSPPI 57
CopyFile() (fUNCLION).........uueiiiiiiiiii e 57
CreateDOM() (function)......cccoeeeeeieiiicce e 59
CreateTable() (funNCtion)euuueeiiiiiiiiiiiiiiiieee 60
currentPosition (Property).......ccooeeeeeiiiiiieeie e 62

RadView Software

currentStreamName (Property)cccccceeeeimimiimiiiiiieee 62

Data (Property)....ccooo e 63
DataFile (Property) ... 65
DefaultAuthentication (property)cceeeeeeiiiiiiiiiiiiiiee e, 66
defaultchecked (Property)ccccooooiiie 68
defaultselected (property)oooveveeiiieiiieee e, 68
defaultvalue (Property)cccccoooooiie 69
delete() (Method)eeieiii e, 70
Details (Property)coooeeeeiiiiiiiiiiiieeeeeeeeeee 72
Dialog box properties.......ccccccciimiiciiimnicinrrr s 73
DisableSleep (Property)ccceeeeeiieeeeiiiiiie e 75
DiV (ODJECL)...ciiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 77
DNSUseCache (Property)cccouveeeiiuuiiiiiieeeeeeeeeiiee e 78
document (ODJECL)uuuei 79
duration (ProPerty)cccccecco e 80
Dynamic Object Recognition (DOR) components.............. 81
element (ODJECE)vvveeeiii i 83
€NCOAING (PrOPEILY) 85
EndTransaction() (function) ..., 85
Erase (Property)ceeeeeeeeeeieeieiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 87
ErrorMessage() (function)cooeeeeiiiiiiie e 89
EvaluateScript() (function) ... 90
LYY= a1 A (o o] o1=T Y ISP 91
ExceptionEnabled (property) ... 92
ExpectedDocument (property)eeeeiiieeiiieeieiiiiiiee e 93
ExpectedDOMID (Property)cooeveeeiieiiiiieiiiiiiieieeeeeeeeeeeeeeee 94
ExpectedID (Property)......ccccuieeeerieeeiiiiciie e 94
ExpectedLocation (Property).........cceevvveveieiiiiiiiiieiiiiiiiiieeeeeeeee 95
ExpectedName (Property)........ccooeeevivceiiiiieiiieeeiee e 96
ExpectedText (Property) ... 97
ExpectNavigation() (method)ovveiiiiiiiiiie e 97
File (ODJECE) ...coviiiiiiiiiiiieeeeeeeeee 99
File management functionscccccccccciiiiiiiniiiccecccciieieees 100
fileName (Property)ccoovveieiiiieee e, 100
FindObject() (method)..........ccovvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 102
form (ODJECE).....coeeeeee 102
FormData (Property)ceeeeevevieiiiiiiiiiiiiiiiiieieiieeeeeeeeeeeeeeeeeee 104
Forward() (action)couvuuiiiiiiiiicce e 106
frames (ODJEC)coooeeeeeeee 107

WebLOAD JavaScript Reference Manual v

GeneratorName() (function)eeeeviiiiiiiiiiiiiiiiieeeeeeeeee 108

Get() (Method).....ccooe e 110

Get() (addition method)occeiiiiiiiii e, 110

Get() (transaction method)c..oovviiiieiiiii 111
GetCurrentValue() (method)..........ccovvvviiiiiiiiiiiiiiiiiiii, 114
GetFieldValue() (method).........ccoovvviiiiiciiiee e 115
GetFieldValuelnForm() (method)ccoovvvviiiiiiiiiiiiiiiinnnnnn. 116
GetFormAction() (method)cooovriiiiiiiii e, 117
GetFrameByUrl() (method)...........cooviviiiiiiiiiiiiiiiiiiiiiiiiieeeeee 118
GetFrameUrl() (method).........ccoovvviiiiiiiiii e, 119
GetHeaderValue() (method)...........coovvvviiiiiiiiiiiiiiiiiiiiiiiieeee, 120
GetHost() (method)ooeveeeeeeie e 121
GetHostName() (method)........coevvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 122
GetlPAddress() (method)ccoovvviiiiiciiiii e, 123
GetLine() (fuNCtion)coeviiiiiiiiiiiiie 124
GetLinkByName() (method)coooviiiiiiiiiiiiiceee e, 127
GetLinkByUrl() (method) ... 128
GetMessage() (method)ccooeeeiiiiiiiiiicie e, 129
GetOperatingSystem() (function)eeeveeiiiiiiiiiieiiieiennee. 130
GetPortNum() (method)eeeeeeiiiie e, 131
GetQSFieldValue() (method).........covvviiiiiiiiiiiiiiiiiiiiiiiiiiee 132
GetSeverity() (Method).......cccoooiiiiiiiiii e 133
GetStatusLine() (method)........coevvviviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 134
GetStatusNumber() (method).........ooovvviiiiiiiiiieee 135
GetUri() (Method)ceeveiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeeeeeeee 136
hash (Property)......ccooo e 137
Head() (method).........coooi 137
Header (Property)......coooeeeiiiieiiee e 138
HistoryLimit (Property) ... 140
hOSt (ProPerty)....cccoee e 141
hostname (Property).........ceeeeeeieeiieiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeee 141
href (Property) ... 142
httpEQUIV (Property)........eee oo 143
o I o] o] o111 1A FS 143
Identification variables and functions...........ccccccceeveee. 146
IdentifyObject() (method) ... 147
Image (ODJECE) ..oovveeeiee e 148
IncludeFile() (function)ccoooeeeeeieee e, 150
INAEX (PrOPEILY) ..ceveeeeee e 151
InfoMessage() (function) ..., 152

vi

RadView Software

INnNerHTML (property) ..., 153

Innerlmage (Property)oueveeceeiiieeiieeeccee e 154
InnerLink (Property).......cooooo 155
InnerText (Property)ooeeervieiiiie e 155
InputButton (0bJect)........ooooiii i 157
InputCheckbox (0bject)ccoiviiiiiiiic 158
InputFile (Object) ... 159
Inputimage (0bJect).........oovvviiiiie 160
InputPassword (0bject) ... 161
InputRadio (0bject).........ooovviiiii i 162
InputText (ObJECt) ..o 164
KeepAlive (Property)ouueeeceiiiieeeeeeeee e 165
KEY (PrOPEITY)..cceiieiiiiiiiiiiieieieeeeeeeeeeeeeeeeee e 166
language (ProPerty)......uuuceieeee e e e 167
[ength (ProPerty)eeeeeeeeiiiiiiiiiii s 167
INK (ODJECL) e 169
[0ad() (Method)uvviiiiiiiiiiiiiiiii 170
load() and loadXML() method comparison.............cccceeeene.... 172
LoadGeneratorThreads (property)cceeeeeeeeveeeeeiieieieneeennn. 173
[0adXML() (Method)uueiiiieeiiieeee e, 175
[ocation (ODJECE)vvveiiiiiiiiiiiiiii 176
g aE=T ol (] o =T o1 IR 178
MatchByY (Property)coeevveeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 178
MaxLength (Property).........cceeiieeeeiiieeccee e 180
Message functions...........cceevieiiiiiiiiiiissssssssseeere e 180
Method (Property)oooeeeviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 182
MultilPSupport (Property).......cccceeeveeeeiiiciieeeeeeeeeeeee e 183
Name (ProPerty)....cceeueeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 184
Navigate() (action)uueiiiiiiiiicc e 186
NTUserName, NTPassWord (properties)ccccccvveeeeeeennnnn. 187
Num() (Method)c.ooommi e 188
ObjectProperty[] (Property)eeeeeeeeeememmmmmieiiiiiiiiiiiiinnennns 189
(0] o= o2 £ 189
ONCIICK (PrOPEITY)...eeeeeeerieiiiiiiiiiiiiiieiiiii e 190
OnMouseQVver (PropPerty)ccoveeeuureieieieeeeeeeeeieee e e e e e e eeeeenns 191
Open() (FUNCLION)........uueiiiiiiiiiiii s 193
OpenStream() (method)...........oooveiiiiiiiii e, 194
OPLION (ODJECT) ... 195
OuterLink (Property).......ccccieeeeiieeeiiiicie e 196

WebLOAD JavaScript Reference Manual vii

Outfile (Property)uueeueeuuuiiiiiiiiiiiii s 197

PassWord (PropPerty)oeuuueeeeiiieeeieeeeiice e 198
pathname (Property)........ceeeeeeeeeeiiiiiiieiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 199
Pause() (method)cooevmiiiiiiii e 200
Play() (method)coooiieiiieieeeeeeeeeee 200
[oTo] g (o] 0] o1=Tx 4V IS 202
Post() (method) ... 202
Prepare() (method).........ooovveiiiiiiiii e, 205
ProbingClientThreads (property)cccooiin. 206
[o]ge]TeTete] I (o] 0] o1=Tu 1Y) I 208
Proxy, ProxyUserName, ProxyPassWord (properties)......... 209
Radiobutton (0bject)..........uuceiiiiii 210
Range() (method) ... 211
ReceiveTimeout (Property)......cccceeeveeeeiiiiiieee e 212
RedirectionLimit (property) ... 212
Refresh() (Action)coooeeeiiiiii e 213
ReportEvent() (function) ... 214
ReportLog() (method)..........eveiiiiiiiiicee e 215
ReportUnexpectedRows (property)........cceeeeeeeeeeeeeeeeinnnnnn. 216
RequestRetries (Property)cccoeeeeeeeieeeieciiiee e 217
RESEt 218

RESEL (ODJECE) ..vviieiiiiiiie e 218

Reset() (method)ooviiiiiee e 219
Resume() (method)coovvveiiiiiiic e 220
RoundNum (variable) ... 221
(o)1 A (o] o] [T} § 1P 223
rOWINAeX (PrOPEItY) ...ceeeeieiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee e 225
SaveSource (Property)cocoeuvieeeeiiiiiie e 226
SaveTransaction (Property).........ccccccueeeeummmmmmmminiiiiiiiiiinneeenns 227
SaveWSTransaction (Property)ccceeeeeeeeeevieiiiicieeeeeeeeeeeenns 228
SCHPL (ODJECT). .. 229
SEArCh (PrOPEItY)...cceeiiiei et e e 230
Seed() (Method)uueiieiiiiiiii s 231
SEIECE 231

5721 [Tt A (o] o] [T o 4 TSR 231

Select() (Method)......oocueeiiiii e 232
selected (Property)ueeeueeueememiiiiiiiiiies 233
selectedindex (Property)......ccooeeveeeiiiiieee e 234
SendCounter() (fuNCLION)...........uuuiuiiiiiiiiiiiiies 234
SendMeasurement() (function).........cccooeeeeeiiiiiiiciieeee e, 235
SendTimer() (FUNCHION)eueiiiiiiiiiiiiiii s 236

viii

RadView Software

Set() (Method)......uuuuiiiiiiiiiiiiii s 237

Set() (addition method)coooviiiiiiiie e 237

Set() (cookie Method)........cccuveviiiiiiiiiiiie e 238
SetFailureReason() (function)..........cccceveiiiiiiiiiiciiieeeeeee, 239
SetTimer() (fFUNCION)uuiiiiiiiiiiii s 241
setType() (Method)cooiieeiiieee e, 242
setValue() (Method) ... 243
SetWindow() (Action)ccooeeviiiiiiiici e 244
SevereErrorMessage() (function)...............eeeeveiiiiiiiiiiiiiennnnee. 245
Shape (Property)ooeeuueeiiieee e 246
TP (o] 0] 011 1 1Y) 247
Sleep() (FUNCLION)coovvieiiii e, 247
SleepDeviation (Property)eeeeeeeememmememiiiiiiiiiiiiiiiinennens 250
SleepRandomMax (Property)........ceeeeiieeeiiieeeiiiiiiiieeeeeeeeeeens 251
SleepRandomMin (Property)..........c.eeeeeeeeeeeimeemmieiiiiiiiiiiinnnns 252
Span (ODJECE) ... 254
SIC (PrOPEITY) et 255
SSL Cipher Command Suitecceeeeiirireecinirecenceeeeeenen, 256
SSLBItLimit (Property)......cccceeeiiemeiiiiiiie e, 257
SSLCipherSuiteCommand() (function).................euuvvuiiiieennnes 258
SSLClientCertificateFile, SSLClientCertificatePassword

(Properties)ooevvvviiiiiiiiiiiiieeeeeeeeeeeeeeeeee 260
SSLCryptoStrength (property)ccceeeeieieiiiiiiiicieeeeeeeeeeeee, 262
SSLDisableCipherID() (function)...............eeueuveeeeiiieeeiiiiiinnnns 263
SSLDisableCipherName() (function)...........cccccvvieieiiiiinnn, 265
SSLEnableCipherID() (function)................euvueviiiiiiiiiiiiiiininnnns 266
SSLEnableCipherName() (function)...........c.coooviviiiiieeeeennnee. 267
SSLGetCipherCount() (function)...............eeeveeeeeiiiiiiiiiiiiiinnnns 268
SSLGetCipherID() (function)...........uuviiiieiieiiiceeeee e, 269
SSLGetCipherInfo() (function)eeeeveiiiiiiiiiiiiiiiiiiiiinees 270
SSLGetCipherName() (function)........ccceeeeeviiiiiiiiiieieeeeeeeee, 271
SSLGetCipherStrength() (function)..............eeveeeiiiiiiiiiiiinenee. 272
SSLUseCache (Property).........ooeuuiuuieiiiieeeieeeeiiiee e, 273
SIS IVACT ST o] g I { o] o] 01T 1Y) IS 275
state (Property) ..o 277
Stop() (MEthOd)....uvveiiiiiiiiiiiiiiiii 278
StHNG (PrOPErtY) oo 278
10 o] 0 110 (0] o =T ex o TR 279
SyncDOM() (method).......ccoooeiiiiiiieie e, 280
SynchronizationPoint() (function)................eeeviiiiiiiiiiiiiiiinnee. 281

WebLOAD JavaScript Reference Manual iX

table (ODJECT) ... 284

TableCell (0DJECE)iiiieiiiiece e 285
TableCompare (ObJECt)cciii s 286
TableCompare() (constructor)cccooevvvvveeiicciieeeeeeeeeee, 287
tagName (Property)cccocoooo s 289
target (Property)ueeeeee e 290
tEXE (PrOPEITY) ... 291
TextArea (ObJEC)......ciiii i 292
TimeoutSeverity (Property)..........ccueeeeemeummmmmeemiiiiiieneeienennnnns 293
Timing fuNCtions ... 295
title (ProPertY)ee e 296
Transaction verification componentsccccevreeeeeee. 297
TransactionTime (Property)......ccceeeeeeeiiieeeiiicieiee e, 298
tYPE (PrOPEITY) ... 300
UlContainer (ObJeCt)covvvvieieii e 301
Url (PrOPerty) ..ccooeeeeeeiieeeeeeeeeee e 302
UseHistory (Property)ueeeeiieeiiieieeiiccee e 304
User-defined global propertiesoooiiiiiiiiiiiiiiiieeee. 304
UserAgent (Property)........uueeceiieeeeiieeeiiieee e 306
UserName (Property)cooeeeveeiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeee 307
UsingTimer (Property)oouueeceeiiieeeieeeeecee e 308
Validate() (method)ccooeeeeeee 309
Value (ProPerty) ...coeueeeieee e 310
VCUniquelD() (function) ... 312
Verification (Property).......cooevvvieiiiiiiiiicce e 313
Verification Test Componentsccceveeecciiiiiiiiinnneennnes 315
Verification Test Property List: Global and Page Level 318
VerificationFunction() (user-defined) (function).................... 320
Version (PropPerty) ... 322
WarningMessage() (function)ccccooovriiiiiiciiiiee e, 323
WINAOW (ODJECE) ..o 324
WIBrowser (ObjeCt).......ccooviimiiiiiiiiic e, 325
WICHICK() (ACHON)..ccceeeeeeeeeeeeeeeeee 326
wiClear() (method) ..o, 328
WICIoSe() (ACHION) .oooeeeeeeeeeeeee 329
WICO0O0KiE (ODJECE)..uuuiiiieiiiieeecce e, 330
WIException (object) ... 331
WIException() (constructor)..........cccoooeviiiiiiiiiiieeeeeeeeee, 333
wiGeneratorGlobal (Object) ..., 334

RadView Software

WIGet() (Method) ... 335

wiGetAlIForms() (method)..........ueiiiiiiiiicc e, 336
wiGetAllFrames() (method) ..o 337
wiGetAllLinks() (method)............oeiiiiiiii e, 338
wiGlobals (0DJeCt)ccoeeeeeeeee 339
wiHeader (0bJjecCt).......cooeiiiiiie 340
WIHtMI (0bJect) ..o 342
WIHEP (ODJECE) i 342
wILocals (OBJECE) ...coeeeeeeeeeeeeee 343
wiMediaPlayer (0bject)............uvieiiiiiiii e, 344
wiMediaPlayer() (CONStruCtor)cooovveeeiiiieiiieeeeeeeeee, 345
wIMeta (ObJECE) .ovvveeeiiee e 346
wIMouseDown() (aCtION) ..cccoeeeeeeeeeeee e 347
wiMouseOver() (action)............uueeiiieiiiieeecce e 348
wIMouseUp() (ACtION).......coooeiiiiiii 349
wiMultiSelect() (action)............ouvveeiieeiiiiiccee e, 350
wlOutputFile (ObJecCt) ... 351
wlOutputFile() (constructor)cccooeevvviiiiiiiiiieeeeeeeeee, 354
WIRANA (ODJECE) ..o 355
wiSearchPair (Object).........coovvviiiiiiiic e, 356
wiSelect() (ACtioN)ooovviiiiii 358
WISet() (Method)oiiiii e 359
WISOUICE (PrOPEITY)...ccee e 360
wiStatusLine (Property)ouueeeeiiieeiiiieeccee e 361
wiStatusNumber (Property) ... 362
WISUbmIt() (aCtioN)ccoeviiiieee 362
wISystemGlobal (0bject) ... 363
WITable (ObJECE).....ueeiiieiiee e 364
wiTarget (Property)......ccooo oo 366
WITypeln() (Action)ccooveeiiiiiiie e, 366
WIVErsion (Property)......ccoooeeeoeeoiiiiieieeeeeeeeeeee e 368
WLXmIDocument() (constructor)coeevveiiieeeeeeeeceeiin, 368
WIXMIS (ODJECE) oo 370
Write() (Method).......coooeeiiiie e 372
Writeln() (method) ..., 373
WSComplexObject (0bject).......cceeviiiiiiiiiiiciieeeeeeeeeee, 374
WSComplexObject() (ConsStructor) ..., 375
WSGetSimpleValue() (function)..........cooovvviiiiiieiiiii, 376
WSWebService (0bJect) ... 377
WSWebService() (constructor)cooeveviieiiiiiiieeeeeeein, 379

WebLOAD JavaScript Reference Manual Xi

XMLDocument (Property)...........eueeeeeeeeemmmmmmmiiinniinninnenennnnnnnes 380

Appendix A: WebLOAD-supported SSL Protocol Versions....... 381
SSL handshake combinationscccoimimiiiccciiiiiinnnns 381
SSL protocols—complete listemvrreeeiiiiiiiiinnnnnnenes 382
128-bit encryplion.........ccovviiiiiiiiii 382
56-Dit @NCIyPLioN.......eeiiiiiiiiiiiiiiiei s 385
40-bit enCryplioN.........oi i 387
0-bit @NCryptioN........ceeiiiiiiiiiiiiie s 388

Appendix B: WebLOAD-supported XML DOM Interfaces 391
Table B-1: XML Document Interface Properties................... 392
Table B-2: XML Document Interface Methods 393
Table B-3: Node Interface Properties.........cccccceeveeeiiiiieennnnns 394
Table B-4: Node Interface Methodscccccceeeviiiiiiiiinnnnn, 395
Table B-5: Node List Interface.........cccccoooeviiiiiiiiiiiicin. 396
Table B-6: NamedNodeMap Interface.........c..ccccoevvveeeennnnnn. 397
Table B-7: ParseError Interface ..., 398
Table B-8: Implementation Interfaceccccccoevvveeeeinnnnnnn. 398

Appendix C: WebLOAD Internet Protocols Reference................ 399
WIFTP ODbject ... 400
WIFTP Properties. ... 400

Daata ..o 400
DataFileoooiieiiie e 400
JOCUMENTo e e s e 400
OULTIIE e 400
PasSiveMOodeocuuiiiiiiiii e 401
PasSWOIdooiiiiiiiee e 401
Sz e 401
StaAMBYLE ..o 401
TransferMOodeoooiiiiiiiiie e 402
USEIMNEIME ... e 402
WIFTP Methodseniiiiieee e, 402
APPENA() ettt 402
APPENAFIIE() et 403
ChangeDir()veeeee e 403
CRFIIEMOUA() ...t 403
CRMOUA() vttt enenas 404
DelEte() .veeeeeeiiiiee e 404
DeleteFile()oveeeiiiiiee e 404
] OO 405
DOWNIOAA() +eeiveieeeiiteee ettt 405
DownloadFile() ..ceeeoereeeeiiiieeeeieee e 405
Xii RadView Software

GetCurrentPath().....coooveeei i 406

GetStatusLing() ...vveee e 406
LiStLOCAIFIES() .-vveeeeirieee e 406
oo o ISR 407
oo T o) ISR 407
Y =T =Y B (SRR 407
REMOVEDIN() -evveeeeieeeeeeeee e e e 407
RENAME() . 408
S T=TaTe [@7] 0 o1 4 F= o o [TSR 408
LU o] (o= o [TSRS 408
o] (o= To |1 =T SRR 409
10T 0] o7 To |61 T o [=T) ISR 409
LT o S 409
FTP Sample Codeccocoiiiiiiiiii 410
WIIMAP ODbject........ccooiiiiriiiririri s 413
WIIMAP Properties ... 413
CUIrENIMESSAGEeeii e e et 413
CurrentMessagelDcccvvviiiieiii e 413
JOCUMENE. ...ttt e 413
MAEIHIDOX ...t 414
MAXLINES ...ttt 414
OUIlE 1. 414
PasSSWOId........oooiiiiiiiiieee et 415
SHZE e s 415
USEINGIME ...ttt 415
WIIMAP MethodScoiiiiiiiieeecee e 415
CONNECH() .ottt 415
CreateMailDOX() ... veeee et 416
Delete() . i 416
DeleteMailboX() .. eeeeerreeeeiiiieee e 416
DISCONNECH() .ot 416
GetMessageCouNt()......ueeeriieeeiiiiiiee e 417
GetStatusLiNe() ...vveeeeiiieee e 417
LiStMaIIDOXES() .--vveeeeereeee et 417
RecentMessageCount()coovvveeeeiiiiene i 417
RenameMailboX()vveeeiiieiieiiieee e 418
REHEVE(). .. 418
SEAMCN() et ittt 418
SeNdComMMANA()coeeirriieiiiiiee e 420
SubscribeMailbDOX().......vvveeiiiiiei i 420
UnsubscribeMailbox()cveveeiriiieiiiee e 420
LTI T 4= o TSR URR 420
IMAP Sample Codeooovvuiiiiiieiieecee e 421
WINNTP Object.......cccooiiiimirrrccnnn s 425
WINNTP Propertiescoooeeieiiiiieie e, 425
AFCIETEXE ..o 425

WebLOAD JavaScript Reference Manual xiii

AACNMENTS ... e 425

AttachmentsENCoding.........oooviiiiiiiiiiie e 425
AachMENtSTYPES ...coiiiiiiiieiiie e 426
AOCUMENT ... e e e e 426
o] TS 427
(€11 18| o T RSP 427
MaxHeadersLengthcoooiiiiii e 427
Organizationcooiiiiii i 427
OUFIE e 427
PasSWOrdcoooiiiiiie e 427
REFEIENCES ...oveeeieieeeee e 428
REPIYTO - 428
T4 - SRR 428
SUDJECL ..o 428
I TS 428
USEINAME ..ot e e e e e 429
WINNTP MEINOAS ...cvvveeeeeeeeeeeeeeee ettt eeeeeeeneees 429
AddAachMENt()......coveiiiiee e 429
(070) 11T o3 { () ISP 429
DeleteAttachment()........occveeveiiiieeiiee e 430
D] 1=Toto] o] aT=Tex () SRR 430
LT VN o o7 =Y (SRR 430
GetArticleCoUNt().....ccveeee i 431
GetStatuSLINg() .vveeeeeeeee e 431
GroOUPOVEIVIEW() .ooeeeeeieeeeiiiie ettt tee e 431
[(€T 01U o T) SRR 431
POSTAILICIE() .vveeee et 432
SeNdComMAaNA() ...eeeeireieeeiiieee e 432
WVWLINDED() cooeteeetiee e 433
NNTP Sample Code.........ccooovviieeiiiiiieeeeeecee e 433
WIPOP ODbjecCt..........ccoiiiiriiiiiiinssr s 436
WIPOP Properties........ccoovvviiiiiiiiieeeeeeeeeeeiee e 436
AUtODEIEte ... 436
o (o ToTU o 4= o | SO ERR 436
[1= o[- = | SR 437
MAXLINES ... 437
OUIFILE <. 437
PassWoOrdo 437
T4 = OSSR 438
USEINAME ..ot e e 438
WISOUICE ...t a e 438
WIPOP MENOTS ..., 438
(©70] o] o =Tox [T SRRSO 438
DEIEIE() vt 439
DISCONNECH() woveeeeiieee e 439
GetCurrentMessagelD() ...oeeveeeieeceiiiiiiee e 439
GetMailbOXSIZE()coe e 439

Xiv

RadView Software

GetStatUSLINE() .vvveeeieee et 440
RESEE() ..ot 440
REtHEVE()... e 440
S T=TaTe [@7] 0 o1 4 F= o o [TSRS 441
WLPOP() cvveeeeiiiiee ettt 441
POP Sample Code........ooouuiiiiiiieiiece e 441
WISMTP ODJECE.....cueeececccirserrsssssesesesesesesesssesesssssssssasssns 444
WISMTP Propertiescooovmeiiiiiiieieeeeeeeeeee e, 444
Attachments ... 444
AttachmentsEncoding ... 444
AttachmentsTypes......oee i 445
B ettt 445
O oS R 445
FrOM o 445
MESSAQEt 446
=T] |V I TR 446
SHZ e 446
SUDJECE. . 446
L1 J SR 446
1N/ 01T SRR 446
WISMTP MethodsS......ccoooeiiiiieeeee e 447
AddAttachment()oooviieiii 447
CONNECH() .ottt 447
DeleteAttachment()coooeeieiiiiii e 448
DISCONNECH() .ot 448
1= oo | RSOSSN 448
SendComMMANA()ceeeirrieeiiiiiee e 448
RV =413 SRR 449
LTS 7411 o SRR 449
SMTP Sample Codecoiiiiiiiiiiiccce e, 449
WITCP ODbject......cneiiiiiirrrrrccrsr e 451
WITCP Propertiescoouvuiiiiiiiiiie e 451
o [oTo10 1 4= o | SRR 451
INBUFFEISIZE ..o 451
[Yoz | o) SRR 451
NEXIPIOMPL ..o 452
NEXISIZE ... 452
OUIBUFEISIZE ... 452
OUIIE . 452
ReceiveMessageTexXt.......cueviiiiiie i 452
SIZB e 453
TIMEOUL. ... e e e e 453
WITCP MENOTS. ...ttt 453
LO70)] =Y o1 [TSRS 453
DISCONNECH() .eeeeiveieeeiiiie et e 454

WebLOAD JavaScript Reference Manual XV

Eras@() oo oeeeeee i 454

RECEIVE() -eeveeiieiee ittt a e 454

7= o [SRR 455

WWVLTCP() -veeeemeeeeamreeaneeeeameeeenieeeeteeenieeesmeeeesneeeeneeenneeeeeeeesnneeenees 455

TCP Sample Codeooooiiiieeece e 456
wiTelnet Object.........cccoiriiiiiii 457
wiTelnet Propertiesooeiiiiiiiiiie e, 457
AOCUMENT.....oeiiiiiiiiee e 457
NEXtPrOMPL ..., 457

OUIE . 457
ReceiveMessageTeXt........ccccvviiieieeeiiiciieeeee e 458

SHZ s 458

TIMEOUL ...ttt 458

wiTelnet Methodscoooviiiiiiiii e 459
(@7 0] o] 1= Tox () S 459
(DYoo)] o T=Tex () S 459

e = TS Y SR 459

RECEIVE() --eeeeeeeeee et 459

RS 1= 0o [OSSR 460

WLTEINEL() .. eeeeeeee et 460

Telnet Sample Codecoooiimiiiiiiiieec e, 460
WIUDP ODbjecCt......cooeeeiiiiiirirrrceessss s s s 463
WIUDP Properties........c.ooeeiiiiiiiieieieeeeeeeeeee e 463
o o To18] 4= o | SRR 463
INBUFfErSIZE ..o 463

[Yoz o T SR 463

[oz | o o SRR 464
MaxDatagramSizecccueeiiiiiiiiiiee e 464
NUMOFRESPONSESeeiiiiiiiiieee e 464
OUIBUFTEISIZE ..o 464

OUFIE <. 464
ReceiveMessageTexXt. 465
RequestedPackets ... 465

SHZ ettt as 465

110 11= o 10 SR 465

WIUDP Methodscooooiiiiee e 466
BINA() veeeeeee it 466
BroadCast()cvveveiiiiiie i 466

= ET = () PR 466

RECEIVE() -vveeeeiiiiiie ettt 467

RS T=T Lo [TSRS 467

UNBINA(). ettt 467

WWLUAP() ettt 468

UDP Sample Code.........uoeeeiiiiiieiiiiceeeeeee e 468
Appendix D: HTTP Protocol Status Messages............cccceuueiiiennes 471

Xvi RadView Software

DA
D.2
D.3
D.4
D.5

Index =

Informational 7XXcccooimieciiirrc e, 472
SUCCESS 2XX ..cveeeiiiireeirerreee e s e e nnaaas 473
Redirection 3XX ... 476
Client Error 4XX ... ieeciieeierreer e ereeseerenn e 480
Server Error 5XX ... 484
... 485

WebLOAD JavaScript Reference Manual Xvii

Object Model Table List

Table 1-1: DOM objects commonly used in AZENdascoecueeieriiiieiiere e 9
Table 1-2: WebLOAD DOM extension set highlights...........coocooiiiiiiiinieiieeeeeeee e 10
Table 2-1: Dialog BOX PrOPerty LiSt.......cccieiieiiieiieiieiieeeie ettt ettt ettt ettt e eeeeeeeee e e 74
Table 2-2: load() and 10adXML() COMPATISONeecueeteeueeriierteerteeeeeeeseestee st eeeeeeeseesseeneeenseeneesseesseenseennes 172
Table A-1: SSL handshake cOmMBINALIONScc.coiviriiiiriiieiiieerercee et s 381
Table B-1: XML Document Interface PrOPEIties.cceeiiruierirrieierie oot 392
Table B-2: XML Document Interface Methodscccecvecierieriininininiiieiciciencseneeeeeeeereeeseesie e 393
Table B-3: Node INterface Properties.........ccoeiiruieriieiieieeieeiesie ettt ettt eeee e e e 394
Table B-4: Node Interface Methods.cc.eoiririiiiiiiiiiienicnceteeeeeeeetee ettt s 395
Table B-5: Node LiSt INTETTACEcc.eoueruiriieiiiiiiiee ettt ettt sa e eanen 396
Table B-6: NamedNodeMap INterface..........ccueeuiiiiieiiieiieecese ettt 397
Table B-7: ParseError INTEITACEc.coiiieiiiiiiiiiniiiccceee ettt s 398
Table B-8: Implementation INterfaCEc.ooiiiiiiiiieiieeee e 398
Table D-1: Informational 7 XX MESSAZE SEL......cc.eeruieuieieeiientiertieete et eeeeeesteesee e et ete e eseesseesseeseenseeneeeneeenes 472
Table D-2: Successful 2XX MESSAZE SELeevueeruieiieiieieetieet ettt eete st et ettt nee e st e seeesaeeseenaeeneeeneeens 473
Table D-3: Redirectional 3XX MESSAZE SEL......ccuieuieiieieeiieetieieete ettt stee sttt et e et eseeesbeeseenbeeneeeneeene 476
Table D-4: Client Error 4XX MEeSSAZE STcc.eeruieiieiieieeiieetierieeie et eeeseesteesee e et eteenteeseesseesseeseeseeneesneeenes 480
Table D-5: Severe Error SXX MESSAZE SETeeruieriieiieieeiieeiieiteete ettt stee st ettt eeneeseeesaeeseeseeneeeneeens 484
Xviii RadView Software

How to use this book

This book provides complete reference information for all objects, variables, and functions
defined by WebLOAD for JavaScript Agendas.

Before you begin

Before you start to program Agendas, you should be familiar with WebLOAD and read The
WebLOAD User’s Guide.

About this guide

This book provides a detailed reference to the Document Object Model. The chapters are
arranged as follows:

Chapter 1, Introduction to JavaScript Agendas

This chapter provides an introduction to the Document Object Model (DOM) and how to
use it.

Chapter 2, WebLOAD Actions, Objects, and Functions

This chapter provides a comprehensive listing of all the DOM objects, properties, methods,
functions, and variables.

Appendix A, WebLOAD-supported SSL Protocol Versions

This appendix provides a list of all supported SSL protocols and a table of the various
handshake combinations possible.

Appendix B, WebLOAD-supported XML DOM Interfaces

This appendix provides a description of the XML DOM Document Interfaces supported by
WebLOAD.

Appendix C, WebLOAD Internet Protocols Reference

This appendix provides detailed reference information on WebLOAD support for the
following Internet protocols: FTP, IMAP, NNTP, POP, SMTP, TCP, Telnet and UDP.

Appendix D, HTTP Protocol Status Messages

This appendix provides a list of the HTTP Protocol Status messages that you may see over
the course of a test session.

WebLOAD JavaScript Reference Manual XixX

WebLOAD documentation

WebLOAD is supplied with the following documentation:
The WebLOAD™ User’s Guide

Instructions for installing and using WebLOAD and for running tests.

Recording WebLOAD™ Agendas

Instructions for creating JavaScript Agendas for use in WebLOAD by recording your
activities in a Web browser. No programming is necessary.

WebLOAD™ Programming Guide

Complete information on programming and editing JavaScript Agendas for use in
WebLOAD.

WebLOAD JavaScript Reference Manual (this book)

Complete reference information on all JavaScript objects, variables, and functions used in
test Agendas.

WebLOAD™ Resource Manager User's Guide

Instructions for installing and running the WebLOAD Resource Manager.

Core JavaScript Language Guide

Reference manual for the JavaScript language (published by Netscape Communications
Corporation and distributed with permission). The section entitled The Core JavaScript
Language describes the features used in WebLOAD programming.

The manuals are distributed with the WebLOAD software in online help format. The manuals
are also supplied as Adobe Acrobat files that you can view and print using the Adobe Acrobat
Reader. Install the Reader from the WebLOAD CD-ROM or download it from the Adobe Web
site (http://www.adobe.com).

XX RadView Software

http://www.adobe.com)/

Where to Get More Information

This section contains information on how to obtain technical support from RadView
worldwide, should you encounter any problems.

On-line Help

WebLOAD provides a comprehensive on-line help system with step-by-step instructions for
common tasks.

You can press the F1 key on any open dialog box for an explanation of the options or select
Help | Contents to open the on-line help contents and index.

Technical Support
For technical support in your use of WebLOAD, contact:

4 North American Headquarters
e-mail: support@radview.com
Phone: 1-888-RADVIEW (1-888-728-8439) (Toll Free)
781-238-1111
Fax: 781-238-8875
4 International Headquarters
e-mail: support@radview.com
Phone: +972-3-765-0555
Fax: +972-3-647-1406
Note: We encourage you to use e-mail for faster and better service.

When contacting technical support please include in your message the full name of the product
(WebLOAD), as well as the version and build number.

Technical Support Web Site
The technical support pages on our Web site contains:

4 FAQ (Frequently Asked / Answered Questions).

4 RadView's Product Resource Center, where you can find prewritten test scripts, product
information, industry related news, and the TestTalk newsletter, with hints and tips for
customers and evaluators.

http://www.radview.com/support/index.asp

WebLOAD JavaScript Reference Manual XXi

XXii RadView Software

Introduction to JavaScript Agendas

The WebLOAD JavaScript Reference Manual provides a detailed description of the syntax and
usage of the full set of WebLOAD JavaScript features, including the actions, objects, and
functions used to create sophisticated test session Agendas. Note that most WebLOAD users do
not need this level of detail to create effective testing sessions for their Web site. Agendas are
usually recorded and edited through the Visual Agenda Authoring Tool (Visual AAT), a
simple, intuitive interface that provides users with a comprehensive set of testing tools literally
at their fingertips, though point-and-click or drag-and-drop convenience. The details in this
manual are provided for the convenience of the more sophisticated programmers, who may
wish to add specific, perhaps complex tailoring to their recorded Agendas.

This chapter provides a general introduction to JavaScript Agendas. It includes the following
sections:
4 What are Agendas?
4 WebLOAD Agendas work with an extended version of the standard DOM
¢ What is the Document Object Model?
¢ Understanding the DOM structure
¢+ DOM objects commonly used in an Agenda
¢+ WebLOAD extension set

4 When would I edit the JavaScript in my Agendas?
4 Accessing Agenda components
¢ Editing the JavaScript code in an Agenda

¢ Accessing the JavaScript code within the Agenda Tree
¢ Using the IntelliSense JavaScript Editor

WebLOAD JavaScript Reference Manual

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

1.1

What are Agendas?

WebLOAD runs test sessions that simulate the actions of a real user through the use of Agenda
files. Agendas are client programs that access the server you want to test. Users create Agendas
by recording a series of typical activities with the application being tested through the Visual
AAT. The Visual AAT automatically converts the user activities into Agenda programs. You
do not need to know anything about writing Agendas to test an application with WebLOAD.
No programming or editing skills are required to create or run a successful test session.

Agendas are created through the WebLOAD Visual Agenda Authoring Tool (Visual AAT).
The Visual AAT operates in conjunction with a Web browser such as Microsoft’s Internet
Explorer. As a user navigates the test application in the browser, (for example, navigating
between pages, typing text into a form, or clicking on the mouse), the Visual AAT records all
user actions in an Agenda. During later Web site testing sessions, WebLOAD simulates every
action of the original user and automatically handles all Web interactions, including parsing
dynamic HTML, dynamic object recognition, and full support for all security requirements,
such as user authentication or SSL protocol use.

A simple recorded Agenda is ideal if your WebLOAD test involves a typical sequence of Web
activities. These activities are all recorded in your Agenda, and are represented in the Visual
AAT GUI by an Agenda Tree, a set of clear, intuitive icons and visual devices arranged into a
logical hierarchical sequence. Each of these activity icons actually represents a block of code
within the underlying test Agenda. Agendas are constructed automatically out of ‘building
blocks’ of test code, and most users create and run test sessions quite easily, without ever
looking into those building blocks to see the actual code inside.

Some users prefer to manually edit the code of a recorded Agenda to create more complex,
sophisticated test sessions. For example, for an Agenda to work with Java or COM

components, a certain degree of programming is required. This manual documents the syntax of
the JavaScript objects and functions available to programmers who wish to add more complex
functionality to their Agendas.

Agendas are written in JavaScript. JavaScript is an object-oriented scripting language
developed by Netscape Communications Corporation. JavaScript is best known for its use in
conjunction with HTML to automate World Wide Web pages. However, JavaScript is actually
a full-featured programming language that can be used for many purposes besides Web
automation. WebLOAD has chosen JavaScript as the scripting language for test session
Agendas. WebLOAD JavaScript Agendas combine the ease and simplicity of WebLOAD’s
visual, intuitive programming environment with the flexibility and power of JavaScript object-
oriented programming.

For detailed information on using WebLOAD, including creating Agendas, running test
sessions, and analyzing the results, see the WebLOAD User’s Guide.

RadView Software

1.2

1.2.1

1.2 WebL OAD Agendas work with an extended version of the standard DOM

WebLOAD Agendas work with an extended
version of the standard DOM

The Visual AAT operates in conjunction with a Web browser such as Microsoft’s Internet
Explorer. As you execute a sequence of HTTP actions in the browser, the Visual AAT records
your actions in a JavaScript Agenda. All Web browsers rely on an extended Document Object
Model, or DOM, for optimum handling of HTML pages. The standard browser DOM defines
both the logical structure of HTML documents and the way a document is accessed and
manipulated. WebLOAD Agendas use a standard browser DOM to access and navigate Internet
Web pages, including Dynamic HTML and nested links and pages. To facilitate Web site
testing, WebLOAD extends the standard browser DOM with many features, objects, and
functions that expedite site testing and evaluation.

This section provides a brief overview of the standard DOM structure. Most of the information
in this overview was provided by the World Wide Web Consortium (W3C), which develops
interoperable technologies (specifications, guidelines, software, and tools) to lead the Web to
its full potential as a forum for information, commerce, communication, and collective
understanding. For more information about the standard DOM structure and components, go to
the following Web sites:

4 http://www.w3.0rg/TR/2000/WD-DOM-Level-1-20000929/introduction.html
4 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domoverview.asp

4 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmirefs.asp

What is the Document Object Model?

The Document Object Model (DOM) is an application programming interface (API) for valid
HTML and well-formed XML documents. The DOM defines the logical structure of documents
and the way a document is accessed and manipulated. With the Document Object Model,
programmers can build documents, navigate their structure, and add, modify, or delete elements
and content. Anything found in an HTML or XML document can be accessed, changed,
deleted, or added using the Document Object Model, with a few exceptions—in particular, the
DOM interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide
a standard programming interface that can be used in a wide variety of environments and
applications. The DOM is designed to be used with any programming language.

Essentially, the DOM is a programming API for documents based on an object structure that
closely resembles the structure of the documents it models. For instance, consider this table,
taken from an HTML document:

WebLOAD JavaScript Reference Manual

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

1.2.2

<TABLE>

<TBODY>

<TR>

<TD>Shady Grove</TD>
<TD>Aeolian</TD>
</TR>

<TR>

<TD>Over the River, Charlie</TD>
<TD>Dorian</TD>
</TR>

</TBODY>

</TABLE>

The following figure illustrates a typical DOM representation of this table:

DOM representation of a sample table

<TR> <TR>

N N

<TD> <TD> <TD> <TD>

|

Over the River,
Charlie

Understanding the DOM structure

In the DOM, documents have a logical structure that is very much like a tree; to be more
precise, that is like a "forest" or "grove", which can contain more than one tree. Each document
contains zero or one doctype nodes, one root element node, and zero or more comments or
processing instructions; the root element serves as the root of the element tree for the document.
However, the DOM does not specify that documents must be implemented as a tree or a grove,
nor does it specify how the relationships among objects be implemented. The DOM is a logical
model that may be implemented in any convenient manner. In this specification, we use the
term structure model to describe the tree-like representation of a document. We also use the
term "tree" when referring to the arrangement of those information items which can be reached
by using "tree-walking" methods; (this does not include attributes). One important property of
DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the
same structure model, in accordance with the XML Information Set [Infoset].

RadView Software

1.2 WebL OAD Agendas work with an extended version of the standard DOM

Note: There may be some variations depending on the parser being used to build the DOM. For
instance, the DOM may not contain white spaces in element content if the parser discards
them.

The name "Document Object Model" was chosen because it is an "object model" in the
traditional object oriented design sense. Documents are modeled using objects, and the model
encompasses not only the structure of a document, but also the behavior of a document and the
objects of which it is composed. In other words, the nodes in the above diagram do not
represent a data structure, they represent objects, which have functions and identity. As an
object model, the DOM identifies:

4 the interfaces and objects used to represent and manipulate a document
4 the semantics of these interfaces and objects - including both behavior and attributes
4 the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model,
not by an object model. In an abstract data model, the model is centered around the data. In
object oriented programming languages, the data itself is encapsulated in objects that hide the
data, protecting it from direct external manipulation. The functions associated with these
objects determine how the objects may be manipulated, and they are part of the object model.

The information in this section has been excerpted from the World Wide Web Consortium
introduction to the DOM. For the complete text of the DOM overview, see

http:// www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html. The complete
document is found at http://www.w3.0rg/TR/2001/WD-DOM-Level-3-Core-20010913/.

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/

WebLOAD JavaScript Reference Manual 7

sepuaby 1duogener
0} uondNPoIU|

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010913/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/

Introduction to JavaScript Agendas

W3C® DOCUMENT NOTICE AND LICENSE

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The software or
Document Type Definitions (DTDs) associated with W3C specifications are governed by the Software Notice. By using
and/or copying this document, or the W3C document from which this statement is linked, you (the licensee) agree that
you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which this statement
is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the document, or portions thereof, that you use:

1) Alink or URL to the original W3C document.

2) The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of the form: "Copyright ©
[$date-of-document] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual representation is permitted.)

3) Ifitexists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that authorship
attribution be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license. However, if
additional requirements (documented in the Copyright FAQ) are satisfied, the right to create modifications or
derivatives is sometimes granted by the W3C to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE
OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document
or its contents without specific, written prior permission. Title to copyright in this document will at all times remain
with copyright holders.

This formulation of W3C's notice and license became active on April 05 1999 so as to account for the treatment of
DTDs, schemas and bindings. See the older formulation for the policy prior to this date. Please see our Copyright FAQ
for common questions about using materials from our site, including specific terms and conditions for packages like
libwww, Amaya, and Jigsaw. Other questions about this notice can be directed to site-policy@w3.org.

webmaster
(last updated by reagle on 1999/04/99.)

8 RadView Software

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
mailto:site-policy@w3.org
http://w3.org/Help/Webmaster.html

1.2.3

1.2 WebL OAD Agendas work with an extended version of the standard DOM

DOM objects commonly used in an Agenda

On Internet Web sites, a simple HTML document may be constructed of a single page, or the
document may be constructed of many nested pages, each one including multiple ‘child’
windows, in a recursive structure. Browser DOMs were designed to reflect this flexible
approach.

When using the DOM, a single Web page document has a logical structure that resembles a
single tree. In nested Web pages, each child window is simply one tree in a recursive forest of
trees. The typical DOM is ideal for representing Internet Web page access because it provides a
flexible, generic model that encompasses both the attributes of the object itself and its
interfaces and behaviors. Typical DOM objects include:

4 The document itself.
The frames nested in an HTML page, together with any additional nested windows.
The location information.

The links, forms, and images on the page.

* & & o

The tables, scripts, XML Data Islands, and Meta objects on the page.
Individual elements of a specific form or frame.
The following table provides a brief overview of the main DOM object components of a typical

Web page.

Table 1-1: DOM objects commonly used in Agendas

Object Description

window The window object represents an open browser window. Typically, the browser

creates a single window object when it opens an HTML document. However, if a
document defines one or more frames the browser creates one window object for
the original document and one additional window object (a child window) for each
frame. The child window may be affected by actions that occur in the parent. For
example, closing the parent window causes all child windows to close.

document The document object represents the HTML document in a browser window,

storing the HTML data in a parsed format. Use the document object to retrieve
links, forms, nested frames, images, scripts, and other information about the
document. By default, document used alone represents the document in the current
window. You usually refer directly to the document; the window part is optional
and is understood implicitly.

frame Each frame object represents one of the frames imbedded within a Web
page. Frames and windows are essentially comparable. The recursive aspect
of the DOM is implemented at this level. A window may contain a
collection of frames. Each frame may contain multiple child windows, each
of which may contain more frames that contain more windows, and so on.

location The 1location object contains information on the current window URL.

WebLOAD JavaScript Reference Manual

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

1.2.4

Object Description

link A 1ink object contains information on an external document to which the
current document is linked.

form, A form object contains the set of elements and input controls (text, radio

element, buttons, checkboxes, etc.) that are all components of a single form. Each

and input

image

script

title

element object stores the parsed data for a single HTML form element
such as <INPUT>, <BUTTON>, or <SELECT>. Each input object stores
the information defining one of the input controls in the form. Controls are
organized by type, for example input type=checkbox.

Forms enable client-side users to submit data to a server in a standardized
format. A form is designed to collect the required data using a variety of
controls, such as INPUT or SELECT. Users viewing the form fill in the data
and then click the SUBMIT button to send it to the server. A script on the
server then processes the data. Notice that the object syntax corresponds to
a path through the DOM hierarchy tree, beginning at the root window and
continuing until the specified item’s properties.

Each image object contains one of the embedded images found in a
document.

A script object defines a script for the current document that will be
interpreted by a script engine.

The title object contains the document title, stored as a text string.

WebLOAD extension set

WebLOAD has added the following extensions to the standard DOM properties and methods.
This reference manual provides syntax specifications for these objects in WebLOAD Actions,
Objects, and Functions, beginning on page 19.

Table 1-2: WebLOAD DOM extension set highlights

WebLOAD object extensions Description

w Cooki e Sets and deletes cookies.

wl Exception WebLOAD error management object.

w Cener at or G obal and Handles global values shared between Agenda threads or

w Syst emd obal objects Load Generators.

W G obal s Manages global system and configuration values.

w Header Contains the key/value pairs in the HTTP command headers

that brought the document. (Get, Post, etc.)

10

RadView Software

1.2 WebL OAD Agendas work with an extended version of the standard DOM

WebLOAD object extensions Description

W Http Performs HTTP transactions and stores configuration
property values for individual transactions.

w Local s Stores local configuration property values.

w Medi aPl ayer Supports streaming media applications.

w Met a Stores the parsed data for an HTML meta object.

w Qut putFil e Writes Agenda output messages to a global output file.

w Rand Generates random numbers.

w Sear chPai r Contains the key/value pairs in a document’s URL search
strings.

w Tabl e, row, and cel | Contains the parsed data from an HTML table.

objects

XML DOM objects XML DOM object set that both accesses XML site

information and generates new XML data to send back to the
server for processing.

Web site testing usually means testing how typical user activities are handled by the application
being tested. Are the user actions managed quickly, correctly, appropriately? Is the application
responsive to the user’s requests? Will the typical user be happy working with this application?
When verifying that an application handles user activities correctly, WebLOAD usually focuses
on the user activities, recording user actions through the Visual AAT when initially creating
Agendas and recreating those actions during subsequent test sessions. The focus on user
activities represents a high-level, conceptual approach to test session design.

Sometimes a tester may prefer to use a low-level, “nuts-and-bolts” approach that focuses on
specific internal implementation commands, such as HTTP transactions. The WebLOAD DOM
extension set includes objects, methods, properties, and functions that support this approach.
Items in the WebLOAD JavaScript Reference Manual that are relevant to the HTTP Transaction
Mode, as opposed to the more commonly used User Activity Mode, are noted as such in the
Reference Manual entries.

WebLOAD JavaScript Reference Manual 11

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

1.3

When would | edit the JavaScript in my Agendas?

The Visual AAT automatically creates JavaScript Agendas for test sessions based on the
actions performed by the user during recording. You don't have to be familiar with the
JavaScript language to work with WebLOAD and test Web applications. However, as your
testing needs increase, you may want to edit and expand the set of Agendas that were already
recorded. Many users prefer to design test sessions around a set of basic Agendas created
through the Visual AAT and then expand or tailor those Agendas to meet a particular testing
need. Some of the reasons for editing JavaScript Agendas include:

4 Recycling and updating a useful library of test Agendas from earlier versions of
WebLOAD or WebFT.

4 Creating advanced, specialized verification functions.
4 Debugging the application being tested.
4 Optimization capabilities, to maximize your application’s functionality at minimal cost.

This manual documents the syntax and usage of the actions, functions, objects, and variables
provided by WebLOAD to add advanced functionality and tailoring to the JavaScript Agendas
created through the Visual AAT. JavaScript is very similar to other object-oriented
programming languages such as C++, Java, and Visual Basic. The syntax of JavaScript is also
very similar to C. If you know any of these other languages, you will find JavaScript very easy
to learn. You can probably learn enough about JavaScript to start programming just by studying
the examples in this book.

Note: For detailed information about the JavaScript language, please refer to the section
entitled The Core JavaScript Language in the Netscape JavaScript Guide, which is
supplied in Adobe Acrobat format with the WebLOAD software. You may also learn the
elements of JavaScript programming from many books on Web publishing. Keep in mind
that some specific JavaScript objects relating to Web publishing do not exist in the
WebLOAD test environment.

12

RadView Software

1.4

1.4 Accessing Agenda components

Accessing Agenda components

WebLOAD uses test session Agendas to simulate user activities at a Web site. An Agenda is
initially created by the Visual AAT during a recording session. As a user works with a test
application in a browser, (for example, navigating between pages, typing text into a form, or
clicking on the mouse), the Visual AAT stores information about all user actions in an Agenda.
Agendas are also edited through the Visual AAT. Users may add functionality or customize
their Agendas through the objects, functions, and other features described in this manual.

Customizing Agendas may involve nothing more than dragging an icon from the Visual AAT
toolbar and dropping it into a graphic representation of the Agenda. It may involve entering or
changing data through a user-friendly dialog box, or with the help of a Wizard. Some users may
even add special features to their Agendas by editing the underlying code of the Agenda itself.
When working with Agendas, users may be working on many different levels. For that reason,
the Visual AAT desktop includes multiple view options, providing information on multiple
levels. See Chapter 2, Working with the Visual AAT, in the WebLOAD Programming Guide, for
a more extensive, illustrated explanation of the Visual AAT desktop components.

4 Most users access Agendas primarily through an Agenda Tree, a set of clear, intuitive icons
and visual devices representing user activities during a recording session, arranged into a
logical structure. Each user activity in the Agenda Tree is referred to as a node. Nodes are
organized in a hierarchical arrangement. The outmost level, or root level, is a single
Agenda node. The second level directly under the root Agenda node includes all the Web
pages to which the user navigated over the course of the recording session. The third level,
organized under each Web page, includes all the user activities that occurred on the parent
Web page. These activities are themselves organized into additional levels. For example,
all data input on a single form in a Web page is organized into a single sub-tree of user
input nodes collected under the node for that form. The Agenda Tree appears on the left
side of the Visual AAT desktop.

4 Web page nodes are added to the Agenda Tree in one of two ways. Some Web pages are
the result of a user action on the previous page, such as clicking on a link and jumping to a
new page. Other Web pages are created as a result of direct or indirect navigation, such as
entering a URL in the browser window, or pop-up windows triggered by a previous
navigation. The sets of user activities contained between two direct-navigation Web pages
in an Agenda Tree parallel the navigation blocks found within the JavaScript Agenda code.

During a Visual AAT recording session, a new navigation block is created each time a user
completes a direct navigation, manually entering a new URL into the Visual AAT address
bar. Each navigation block is surrounded by a try{} catch{} statement in the
corresponding JavaScript Agenda code. Navigation blocks are useful for error
management, especially when running “hands-free” test sessions. For example, the user can
define the default testing behavior to be that if an error is encountered during a test session,
WebLOAD should throw the error, skip to the next navigation block, and continue with the
test session. Errors during playback are indicated by a red X appearing beside the
problematic action in the Agenda Tree.

WebLOAD JavaScript Reference Manual 13

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

4 The user activity icons, or nodes, in an Agenda Tree have certain characteristics, or
properties, associated with them. For example, a message icon would be associated with a
message text and some severity level. The properties associated with a selected node are
displayed in a list in the Properties pane. To edit unprotected property values, select a
property field and either enter new data or choose from the alternate values provided in a
convenient drop-down list. The Properties pane appears on the right side of the Visual
AAT desktop.

4 The graphic nodes in an Agenda Tree actually represent blocks of code within the
underlying recorded Agenda. The JavaScript code corresponding to a selected node is
automatically displayed in the JavaScript View pane. The JavaScript View pane is one of
the tabs available in the center of the Visual AAT desktop.

4 The graphic nodes in an Agenda Tree represent user actions on a Web site. An exact
replica, or snapshot, of each user activity is stored during recording and available in the
Visual AAT Browser View to aid in debugging and help users remember what each action
accomplished. The Browser View pane is one of the tabs available in the center of the
Visual AAT desktop.

4 Web pages are created through HTML programs. The HTML code that underlies each
stored Web page is also stored during recording sessions. For easy reference, the HTML
code of the Web page associated with a selected node is displayed in the HTML View
pane. The HTML View pane is one of the tabs available in the center of the Visual AAT
desktop.

4 Web pages have a logical structure that may be represented through a series of DOM object
trees. The DOM tree for a selected Web page is essentially a hierarchically structured,
more easily understood representation of the DOM objects found in the HTML code for
that Web page. The DOM tree of the Web page associated with a selected node is
displayed in the DOM View pane. The DOM View pane is one of the tabs available in the
center of the Visual AAT desktop. When working with the DOM View, the center pane is
actually split in half, with the upper half displaying the DOM View and the lower half
displaying the corresponding Web page, seen in the Browser View.

The following figure illustrates a Visual AAT desktop displaying the Agenda Tree and DOM
and Browser Views for the highlighted Form node. The Agenda Tree is on the left with the icon
representing a form field on a Web page highlighted. The actions taken by the user while
working with the selected form all appear in the Agenda Tree as a single branch of the Agenda
Tree, under the selected form. The Browser View pane on the lower right focuses on a piece of
the selected form as it appeared on the Web page at the time this Agenda was recorded. The
DOM View pane on the upper right displays the DOM objects that represent the selected form,
arranged in a tree that corresponds to the user activity in the selected form.

14 RadView Software

14 Accessing Agenda components

<META content="MSHTHL 5.50.4522.1800" nam MERAT
- <BODY bgColor=Hcc9933 lefthd argin=0 toph argin=0 onload="tM_p
=t

Agenda
fj ww. netizenbanking. com

Image Testl
< Sleep(5710)
JavaScriptObject
Mouzelver:Image
< Sleep(441]
-5 Click:Image
Elfj hittp: 4 Ao netizenbanking. co
----- JavaScriptObject
----- Sleep(1703)
Mouzellp:Image
Sleep(2784)
@3 [lick:Link
Elfj hittp: 4 Ao netizenbanking.
JavaScriptObject
Sleep(3764)
- B [Farm|
Typeln:InputT ext

Sleep(6239)
Typeln:InputPazzw

= ¢|MG height=1 sre="images/spacer.gif"" wi
<TD>
: MG height=1 sre="images/spacer.gif'" wi

4
Z
T
é Sleep(251)

Click::Inputimage

Figure 1-1: Visual AAT desktop: Agenda Tree, DOM View, and Browser View
panes for selected Form node branch

WebLOAD JavaScript Reference Manual 15

Introduction to JavaScript Agendas

1.5

1.5.1

Editing the JavaScript code in an Agenda

Accessing the JavaScript code within the Agenda Tree

The Visual AAT provides a complete graphic user interface for creating and editing Agenda
files. Additions or changes to an Agenda are usually made through the Visual AAT GUI,
working with intuitive icons representing user actions in a graphic Agenda Tree. For greater
clarity, the JavaScript code that corresponds to each user action in an Agenda is also visible in
the JavaScript View pane on the Visual AAT desktop.

While most people never really work with the JavaScript code within their Agenda, some users
do wish to manually edit the JavaScript code underlying their Agenda Tree. For example, some
test sessions may involve advanced WebLOAD testing features that can not be completely
implemented though the GUI, such as Java or XML objects. Editing the JavaScript code in an
Agenda does not necessarily mean editing a huge JavaScript file. Most of the time users only
wish to add or edit a specific feature or a small section of the code. The Visual AAT provides
access to the JavaScript code in an Agenda through JavaScript Object nodes, which are seen on
the following levels:

4 JavaScript Object nodes—individual nodes in the Agenda Tree. Empty JavaScript Object
nodes may be dragged from the Visual AAT toolbar and dropped onto the Agenda Tree at
any point selected by the user, as described in Adding JavaScript Object Nodes, page 75, in
the WebLOAD Programming Guide. Use the IntelliSense Editor, described in Using the
IntelliSense JavaScript Editor, page 17, to add lines of code or functions to the JavaScript
Object.

4 Converted Web page—the sub-tree or branch of an Agenda Tree that represents all user
activity within a single Web page, converted to a single JavaScript Object node. A Web
page branch is ‘rooted’ in the Agenda Tree with an icon that represents the user’s
navigation to that page’s URL. The icons on that branch represent all user activities from
the point at which that Web page was first accessed until the point at which the user
navigated to a different Web page. Some testing features may require manually editing or
rewriting the JavaScript code for user activities within a Web page. To manually edit code
in a recorded Agenda, the Web page branch that includes that code must be converted to a
JavaScript Object. Converting a Web page branch to a JavaScript Object is simple. Right
click on the preferred Web page node in the Agenda Tree and select Convert to JavaScript
Object from the pop-up menu. The entire Web page branch becomes a single JavaScript
Object, which can then be edited through the IntelliSense Editor. Note that once a branch
has been converted to a single JavaScript Object, the various user activity icons that were
on that branch are no longer individually accessible.

4 Imported JavaScript File—an external JavaScript file that should be incorporated within the
body of the current Agenda. Select Edit | Import JavaScript File from the Visual AAT
menu to import the file of your choice. Often testers work with a library of pre-existing
library files from which they may choose functions that are relevant to the current test
session. This modular approach to programming simplifies and speeds up the testing
process, and is fully supported and endorsed by WebLOAD.

16

RadView Software

1.5.2

1.5 Editing the JavaScript code in an Agenda

4 Converted Agenda Tree—if necessary, an entire Agenda Tree can be converted to a single

JavaScript Object node consisting of a straight JavaScript text file. Right click on the
Agenda Tree’s root node and choose Convert to JavaScript Object from the pop-up menu.
However, this conversion is not recommended unless manual editing of an entire Agenda
file is truly required for the test session.

Using the IntelliSense JavaScript Editor

For those users who wish to manually edit their Agendas, the Visual AAT provides three levels
of programming assistance:

4 An IntelliSense Editor mode for the JavaScript View pane.

Add new lines of code to your Agenda or edit existing JavaScript functions through the
IntelliSense Editor mode of the JavaScript View pane. The IntelliSense Editor helps
programmers write the JavaScript code for a new function by formatting new code and
prompting with suggestions and descriptions of appropriate code choices and syntax as
programs are being written. For example, in the following figure the IntelliSense Editor
displays a drop-down list of available properties and objects for the wlHt tp object being
added to the program, with a pop-up box describing the highlighted method in the list.

Function Name: WerificationFunction i

function Transactionl VerificationFunction()

{
ffThis iz my user-defined verification function

CollectData(] Appears immediately after all walidation tests requested at this
point i the test sezsion are completed. Congolidates and stores data
collected from the preceding validation tests, [Werification method]

wlHttp.
returnpil ClientCertific /-
H 258
E&! Confirm J
5! Cookie

E5! DownloadComp le
Ei FileDownload

Ef FileOpen

A FindVerChiect

B FontDownload

B! FormResubmit |»

Figure 1-2: IntelliSense Editor mode

4 A selection of the most commonly used programming constructs, available through the

Edit | Insert | JavaScript menu.

Users who choose to program their own JavaScript Object code within their Agenda may
still take advantage of the Visual AAT GUI to simplify their programming efforts. Rather
than manually type out the code for each command, with the risk of making a mistake, even
a trivial typo, and adding invalid code to the Agenda file, users may select an item from the
Edit | Insert | JavaScript menu, illustrated in the following figure, to bring up a list of

WebLOAD JavaScript Reference Manual 17

sepuaby 1duogener

0} uondNPoIU|

Introduction to JavaScript Agendas

available commands and functions for the selected item. The Visual AAT automatically
inserts the correct code for the selected item into the JavaScript Object currently being
edited. The user may then change specific parameter values without any worries about
accidental mistakes in the function syntax.

Edit ¥iew Record Run Tool: Window Help

B e 2 e R e
3 Undo Chil+2
oa Hedo (Bl Marme: MaodeS cript

> |

Agenda ltems

General

o 3
Easte (B NP - ,
nit/Terminate Functions
prin Ei (Bl .
3 Copy/lnclude Files 4
[Eopy [Si7 (5
Meszage Commands 4
¥ Delete Del
) R andom Mumber Commands L4
s atle
COM Objects L4
Select Al Chilot !
Java Objects 4

Figure 1-3: Automatic JavaScript command list

4 A Syntax Checker that checks the syntax of the code in your Agenda file and catches
simple syntax errors before you spend any time running a test session. Select
Tools | CheckSyntax while standing in the JavaScript View pane of the Visual AAT
desktop to check the syntax of the code in your Agenda file.

Agenda code that you wish to write or edit must be part of a JavaScript Object in the Agenda
Tree. Adding or converting JavaScript Objects in an Agenda Tree is described in Accessing the
JavaScript code within the Agenda Tree, page 16.

Note: If you do decide to edit the JavaScript code in an Agenda, note the following points:

Be careful not to damage the Agenda structure by changing the sequence or integrity
of the Agenda navigation blocks. A test session Agenda is constructed and based on
a specific sequence of user activities, such as Web page navigations, mouse clicks,
form submissions, and links. Changing the sequence of code blocks in effect means
changing the sequence of user activities, and may destroy the functionality of the test
session Agenda.

If you use an external text editor to modify the JavaScript code in a JavaScript
Agenda that was created through the Visual AAT, the changes you made through the
external editor will be lost if you open the Agenda in the Visual AAT again.
Therefore, be sure to do all JavaScript code editing through the IntelliSense Editor in
the Visual AAT only.

For detailed information about the JavaScript language, please refer to the section
entitled The Core JavaScript Language in the Netscape JavaScript Guide. This
manual is supplied in Adobe Acrobat format with the WebLOAD software. You may
also learn the elements of JavaScript programming from many books on Web
publishing. Keep in mind that some specific JavaScript objects relating to Web
publishing do not exist in the WebLOAD test environment.

18

RadView Software

WebLOAD Actions, Objects, and Functions

action (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object
form
Description
Specifies the URL to which the form contents are to be sent for processing (read-only string).

Syntax
<NA>
Example

Based on the following <FORM> tag:

<FORM name="SignUp"
action="http://www.ABCDEF.com/FormProcessor.exe"
method="post">

The action is:

WebLOAD JavaScript Reference Manual

19

suoloun4
pue ‘s}09(qO
‘suonPy avo199M

WebLOAD Actions, Objects, and Functions

"http://www.ABCDEF.com/FormProcessor.exe"

See also

form, page 102 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

Actions

Description

WebLOAD runs test Agendas that simulate the actions of real users. As you complete actions
in the browser, (for example, mouse clicks, link clicks, or form entries), the Visual AAT
records your actions in a JavaScript Agenda. These actions are then recreated during
subsequent test sessions. User actions are therefore one of the basic components of JavaScript
Agendas.

This manual provides detailed reference information on the WebLOAD set of user actions.
These actions are accessed within JavaScript Agendas as methods of various WebLOAD
objects. The objects themselves are documented here as well. All actions and objects are listed
alphabetically.

Syntax
Object.ActionMethod()
Example

Each individual method includes a syntax specification and example for that method.

See also

AutoNavigate(), page 26
event, page 91

Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
wlClick(), page 326
wlMouseDown(), page 347
wiIMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Back(), page 27
Forward(), page 106
OnClick, page 190
Refresh(), page 213
wlBrowser, page 325
wlClose(), page 329
wlMouseOver(), page 348
wlMultiSelect(), page 350
wilSubmit(), page 362

20

RadView Software

Add() (method)

Add() (method)

Method of Objects

wilGeneratorGlobal wiSystemGlobal

Description

Adds the specified number value to the specified shared integer variable.
Syntax

Add (“SharedIntVarName”, number, ScopeFlag)
Parameters

SharedIntVarName—The name of a shared integer variable to be incremented.
number—An integer with the amount to add to the specified variable.

ScopeFlag—One of two flags, WLCurrentAgenda or WLA1l1Agendas, signifying the
scope of the shared variable.

When used as a method of the wlGeneratorGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, part of a single process, running on a
single Load Generator.

¢ The WLAl1lAgendas scope flag signifies variable values that you wish to share
between all threads of one or more Agendas, common to a single spawned process,
running on a single Load Generator.

When used as a method of the w1l SystemGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, potentially shared by multiple
processes, running on multiple Load Generators, system wide.

¢ The WLAl1Agendas scope flag signifies variable values that you wish to share
between all threads of all Agendas, run by all processes, on all Load Generators,
system-wide.

Return Value
None

Example
wlGeneratorGlobal.Add (“MySharedCounter”, 5, WLCurrentAgenda)
wlSystemGlobal.Add (*"MyGlobalCounter”, 5, WLCurrentAgenda)

WebLOAD JavaScript Reference Manual 21

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

See also
Get(), page 110 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
Set(), page 237 wlGeneratorGlobal, page 334

wlSystemGlobal, page 363

addProperty() (method)

Method of Object

WSComplexObject

Description

Defines and adds properties to a new WSComplexObject object. The new properties must
correspond to the properties defined for the object in a WSDL file.

Syntax
newComplexObject.addProperty (“PropertyName”, “PropertyType”)
Parameters

PropertyName—Name of the property being defined, a text string.

PropertyType—Type of the property being defined, such as “integer” or “string”, a text
string.

Return Value
None.

Example

Worker = new WSComplexObject () ;
Worker.setType ("Worker") ;
Worker.addProperty ("Name", "string");
Worker.addProperty ("Age", "integer");

Comment

New WSComplexObject objects must be created, and their properties defined, within the
InitClient () function. Otherwise, a new object will be created with each iteration of the
Agenda during a test session and the system will quickly run out of memory.

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide

22

RadView Software

AdjacentText (property)

setType(), page 242 setValue(), page 243
WSComplexObject, page 374 WSComplexObject(), page 375
WSGetSimpleValue(), page 376 WSWebService, page 377

WSWebService(), page 379

AdjacentText (property)

Property of Object
element Checkbox
InputCheckbox InputRadio

Radiobutton

Description

The text that appears near a Checkbox or Radiobutton.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also
element, page 83 Checkbox, page 38
InputCheckbox, page 158 InputRadio, page 162

Radiobutton, page 210

Alt (property)

Property of Object
area element
Image Inputimage

WebLOAD JavaScript Reference Manual 23

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

The text displayed within the area, input, or image object. When working with image elements,
this text is the alternative descriptive string to be displayed if the current image can not be
displayed. Otherwise functions as a tooltip.

Syntax

<NA>
Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also
area, page 24 element, page 83
Image, page 148 Inputimage, page 160

area (object)

Description

Each area object defines the shape, coordinates, and associated URL of one hyperlink region
within a client-side image map. area objects are accessed through collections of 1inks or
map.areas.

Syntax
<NA>
Methods
wlClick(), page 326 wilMouseDown(), page 347
wlMouseOver(), page 348 wilMouseUp(), page 349
Properties
Alt, page 23 ContainingMap, page 55
Coords, page 57 id, page 143
Shape, page 246 Url, page 302
Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

24 RadView Software

area (object)

See also
Collections, page 47 document, page 79
link, page 169 map, page 178

Automatic State Management for HTTP Protocol Mode

Mode

The ASM components listed here are usually inserted manually only when working in the
HTTP Protocol mode. See Working in HITTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Properties and Methods of Object

wlHttp

Description

WebLOAD provides a high-level working environment for users, recording any objects of
interest to users without the user needing to be aware of the objects’ underlying DOM
properties or identification details. During subsequent playback test sessions, some of the
recorded objects’ properties may change slightly, due to the dynamic nature of Web activity.
For example, an object’s location or URL may be different from that originally recorded.
WebLOAD provides full access to the complete set of objects originally of interest to the users
at recording time, even if they include a slightly altered set of DOM properties. WebLOAD
automatically incorporates the Dynamic Object Recognition (DOR) components, described on
page 81, to compensate for the dynamic nature of most Web sites. Users who work in the
HTTP Protocol Mode use a slightly different approach to dynamic object recognition, based on
the properties and methods listed in this section.

Properties and Methods

The ASM property set includes the following properties and methods:

ExpectedDocument, page 93 ExpectedDOMID, page 94
ExpectedID, page 94 ExpectedLocation, page 95
ExpectedName, page 96 ExpectedText, page 97
GetCurrentValue(), page 114 type, page 300

wlTarget, page 366

Example

wlHttp.ExpectedID = V7
wlHttp.ExpectedName = “”
wlHttp.ExpectedText = “Pisces

”

WebLOAD JavaScript Reference Manual 25

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlHttp.Type = “A”

wlHttp.ExpectedLocation = “:#1.#1:”
// WebLOAD shorthand notation, described in
// Identifying frame locations, page 224
// in the WebLOAD Programming Guide

wlHttp.Url =
wlHttp.IdentifyObject (“http://www.pisces.com/info/index.cfm?
act=0&PID=1425&Parent=10&CFID=70466&CFTOKEN=61110909")

wlHttp.Get (wlHttp.Url)

Comment

Agendas that work within the User Activity mode use a slightly different approach to dynamic
object recognition. See Dynamic Object Recognition (DOR) components, page 81, for more
information.

See also

Dynamic Object Recognition (DOR) components, Identifying frame locations, page 224 in the
page 81 WebLOAD Programming Guide

wlHttp, page 342 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

AutoNavigate() (action)

Method of Object

wiBrowser

Description

Automatic browser activity triggered by an automatic navigation request, such as an automatic
popup window for advertisements sent by the server, or if a page includes code that calls for an
automatic refresh every 10 seconds.

Syntax
wlBrowser.AutoNavigate ()
Parameters
None
Return Value
None

Example

<NA>

26

RadView Software

See also

Actions, page 20

Back(), page 27
Forward(), page 106
OnClick, page 190
Refresh(), page 213
wiBrowser, page 325
wiClose(), page 329
wlMouseOver(), page 348
wlMultiSelect(), page 350
wilSubmit(), page 362

Back() (action)

Back() (action)

AutoNavigate(), page 26
event, page 91

Navigate(), page 186
OnMouseQOver, page 191
SetWindow(), page 244
wlClick(), page 326
wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Method of Object

wiBrowser

Description

Get and display the previous Web page.

Syntax

wlBrowser.Back ()
Parameters

None.
Return Value

None
Example

<NA>

Comment

This method implements a special category of user action—clicking on a specific browser

shortcut button from the Microsoft IE toolbar.

See also

Actions, page 20

AutoNavigate(), page 26

WebLOAD JavaScript Reference Manual

27

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

BeginTransaction() (function)

Back(), page 27
Forward(), page 106
OnClick, page 190
Refresh(), page 213
wlBrowser, page 325
wlClose(), page 329
wlMouseOver(), page 348
wlMultiSelect(), page 350
wlSubmit(), page 362

event, page 91

Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
wlClick(), page 326
wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

wiTypeln(), page 366

Mode

This function is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.

Description

Use the BeginTransaction () and EndTransaction () functions to define the start
and finish of a logical block of code that you wish to redefine as a single logical transaction
unit. This enables setting timers, verification tests, and other measurements for this single

logical unit.

Syntax

BeginTransaction (TransName)
<any valid JavaScript code>

EndTransaction (TransName,Verification, [SaveFlag])
Parameters

TransName—The name assigned to this transaction, a user-supplied string.

Return Value

None

Example

<NA>

28

RadView Software

GUI mode

BeginTransaction() (function)

Note that BeginTransaction () and EndTransaction () functions are usually
accessed and inserted into Agenda files directly through the Visual AAT GUI. For example, the
following figure illustrates a Form branch in the Agenda Tree bracketed by BeginTransaction
and EndTransaction nodes. The EndTransaction node is highlighted in the Agenda Tree. The
corresponding code appears in the JavaScript View pane in the center and the properties are in
the Properties pane on the right. See Adding transactions, page 49 in the WebLOAD

Programming Guide, for more information.

=B Fom =]
----- HE: BeginTransaction: Tran
----- g JavaScriptObject

----- B Typeln:lnputTest

----- % Sleep(2364)

----- J& Click:CheckBox

----- % Sleepl1212)

----- J& Click:CheckBox

----- Sleep(3655)
----- Click::Inputimage ‘

Function MName:

erl

ModeScript - =]

EndTransaction("Transactionl

x|

Attributes
. temiame
. Comments

= EndTransaction
. Mame
. Returnvalue

EndTransza...

Tranzactionl
WilSuccess

Figure 2-1: EndTransaction added to an Agenda

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wiBrowser, page 325

WebLOAD JavaScript Reference Manual

29

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

bitrate (property)

Property of Object

wlMediaPlayer()

Description

Retrieves a value indicating the bit rate for the stream in bits per second. (read-only long
number)

Syntax
MyMediaPlayerObject.bitrate

Example
<NA>

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

Browser configuration components

Mode

Many of the following properties and methods are usually inserted manually only when
working in the HTTP Protocol mode. See Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide, for more information.

Properties and Methods of Objects

wlGlobals wlHttp

wiLocals

Description

The wlGlobals,wlLocals, and wlHttp objects share a set of components that manage
user browser activities. This section lists these browser properties and methods. Some of the

30 RadView Software

bitrate (property)

components are common to all three objects. Some of the properties or methods are used by
only one object, and are marked so in the tables. Most of the properties listed here are used only
if working in HTTP Protocol mode, described in Working in HTTP Protocol Mode, page 213 in
the WebLOAD Programming Guide.

Note: The values assigned in a wLHt tp object override any global defaults assigned in
wlGlobals or local defaults in wlLocals. WebLOAD uses the wiGlobals or
wlLocals defaults only if you do not assign values to the corresponding properties in
the wlHttp object. For more information about working with both global and local
values, see Rules of scope for local and global variables, page 111 in the WebLOAD
Programming Guide.

Syntax
NewValue = wlGlobals.BrowserMethod()
wlGlobals.BrowserProperty = PropertyValue
Example

Each individual property and method includes examples of the syntax for that property.

Methods

ClearDNSCache(), page 41 ClearSSLCache(), page 42

The following methods are for wlHttp objects only

CloseConnection(), page 46 Get(), page 111

IdentifyObject(), page 147 Post(), page 202

Data Methods

Head(), page 137 wiClear(), page 328

wiGet(), page 335 wiSet(), page 359
Properties

The following properties are for wl1Http objects only

Data Properties

Data, page 63 DataFile, page 65

Erase, page 87 fileName, page 100

FormData, page 104 Header, page 138
DataCollection.type, page 300 DataCollection.value, page 310
ASM Properties

ExpectedDocument, page 93 ExpectedDOMID, page 94
ExpectedID, page 94 ExpectedLocation, page 95
ExpectedName, page 96 ExpectedText, page 97

WebLOAD JavaScript Reference Manual 31

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

type, page 300

wiTarget, page 366

The following properties are used by wlHttp, wlLocals, and wlGlobals objects

unless otherwise noted.
Configuration Properties
BrowserCache, page 33
DefaultAuthentication, page 66
DNSUseCache, page 78
LoadGeneratorThreads, page 173
NTUserName, NTPassWord, page 187
PassWord, page 198

Proxy, ProxyUserName, ProxyPassWord, page
209

SaveSource, page 226

SaveWSTransaction, page 228
(wlGlobals only)

SSLCryptoStrength, page 262
(wlGlobals only)

SSLUseCache, page 273
Url, page 302
UserName, page 307
Version, page 322

See also

ConnectionSpeed, page 54 (w1Globals only)
DisableSleep, page 75

KeepAlive, page 165

MultilPSupport, page 183

Outfile, page 197

ProbingClientThreads, page 206

RedirectionLimit, page 212

SaveTransaction, page 227 (w1Globals only)
SSLBitLimit, page 257 (wlGlobals only)

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLVersion, page 275
UserAgent, page 306
UsingTimer, page 308

Rules of scope for local and global variables, page 111 in the WebLOAD Programming Guide

wlGlobals, page 339
wlLocals, page 343

wlHttp, page 342

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide.

BrowserCache (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

32 RadView Software

BrowserCache (property)

Property of Objects

wlGlobals wlHttp

wlLocals

Description

Enable simulation of the typical browser cache mode. The possible values of BrowserCache
are:

4 No—Disable browser caching.
4 Yes—Enable browser caching. (default)

A "Yes" value means that WebLOAD will store the most recent downloaded images in a
virtual browser cache. This speeds up subsequent document accesses, just as using a real
browser cache speeds up access time in real use. The browser cache is automatically cleared at
the end of each round.

GUI mode
WebLOAD recommends enabling or disabling the browser cache through the Console GUI.

Enable caching for the Load Generator or for the Probing Client during a test session by
checking the appropriate box in the Browser Emulation tab of the Tools | Default Options
dialog box, illustrated in the following figure:

Browser Cache

IV Prabing Client

¥ Load Generator

Figure 2-2: Enabling Browser Cache for Load Generator

Syntax

<NA>

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Working in HTTP Protocol Mode, page 213 inthe w/Globals, page 339
WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343

WebLOAD JavaScript Reference Manual 33

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Button (object)

Property of Objects

Button objects on a Web page are accessed through the document.all collection of the

standard DOM structure.

Description

When working with a document object, each But ton object represents one of the buttons
embedded in a document, that is, specifies a container for rich HTML that is rendered as a
button. When working with a mouse object, used to set or retrieve the mouse button pressed by
the user. (Compare to the element object, which stores the parsed data for a single HTML form
element, where the element may be any one of a variety of types, and the form object, which
stores the parsed data for an entire HTML form.)

Syntax

document.all.tags[“BUTTON"]

Methods

wlClick(), page 326
wiIMouseOver(), page 348
wiIMultiSelect(), page 350

Properties

event, page 91
InnerText, page 155
OnClick, page 190
value, page 310

Comment

wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358

id, page 143
Name, page 184
title, page 296

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputimage, page 160

34

RadView Software

cell (object)

InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

cell (object)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

cell objects are grouped into collections of cells. The cells collection is a property of
the following objects:

row wiTable

Description

A cell object contains all the data found in a single table cell. If the ce11s collection is a
property of a wlTables object, then the collection refers to all the cells in a particular table. If
the cells collection is a property of a row object, then the collection refers to all the cells in a
particular row. Individual ce11 objects may be addressed by index number, similar to any
object within a collection.

Syntax

Individual cel1 objects may be addressed by index number, similar to any object within a
collection. For example, to access a property of the 16" cell in myTable, counting across rows
and with the first cell indexed at 0, you could write:

document.wlTables.myTable.cells[15] .<cell-property>

If you are working directly with the cells in a wlTable object, as opposed to the cells within a
single row object, you may also specify a range of cells from anywhere within the table using
the standard spreadsheet format. Specify a group of cells using a string with the following
format:

¢ Use letters to indicate columns, starting with the letter A to represent the first column.

¢ Use numbers to indicate rows, starting with the number 1 to represent the first column.
(Note that this is not typical—the standard JavaScript index begins at 0 to represent the
first element in a set.)

WebLOAD JavaScript Reference Manual 35

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

For cells within a wlTables object:
document.wlTables.myTable.cells[“A1l:C3"]

In this example, the string “A1 : C3” includes all cells from the first column of the first row up
to the third column in the third row, reading across rows. This means that the first cell read is
in the first column of the first row, the second cell read is in the second column of the first row,
the third cell read is in the third column of the first row, and so on until the end of the first row.
If the table includes eight columns, then the ninth cell read will be in the first column of the
second row, and so on.

For cells within a row object:

To access a property of the 4™ cell in the 3" row in myTable, counting across rows and with
the first cell indexed at 0, you could write:

document.wlTables.myTable.rows[2] .cells[3] .<cell-property>

Note that individual table cells often are merged and span multiple rows. In such a case, the cell
will only appear in the collection for the first of the set of rows that the cell spans.

Properties

Each cel1l object contains information about the data found in one cell of a table. The ce11l
object includes the following properties:

celllndex, page 37 InnerHTML, page 153
InnerText, page 155 tagName, page 289
Comment

cell is often accessed through the w1 Tables family of table, row, and cell objects.
WebLOAD recommends managing tables on a Web page through the standard

document .all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

myFirstTableObject = document.all.tags ("TABLE") [0]

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

36 RadView Software

cellindex (property)

id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)
wiTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

cellindex (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

cell

Description

An integer containing the ordinal index number of this ce11 object within the parent table or
row. Cells are indexed starting from zero, so the ce11Index of the first cell in a table or row
is 0.

Syntax
<NA>

Comment

cellIndex is a member of the wlTables family of table, row, and cell objects. WebLOAD
recommends managing tables on a Web page through the standard document.all
collection. For example, rather than using the following approach to access the first table on a

page:
myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

myFirstTableObject = document.all.tags ("TABLE"™) [0]

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)

WebLOAD JavaScript Reference Manual 37

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Compare(), page 49

CompareRows, page 52

id, page 143 (wlTable property)
InnerText, page 155 (cell property)
Prepare(), page 205

row, page 223 (wlTable property)
TableCompare, page 286

wlTable, page 364

CompareColumns, page 51

Details, page 72

InnerHTML, page 153 (cell property)
MatchBy, page 178
ReportUnexpectedRows, page 216
rowlndex, page 225 (row property)
tagName, page 289 (cell property)

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Checkbox (object)

Property of Objects

Checkbox objects on a Web page are accessed through the document.all collection of

the standard DOM structure.

Description

Each Checkbox object represents one of the checkboxes embedded in a document. (Compare
to the element object, which stores the parsed data for a single HTML form element, where the
element may be any one of a variety of types, and the form object, which stores the parsed data

for an entire HTML form.)

Syntax

document.all.tags[“CHECKBOX"]

Methods

wlClick(), page 326
wlMouseOver(), page 348
wiMultiSelect(), page 350

Properties

AdjacentText, page 23
Name, page 184
value, page 310

wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358

id, page 143
title, page 296

38

RadView Software

checked (property)

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputimage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

checked (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

element

Description

For an <INPUT type="checkbox">or <INPUT type="radio"> element, the
checked property indicates whether the element has the HTML checked attribute, that is,
whether the element is selected. The property has a value of t rue if the element has the
checked attribute, or false otherwise (read-only).

Syntax

<NA>
See also

element, page 83 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 39

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

ClearAll() (method)

Method of Object

wilCookie

Description

Delete all cookies set by wlCookie in the current thread.

Syntax
wlCookie.ClearAll ()

Parameters

None

Return Value

None

Example
<NA>

See also

wlCoofkie, page 330

ClearDNSCache() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Method of Objects
wlGlobals wlHttp

wiLocals

Description

Clear the IP address cache.

Syntax
wlHttp.ClearDNSCache ()

40

RadView Software

ClearSSLCache() (method)

Parameters

None

Return Value
None

Example
<NA>

GUI mode

WebLOAD recommends enabling or disabling the DNS cache through the Console GUI.
Disable caching for the Load Generator or for the Probing Client during a test session by
clearing the appropriate box in the Browser Emulation tab of the Tools | Default Options dialog
box, illustrated in the following figure:

DMS Cache
" Prabing Client

™ Load Generator

Figure 2-3: Clearing DNS Cache for Load Generator

Comment

To enable or disable DNS caching when working in HTTP Protocol mode, set the

DNSUseCache property.
See also
Browser configuration components, page 30 ClearDNSCache(), page 41
ClearSSLCache(), page 42 DNSUseCache, page 78
Rules of scope for local and global variables, SSLUseCache, page 273
page 111 in the WebLOAD Programming Guide
wiGlobals, page 339 wlHttp, page 342
wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

ClearSSLCache() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

WebLOAD JavaScript Reference Manual 41

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Method of Objects

wlGlobals wlHttp

wiLocals

Description

Clear the SSL decoding-key cache.
Syntax

wlHttp.ClearSSLCache ()
Parameters

None

Return Value
None

Example
<NA>

GUI mode

WebLOAD recommends enabling or disabling the SSL cache through the Console GUI.
Disable caching for the Load Generator or for the Probing Client during a test session by
clearing the appropriate box in the Browser Emulation tab of the Tools | Default Options dialog
box, illustrated in the following figure:

55L Cache
" Prabing Client

™ Load Generator

Figure 2-4: Clearing SSL Cache for Load Generator

Comment

To enable or disable SSL caching when working in HTTP protocol mode, set the SSLUseCache

property.

See also
Browser configuration components, page 30 ClearDNSCache(), page 41
ClearSSLCache(), page 42 DNSUseCache, page 78
Rules of scope for local and global variables, SSLUseCache, page 273

page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlHttp, page 342

42 RadView Software

ClientNum (variable)

wiLocals, page 343 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

ClientNum (variable)

Description

ClientNum is set to the serial number of the client in the WebLOAD test configuration.
ClientNum is a read-only local variable. Each client in a Load Generator has a unique
ClientNum. However, two clients in two different Load Generators may have the same
ClientNum. Note that while ClientNum is unique within a single Load Generator, it is not
unique system wide. Use VCUniqueID () to obtain an ID number which is unique system-
wide.

If there are N clients in a Load Generator, the clients are numbered 0, 1, 2, ..., N-1.

You can access C1ientNum anywhere in the local context of the Agenda (InitClient (),
main script, TerminateClient (), etc.). ClientNum does not exist in the global context

(InitAgenda (), TerminateAgenda (), etc.).

If you mix Agendas within a single Load Generator, instances of two or more Agendas may run
simultaneously on each client. Instances on the same client have the same C1ientNum value.

ClientNum reports only the main client number. It does not report any extra threads spawned
by a client to download nested images and frames (see LoadGeneratorThreads, page 173).

Example

<NA>

Comment

Earlier versions of WebLOAD referred to this value as ThreadNum. The variable name
ThreadNum will still be recognized for backward compatibility.

GUI mode

WebLOAD recommends accessing global system variables, including the C1ientNum
identification variable, through the Visual AAT GUI. To see a list of global system variables,
highlight the top-level Agenda node in the Agenda Tree, find the GlobalVariables section
of the Properties pane, and click on the browse button of the System field. A complete list of
system variables and macros pops up, as illustrated in the following figure. The variables that
appear in this list are available for use at any point in an Agenda file. For example, it is
convenient to add C1ientNum to a Message Node to clarify which client sent the messages
that appear in the Console Log window.

WebLOAD JavaScript Reference Manual 43

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

& Global System Yariables El x|
J[ﬁ H+ = Attributes 7
Hame EEeTEEH ..F temiame Agenda
Rt FE = = . Comments
oAy Rinsithelniimbe o ionn = GlobalVariables
Cliertrum Returnz the main thread nu _I
GeneratorMame) Returnz the name of this loa) ? -
- - - P UserDefined

SCURiguelD) Returns & string unique to t

Randomtumber() Generate a random number

TodaysDate() Currert date (1-31)

TodaysDay() Current Day (0-6, 0==Sund

Todaysharth() Current Month (0-117

Thisear() Currert Year (4-digit, .. 2

Hours() Current Hour (0-23)

Minutes() Current minutes (0-59)

Seconds() Current seconds (0-59)

Millizeconds() Currert ms value

Timer) Time in ms since 144970

GMTDate) Current date in GMTUTC as

LocalDate) Currert date in local time as

[
=, Alphabetic ; Categories
Figure 2-5: Global System Variables List
See also

ClientNum, page 43 GeneratorName(), page 108
GetOperatingSystem(), page 130 Identification variables and functions, page 146
RoundNum, page 221 VCUniquelD(), page 312

Close() (function)

Method of Object

wlOutputFile

Description

Closes an open file. When called as a method of the wlOutputFile object, closes the open
output file being managed by that object.

Syntax
Function call:
Close (filename)
wlOutputFile method:
wlOutputFile.Close ()
Parameters

Function call:

44 RadView Software

CloseConnection() (method)

filename—A string with the name of the ASCII output file to be closed.
wlOutputFile method:

No parameter is necessary when this function is called as a method of the wlOutputFile
object, since the file to be closed is already known.

Return Value
None.
Example
Function call:
Close (MyFavoriteFile)

wlOutputFile method:

MyFileObj = new wlOutputFile (filename)

MyFileObj.Close ()

Comment

When you use the Close () function to close a file, data will be flashed to the disk.

See also
Close(), page 45 CopyfFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

CloseConnection() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHttp

WebLOAD JavaScript Reference Manual 45

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

Closes an HTTP connection that was opened with the KeepAlive option.
Syntax

wlHttp.CloseConnection ()
Parameters

None

Return Value
None

Example
<NA>

GUI mode

WebLOAD recommends maintaining or closing connections through the Console GUI. Enable
maintaining connections for the Load Generator or for the Probing Client during a test session
by checking the appropriate box in the Browser Emulation tab of the Tools | Default Options
dialog box, illustrated in the following figure:

Perzsistent Connection(K eep-alive]

IV Prabing Client

¥ Load Generator

Figure 2-6: Enabling Persistant Connections for Load Generator

See also
Browser configuration components, page 30 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide
KeepAlive, page 165 wlHttp, page 342
Collections
Description

Collections are arrays or sets of individual objects. For example, the elements collection
refers to a collection of individual element objects.

Access individual members of a collection either through an index number or directly through
the member’s name or ID. The following three syntax choices are equivalent:

46 RadView Software

cols (property)

Collection[index#]
Collection[“ID"]
Collection.ID

Test session Agendas work with all browser DOM collections and objects. The recommended
way to access these objects is through the classic browser document object, via the
document.all property, by checking the tag type. For example, access a table through:

document.all.tags[“TABLE"”]

Properties

Each collection of objects includes the single property Length, which contains the size of the
collection, that is, the number of objects included in this collection. You may also use the index
value to access individual objects from within a collection.

For example, to find out how many table objects are contained within the wlTables
collection of a document, check the value of:

document.wlTables.length

In this Reference Manual, the description of each individual object includes information on the
collection, if any, to which that object belongs.

See also

element, page 83 length, page 167

cols (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

element wiTable

Description

When working with w1 Tables objects, an integer containing the number of columns in this
table. The column number is taken from the COLS attribute in the <TABLE> tag. This property
is optional. If the table does not have a COLS attribute then the value is undefined. When
working with element objects of type TextArea, an integer containing the number of
columns in this TextArea.

Syntax
<NA>

WebLOAD JavaScript Reference Manual 47

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

<NA>

Comment

cols is often accessed through the w1 Tables family of table, row, and cell objects.
WebLOAD recommends managing tables on a Web page through the standard
document.all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

myFirstTableObject = document.all.tags ("TABLE") [0]

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72
element, page 83 id, page 143 (wlTable property)
InnerHTML, page 153 (cell property) InnerText, page 155 (cell property)
MatchBy, page 178 Prepare(), page 205
ReportUnexpectedRows, page 216 row, page 223 (wlTable property)
rowlndex, page 225 (row property) TableCompare, page 286
tagName, page 289 (cell property) wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Compare() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

TableCompare

48 RadView Software

Compare() (method)

Description

The recommended usage of the Compare method compares the expected table specified when
the TableCompare object was first created to the actual table specified here.

The alternate usage of the Compare method compares the expected and actual tables
specified when the TableCompare object was first created.

Syntax
Recommended:
Compare (Table)
Alternate:
Compare ()
Parameters
Recommended:
Table—A pointer to the actual table to be compared by this method call. Recommended.
Alternate:
No parameter is necessary when working with the alternate usage of this method..

Return Value
true if the comparison succeeds.
false if the comparison fails. If the comparison fails, it shows up as a

TableCompareEvent entry in the Data Drilling report, described in Data Drilling—
WebLOAD transaction reports, page 149 in the WebLOAD Programming Guide.

Example
Recommended:
RetVal = a.Compare (ActualTable)
Alternate:
RetVal = b.Compare ()
Comment

The comparison is completed using the settings defined by the user through the
CompareColumns and CompareRows TableCompare properties.

The Compare () method is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document.all collection.

WebLOAD JavaScript Reference Manual 49

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (w1 Table property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72
id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178
Prepare(), page 205 ReportUnexpectedRows, page 216
row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cel1l property)

wlTable, page 364
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

CompareColumns (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

TableCompare

Description

Specifies which columns to compare within the rows selected by the Mat chBYy property. Note
that the Conpar eRows property must have been defined as “al | ”.

WebLOAD offers the following options:
e Match all Columns
e Match Specific Columns

Syntax

String [“all”] (default)
or
Array of any combination of:

e Integer column numbers [x, vy, z, etc.]

50 RadView Software

CompareRows (property)

e String range of column numbers [*1-3”, “6-8", etc.]
e String column names [“ColumnA”, “ColumnB”, etc.]
Example
a.CompareColumns = [1, 3, “7-13"]
Comment

The CompareColumns property is used with the TableCompare Wizard, which is only
available to users of the manual AAT Agenda recording program. WebLOAD recommends
managing tables on a Web page through the standard document .all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)
wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

CompareRows (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

TableCompare

Description

Specifies whether table comparison should be completed for all rows in the tables [“all”] or
whether only the cells in a specific list of rows should be compared (for example, 1, 3,6, 7, &
8, etc.).

WebLOAD JavaScript Reference Manual 51

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax

String [“al1”] (default)
or
Array of any combination of:

e Integer row numbers [X, y, z, etc.]
e String range of row numbers [“1-3”, “6-8", etc.]
Example
a.CompareRows = [1, 3, “6-8"]
Comment

The CompareRows property is used with the TableCompare Wizard, which is only available
to users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document .all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72
id, page 143 (w1 Table property) InnerHTML, page 153 (cel1l property)
InnerText, page 155 (cell property) MatchBy, page 178
Prepare(), page 205 ReportUnexpectedRows, page 216
row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)

wlTable, page 364
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

connectionBandwidth (property)

Property of Object

wiMediaPlayer

Description

Retrieves the connection bandwidth for the client in bits per second. (read-only double word)

52 RadView Software

ConnectionSpeed (property)

Syntax
MyMediaPlayerObject.connectionBandwidth
Example

currentBandwidth = MyMediaPlayerObject.connectionBandwidth

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wiMediaPlayer, page 344

ConnectionSpeed (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wilGlobals

Description

WebLOAD allows users to simulate various system and connection configurations, including
setting a ‘virtual limit” on the connection speed available during a test session. Obviously, the
speed of the connection to a Web site is an important factor in the response time seen by users.
Setting a limit on the connection speed during a test session allows testers working with higher-
speed connections within their own labs to test systems for clients that may be limited in their
own workplace connection speeds.

By default, WebLOAD will work with the fastest available connection speed. Testers may set
the connection speed to any slower value, measured in bits per second (bps). For example,
users may set values of 14,400bps, 28,800bps, etc. Note that the typical single ISDN line can
carry 64Kb, a double line carries 128Kb, and a T1 line can handle 1.5 meg.

Syntax

You may assign a connection speed using the wlGlobals.ConnectionSpeed property.
For example:

WebLOAD JavaScript Reference Manual 53

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

InitAgenda ()
{
wlGlobals.ConnectionSpeed=28800
}
// main Agenda body
wlHttp.Get ("http://abcdef")
Sleep (1000)

GUI mode

WebLOAD recommends setting the connection speed through the Console GUI. You may set
different connection speed limits for both the Load Generator and the Probing Client through
the checkboxes on the Connection tab of the Tools | Default Options dialog box, illustrated in

the following figure:

Default Options I
Diagnostic I Functional Testing I 551 I l%ﬂlient Type I
Sleep Time Contral I Fazz/Fail Definition I Java
Browser Emulation I Authentication for protocol scripts Connection

Wariable Connection Speed:

™ Load Generator Connection Speed: I VI
" Prabing Client Connection Speed: I VI

Figure 2-7: Setting Connection Speed Limits

See also

Browser configuration components, page 30 wlGlobals, page 339

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

ContainerTag (property)

Property of Object
Div Span

UlContainer

Description

Indicates type of UI container.

Syntax
<NA>

54

RadView Software

ContainingMap (property)
See also

Div, page 77 Span, page 254
UlContainer, page 301

ContainingMap (property)

Property of Objects

area map

Description

Each ContainingMap object stores a pointer to the map in which an area object is found.
The map objects are accessed through collections of document.all.

Syntax
<NA>

See also

area, page 24 map, page 178

content (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wiMeta

Description

Retrieves the value of the CONTENT attribute of the META tag (read-only string).
Syntax

wlMetas [index#] .content

Example

document.wlMetas[0] .content

WebLOAD JavaScript Reference Manual 55

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Comment

WebLOAD recommends accessing meta objects on a Web page through the standard
document.all collection.

See also
content, page 56 httpEquiv, page 143
Name, page 184 Url, page 302

wlMeta, page 346

Coords (property)

Property of Object

area

Description

The coordinates of the area object.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also

area, page 24

CopyFile() (function)

Description

Copies files from a source file to a destination file. The destination file is either explicitly or
automatically named. CopyF1ile can copy both text and binary data files.

Syntax
CopyFile (SrcFileName [, DestFileName])

56 RadView Software

CopyFile() (function)

Parameters

SrcFileName—A literal string or variable containing the full literal name of the file to be
copied. Specific system directories are searched for the specified file in the search order
described in the preceding section.

DestFileName—An optional literal string or variable containing the full literal name of the
file into which the source file will be copied. If the target parameter is omitted, WebLOAD will
copy the source file to the current directory and return the file name as the return value of the
CopyFile function.

Return Value

Optionally, a string with the target file name, returned if the DestFileName parameter is not
specified.

Example

To copy the auxiliary file src. txt, located on the Console, to the destination file dest . txt
on the current Load Generator, use the following command:

function InitAgenda () {

CopyFile (“src.txt”, “dest.txt”)

}
You may then access the file as usual in the main body of the Agenda. For example:
DataArr = GetlLine (“dest.txt”)

It is convenient to specify only the SrcFileName. To copy the auxiliary file file.dat,
located on the Console, to the current Load Generator, using a single file name:

function InitAgenda () {
filename = CopyFile(“file.dat”)
}

GetLine (filename)

GUI mode

Note that CopyFile () and IncludeFile () functions can be added directly to the code in
an Agenda through the IntelliSense Editor, described in Using the IntelliSense JavaScript
Editor, page 18. Select a function from the Edit | Insert | JavaScript | Copy/Include Files menu.
The Visual AAT automatically inserts the correct code for the selected function into the
Agenda file. The user may then edit parameter values without any concerns about mistakes in
the function syntax.

WebLOAD JavaScript Reference Manual 57

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Agenda ltems 4

= G | 4
Easte Crrletyf e — li::[a M ,
e o | erminate unc ionzs :
. Copy/lnclude Files L4 <Target> = CopyFile["<Src>")
[Eopy [Si7 (5 §
Mezsage Commands L4 CopyFile["<Src""< T arget>"")
¥ Delete Del
. R andom Mumber Commands L4
[z atle
COM Dbject: 4
Select &) Chrivs IEets
Java Objects 4
Figure 2-8: Inserting a CopyFile function
Comment

WebLOAD does not create new directories, so any directories specified as target directories
must already exist.

The CopyFile command must be inserted in the InitAgenda () section of your JavaScript

program.

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

CreateDOM() (function)

Mode

This function is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Description

CreateDOM functions return a complete Document Object Model (DOM) tree. A description
of the WebLOAD DOM hierarchy is found in Understanding the WebLOAD DOM structure,
page 215 in the WebLOAD Programming Guide. You may compare this expected DOM to the
actual DOM generated automatically as your JavaScript Agenda runs.

58 RadView Software

CreateDOM() (function)

Syntax

DOM = CreateDOM (HTMLFileName)
Parameters

HTMLF1ileName—A literal string or variable containing the full literal name of the HTML file
in which the information about the expected DOM is found.

Return Value
Returns a complete Document Object Model (DOM) tree.
Example
DOM = CreateDOM (“HTMLsource”)
Comment

One of the most common practices in functional testing is to compare a known set of correct
results previously generated by an application (expected data) to the results produced by an

actual current execution of the application (actual data). These sets of results are stored in

various Document Object Models (DOMs).

The actual DOM is created automatically each time an HTTP request is accessed through the
document object. The expected DOM is assigned by the user to a specific HTTP command. To
make the verification functions more easily readable, WebLOAD uses the alias ACTUAL to
access the actual document and the alias EXPECTED to access the expected document.

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wlBrowser, page 325

WebLOAD JavaScript Reference Manual

59

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

CreateTable() (function)

Mode

This function is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Description

WebLOAD provides a CreateTable function to automatically convert the tables found on
an HTML page to parallel w1 Table objects. This simplifies access to the exact table entry in
which the user is interested. The CreateTable () function returns a window object that
includes a w1l Tables collection. This is a collection of wlTable objects, each of which
corresponds to one of the tables found on the HTML page used as the function parameter. The
table data may be accessed as any standard wlTable data.

Syntax

CreateTable (HTMLFileName)

Parameters

HTMLFileName—A literal string or variable containing the full literal name of the HTML file
in which the tables to be converted are found.

Return Value

Returns a window object that includes a w1l Tables collection.

Example

NewTableSet = CreateTable ("HTMLTablePage”)
NumTables = NewTableSet.wlTables.length
FirstTableName = NewTableSet.wlTables[0].id

Comment

CreateTable () is a member of the wlTables family of table, row, and cell objects.
WebLOAD recommends managing tables on a Web page through the standard
document.all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:
myFirstTableObject = document.all.tags ("TABLE") [0]

See also

Adding transactions, page 49 in the WebLOAD BeginTransaction(), page 28
Programming Guide

60

RadView Software

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214

TableCompare, page 286

Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wiBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

currentPosition (property)

currentPosition (property)

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239

TimeoutSeverity, page 293

TransactionTime, page 298

Verification Test Components, page 315
VerificationFunction() (user-defined), page 320

wiTable, page 364

Property of Object

wlMediaPlayer

Description

Retrieves the current position in the stream in milliseconds from the beginning. (read-only

double number)

Syntax

MyMediaPlayerObject.currentPosition

Example

<NA>

See also

bitrate, page 30
currentPosition, page 62
duration, page 80
OpenStream(), page 194
Play(), page 200

state, page 277

connectionBandwidth, page 53
currentStreamName, page 62
fileName, page 100

Pause(), page 200

Resume(), page 220

Stop(), page 278

WebLOAD JavaScript Reference Manual

61

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

type, page 300 wiMediaPlayer, page 344

currentStreamName (property)

Property of Object

wlMediaPlayer

Description

Specifies the name of the currently playing stream. (read string)
Syntax

MyMediaPlayerObject.currentStreamName
Example

<NA>
Comment

When using a redirection file, the value of currentStreamName will not be the same as the
value of £ileName.

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

Data (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

62 RadView Software

Data (property)

Description

Holds a string to be submitted in an HTTP Post command. The Data property has two
subfields:

Data.Type—the MIME type for the submission
Data.Value—the string to submit
You can use Data in two ways:

4 Asan alternative to FormData if you know the syntax of the form submission.

4 To submit a string that is not a standard HTML form and cannot be represented by
FormData.

Example

Thus the following three code samples are equivalent:

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

//Sample 1

wlHttp.Data.Type = "application/x-www-form-urlencoded"

wlHttp.Data.Value = "SearchFor=icebergs&SearchType=ExactTerm"

wlHttp.Post ("http://www.ABCDEF.com/query.exe")

//Sample 2

wlHttp.FormData.SearchFor = "icebergs"

wlHttp.FormData.SearchType = "ExactTerm"

wlHttp.Post ("http://www.ABCDEF.com/query.exe")

//Sample 3

wlHttp.Post ("http://www.ABCDEF.com/query.exe" +
"?SearchFor=icebergs&SearchType=ExactTerm")

Methods

wlClear(), page 328

Properties

type, page 300 value, page 310

Comment

Data and DataFile are both collections that hold sets of data. Data collections are stored
within the Agenda itself, and are useful when you prefer to see the data directly. DataFile
collections store the data in local text files, and are useful when you are working with large
amounts of data, which would be too cumbersome to store within the Agenda code itself. When
working with DataFile collections, only the name of the text file is stored in the Agenda
itself.

WebLOAD JavaScript Reference Manual 63

WebLOAD Actions, Objects, and Functions

Your Agenda should work with either Data or DataFile collections. Do not use both
properties within the same Agenda.

See also
Data, page 63 DataFile, page 65
Erase, page 87 fileName, page 100
FormData, page 104 Get(), page 110
Header, page 138 Post(), page 202
wlHttp, page 342 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

DataFile (property)

Mode
This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description
A file to be submitted in an HTTP Post command.
WebLOAD sends the file using a MIME protocol. DataFile has two subfields:
4 DataFile.Type—the MIME type

4 DataFile.FileName—the name of the file, for example,
"c:\\MyWebloadData\\BigFile.doc"

WebLOAD sends the file when you call the wlHttp.Post () method.
Methods

wlClear(), page 328
Properties
fileName, page 100 type, page 300

Comment

Data and DataFile are both collections that hold sets of data. Data collections are stored
within the Agenda itself, and are useful when you prefer to see the data directly. DataFile

64 RadView Software

DefaultAuthentication (property)

collections store the data in local text files, and are useful when you are working with large
amounts of data, which would be too cumbersome to store within the Agenda code itself. When
working with DataFile collections, only the name of the text file is stored in the Agenda
itself.

Your Agenda should work with either Data or DataFile collections. Do not use both
properties within the same Agenda.

See also
Data, page 63 DataFile, page 65
Erase, page 87 FormData, page 104
Get(), page 110 Header, page 138
Post(), page 202 value, page 310
wiHttp, page 342 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

DefaultAuthentication (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wiGlobals wlHttp

wlLocals

Description

This property specifies which user authentication protocol WebLOAD should use to log onto
an HTTP server. The possible values are:

4 Basic—WebLOAD sends the UserName and PassWord. (default)

4 NT Challenge/Response—WebLOAD sends the NTUserName and NTPassWord. If
these are empty, WebLOAD sends the Windows NT user name and password under which
the Agenda is running. WebLOAD always sends the appropriate responses to the Server
authentication challenges.

Syntax
<NA>

WebLOAD JavaScript Reference Manual 65

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the

current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |

Default or Current Options dialog box.

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box, illustrated below.

These two GUI approaches are both illustrated in the WebLOAD Programming Guide.

Browser Emulation

— Global Authentication Settings:

Paszz/Fail Definition | Java
Authentication for protocol scripts |

Sleep Time Contral |

Default Options I
Diagnostic I Functional Testing I 551 I Client Type

Connection

UserN ame: ITomSmith
Password:
NTUserName: IMaiorSmith
MTPassword: I ““““““““

Prosyllsert ame: ISmithSS

ProxyPassword:
SSLClentCertificateFils:

SSLClentCertificateP assword:

— Default Authentication:

% Basic
CONT

Set as Defaultl

Cancel | Help |

Figure 2-9: Setting Authentication values

See also

Browser configuration components, page 30

wlGlobals, page 339
wlLocals, page 343

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

wlHttp, page 342

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

66

RadView Software

defaultchecked (property)

defaultchecked (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

element

Description

For an <INPUT type="checkbox">or <INPUT type="radio"> element, the default
checked value of the form element (read-only string).

Syntax
<NA>

See also
AdjacentText, page 23 Alt, page 23
checked, page 39 cols, page 48
defaultchecked, page 68 defaultvalue, page 69
element, page 83 id, page 143
InnerText, page 155 MaxLength, page 180
Name, page 184 option, page 195
row, page 223 selectedindex, page 234
Size, page 247 title, page 296
type, page 300 Url, page 302

value, page 310

defaultselected (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

option

WebLOAD JavaScript Reference Manual 67

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

Returns a Boolean value specifying whether this option was the one originally "selected" before
any user acted upon this "select" control.

Syntax
<NA>

See also
defaultchecked, page 68 option, page 195
selected, page 233 text, page 291

value, page 310

defaultvalue (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

element

Description

The default value of the form element (read-only string).

Syntax
<NA>

See also

element, page 83

delete() (method)

Method of Objects

wlOutputFile wlCookie

Description

This method deletes the items to which the parent object points.

68 RadView Software

delete() (method)

If the parent is a built-in wlCookie object, delete all cookies set by wlCookie in the current
thread.

If the parent is a user-created wlOutputFile object, deletes the wlOutputFile object and

closes the output file.
Syntax
wlCookie:
When working with wlCookie objects, use the uppercase form:
wlCookie.Delete (name, domain, path)
wlOutputFile:
When working with wlOutputFile objects, use the lowercase form:
wlOutputFile.delete ()
Parameters
wlCookie:
name—A descriptive name used for the cookie to be deleted, for example, "CUSTOMER".

domain—The top-level domain name for the cookie being deleted, for example,
"www . ABCDEF . com".

path—The top-level directory path, within the specified domain, for the cookie being
deleted, for example, "/".

wlOutputFile:
None.

Return Value
None.
Example
wlCookie:
wlCookie.Delete ("CUSTOMER", "www.ABCDEF.com", "/")
wlOutputFile:

MyFileObj = new wlOutputFile (filename)

MyFileObj.delete ()
Comment

Note that the w1l Cookie property is written in uppercase: wlCookie.Delete ().

WebLOAD JavaScript Reference Manual

69

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373
See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219

Using the Form Data Wizard, page 35 in the wiCookie, page 330
WebLOAD Programming Guide

wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

Details (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

TableCompare

Description

Specifies whether table comparison should stop at the first error found (false) or whether the
function should complete a full comparison of all selected table cells and save information
about the details of all errors found (true).

Syntax

Boolean (true/false, default false)

70 RadView Software

Details (property)

Example
a.Details = true
Comment

The Details property is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document.all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)
wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Dialog box properties

Properties of Objects

wiBrowser

Description

Web sessions often include some sort of dialog box interaction, either expected (such as login
or confirmation) or unexpected (such as error or warning). WebLOAD Agendas automatically
handle both expected and unexpected dialog boxes appropriately during the course of a test
session, through a set of dialog box properties attached to the wlBrowser object.

Each type of dialog box type is actually a separate object property, each of which includes its
own distinct sub-property list, depending on the nature of the dialog box. Users who are editing
the JavaScript code in an Agenda may set dialog box properties manually. Table 1, page 74,
lists all the dialog box types, their properties, and an example of JavaScript syntax for each box.

Syntax
wlBrowser.DialogBoxType.SubProperty = “PropertyValue”

WebLOAD JavaScript Reference Manual 71

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

Many Web products include popup confirmation boxes in which the user clicks on either a
CONFIRM or a CANCEL button. These are referred to as dialog boxes of type Confirm, with the
single sub-property Answer, which may have a value of either OK or Cancel. In a JavaScript
Agenda, the default value for such a dialog box would be recorded as either:

wlBrowser.Confirm.Answer = “OK”

or

wlBrowser.Confirm.Answer = “Cancel”
GUI mode

In most cases WebLOAD handles dialog boxes, both expected and unexpected, automatically,
based on built-in default values. WebLOAD recommends customizing these default settings
through the Visual AAT or Console GUI. Select values from the drop down lists in the Browser
Dialogs tab of the Tools | Default or Current Project Options dialog box, illustrated below:

— Browser option
IE Dialog [Value \ﬂ
B Root
HI alert
Answer oK -
EHH caonfirm
Angwer ok
EHH Prompt
Angwer ok
Input
EHH coakie
Angwer es LI

Figure 2-10: Managing Dialog Boxes

Properties

The following table lists all dialog box types currently available through WebLOAD, together
with their properties and an example of JavaScript syntax for each box.

Table 2-1: Dialog Box Property List

Dialog Box Type Property and Value Syntax Examples

Al ert Answer =OK w Browser. Al ert. Answer =" OK”

Note: During WebLOAD testing, an Alert dialog box does not literally trigger an alert.
It simply sends an InfoMessage to the Log window.

72 RadView Software

DisableSleep (property)

Dialog Box Type Property and Value Syntax Examples
Client User nane=<string> w Browser. Cli ent Aut henti cati on. User nane
Aut henti cati on Passwor d=<stri ng> =“string”
Domai n=<stri ng> w Browser. Cl i ent Aut henti cati on. Password
opti onal —+ndi cat es =“string”
NT Chal ange/ Response w Browser. Cli ent Aut henti cati on. Domai n
Answer =OK/ Cancel =*string”
Save=<string> w Browser. Cli ent Aut henti cati on. Answer
= oK
w Browser. Cl i ent Aut henti cati on. Save
=*unchecked”
Client Answer =OK/ Cancel W Browser.ClientCertificate. Answer
Certificate Certificate=<string> =“Cancel ”
w Browser.ClientCertificate.Certificate
=« Q"
Confirm Answer =OK/ Cancel w Browser . Confirm Answer = OK”
Cooki e Answer =Yes/ No w Browser . Cooki e. Answer =* No”
Never Show=<stri ng> wl Br owser . Cooki e. Never Show="unchecked”
Ftp Answer =Logi n/ Cancel w Browser . Ft pAut henti cati on. Answer =
Aut henti cati on Server=<string> “Login”
User nane=<string> w Browser . Ft pAut henti cati on. Server =
Passwor d=<stri ng> “string”
Emai | =<string> w Browser . Ft pAut henti cati on. User name=
Anonynmous=<string> “string”

If checked, no need W Browser . Ft pAut henti cati on. Passwor d=
for U P a o “string”
ngeiig??rinié:sswor W Browser . Ft pAut henti cati on. Emai | =

“string”
w Browser . Ft pAut henti cati on. Anonynous
=“unchecked”
w Browser . Ft pAut henti cati on. Save
=“unchecked”
[0 Answer =OK/ Cancel w Browser . Ok. Answer =" OK”
OkCancel Answer =OK/ Cancel w Browser. CkCancel . Answer =" OK”
Pr onmpt I nput =<string> w Browser. Pronpt. | nput="string”
Answer =OK/ Cancel w Browser . Pronpt. Answer =* OK”

Note: During WebLOAD testing, the input from a Prompt dialog box is used to set a property value.

Output is simply sent to the Visual AAT or Console Log window, rather than triggering a new output popup window.

YesNo Answer =Yes/ No w Browser. YesNo. Answer =" Yes”
YesNoCancel Answer =Yes/ No w Browser. YesNoCancel . Answer =" Yes”
See also
Dialog Boxes, page 75 in the WebLOAD wilBrowser, page 325

Programming Guide

DisableSleep (property)

Property of Objects

wiBrowser

WebLOAD JavaScript Reference Manual

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description
Boolean flag that indicates whether the recorded sleep pauses will be included in the test
session.
Syntax
wlBrowser.DisableSleep = True
//Ignore recorded sleep periods
wlBrowser.DisableSleep = False

//Include recorded sleep periods

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period recorded
by the user during the original recording session. If you wish to include sleep intervals but
change the time period, set DisableSleep to False and assign values to the other sleep

properties as follows:

4 SleepRandomMin—Assign random sleep interval lengths, with the minimum time
period equal to this property value.

4 SleepRandomMax—Assign random sleep interval lengths, with the maximum time
period equal to this property value.

4 SleepDeviation—Assign random sleep interval lengths, with the time period ranging
between this percentage value more or less than the original recorded time period.

GUI mode

WebLOAD recommends setting the sleep mode through the Visual AAT or Console GUI.
Choose a setting from the Sleep Time Control tab of the Tools | Default, Current or Agenda

Options dialog box, illustrated below:

Default Options I

Diagnostic I Functional Testing I 551 I Client Type
Browser Emulation | Authentication for protocol scripts I Connection
Sleep Time Cantral | Pass/Fail Definition I Java

Flayback Sleep Time:

' |gnore recorded sleep time

" Set random sleep time between |2 3: and I‘ID 3: seconds

Figure 2-11: Setting the sleep mode

See also

Sleeping or pausing in mid-session, page 28 in the WebLOAD Programming Guide

74 RadView Software

Div (object)

DisableSleep, page 75 Sleep(), page 247
SleepDeviation, page 250 SleepRandomMax, page 251
SleepRandomMin, page 252 wilBrowser, page 325

Div (object)

Property of Objects
Specifies a container that renders HTML. Div objects on a Web page are accessed through the
document.all collection of the standard DOM structure.

Description

Each Div object represents one of the <DIV> user interface fields embedded in a document.
One of the set of UlIContainer objects. (Compare to the element object, which stores the parsed
data for a single HTML form element, where the element may be any one of a variety of types,
and the form object, which stores the parsed data for an entire HTML form.)

Syntax
document.all.tags[“DIV"]

Methods
wlClick(), page 326 wlMouseDown(), page 347
wilMouseOver(), page 348 wlMouseUp(), page 349
wiMultiSelect(), page 350 wiSelect(), page 358

wlTypeln(), page 366

Properties
ContainerTag, page 55 event, page 91
id, page 143 InnerText, page 155
OnClick, page 190 OnMouseOver, page 191
Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99

WebLOAD JavaScript Reference Manual 75

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291

TextArea, page 292 UlContainer, page 301

DNSUseCache (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals wlHttp

wiLocals

Description

Enable caching of IP addresses that WebLOAD receives from a domain name server. The value
of DNSUseCache may be:

4 No—Disable IP address caching.
4 Yes—Enable IP address caching. (default)

Assign a "Yes" value to reduce the time for domain name resolution. Assign a "No" value if
you want to include the time for name resolution in the WebLOAD performance statistics.

Syntax
<NA>
GUI mode

WebLOAD recommends enabling or disabling the DNS cache through the Console GUI.
Enable caching for the Load Generator or for the Probing Client during a test session by
checking the appropriate box in the Browser Emulation tab of the Tools | Default Options
dialog box, illustrated in the following figure:

76

RadView Software

document (object)

DMS Cache
IV Prabing Client

¥ Load Generator

Figure 2-12: Enabling DNS Cache for Load Generator

Comment

To clear the DNS cache when working in HTTP Protocol mode, set the ClearDNSCache()
property, described on page 41.

See also
Browser configuration components, page 30 ClearDNSCache(), page 41
ClearSSLCache(), page 42 DNSUseCache, page 78
Rules of scope for local and global variables, SSLUseCache, page 273
page 111 in the WebLOAD Programming Guide
wiGlobals, page 339 wlHttp, page 342
wilLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

document (object)

Property of Object

The document object is a property of the following object:

window

Description

Represents the HTML document in a given browser window. The document object is one of
the main entry points into the DOM, used to retrieve parsed HTML data. document objects
store the complete parse results for downloaded HTML pages. Use the document properties
to retrieve links, forms, nested frames, and other information about the document.

document objects are local to a single thread. WebLOAD creates an independent document
object for each thread of an Agenda. You cannot create new document objects using the
JavaScript new operator, but you can access HTML documents through the properties and
methods of the standard DOM objects. document properties are read-only.

Syntax

Access all elements of the Browser DOM through the document object, using the standard
syntax. For example:

WebLOAD JavaScript Reference Manual 77

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

//Store the text of an entire page into a variable, myMainPage
myMainPage = document.documentElement.innerText

WebLOAD Agendas work with all browser DOM collections and objects. The recommended
way to access these objects is through the classic browser document object, via the
document . all property, by checking the tag type. For example, access a table through:

document.all.tags[“TABLE"”]
Example

If you are working in the HTTP Protocol mode, then to access the form’s element fields use the
following expression:

document.frames[1l].forms[0] .elements[#] .<property>

For example:

document.frames[1l].forms[0] .elements[1l].type
Methods

wlGetAllForms(), page 336 wlGetAllFrames(), page 337
wlGetAllLinks(), page 338

Properties
form, page 102 frames, page 107
Image, page 148 link, page 169
location, page 176 script, page 229

title, page 296

wlHeader, page 340 wlMeta, page 346
wlSource, page 360 wiStatusLine, page 361
wiStatusNumber, page 362 wlTable, page 364
wlVersion, page 368 wlXmls, page 370

See also

window, page 324

duration (property)

Property of Object

wlMediaPlayer

78 RadView Software

duration (property)

Description

Retrieves the duration of the current stream in milliseconds.
(read-only long number)

Syntax
MyMediaPlayerObject.duration

Example
<NA>

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wiMediaPlayer, page 344

Dynamic Object Recognition (DOR) components

Properties and Methods of Object

wlBrowser wlHttp

Description

WebLOAD provides a high-level working environment for users, recording any objects of
interest to users without the user needing to be aware of the objects’ underlying DOM
properties or identification details. During subsequent playback test sessions, some of the
recorded objects’ properties may change slightly, due to the dynamic nature of Web activity.
For example, an object’s location or URL may be different from that originally recorded.
WebLOAD provides full access to the complete set of objects originally of interest to the users
at recording time, even if they include a slightly altered set of DOM properties. Through DOR,
users are able to specify which DOM properties of a selected object are of greater interest or
significance and which properties to ignore when searching for an object match.

Syntax

wlBrowser.ObjectProperty[“FieldName”] = “FieldValue”
MyObject = wlBrowser.FindObject
(<object type>, <object index> [, ”“<object name>"])

WebLOAD JavaScript Reference Manual 79

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

The general syntax for a typical DOR code block is:

// Reset focus to new window with wlHttp.SetWindow () or wlHttp.Navigate ()

wlBrowser.ObjectProperty[“<property namel>"] = <property valuel>
wlBrowser.ObjectProperty[“<property name2>"] = <property value2>
obj = wlBrowser.FindObject (<object type>, <object index> [, ”<object name>"])

obj.method()

For example:

wlBrowser.Navigate (“http://www.abc.com”)
wlBrowser.ObjectProperty[“Location”] = “bottom#l.left#0”
wlBrowser.ObjectProperty[“Url”] = “http://www.abc.com/gifts.htm”
wlBrowser.ObjectProperty[“Text”] = “GIFTS”

linkl = wlBrowser.FindObject (FT_LINK, 2)

linkl.wlClick{()

Sometimes an object is identified using another object. For example, you might use an image to
identify its parent link. In this case the identifying properties of the other object are added to the
list. For example:

wlBrowser.Navigate (“http://www.abc.com”)
wlBrowser.ObjectProperty[“Image Url”] = “http://www.abc.com/images/prod.gif”
wlBrowser.ObjectProperty[“Location”] = “bottom#l.left#0”
wlBrowser.ObjectProperty [“Url”]="http://www.abc.com/products.htm”
linkl = wlBrowser.FindObject (FT_LINK, 5)

linkl.wlClick{()

Properties and Methods

FindObject(), page 102 ObjectProperty[], page 189

Comment

Agendas that work within the HTTP Protocol mode use a slightly different approach to
Automatic State Management. See Automatic State Management for HTTP Protocol Mode,
page 25, in this manual, and Automatic State Management (ASM) in HTTP Mode, page 223 in
the WebLOAD Programming Guide for more information.

See also

Automatic State Management for HTTP Protocol — Automatic State Management (ASM) in HTTP
Mode, page 25 Mode, page 223 in the WebLOAD Programming

Guide

Dynamic Object Recognition (DOR) for Dynamic ~ Dynamic Object Recognition (DOR) components,
HTML, page 95 in the WebLOAD Programming page 81

Guide
FindObject(), page 102 Navigate(), page 186
ObjectProperty[], page 189 SetWindow(), page 244

80

RadView Software

element (object)

wlBrowser, page 325 wlHttp, page 342

element (object)

Property of Object
element objects are grouped into collections of elements. The elements collection is
also a property of the following objects:

form

Description

Each element object stores the parsed data for a single HTML form element such as
<INPUT>, <BUTTON>, <TEXTAREA>, or <SELECT>. The full elements collection
stores all the controls found in a given form except for objects of input type=image.
(Compare to the form object, which stores the parsed data for an entire HTML form.)

element objects are local to a single thread. You cannot create new element objects using

the JavaScript new operator, but you can access HTML elements through the properties and
methods of the standard DOM objects. e lement properties are read-only.

Syntax

element objects are organized into collections of elements. elements [0] refers to the
first child element, elements [1] refers to the second child element, etc. To access an
individual element’s properties, check the 1ength property of the elements collection and
use an index number to access the individual elements. For example, to find out how many
element objects are contained within forms [1], check the value of:

document.forms[1l] .elements.length

You can access a member of the e lement s collection either by its index number or by its
HTML name attribute. For example, suppose that the first element of a form is coded by the
HTML tag

<INPUT type="text" name="yourname'">
You can access this element by writing either of the following expressions:

document.forms[0] .elements[0]
document.forms[0] .elements [“yourname”]
document.forms[0] .elements.yourname
document.forms[0] . yourname

Example

Access each element’s properties directly using either of the following lines:

document.forms[0] .elements[0].type

WebLOAD JavaScript Reference Manual 81

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

OR
document.forms[0] .yourname. type

Methods

wlClick(), page 326
wlMouseOver(), page 348
wiMultiSelect(), page 350
wlTypeln(), page 366

Properties

AdjacentText, page 23
checked, page 39
defaultchecked, page 68
InnerText, page 155
Coords, page 57
Innerlmage, page 154
MaxLength, page 180
OnClick, page 190
option, page 195

Size, page 247

id, page 143

option, page 195
selectedindex, page 234
title, page 296

Url, page 302

Comment

wilMouseDown(), page 347
wilMouseUp(), page 349

wiSelect(), page 358

Alt, page 23

cols, page 48
defaultvalue, page 69
Name, page 184

id, page 143
InnerText, page 155
Name, page 184

OnMouseOver, page 191

OuterLink, page 196
Shape, page 246
MaxLength, page 180
row, page 223

Size, page 247

type, page 300

value, page 310

The most frequently accessed input elements are of type Button, CheckBox, File, Image,

Password, Radio, Reset, Select, Submit, Text, and TextArea.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159

Checkbox, page 38
File, page 99
Image, page 148

InputCheckbox, page 158

Inputlmage, page 160

82

RadView Software

encoding (property)

InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291

TextArea, page 292

encoding (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object
form
Description
A read-only string that specifies the MIME encoding for the form.

Syntax
<NA>

See also

form, page 102

EndTransaction() (function)

Mode

This function is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Description

Use the BeginTransaction () and EndTransaction () functions to define the start
and finish of a logical block of code that you wish to redefine as a single logical transaction
unit. This enables setting timers, verification tests, and other measurements for this single
logical unit.

WebLOAD JavaScript Reference Manual 83

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax

BeginTransaction (TransName)
<any valid JavaScript code>

EndTransaction (TransName,Verification, [SaveFlag])

Parameters

TransName—The name assigned to this transaction, a user-supplied string.

Verification—A call to any verification function that returns one of the following values:
WLSuccess, WLMinorError, WLError, or WLSevereError. If the verification function
does not explicitly return a value, the default value is always WLSuccess. Verification may
also be an expression, constant, or variable that evaluates to one of the preceding return values.
See VerificationFunction() (user-defined), page 320, for more information.

[SaveFlag]—An optional Boolean flag specifying whether WebLOAD should save the
results of all transaction instances, successes and failures, (t rue), for later analysis with Data
Drilling, or should save only results of failed transaction instances that triggered some sort of
error flag, (false, default). (See Data Drilling—WebLOAD transaction reports, page 149 in
the WebLOAD Programming Guide, for more information about Data Drilling.).

Return Value

None

Example

<NA>
GUI mode

Note that BeginTransaction () and EndTransaction () functions are usually
accessed and inserted into Agenda files directly through the Visual AAT GUI. For example, the
following figure illustrates a Form branch in the Agenda Tree bracketed by BeginTransaction
and EndTransaction nodes. The EndTransaction node is highlighted in the Agenda Tree. The
corresponding code appears in the JavaScript View pane in the center and the properties are in
the Properties pane on the right. See Adding transactions, page 49 in the WebLOAD
Programming Guide, for more information.

84 RadView Software

Erase (property)

Expected Agenda Tree m

=B Form & Function MName:

----- HE: BeginTransaction: Tran
----- g JavaScriptObject

----- B Typeln:lnputTest

----- % Sleep(2364)

----- J& Click:CheckBox

----- % Sleepl1212)

----- J& Click:CheckBox

----- Sleep(3655)

----- Click::Inputimage ‘

imerl

ModeScript - =]

EndTransaction("Transactionl

%]

Attributes
. temiame
. Comments
= EndTransaction
. Mame
. Returnvalue

EndTransza...

Tranzactionl
WilSuccess

Figure 2-13: EndTransaction added to an Agenda

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Erase (property)

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wlBrowser, page 325

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.

Property of Object

wlHttp

WebLOAD J

avaScript Reference Manual

85

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Description

Indicates whether or not to clear the WebLOAD properties of a wlHt tp object after each
Get (), Post (), or Head () call. wlHttp.Erase is a read/write property. The default
value is true. This section briefly discusses the implications of each setting.

wlHttp.Erase=true (default)

When Erase is set to true, WebLOAD automatically erases all wl1Ht tp property values
after each HTTP access. You must reassign any properties you need before the next HTTP
access. For this reason, assign the properties of wlHt tp only in the main script, not in
InitClient (), so they will be reassigned in every round.

Thus if Erase is set to t rue the following Agenda is incorrect. In this Agenda, the wlHttp
properties are assigned values in InitClient (). The Agenda would connect to the Ur1 and
submit the FormData only in the first round. After the first Post () call, the Ur1 and
FormData property values are erased, so WebLOAD cannot use them in subsequent rounds.

function InitClient() { //Wrong!
wlHttp.Url = "http://www.ABCDEF.com/products.exe"
wlHttp.FormData["Name"] = "John Smith"
wlHttp.FormData["Product Interest"] = "Modems"

}

//Main script
wlHttp.Post ()

To solve the problem, assign the w1Ht tp property values in the main script, so that the
assignments are executed before each Get (), Post (), or Head () call:

//Main script //OK
wlHttp.Url = "http://www.ABCDEF.com/products.exe"
wlHttp.FormData["Name"] = "John Smith"
wlHttp.FormData["Product Interest"] = "Modems"

wlHttp.Post ()

Alternatively, you could assign values to wlLocals properties, which are not erased:

function InitClient() { / /0K
wlLocals.Url = "http://www.ABCDEF.com/products.exe"
wllLocals.FormData ["Name"] = "John Smith"
wlLocals.FormData["Product Interest"] = "Modems"

}

//Main script
wlHttp.Post ()

wlHttp.Erase=false

86 RadView Software

ErrorMessage() (function)

You may set Erase to false to prevent erasure. For example, if for some reason you
absolutely had to assign values to the w1 Http properties in the InitClient () function of
the Agenda, change the value of the Erase property to false. [f Erase is false, the
properties retain their values through subsequent rounds.

Thus another way to correct the preceding example is to write:

function InitClient() { //OK
wlHttp.Erase = false
wlHttp.Url =

"http://www.ABCDEF.com/products.exe"
wlHttp.FormData["Name"] = "John Smith"
wlHttp.FormData["Product Interest"] = "Modems"

}

//Main script
wlHttp.Post ()

User-defined properties are not linked to the wlHt tp . Erase property and will not be erased
automatically by WebLOAD. The only way to reset or erase user-defined properties is for the
user to set the new values explicitly.

See also
Data, page 63 DataFile, page 65
DataCollection.type, page 300 DataCollection.value, page 310
Erase, page 87 fileName, page 100
FormData, page 104 Get(), page 111
Header, page 138 Post(), page 202
wlClear(), page 328 wlHttp, page 342

Working in HTTP Protocol Mode, page 213 of the WebLOAD Programming Guide

ErrorMessage() (function)

Description

Use this function to display an error message in the Log Window and abort the current round.
Syntax

ErrorMessage (msqg)
Parameters

msg—A string with an error message to be sent to the Console.

WebLOAD JavaScript Reference Manual 87

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Return Value

None.

Example

<NA>

Comment

If you call ErrorMessage () in the main script, WebLOAD stops the current round of
execution and runs the standard error handling functions (TerminateClient (), etc.), if
they exist in the Agenda. Execution continues with the next round, at the beginning of the main

script.

You may also use the wlException object with the built-in try () /catch () commands
to catch errors within your Agenda. For more information about error management options in
WebLOAD, see Error Management, page 104 in the WebLOAD Programming Guide.

GUI mode

WebLOAD recommends adding message functions to your Agenda files directly through the
Visual AAT GUI. For example, the following figure illustrates adding a Message Node to an
Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

Expected Agenda Tree |3

"EsE Agenda

Function M ame: ModeS cript

JavaScriptObject [WarningMessage (RoundMum, ClientNum) ..F temiame Meszage
D .# Comments
E@ v netizenbankin E Message
I Image Test1 P Test Roundrum, Clienthum
Sleep[E710] P Severity WLMinorError
[T P

-

Figure 2-14: Adding a Message Node to an Agenda

See also

Error Management, page 104 in the WebLOAD
Programming Guide

ExceptionEnabled, page 92
GetSeverity(), page 133

LiveConnect Overview, page 255 in the
WebLOAD Programming Guide

ReportLog(), page 215
Using the IntelliSense JavaScript Editor, page 18
wlException, page 331

ErrorMessage(), page 89

GetMessage(), page 129
InfoMessage(), page 152

Message functions, page 180

SevereErrorMessage(), page 245
WarningMessage(), page 323

wlException() object constructor, page 333

88

RadView Software

EvaluateScript() (function)

EvaluateScript() (function)

Description

Special purpose function. Allows testers to include scripts from an external library and specify
the point during Agenda execution at which the script should be executed.

Syntax

EvaluateScript (“ScriptName”, RunModeConstant)
Parameters

ScriptName—A string or variable containing the full literal name of the file to be included.

RunModeConstant—One of the following list of constants that acts as a flag when passed as
a parameter to EvaluateScript (). Defines the point during Agenda execution at which
WebLOAD should execute the script being included here. Possible choices include:

e WLAfterInitAgenda

e TWLBReforeInitClient

e WLBeforeThreadActivation

e WLOnThreadActivation

e WLBeforeRound

e TWLAfterRound

e WLAfterTerminateClient

e WLAfterTerminateAgenda
Return Value

None.

Example
<NA>

Comment

Should be included in the InitAgenda () function.
See also

Agenda execution sequence, page 65 in the WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 89

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

event (property)

ExceptionEnabled (property)

Property of Objects

Button
link
Span

UlContainer

Description

Div
script

TableCell

Represents the event that occurred to the parent object or the event for which the script is
written. When working with WebLOAD, the most commonly recorded events are OnC11ick,
page 190, and OnMouseOver, page 191. For example, if the user clicks with the left mouse
button on a Button, the event is OnClick. If the user moves the mouse pointer into an

Image, the event is OnMouseOver.
Example

<NA>
See also

Actions, page 20

Back(), page 27
Forward(), page 106
OnClick, page 190
Refresh(), page 213
wlBrowser, page 325
wlClose(), page 329
wlMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

AutoNavigate(), page 26
event, page 91

Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
wlClick(), page 326
wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Property of Object

wilBrowser

90

RadView Software

ExpectedDocument (property)

Description

Flag that enables using the built-in wlException object for error management in the
Agenda.

Example

InitAgenda () {

wlBrowser.ExceptionEnabled=True

}
Comment

wlBrowser.ExceptionEnabled must be set to True in the InitAgenda () function
to be able to use the wlException object later in the Agenda. WebLOAD by default always
sets this property to True.

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152
LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide
ReportLog(), page 215 SevereErrorMessage(), page 245
Using the IntelliSense JavaScript Editor, page 18 WarningMessage(), page 323

wlException, page 331 wlException() object constructor, page 333

ExpectedDocument (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

A pointer to the expected DOM structure in the Expected DOM Repository file that
corresponds to the actual DOM structure created by the most recent HTTP transaction.

WebLOAD JavaScript Reference Manual 91

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax
wlHttp.ExpectedDocument = DOMPointer

Comment

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

wlHttp, page 342 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

ExpectedDOMID (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

A key that identifies the expected DOM structure in the Expected DOM Repository file that
corresponds to the actual DOM structure created by the most recent HTTP transaction.

Syntax
wlHttp.ExpectedDOMID = DOMKey
Comment

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

wlHttp, page 342 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

92 RadView Software

ExpectedID (property)

ExpectedID (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

The HTML session ID value that the WebLOAD DOM has stored for the current object. Note
that this is the expected session ID. WebLOAD uses the IdentifyObject method to verify
whether or not this is the actual session ID value at run time.

Syntax
wlHttp.ExpectedID = “OptionalIDString”

Comment

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

IdentifyObject(), page 147 wlHttp, page 342
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

ExpectedLocation (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

The parsed URL data that the WebLOAD DOM has stored for the current object. Note that this
is the expected location. WebLOAD uses the TdentifyObject method to verify whether or
not this is the actual location value at run time.

WebLOAD JavaScript Reference Manual 93

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax

wlHttp.ExpectedLocation “TargetShorthand”

Example
wlHttp.ExpectedLocation = “:#1.#1:”
Comment

ExpectedLocation uses the WebLOAD shorthand notation described in Identifying frame
locations, page 224 in the WebLOAD Programming Guide.

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

Identifying frame locations, page 224 in the wlHttp, page 342
WebLOAD Programming Guide

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

ExpectedName (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

The HTML name attribute value that the WebLOAD DOM has stored for the current object.
Note that this is the expected name. WebLOAD uses the ITdentifyObject method to verify
whether or not this is the actual name value at run time.

Syntax
wlHttp.ExpectedName = “OptionalNameString”
Comment

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

wlHttp, page 342 Working in HTTP Protocol Mode, page 213 in the

94 RadView Software

ExpectedText (property)

WebLOAD Programming Guide

ExpectedText (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

The HTML text attribute value that the WebLOAD DOM has stored for the current object.
Note that this is the expected text. WebLOAD uses the Tdent i fyObject method to verify
whether or not this is the actual text value at run time.

Syntax
wlHttp.ExpectedText

“OptionalTextString”

Example

wlHttp.ExpectedText = “Pisces”

Comment

This property is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas.

See also

wiHttp, page 342 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

ExpectNavigation() (method)

Method of Object

wiBrowser

Description

Stores information about the next user navigation activity, such as a Navigate or Click
command. Initializes internal WebLOAD structures necessary before beginning a new
navigation block.

WebLOAD JavaScript Reference Manual 95

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

ExpectNavigation () is also the starting point for each named navigation activity included
in the Statistics Report, described in Data Drilling—WebLOAD transaction reports, page 149
in the WebLOAD Programming Guide. The navigation activity name is the second parameter of
the ExpectNavigation () function. Each named navigation activity is identified in the
Statistics Report by the name of the Web page to which the user navigated. If the user changes
the page name, the navigation activity name also changes accordingly. A navigation activity is
defined as all actions that appear between the ExpectNavigation () and the SyncDOM ()
commands.

Syntax

wlBrowser.ExpectNavigation (“UWRL” [, “Title”, “Target”, “Method”])

Parameters

URL—String containing the URL of the original navigation saved at the time of recording.

[Title]—An optional string containing the title of the page returned during the original
recording session. The page title is also used to identify this navigation activity by name when
it appears in the Statistics Report. If the user changes the page name, the navigation activity
name in the Statistics Report also changes accordingly.

[Target]—An optional string containing the destination frame of the navigation. This is
either the top window or inner frame of the destination Web page. The Target parameter holds
the same information as the wlHttp.wlTarget property, described on page 366.

Method—An optional string containing the name of the method to execute once the
navigation to the specified window is complete. Usually Get or Post.

Return Value

None.

Example

wlBrowser.ExpectNavigation
("http://www.netizenbanking.com/cardApply.asp",
"Apply For A Credit Card","","Get")

See also

Actions, page 20 AutoNavigate(), page 26
Back(), page 27 ExpectNavigation(), page 97
Forward(), page 106 Navigate(), page 186
Refresh(), page 213 SetWindow(), page 244
SyncDOM)(), page 280 wlBrowser, page 325
wlHttp, page 342 wlTarget, page 366

96

RadView Software

File (object)

File (object)

Property of Objects

File objects on a Web page are accessed through the document.all collection of the

standard DOM structure.

Description

Each File object represents one of the files referenced in a document. (Compare to the
element object, which stores the parsed data for a single HTML form element, where the
element may be any one of a variety of types, and the form object, which stores the parsed data

for an entire HTML form.)

Syntax

document.all.tags[“FILE"”]

Methods

wlClick(), page 326
wlMouseOver(), page 348
wlMultiSelect(), page 350

wilTypeln(), page 366

Properties

id, page 143
Size, page 247

Comment

wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

Name, page 184

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291

WebLOAD JavaScript Reference Manual

97

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

TextArea, page 292 UlContainer, page 301

File management functions

Description

These functions manage access to an Agenda’s function and input files, including opening and
closing files, copying files, specifying include files, and reading lines from ASCII input files.

Note that input file management is usually handled through the Form Data Wizard, described in
Using the Form Data Wizard, page 35 in the WebLOAD Programming Guide. Output file
management is also provided by the w/OutputFile.

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

fileName (property)

Mode

Working with this property through the wlHttp.DataFile is only done when working in
the HTTP Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Property of Object

wiMediaPlayer wlHttp.DataFile

Description

This property is a string that holds the name of the file associated with the parent object.

If the parent is a wlHttp.DataFile object, then FileName holds the name of the file
being submitted through an HTTP Post command.

98 RadView Software

FindObject() (method)

If the parent is a wlMediaPlayer object, then £ileName specifies or retrieves the name of
the stream to play. (read/write string)

Syntax
wiHttp.Data:

When working with w1Ht tp objects, use the uppercase form:

<NA>

wlMediaPlayer

When working with wlMediaPlayer objects, use the lowercase form:

MyMediaPlayerObject.fileName

Comment

Notice that the FileName property for wlHttp.DataFile objects is written in uppercase.

See also

bitrate, page 30
currentPosition, page 62
Data, page 63

duration, page 80
fileName, page 100
Get(), page 110
OpenStream(), page 194
Play(), page 200
Resume(), page 220
Stop(), page 278

value, page 310

wiHttp, page 342
wlMediaPlayer(), page 345

FindObject() (method)

connectionBandwidth, page 53
currentStreamName, page 62
DataFile, page 65

Erase, page 87

FormData, page 104
Header, page 138

Pause(), page 200

Post(), page 202

state, page 277

type, page 300

wiClear(), page 328
wlMediaPlayer, page 344

Method of Object

wiBrowser

WebLOAD JavaScript Reference Manual

99

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

A Dynamic Object Recognition (DOR) method that finds and returns a pointer to the next
object now needed by the Agenda during playback. Objects include both simple objects, such
as checkboxes or radio buttons, and complex objects, such as Java Applets, Flash, and ActiveX
objects.

Syntax
wlBrowser.FindObject (ObjectType, ObjectIndex [, “ObjectName”])
Parameters

ObjectType—Type of object for which the method will search. Typical object types include
FT LINK, FT FORM, and FT OBJECT ELEMENT.

ObjectIndex—Index number of object for which the method will search in the main
collection.

ObjectName—Name of object for which the method will search, stored as a string. Optional.
Return Value
Pointer to the specified object, such as a form, link, or map, on the Web page.

Example
Forml = wlBrowser.FindObject (FT_FORM, 1, “Query”)

See also

Dynamic Object Recognition (DOR) for Dynamic ~ Dynamic Object Recognition (DOR) components,
HTML, page 95 in the WebLOAD Programming page 81

Guide
Navigate(), page 186 ObjectProperty[], page 189
SetWindow(), page 244 wlBrowser, page 325

form (object)

Property of Object

form objects are grouped into collections of forms. The forms collection is a property of
the following object:

document

Description

Specifies that the contained controls are all elements of a form. Each form object stores the
parsed data for a complete HTML form (<KFORM> tag). A form object contains the complete
set of elements and input controls (text, radio buttons, checkboxes, etc.) that are all components

100 RadView Software

form (object)

of a single form. (Compare to the e lement object, which stores the parsed data for a single
HTML form element.)

form objects are local to a single thread. You cannot create new form objects using the
JavaScript new operator, but you can access HTML forms through the properties and methods
of the standard DOM objects. form properties are read-only.

form objects are grouped together within collections of forms, as described in Collections,
page 47. A forms collection contains all form links (HTML <FORM> elements) within the
document.

Syntax

The forms collection includes a length property that reports the number of form objects
within a document (read-only). To find out how many form objects are contained within a
document, check the value of:

document. forms.length

Use an index number to access an individual form’s properties. Access each form’s properties
directly using the following syntax:

document. forms [index#] .<form-property>

Note that you can also access a member of the forms collection by its HTML name attribute.
For example, suppose that the first form on an HTML page is introduced by the tag:

<FORM name="SignUp"
action="http://www.ABCDEF.com/FormProcessor.exe"
method="post">

You can access this form by writing any of the following expressions:

document.forms[0]
document. forms [“SignUp”]
document.forms.SignUp
document.SignUp

Methods

wilSubmit(), page 362

Properties

action, page 19 element, page 83
encoding, page 85 id, page 143
method, page 182 Name, page 184
target, page 290 Url, page 302

WebLOAD JavaScript Reference Manual

101

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

FormData (property)

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
element, page 83

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
window, page 324

Checkbox, page 38
document, page 79
FindObject(), page 102
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292
wiSubmit(), page 362

Mode

This object is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Object

wlHttp

Description

A collection containing form field values. WebLOAD submits the field values to the HTTP
server when you call the Get (), Post (), or Head () method of the wlHt tp object.

The collection indices are the field names (HTML name attributes). Before you call
wlHttp.Post (), set the value of each element to the data that you want to submit in the
HTML field. The fields can be any HTML controls, such as buttons, text areas, or hidden

controls.

102

RadView Software

FormData (property)

Method

Use the wiClear() method, described on page 328, to delete specific FormData fields or clear all
the FormData fields at once.

Comment

JavaScript supports two equivalent notations for named collection elements:
FormData.FirstName or FormData ["FirstName"]. The latter notation also supports
spaces in the name, for example, FormData ["First Name"].

Getting FormData using Get()

You can get form data using a Get () call. For example:

wlHttp.FormData["FirstName"] = "Bill"
wlHttp.FormData["LastName"] = "Smith"
wlHttp.FormData["EmailAddress"] = "bsmith@ABCDEF.com"

wlHttp.Get ("http://www.ABCDEF.com/submit.cgi")

WebLOAD appends the form data to the URL as a query statement, using the following syntax:

http://www.ABCDEF.com/submit.cgi

?FirstName=Bill&LastName=Smith
&EmailAddress=bsmith@ABCDEF.com

Submitting FormData using Post()

Suppose you are testing an HTML form that requires name and email address data. You need to
submit the form to the submit . cgi program, which processes the data. You can code this in
the following way:

wlHttp.FormData["FirstName"] = "Bill"
wlHttp.FormData["LastName"] = "Smith"
wlHttp.FormData["EmailAddress"] = "bsmith@ABCDEF.com"

wlHttp.Post ("http://www.ABCDEF.com/submit.cgi")

The Post () call connects to submit.cgi and sends the FormData fields. In the above
example, WebLOAD would post the following fields:

FirstName=Bill
LastName=Smith
EmailAddress=bsmith@ABCDEF.com

You may also submit FormData with missing fields or with data files.
See FormData, page 227 in the WebLOAD Programming Guide, for more information.

See also

Data, page 63 DataFile, page 65
Erase, page 87 fileName, page 100
FormData, page 104 Get(), page 110

WebLOAD JavaScript Reference Manual 103

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Header, page 138 Post(), page 202
type, page 300 value, page 310
wlClear(), page 328 wiHttp, page 342

Forward() (action)

Method of Object

wiBrowser

Description
Get and display the page for the next URL from the History list.
Syntax
wlBrowser.Forward ()
Parameters
None.
Return Value
None
Example
<NA>
Comment

This method implements a special category of user action—clicking on a specific browser
shortcut button from the Microsoft IE toolbar.

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 event, page 91
Forward(), page 106 Navigate(), page 186
OnClick, page 190 OnMouseOver, page 191
Refresh(), page 213 SetWindow(), page 244
wlClick(), page 326 wlClose(), page 329
wlBrowser, page 325 wilMouseDown(), page 347
wlMouseOver(), page 348 wilMouseUp(), page 349
wiMultiSelect(), page 350 wiSelect(), page 358

104

RadView Software

frames (object)

wilSubmit(), page 362 wlTypeln(), page 366

frames (object)

Property of Object

The frames collection is a property of the following objects:

document window

Description

The frames object retrieves a collection of all window objects defined by the given document
or defined by the document associated with the given window. Each window object contains
one of the child windows found in a browser window frameset. The frames collection stores
the complete parse results for downloaded HTML frames, including nested child windows. Use
the frames properties to retrieve information about any child windows to which the current
window or document are linked.

frames collections are local to a single thread. WebLOAD creates an independent frames
collection for each thread of an Agenda. You cannot create new frames collections using the
JavaScript new operator, but you can access HTML frames through the properties and methods
of the standard DOM objects. frames properties are read-only.

Syntax

The frames collection includes a length property that reports the number of £ rame objects
within a document (read-only). To find out how many window objects are contained within a
document, check the value of:

document. frames.length

Use an index number to access an individual frame’s properties. Access each window’s
properties directly using the following syntax:

document. frames [#] .<child-property>

Note that you can also access a member of the frames collection by its HTML name attribute.
For example:

document . frames[“namestring”]
OR

document. frames.namestring

Example

Access each window’s properties directly through an index number:

document.frames[1l].location

WebLOAD JavaScript Reference Manual 105

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Access the first child window using the following expression:

frames[0]

Access the first child window’s 1ink objects directly using the following syntax:
frames[0].frames[0].links[#] .<property>

For example:

document.frames[0].1links[0] .protocol

Properties
id, page 143 Index, page 151
length, page 167 Name, page 184
title, page 296 Url, page 302

window, page 324

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Collections, page 47 document, page 79
length, page 167 window, page 324

GeneratorName() (function)

Description

GeneratorName () provides a unique identification for the current Load Generator instance,
even with multiple spawned processes running simultaneously. The identification string is
composed of a combination of the current Load Generator name, computer name, and other
internal markers.

Syntax
GeneratorName ()
Parameters
None
Return Value

Returns a unique identification string for the current Load Generator.

106 RadView Software

Get() (method)

Example

<NA>

GUI mode

WebLOAD recommends accessing global system variables, including the

GeneratorName () identification function, through the Visual AAT GUI. To see a list of
global system variables, highlight the top-level Agenda node in the Agenda Tree, find the
GlobalVariables section of the Properties pane, and click on the browse button of the
System field. A complete list of system variables and macros pops up, as illustrated in the
following figure. The variables that appear in this list are available for use at any point in an
Agenda file. For example, it is convenient to add GeneratorName () to a Message Node to
clarify which Load Generator originated the messages that appear in the Console Log window.

& Global System Yariables x| x|
J E ﬁ +"* T a = Attributes ;I
e P Agenda
Hame Description P Comments
Roundrum Returns the number of raun 2 GlobalVariables
Cliertrtum Returnz the main thread nu o _I
Generatorflame]) Returns the name of this loa _# UserDefined
SCURiguelD) Returns & string unique to t
Randomtumber() Generate a random number
TodaysDate() Currert date (1-31)
TodaysDay() Current Day (0-6, 0==Sund
Todaysharth() Current Month (0-117
Thisear() Currert Year (4-digit, .. 2
Hours() Current Hour (0-23)
Minutes() Current minutes (0-59)
Seconds() Current seconds (0-59)
Millizeconds() Currert ms value
Timer) Time in ms since 144970
GMTDate) Current date in GMTUTC as
LocalDate) Currert date in local time as

Figure 2-15: Global System Variables List

See also

ClientNum, page 43 GeneratorName(), page 108
GetOperatingSystem(), page 130 Identification variables and functions, page 146

RoundNum, page 221 VCUniquelD(), page 312

Get() (method)

WebLOAD JavaScript Reference Manual 107

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Get() (addition method)

Method of Objects

This function is implemented as a method of the following objects:

wlGeneratorGlobal wiSystemGlobal

Description

Returns the current value of the specified shared variable.
Syntax

Get (“SharedVarName”, ScopeFlaqg)
Parameters

SharedVarName—The name of a shared variable whose value should be returned.

ScopeFlag—One of two flags, WLCurrentAgenda or WLA11Agendas, signifying the
scope of the shared variable.

When used as a method of the wlGeneratorGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, part of a single process, running on a
single Load Generator.

¢ The WLA11Agendas scope flag signifies variable values that you wish to share
between all threads of one or more Agendas, common to a single spawned process,
running on a single Load Generator.

When used as a method of the w1 SystemGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, potentially shared by multiple
processes, running on multiple Load Generators, system wide.

¢ The WLAl1lAgendas scope flag signifies variable values that you wish to share
between all threads of all Agendas, run by all processes, on all Load Generators,
system-wide.

Return Value
Returns the current value of the specified shared variable.

Example

CurrentCount =
wlGeneratorGlobal.Get (“MySharedCounter”, WLCurrentAgenda)

CurrentCount =
wlSystemGlobal.Get (“"MyGlobalCounter”, WLCurrentAgenda)

108 RadView Software

Get() (method)

See also
Add(), page 21 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
Set(), page 237 User-defined global properties, page 304
wlGeneratorGlobal, page 334 wiSystemGlobal, page 363

Get() (transaction method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Objects

This function is implemented as a method of the following object:

wlHttp

Description

Perform an HTTP or HTTPS Get command. The method gets the FormData, Data, or
DataFile properties in the Get command. In this way, you can get any type of data from an
HTTP server.

Syntax
Get ([URL] [, TransName])
Parameters

[URL]—An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the method. Get () connects to the
first URL that has been specified from the following list:

1. A Url parameter specified in the method call.
2. The Url property of the wlHt tp object.

3. The local default wlLocals.Url.

4. The global default wlGlobals.Url.

[TransName] —An optional user-supplied string with the transaction name as it will appear
in the Statistics Report, described in Data Drilling—WebLOAD transaction reports, page 149
in the WebLOAD Programming Guide.

WebLOAD JavaScript Reference Manual 109

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Use named transactions to identify specific HTTP transactions by name. This simplifies
assigning counters when you want WebLOAD to automatically calculate a specific
transaction’s occurrence, success, and failure rates.

The run-time statistics for transactions to which you have assigned a name appear in the
Statistics Report. For your convenience, WebLOAD offers an Automatic Transaction
option. On the Console, select Automatic Transaction from the General Tab of the Global
Options dialog box. Automatic Transaction is set to True by default. With Automatic
Transaction, WebLOAD automatically assigns a name to every Get and Post HTTP
transaction. This makes statistical analysis simpler, since all HTTP transaction activity is
measured, recorded, and reported for you automatically. You do not have to remember to
add naming instructions to each Get and Post command in your Agenda. The name
assigned by WebLOAD is simply the URL used by that Get or Post transaction. If your
Agenda includes multiple transactions to the same URL, the information will be collected
cumulatively for those transactions.

Return Value

None

Example

function InitAgenda ()

//Set the default URL

wlGlobals.Url = "http://www.ABCDEF.com"
}

//Main script

//Connect to the default URL:
wlHttp.Get ()

//Connect to a different, explicitly set URL:
wlHttp.Get ("http://www.ABCDEF.com/product info.html")

//Assign a name to the following HTTP transaction:
wlHttp.Get ("http://www.ABCDEF.com/product info.html",
“UpdateBankAccount”)

Use named transactions as a shortcut in place of the
BeginTransaction () ...EndTransaction () module. For example, this is one way to
identify a logical transaction unit:

BeginTransaction (“UpdateBankAccount”)
wlHttp.Get (url)
// the body of the transaction
// any valid JavaScript statements
wlHttp.Post (url);
EndTransaction (“UpdateBankAccount”)
// and so on

Using the named transaction syntax, you could write:

110 RadView Software

GetCurrentValue() (method)

wlHttp.Get (url, “UpdateBankAccount”)
// the body of the transaction
.. // any valid JavaScript statements
wlHttp.Post (url, “UpdateBankAccount”)
// and so on

For the HTTPS protocol, include "https://" in the URL and set the required properties of
the w1Globals object:

wlHttp.Get ("https://www.ABCDEF.com")
Comment

You may not use the TransName parameter by itself. Get () expects to receive either no
parameters, in which case it uses the Agenda’s default URL, or one parameter, which must be
an alternate URL value, or two parameters, including both a URL value and the transaction
name to be assigned to this transaction.

See also
BeginTransaction(), page 28 CreateDOM(), page 59
CreateTable(), page 60 Data, page 63
DataFile, page 65 Erase, page 87
fileName, page 100 FormData, page 104
Header, page 138 ReportEvent(), page 214

Rules of scope for local and global variables, page SetFailureReason(), page 239
111 in the WebLOAD Programming Guide

VerificationFunction() (user-defined), page 320 wlHttp, page 342

GetCurrentValue() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHttp

Description

The method used by WebLOAD to identify the correct value for the specified field when
working with dynamic HTML. This function is automatically added by ASM to your Agendas
if necessary when recording with the Visual AAT.

WebLOAD JavaScript Reference Manual 111

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Syntax
GetCurrentValue (FieldName, OrigValue)
Parameters

FieldName—The name of the field for which WebLOAD wishes to find a current value.

OrigValue—The expected field value, saved at recording time. If the value has not changed,
this will be the value assigned to that field by wlHttp.FormData. If the value has changed,
the new value will be identified by WebLOAD and used to replace the original field value.

Return Value
The current field value.

Example

wlHttp.FormData[“FieldName”] =
wlHttp.GetCurrentValue (“FieldName”, “"OrigValue”)

Comment

This method is part of the HTTP Protocol mode version of ASM, and is not used in most User
Activity mode Agendas. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide for more information.

See also

Automatic State Management for HTTP Protocol — wiHttp, page 342
Mode, page 25

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

GetFieldValue() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object
wlHtml
Description
Retrieve the HTML value attribute (initial value) of a form field, given its name attribute.

Syntax
GetFieldValue (FieldName [, frame])

112 RadView Software

GetFieldValuelnForm() (method)

Parameters

FieldName—The name of the field whose value is to be retrieved.

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested value of the specified field.

Example

ClientFirstName = wlHtml.GetFieldValue ("FirstName")
Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional f rame parameter. In that case, the method
only searches within the specified f rame and all its nested frames.

See also

wilHtml, page 342

GetFieldValuelnForm() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHtml

Description

Retrieve the HTML value attribute (initial value) of a form field, given its name attribute. This
method is similar to GetFieldValue (), but the search is limited to a specific form within a
specific frame.

Syntax
GetFieldValuelInForm (FormIndex, FieldName [, frame])
Parameters

FormIndex—Index number that identifies the specific form to which the search is to be
limited.

FieldName—The name of the field whose value is to be retrieved.

WebLOAD JavaScript Reference Manual 113

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested HTML value attribute of the form field.
Example

If an HTML page includes two frames with a form in the second frame such as that illustrated
in the Parse Tree example in Parsing Web pages, page 218 in the WebLOAD Programming
Guide:

wlHtml.GetFieldValueInForm (0, "FirstName", Framel)

searches the first form in Framel and returns "Bi11".

Comment

The method does not search within nested frames. Omit the optional f rame parameter if the
HTML page does not contain frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetFormAction() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve a form object, representing a <FORM> element. The action attribute specifies the
URL where the form data is to be submitted.

Syntax
GetFormAction (FormIndex [, frame])
Parameters

FormIndex—Index number that identifies the specific form to which the search is to be
limited.

114 RadView Software

GetFrameByUrl() (method)

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested form object.

Example

If an HTML page includes two frames with a form in the second frame such as that illustrated
in the Parse Tree example in Parsing Web pages, page 218 in the WebLOAD Programming
Guide:

wlHtml.GetFormAction (0, Framel)
returns a form object for the form.

Comment

The method does not search within nested frames. Omit the optional frame parameter if the
HTML page does not contain frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetFrameByUrl() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wiHtml

Description

Retrieve a frame object given its URL.
Syntax

GetFrameByUrl (UrlPattern [, framel])
Parameters

UrlPattern—The URL for the frame requested.

[frame]—An optional frame specification, used to limit the scope of the search to a specific
frame.

WebLOAD JavaScript Reference Manual 115

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Return Value

The requested frame.

Example

Referring to the Parse Tree example in Parsing Web pages, page 218 in the WebLOAD
Programming Guide:

//Retrieve Frame0
FrameO = wlHtml.GetFrameByUrl ("http://MyCompany/Frame0.html")

//Retrieve Frame0.1
FrameO 1 = wlHtml.GetFrameByUrl ("http://MyCompany/Frame0B.html")

You may use * as a wildcard character in the URL. The method returns the first frame matching
the search pattern. For example:

// To match URL (http://MyCompany/FrameOB.html)
FrameO 1 = wlHtml.GetFrameByUrl ("*B.htm*")

You may narrow the search to frames nested within a specific parent frame by specifying the
optional frame parameter. For example:

//Search within FrameO and retrieve Frame0.0
FrameO 0 = wlHtml.GetFrameByUrl ("*/MyCompany/*", FrameO)

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetFrameUrl() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

116 RadView Software

GetHeaderValue() (method)

Description

Retrieve a Location object representing the URL of an HTML page. Optionally, specify a
nested frame.

Syntax
GetFrameUrl ([frame])

Parameters

[frame]—An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested location object.

Example

<NA>
Comment

This method is equivalent to the location property of a frame object (see frames, page 107).
See also

wilHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetHeaderValue() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHtml

Description
Retrieve the value of an HTTP header field.
Syntax
GetHeaderValue (HeaderName [, frame])

Parameters

HeaderName—The name of the header whose value is to be retrieved.

WebLOAD JavaScript Reference Manual 117

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested HTTP header field value.
Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com: 80

wlHtml .GetHeaderValue ("Host")
returns "Server?2.MyCompany.com".
Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional f rame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetHost() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve the host of a URL, including the port number.

118 RadView Software

GetHostName() (method)

Syntax
GetHost ([frame])
Parameters

[frame]—An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested host information.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetHost ()
returns "Server?2 .MyCompany.com: 80".

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wilHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetHostName() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHtml

WebLOAD JavaScript Reference Manual 119

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

Retrieve the host name of a URL, not including the port number.
Syntax

GetHostName ([frame])
Parameters

[frame]—An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested host name.
Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetHostName ()
returns "Server2 .MyCompany.com".

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional f rame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetIPAddress() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

120 RadView Software

Method of Objects

wlGlobals wiLocals
wlHttp

Description

Returns the identity of the current IP address.

Syntax
GetIPAddress ()

Parameters

None

Return Value

Returns a string with the IP address for the current Virtual Client.

Example

wlHttp.MultiIPSupport = “Yes”
CurrentIPAddress = wlHttp.GetIPAddress ()
wlHttp.Get ()

Comment

GetlPAddress() (method)

Requesting the identity of the current IP address is only meaningful if your Agenda is handling
more than one IP address. Get IPAddress () therefore can only return a value if
MultiIPSupport="Yes”.IfMultiIPSupport is turned off this method will return

“Undefined”.

The scope of MultiIPSupport depends, of course, on whether it was set through
wlGlobals,wlLocals, or wlHttp. For example, if your Agenda sets
wlGlobals.MultiIPSupport, then GetIPAddress () returns a value at any point in
the Agenda. If you set only wlHttp.MultiIPSupport, then GetIPAddress () returns a

value only if called before the next immediate HTTP transaction.

See also
Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlLocals, page 343

wlHttp, page 342

WebLOAD JavaScript Reference Manual

121

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

GetLine() (function)

Description

The GetLine () function reads and parses data from an ASCII file. The function reads the file
one line at a time in the following way:

4 If the user chose the WL.Sequential (default) mode, then:

L4

e The first GetLine () call in any thread of a Load Generator reads the first line of the
file.

e FEach successive call in any thread of the Load Generator reads the next line of the file.

e When the last line of the file has been read, the next access loops back to the first line
of the file.

If you decide to read the file entries in a random order, then each successive call in any
thread of the Load Generator reads some randomly chosen line of the file. To read the input
file lines in random order, you must include Open (filename, WLRandom) in the
Agenda’s InitAgenda () function.

In this way, a relatively small file can supply an unending stream of test data, and different
clients are supplied with different sequences of data.

Syntax

GetLine (filename[, delimiter])

Parameters

filename—A string with the name of the file being read. May optionally include the full
directory path.

[delimiter]—Optional character separating fields in one line of the input file. Default
delimiter character is a comma.

Return Value

The GetLine function returns an array containing both the full lines and the individual
tokens. The array (called LineArray in this example) includes the following elements:

¢

LineArray[0] —the complete line. For example:

"John, Smith, jsmith@ABC.com"

LineArray[1] —the first token. In this example:
"John"

LineArray[2] —the second token. In this example:
"Smith"

LineArray[3] —the third token. In this example:

122

RadView Software

GetLine() (function)

"jsmith@ABC.com"

4 LineArray. RoundNum—number of rounds through the file (including the current round).
For example: 4

4 LineArray. Li neNum—the number of the line that was just read. For example: 1

Example
To read and parse the next line of the mydata . txt ASCII input file, in this case including a
directory path:
LineArray = GetLine ("c:\\temp\\mydata.txt")

To specify a different delimiter:

":")

LineArray = GetLine ("c:\\temp\\mydata.txt",
GUI mode

Note that the simplest way to work with input data from a file is through the Form Data
Wizard, described in Using the Form Data Wizard, page 35 in the WebLOAD Programming
Guide. For users who prefer to manually edit the JavaScript code in your Agenda and work
directly with the GetLine () functions and LineArray[] commands, WebLOAD provides

the IntelliSense Editor, described in Using the IntelliSense JavaScript Editor, page 18. Select a
GetLine () or LineArray[] command from the Edit | Insert | JavaScript | General menu.
The Visual AAT automatically inserts the correct code for the selected command into the
Agenda file. The user may then edit parameter values without any concerns about mistakes in
the function syntax.

Agenda ltems 4 |

General L4 wiGlobalz

Init/T erminate Functi 4

nit/Terminate .unc ionzs —

Copy/lnclude Files 4

Meszage Commands 4 Sleep(< Timne:>)

R andom Mumber Commands L4

COM Objects 3 <File_Line_Mumz = <Line_aAmay: . LineMum

Java Objects 3 <File_[teration_Mum> = <Line_Arrays RoundMum

<Token: = <Line_Amay:[<Token_|ndex:]

<File_Object> = new wiOutputFile["'<File_M ame:"]
wiOutputFile. Open(*'<File_M ame:"]

wiOutputFile. Cloze("'<File_Mame:"]

wiOutputFile. Delete('<File_Mame:"]

wiOutputFile. \wWrite[<String: |

wiOutputFile \Writeln[< String> |

wilutputFile. Reset(]

Figure 2-16: Inserting a GetLine function

Comment

JavaScript requires that you double the backslash in strings. If your directory path includes the
backslash character, remember to double the backslashes, as in the preceding example.

WebLOAD JavaScript Reference Manual 123

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

If the line found in the file contains no separator characters, then the entire line is considered to
be a single token. In that case, the function returns a two-element array (LineArray[0] and
LineArray[1]), each containing the entire line.

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

GetLinkByName() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve a location object representing a link, given the hypertext display.
Syntax

GetLinkByName (Hypertext [, frame])
Parameters

Hypertext—The hypertext displayed in the desired link.

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

Return Value
The requested location object.
Example

Suppose the HTML on a page contains:

124

RadView Software

GetLinkByUrl() (method)

Product information
In this example,
wlHtml.GetLinkByName ("Product information™)

returns a location object for http://MyCompany/linkl.html.

The search is case sensitive. You may use the * wildcard character in the Hypertext string.
For example,

wlHtml.GetLinkByName ("*roduct info*")
also returns an object for http://MyCompany/linkl.html.

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetLinkByUrl() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve a location object representing a link, given part of the URL string.
Syntax

GetLinkByUrl (UrlPattern [, frame])
Parameters

UrlPattern—The URL of the desired link. Use the * wildcard character to represent the
missing parts.

[frame] —An optional frame specification, used to limit the scope of the search to a specific
frame.

WebLOAD JavaScript Reference Manual 125

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Return Value
The requested location object.
Example
Suppose the HTML on a page contains:
Product information
In this example,
wlHtml.GetLinkByUrl ("*1linkl.htm*")
returns a location object for http://MyCompany/linkl.html.
Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional f rame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetMessage() (method)

Method of Object

wlException

Description

Returns the message string text stored in this object.
Syntax

wlExceptionObject.GetMessage ()
Parameters

None

Return Value

Text string of the error message for this object.

Example

MeaningfulErrorMessage = myExceptionObject.GetMessage ()

126 RadView Software

GetOperatingSystem() (function)

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152
LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide
ReportLog(), page 215 SevereErrorMessage(), page 245
Using the IntelliSense JavaScript Editor, page 18 ~ WarningMessage(), page 323

wlException, page 331 wlException() object constructor, page 333

GetOperatingSystem() (function)

Description

Returns a string identifying the operating system running on the current Load Generator.
Syntax

GetOperatingSystem ()
Parameters

None

Return Value

Returns the name of the operating system running on the current Load Generator in the format
of the operating system name followed by some version identification.

For example, if the Load Generator is working with a Solaris platform, this function would
return the string ‘Solaris’ followed by the version name and release number, such as SunOS2.

If the Load Generator is working with a Linux platform, this function would return the string
‘Linux’ followed by the version name and release number, such as RedHat1.

If the Load Generator is working with a Windows platform, possible return values include:

4 Windows 95

Windows 98
4 Windows NT/2000 (ServicePack#)
4 Windows XP
4 Windows (for any other Windows version)

WebLOAD JavaScript Reference Manual 127

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

<NA>

See also

ClientNum, page 43 GeneratorName(), page 108

GetOperatingSystem(), page 130

RoundNum, page 221 VCUniquelD(), page 312

GetPortNum() (method)

Identification variables and functions, page 146

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.

Method of Object

wiHtml

Description

Retrieve the port number of the current URL.

Syntax

GetPortNum ([frame])

Parameters

[frame]—An optional frame specification, used to retrieve the port of a specific frame.

Return Value

The requested number.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com: 80

wlHtml.GetPortNum () would return a value such as 80.

128

RadView Software

GetQSFieldValue() (method)

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

GetQSFieldValue() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve the value of a search attribute in a URL. The search attributes are the fields following
the ? symbol, appended to the end of a URL.

Syntax

GetQSFieldValue (Url, FieldName)
Parameters

Ur1—The complete URL string to be parsed and searched.

FieldName—The name of the field whose value is to be retrieved.

Return Value

The requested value.
Example

The following search string:

wlHtml.GetQSFieldValue ("http://www.ABCDEF.com/query.exe" +
"?SearchFor=icebergs&SearchType=ExactTerm", "SearchFor")

returns "icebergs".

WebLOAD JavaScript Reference Manual 129

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD

Programming Guide

GetSeverity() (method)

Method of Object

wlException

Description

Returns the severity level value stored in this object.
Syntax

wlExceptionObject.GetSeverity ()
Parameters

None
Return Value

Integer, representing one of the following error level values:

4 WLError—this specific transaction failed and the current test round was aborted. The
Agenda displays an error message in the Log window and begins a new round.

¢ WLSevereError—this specific transaction failed and the test session must be stopped
completely. The Agenda displays an error message in the Log window and the Load
Generator on which the error occurred is stopped.

Example
SeverityLevel = myExceptionObject.GetSeverity()

See also

Error Management, page 104 in the WebLOAD
Programming Guide

ErrorMessage(), page 89

ExceptionEnabled, page 92 GetMessage(), page 129

GetSeverity(), page 133

LiveConnect Overview, page 255 in the
WebLOAD Programming Guide

ReportLog(), page 215
Using the IntelliSense JavaScript Editor, page 18
wlException, page 331

InfoMessage(), page 152

Message functions, page 180

SevereErrorMessage(), page 245
WarningMessage(), page 323

wlException() object constructor, page 333

130

RadView Software

GetStatusLine() (method)

GetStatusLine() (method)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve the status string from the HTTP header.
Syntax

GetStatusLine ([frame])
Parameters

[frame] —An optional frame specification, used to retrieve the status string of a specific
frame.

Return Value
The requested status string.
Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetStatusLine () would return "OK".

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

WebLOAD JavaScript Reference Manual 131

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

GetStatusNumber() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve the status code from the HTTP header.
Syntax

GetStatusNumber ([frame])
Parameters

[frame] —An optional frame specification, used to retrieve the status code of a specific
frame.

Return Value
The requested status number.
Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com: 80

wlHtml.GetStatusNumber () would return 200.

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional frame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

132 RadView Software

GetUri() (method)

GetUri() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wilHtml

Description

Retrieve the URI part of a URL. The URI is the portion of the address following the host name.
Syntax

GetUri ([frame])
Parameters

[frame] —An optional frame specification, used to retrieve the URI of a specific frame.
Return Value
The requested URI string.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetUri () would return "WebPage.html".

Comment

By default, the method searches in all frames of the parse tree and returns the first match. You
may narrow the search by specifying an optional f rame parameter. In that case, the method
searches within the specified frame and all its nested frames.

See also

wlHtml, page 342 Parsing Web pages, page 218 in the WebLOAD
Programming Guide

WebLOAD JavaScript Reference Manual 133

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

hash (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

link location
Description
The HTML anchor portion of the URL, not including the # initial symbol (read-only string).

Example

Given the following HTML fragment:

<A href="http://www.ABCDEF.com/search.exe?
SearchFor=modems&SearchType=ExactTerm">

1inks[0] .hashis "modems".
See also

link, page 169 location, page 176

Head() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object
wlHttp, page 342
Description
Perform an HTTP or HTTPS Head command.

Syntax
Head ()

134 RadView Software

Header (property)

Parameters
None
Return Value
None
Example
<NA>
Comment

This method operates in the same way as Get (), but it retrieves only the HTTP or HTTPS
header from the server. It does not download the body of the URL, such as a Web page.

See also
Browser configuration components, page 30 Data, page 63
DataFile, page 65 FormData, page 104

Rules of scope for local and global variables, page ~ wilGlobals, page 339
111 in the WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Header (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

A collection of HTTP header fields that you want to send in a Get (), Post (), or Head ()
call.

Example

By default, WebLOAD sends the following header in any HTTP command:

host: <host>
user—-agent: Radview/HttpLoader 1.0
accept: */*

WebLOAD JavaScript Reference Manual 135

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Here, <host> is the host name to which you are connecting, for example:
www . ABCDEF.com:81.

You may reset these properties, for example, as follows:
wlHttp.UserAgent = "Mozilla/4.03 [en] (WinNT; I)"

Alternatively, you can use the Header property to override one of the default header fields.
For example, you can redefine the following header field:

wlHttp.Header["user-agent"] = "Mozilla/4.03 [en] (WinNT; I)"

GUI mode

WebLOAD offers a simple way to reset configuration properties using the various tabs of the
Tools | Default Options dialog box. Resetting configuration properties as you run and rerun
various testing scenarios allows you to fine tune your tests to match your exact needs at that
moment.

For example, reset the user-agent value through the Browser Emulation tab, as illustrated in the
following figure:

Default Options m
Dizgnostic I Functional Testing I S5L I Client Type I
Sleep Time Contral I Fazz/Fail Definition I Java I
Browser Emulation | Authentication for protocol scripts I Connection I
Browser Type
Select Browser Type: [EETRG—_—— |
useragent: [ozila/4.0 (compatible; MSIE 5.01; wind| 7| umaaw

Figure 2-17: Setting user-agent value

Comment

Use the wiClear() method, described on page 328, to delete specific Header fields or clear all
the Header fields at once.

You cannot override the host header or set a cookie header using the Header property. To set a
cookie, see wlCookie, page 330

Use the wlHt tp.Header property to change or reset specific individual values right before
executing the next wlHttp.ExpectNavigation () command. Be careful—Note that any
information set using the w1l Ht tp.Header property fakes priority over any defaults set
through the GUI (recommended) or using the wlGlobals, wlLocals, or wlHttp
properties. If there is any discrepancy between the document header information and the HTTP
values, WebLOAD will work with the information found in the wlHttp.Header property
while also issuing a warning to the user.

136

RadView Software

HistoryLimit (property)

See also
Browser configuration components, page 30 Data, page 63
DataFile, page 65 Erase, page 87
fileName, page 100 FormData, page 104
Get(), page 110 Header, page 138
Post(), page 202 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
type, page 300 UserAgent, page 306
value, page 310 wiClear(), page 328
wlGlobals, page 339 wlHeader, page 340
wiHttp, page 342 wlLocals, page 343

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

HistoryLimit (property)

Property of Objects

wilGlobals

Description

Sets a limit to the number of commands to be saved in a history file when working with the
UseHistory property.

Example

<NA>

UseHistory, page 304 wlGlobals, page 339

host (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

link location

WebLOAD JavaScript Reference Manual 137

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description
The host portion of the URL, including both the host name and the port (read-only string).
Example

Given the following HTML fragment:

<A href="http://www.ABCDEF.com/search.exe?
SearchFor=modems&SearchType=ExactTerm">

1inks[0] .host is "www.ABCDEF.com:80"
See also

link, page 169 location, page 176

hostname (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

link location

Description
The host name portion of the URL (read-only string).
Example

Given the following HTML fragment:

<A href="http://www.ABCDEF.com/search.exe?
SearchFor=modems&SearchType=ExactTerm">

1links[0] .hostname is "www.ABCDEF.com"
See also

link, page 169 location, page 176

138 RadView Software

href (property)

href (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

link location
Description
The complete URL of the link (read-only string).

Example

Given the following HTML fragment:

<A href="http://www.ABCDEF.com/search.exe?
SearchFor=modems&SearchType=ExactTerm">

1inks[0] .hrefis
"https://www.ABCDEF.com/products/order.html#modems”

Comment

Note that the href property contains the entire URL. The other 1ink properties contain
portions of the URL. 1inks [#] .href is the default property for the 1ink object. For
example, if

links[0]='http://microsoft.com'
then the following two URL specifications are equivalent:
mylink=1inks[0].href
and
mylink=1inks[0]
See also

link, page 169 location, page 176

WebLOAD JavaScript Reference Manual 139

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

httpEquiv (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wiMeta

Description

Retrieves the value of the HTTP-EQUIV attribute of the META tag (read-only string).
Syntax

wlMetas[index#] .httpEquiv

Example

document.wlMetas[0] .httpEquiv

See also
content, page 56 httpEquiv, page 143
Name, page 184 Url, page 302

wiMeta, page 346

id (property)

Property of Objects
area Button
Div element
form frames
Image InputButton
InputCheckbox InputFile
Inputimage InputRadio
InputPassword InputText
link location
map script
Select Span

140 RadView Software

id (property)

table TableCell

TextArea UlContainer

wiTable wiXmls
Description

Retrieves the string identifying the parent object. The ID value is taken from the ID attribute
within the tag. This property is optional. If this object does not have an ID attribute then the
value is undefined.

When working with element, forms, frames, image, or map objects, returns a string
containing an alternative identification means for the complete image, map, forms or frame or
for elements of type Button, CheckBox, File, Image, Password, Radio, Reset, Select, Submit,
Text, and TextArea.

Example
wiTables example:

If the first table on a page is assigned the ID tag myTable, access the table using any of
the following:

document.wlTables[0]

or
document.wlTables.myTable
or

document.wlTables [myTable]

If duplicate identifiers are found, the id property will refer to the first w1l Table object
found with that identifier.

wiXmls example:

If the first XML object on a page is assigned the ID tag myXm1Doc, access the object
using any of the following:

MyBookstore = document.wlXmls[O]

or

MyBookstore document.wlXmls.myXmlDoc
or
MyBookstore = document.wlXmls[“myXmlDoc”]

If duplicate identifiers are found, the id property will refer to the first XML object found
with that identifier.

WebLOAD JavaScript Reference Manual 141

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See

Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.

See also

area, page 24

cell, page 35 (wlTable and row property)
Collections, page 47

Compare(), page 49

CompareRows, page 52

Div, page 77

form, page 102

id, page 143 (wlTable property)
InnerHTML, page 153 (cell property)
InputButton, page 157

InputFile, page 159

InputPassword, page 161

InputText, page 164

load(), page 170

load() and loadXML() method comparison, page
172

map, page 178

Prepare(), page 205

row, page 223 (wlTable property)
script, page 229

Span, page 254

table, page 284

TableCompare, page 286

TextArea, page 292

wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Button, page 34

celllndex, page 37 (cell property)
cols, page 48 (wlTable property)
CompareColumns, page 51

Details, page 72

element, page 83

frames, page 107

Image, page 148

InnerText, page 155 (cell property)
InputCheckbox, page 158
Inputimage, page 160

InputRadio, page 162

link, page 169

loadXML(), page 175

location, page 176

MatchBy, page 178
ReportUnexpectedRows, page 216
rowlndex, page 225 (row property)
Select, page 231

src, page 255

TableCell, page 285

tagName, page 289 (cell property)
UlContainer, page 301

wilXmls, page 370

XMLDocument, page 380

142

RadView Software

id (property)

Identification variables and functions

Description

For performance statistics to be meaningful, testers must be able to identify the exact point
being measured. WebLOAD therefore provides the following identification variables and
functions:

4 Two variables, C1ientNum and RoundNum, identify the client and round number of the
current Agenda instance.

¢ The GeneratorName () function identifies the current Load Generator.

4 The GetOperatingSystem () function identifies the operating system of the current
Load Generator.

4 The VCUniquelID () function identifies the current Virtual Client instance.
Example

The following example illustrates common use of these variables and functions. Use these
variables and function to support the WebLOAD measurement features and obtain meaningful

performance statistics.

Suppose your Agenda submits data to a server on an HTML form. You want to label one of the
form fields so you can tell which WebLOAD client submitted the data, and in which round of
the main script.

You can do this using a combination of the C1ientNum and RoundNum variables. Together,
these variables uniquely identify the WebLOAD client and round. For example, you can submit
a string such as the following in a form field:

"C" 4+ ClientNum.toString() + "R" + RoundNum.toString()

GUI mode

WebLOAD recommends accessing These identification variables and functions through the
Visual AAT GUI, illustrated here. To see a list of global system variables, highlight the top-
level Agenda node in the Agenda Tree, find the GlobalVariables section of the Properties
pane, and click on the browse button of the System field. The following list appears. All the
variables that appear in this list are available for use at all times in an Agenda file. For example,
it is convenient to add C1ientNum to a Message Node to clarify which client sent the
messages that appear in the Console Log window.

WebLOAD JavaScript Reference Manual 143

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

.]
J E ﬁ +"* T a = Attributes ;I
e P Agenda
Hame Description P Comments
Roundrum Returns the number of raun 2 GlobalVariables
Cliertrtum Returnz the main thread nu o _I
Generatorflame]) Returns the name of this loa _# UserDefined
SCURiguelD) Returns & string unique to t
Randomtumber() Generate a random number
TodaysDate() Currert date (1-31)
TodaysDay() Current Day (0-6, 0==Sund
Todaysharth() Current Month (0-117
Thisear() Currert Year (4-digit, .. 2
Hours() Current Hour (0-23)
Minutes() Current minutes (0-59)
Seconds() Current seconds (0-59)
Millizeconds() Currert ms value
Timer) Time in ms since 144970
GMTDate) Current date in GMTUTC as
LocalDate) Currert date in local time as
Figure 2-18: Global System Variables List
See also
ClientNum, page 43 GeneratorName(), page 108
GetOperatingSystem(), page 130 Identification variables and functions, page 146
RoundNum, page 221 VCUniquelD(), page 312

IdentifyObject() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHttp

Description

The method used by WebLOAD to identify the correct URL for the current target frame when
working with dynamic HTML. This function is part of the HTTP Protocol set of ASM
functions.

Syntax

IdentifyObject (URLString)

144

RadView Software

Image (object)

Parameters

URLString—The expected URL value, saved at recording time. If the URL has not changed,
this will be the value assigned to wlHttp.Ur1l. If the URL has changed, the new value will be
identified by WebLOAD and used to replace the original URL value.

Return Value
The current URL value.
Example
wlHttp.Url = wlHttp.IdentifyObject (“"URLstring”)

See also

Automatic State Management for HTTP Protocol ~ Browser configuration components, page 30
Mode, page 25

Dynamic Object Recognition (DOR) components, — wiHttp, page 342
page 81

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Image (object)

Description

Each Image object represents one of the images or video clips embedded in a document
(HTML element). Image objects are accessed through Images Collections.
(Compare to the element object, which stores the parsed data for a single HTML form element,
where the element may be any one of a variety of types, and the form object, which stores the
parsed data for an entire HTML form.)

image objects are grouped together within collections of images, accessed either directly
through the document object (document . images [#]), or through the document.all
collection.

Syntax
Recommended:
document.all.tags[“IMG”]
Alternative (HTTP mode):
To find out how many image objects are contained within a document, check the value of:
document.images.length
Access each image’s properties directly using the following syntax:

document.images [index#] .<image-property>

WebLOAD JavaScript Reference Manual 145

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Example

Recommended:

document.all.tags[“IMG”]

Alternative (HTTP mode):

document.images([1l].src

Methods

wlClick(), page 326
wlMouseOver (), page 348
wlMultiSelect(), page 350

Properties

Alt, page 23
InnerLink, page 155
OuterLink, page 196
sre, page 255

Comment

wlMouseDown(), page 347
wiMouseUp(), page 349
wiSelect(), page 358

id, page 143
Name, page 184
protocol, page 208
Url, page 302

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
File, page 99

Image, page 148
InputButton, page 157
InputFile, page 159
InputRadio, page 162
Radiobutton, page 210
text, page 291
UlContainer, page 301

Checkbox, page 38
document, page 79

form, page 102

length, page 167
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Select, page 231
TextArea, page 292

146

RadView Software

IncludeFile() (function)

IncludeFile() (function)

Description

Instructs WebLOAD to include the specified file, and optionally execute scripts that are stored
within that file, as part of the initialization process before beginning the main Agenda execution
rounds. Encourages modular programming by enabling easy access to sets of library function
files.

Syntax
IncludeFile(filename[, WLExecuteScript])

Parameters

filename—A string or variable containing the full literal name of the file to be included.
Specific system directories are searched for the specified file in the search order described in
the preceding section. Once the file is found, any functions or variables defined within that file
are compiled and included within the calling Agenda when the Agenda is compiled.

WLExecuteScript—WLExecuteScript is a global constant that acts as a flag when

passed as a parameter to IncludeFile (). WLExecuteScript is an optional parameter.
When included, WebLOAD will not only compile the definitions found in the specified file.
WebLOAD will also execute any additional commands or functions found within that file

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

outside the included function definitions. With WLExecuteScript , WebLOAD enables
work with self-initializing include files that can define, set, and execute the commands
necessary to initialize a work environment at compile time.

Return Value

None

Example

To include the external file MyFunction. js, located on the Console during WebLOAD
testing, use the following command:

function InitAgenda () {
IncludeFile (“MyFunction.js”)

}
GUI mode

Note that CopyFile () and IncludeFile () functions can be added directly to the code in
an Agenda through the IntelliSense Editor, described in Using the IntelliSense JavaScript
Editor, page 18. Select a function from the Edit | Insert | JavaScript | Copy/Include Files menu.
The Visual AAT automatically inserts the correct code for the selected function into the
Agenda file. The user may then edit parameter values without any concerns about mistakes in
the function syntax.

WebLOAD JavaScript Reference Manual 147

WebLOAD Actions, Objects, and Functions

Inzert

Paste Clrl+ Gx.eneral . . ’
. s InitdT erminate Functions L4
<Target> = CopyFile["<Src>") Copy/lnclude Files 4
>; CopyFile["<Src>", "< T arget>"] Meszage Commands 4
IncludeFi R andom Mumber Commands L4

COM Dbjects 4

Java Objects 4

Figure 2-19: Inserting an IncludeFile function
Comment

The IncludeFile command must be inserted in the InitAgenda () section of your
JavaScript program.

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

Index (property)

Property of Objects

frames

Description

Sets or retrieves the index number of the parent object. For example, the ordinal position of an
option in a list box.

Syntax
<NA>

See also

Collections, page 47 frames, page 107
length, page 167

148 RadView Software

InfoMessage() (function)

InfoMessage() (function)

Description
Displays a generally informative (but not necessarily problematic) message in the Log
Window.

Syntax
InfoMessage (msqg)

Parameters

msg—A string with an informative message to be sent to the Console.

Return Value

None.

Example
<NA>

Comment

If you call InfoMessage () in the main script, WebLOAD sends an informative message to
the Log window and continues with Agenda execution as usual. The message has no impact on
the continued execution of the WebLOAD test.

GUI mode

WebLOAD recommends adding message functions to your Agenda files directly through the
Visual AAT GUI. For example, the following figure illustrates adding a Message Node to an
Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

8= Agenda = Function Name: NodeScript % Attributes
g JavaScriptObject g InfoMessage (RoundNum, ClientHum) ..F temiame Meszage
: .# Comments
E@ wiww. netizenbarkin Ell Message
e Image Testl P Tet Roundrum, Clienthum
----- Sleep[E710] P Severity Willnfolessage

Figure 2-20: Adding a Message Node to an Agenda

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152

WebLOAD JavaScript Reference Manual 149

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

LiveConnect Overview, page 255 in the
WebLOAD Programming Guide

Message functions, page 180

ReportLog(), page 215 SevereErrorMessage(), page 245

Using the IntelliSense JavaScript Editor, page 18 ~ WarningMessage(), page 323

wlException, page 331 wlException() object constructor, page 333

InnerHTML (property)

Property of Objects

cell script

wiXmls

Description
Sets or retrieves the HTML found between the start and end tags of the object.
Syntax
When working with ce11 objects, use the uppercase form:
..cells([2].InnerHTML
When working with script or wlXmls objects, use the lowercase form:
..scripts[2].innerHTML
Example
<NA>
Comment

Notice that the InnerHTML property for ce11 objects is written in uppercase.

WebLOAD recommends managing scripts, tables, and XML DOM objects on a Web page
through the standard document .all collection.

See also

cell, page 35 (wlTable and row property)
Collections, page 47

Compare(), page 49

CompareRows, page 52

id, page 143 (wlTable and wlXmls property)

Innerlmage, page 154

celllndex, page 37 (cell property)
cols, page 48 (w1l Table property)
CompareColumns, page 51

Details, page 72

InnerHTML, page 153 (cell and wlXmls
property)

InnerText, page 155 (cell property)

150

RadView Software

load(), page 170

load() and loadXML() method comparison, page
172

Prepare(), page 205

row, page 223 (wlTable property)
script, page 229

TableCompare, page 286

wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Innerimage (property)

Innerlmage (property)

loadXML(), page 175
MatchBy, page 178

ReportUnexpectedRows, page 216
rowlndex, page 225 (row property)
src, page 255

tagName, page 289 (cel1l property)
wlXmls, page 370

XMLDocument, page 380

Property of Object

Button
link
TableCell

Description

element
location

UlContainer

Sets or retrieves the image found between the <Start> and <End>tags of the object. When
working with a but ton object, the image that appears on the button. When working with a
link or location object, the image that appears over the link. When working with a
TableCell object, the image that appears over a table cell.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.
See also

Collections, page 47
InnerHTML, page 153

InnerText, page 155

id, page 143
Innerlmage, page 154
src, page 255

WebLOAD JavaScript Reference Manual

151

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

InnerLink (property)

Property of Objects

Image

Description

Represents the inner link field for the parent image object.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.
See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

InnerText (property)

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Property of Object

Button
Div
link
Span

UlContainer

cell
element
location

TableCell

152

RadView Software

Description

InnerText (property)

Sets or retrieves only the text found between the <Start> and <End>tags of the object. When
working with a Button element object, the text that appears on the button. When working
witha 1ink or location object, the text that appears over the link. When working with a
TableCell object, the text that appears over a table cell.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.
See also

Button, page 34

cell, page 35 (wlTable and row property)
Collections, page 47

Compare(), page 49

CompareRows, page 52

Div, page 77

id, page 143 (wlTable and wlXmls property)

Innerlmage, page 154

link, page 169

MatchBy, page 178
ReportUnexpectedRows, page 216
rowlndex, page 225 (row property)
src, page 255

TableCompare, page 286
UlContainer, page 301

celllndex, page 37 (cell property)
cols, page 48 (wlTable property)
CompareColumns, page 51

Details, page 72

element, page 83

InnerHTML, page 153 (cell and wlXmls
property)

InnerText, page 155 (cell property)
location, page 176

Prepare(), page 205

row, page 223 (wlTable property)
Span, page 254

TableCell, page 285

tagName, page 289 (cel1l property)
wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual

153

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

InputButton (object)

Property of Objects

InputButton objects on a Web page are accessed through the document.all collection

of the standard DOM structure.

Description

One of the form input controls, where input type = button. Each InputButton
object represents one of the input buttons embedded in a form. (Compare to the element object,
which stores the parsed data for a single HTML form element, where the element may be any
one of a variety of types, and the form object, which stores the parsed data for an entire HTML

form.)

Syntax

document.all.tags [“BUTTON"]

Methods

wlClick(), page 326
wlMouseOver(), page 348
wiMultiSelect(), page 350

Properties

event, page 91
InnerText, page 155
OnClick, page 190
value, page 310

Comment

wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358

id, page 143
Name, page 184
title, page 296

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputimage, page 160
InputText, page 164

154

RadView Software

length, page 167
Select, page 231
TextArea, page 292

InputCheckbox (object)

InputCheckbox (object)

Radiobutton, page 210

text, page 291
UlContainer, page 301

Property of Objects

InputCheckbox objects on a Web page are accessed through the document.all

collection of the standard DOM structure.

Description

One of the form input controls, where input type = checkbox. Each
InputCheckbox object represents one of the input checkboxes embedded in a form.
(Compare to the element object, which stores the parsed data for a single HTML form element,
where the element may be any one of a variety of types, and the form object, which stores the

parsed data for an entire HTML form.)

Syntax

document.all.tags[“CHECKBOX"]

Methods

wlClick(), page 326
wiIMouseOver(), page 348
wiMultiSelect(), page 350

Properties

AdjacentText, page 23
Name, page 184
value, page 310

Comment

wilMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

id, page 143
title, page 296

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102

Checkbox, page 38
File, page 99
Image, page 148

WebLOAD JavaScript Reference Manual

155

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

InputFile (object)

InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Property of Objects

InputFile objects on a Web page are accessed through the document.all collection of

the standard DOM structure.

Description

One of the form input controls, where input type

file. Each InputFile object

represents a file upload object with a text box and Browse button. (Compare to the element
object, which stores the parsed data for a single HTML form element, where the element may
be any one of a variety of types, and the form object, which stores the parsed data for an entire

HTML form.)

Syntax

document.all.tags[“FILE"]

Methods

wlClick(), page 326
wiIMouseOver(), page 348
wiIMultiSelect(), page 350
wlTypeln(), page 366

Properties

id, page 143
Size, page 247

Comment

wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358

Name, page 184

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in

the WebLOAD Programming Guide, for more information.

156

RadView Software

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

Inputimage (object)

Inputimage (object)

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Property of Objects

InputImage objects on a Web page are accessed through the document.all collection of

the standard DOM structure.

Description

One of the form input controls, where input type = image.Each InputImage object
represents an embedded image control that, when clicked, causes the form to be immediately
submitted. (Compare to the element object, which stores the parsed data for a single HTML
form element, where the element may be any one of a variety of types, and the form object,
which stores the parsed data for an entire HTML form.)

Syntax

document.all.tags[“IMG"”]

Methods

wlClick(), page 326
wilMouseOver(), page 348
wiMultiSelect(), page 350

Properties

Alt, page 23
Name, page 184

wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

id, page 143
Url, page 302

WebLOAD JavaScript Reference Manual

157

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputimage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

InputPassword (object)

Property of Objects

InputPassword objects on a Web page are accessed through the document.all
collection of the standard DOM structure.

Description

One of the form input controls, where input type = password. Each
InputPassword object represents a single-line text entry control similar to the INPUT
type=text control, except that text is not displayed as the user enters it. This is used to
represent an input password text field embedded in a form. (Compare to the element object,
which stores the parsed data for a single HTML form element, where the element may be any
one of a variety of types, and the form object, which stores the parsed data for an entire HTML
form.)

Syntax
document.all.tags[“PASSWORD"]

Methods
wlClick(), page 326 wilMouseDown(), page 347
wiIMouseOver(), page 348 wilMouseUp(), page 349
wiIMultiSelect(), page 350 wiSelect(), page 358

158 RadView Software

InputRadio (object)

wiTypeln(), page 366

Properties

id, page 143 Name, page 184
Size, page 247

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

InputRadio (object)

Property of Objects

InputRadio objects on a Web page are accessed through the document.all collection of
the standard DOM structure.

Description

One of the form input controls, where input type = radio.Each InputRadio object
represents one of the input radiobuttons embedded in a form. (Compare to the element object,
which stores the parsed data for a single HTML form element, where the element may be any
one of a variety of types, and the form object, which stores the parsed data for an entire HTML
form.)

Syntax
document.all.tags[“RADIO"]

WebLOAD JavaScript Reference Manual 159

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Methods
wlClick(), page 326
wlMouseOver (), page 348
wlMultiSelect(), page 350
Properties
AdjacentText, page 23

Name, page 184

Comment

wlMouseDown(), page 347
wiMouseUp(), page 349
wiSelect(), page 358

id, page 143
value, page 310

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

InputText (object)

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Property of Objects

InputText objects on a Web page are accessed through the document.all collection of

the standard DOM structure.

Description

One of the form input controls, where input type = text.Each InputText object

represents a single-line text entry control embedded in a form. (Compare to the element object,
which stores the parsed data for a single HTML form element, where the element may be any
one of a variety of types, and the form object, which stores the parsed data for an entire HTML
form.)

160 RadView Software

Syntax

document.all.tags[“TEXT"”]

Methods

wlClick(), page 326
wlMouseOver(), page 348
wlMultiSelect(), page 350

wiTypeln(), page 366

Properties

id, page 143
Size, page 247

Comment

KeepAlive (property)

wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

Name, page 184

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

KeepAlive (property)

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.

WebLOAD JavaScript Reference Manual

161

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Property of Objects

wlGlobals wlHttp

wiLocals

Description

Enable WebLOAD to keep an HTTP connection alive between successive accesses in the same
round of the main script. The possible values are:

4 No—Do not keep an HTTP connection alive.

4 Yes—Keep the connection alive if the server permits.
(default)

Keeping a connection alive saves time between accesses. WebLOAD attempts to keep the
connection alive unless you switch to a different server. However, some HTTP servers may
refuse to keep a connection alive.

Use the wlHttp.CloseConnection () method to explicitly close a connection that you
have kept alive. Otherwise, the connection is automatically closed at the end of each round.

Example
<NA>
Comment

You should not keep a connection alive if establishing the connection is part of the performance
test.

GUI mode

WebLOAD recommends maintaining or closing connections through the Console GUI. Enable
maintaining connections for the Load Generator or for the Probing Client during a test session
by checking the appropriate box in the Browser Emulation tab of the Tools | Default Options
dialog box, illustrated in the following figure:

Perzsistent Connection(K eep-alive]

IV Prabing Client

¥ Load Generator

Figure 2-21: Enabling Persistant Connections for Load Generator

See also
Browser configuration components, page 30 CloseConnection(), page 46
Rules of scope for local and global variables, wilGlobals, page 339

page 111 in the WebLOAD Programming Guide

wlHttp, page 342 wilLocals, page 343

162 RadView Software

key (property)

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

key (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Objects

Header wlHeader

wlSearchPair

Description
The search key name (read-only).
Syntax
For wlHeaders:
document.wlHeaders[index#] .key = "TextString"

For wiSearchPairs:

document.links[1l].wlSearchPairs[index#].key = "TextString"
For wiHttp.Header:
wlHttp.Header["key"] = "TextString"
Example

For wlHeaders:
document.wlHeaders[0] .key = "Server"

For wiSearchPairs:

document.links[1l].wlSearchPairs[0].key = "Server"
For wiHttp.Header:
wlHttp.Header["key"] = "Server"
See also
Header, page 138 value, page 310
wilHeader, page 340 wiSearchPair, page 356

WebLOAD JavaScript Reference Manual

163

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

language (property)

Property of Object
script
Description
Retrieves the language in which the current script is written.

Example

"javascript" specifies that the script is written in JavaScript.
"vbscript" specifies that the script is written in Visual Basic Script.

See also

script, page 229

length (property)

Property of Object

All objects stored in Collections

form frames

Description

Each collection of objects includes the single property Length, which contains the size of the
collection, that is, the number of objects included in this collection. Use an /ndex value to
access the individual objects, and their properties, from within a collection.

Syntax
collection.length
Example
Frames collection

When accessing a frames collection, this property holds the size of the frames
collection, that is, the number of nested window objects (read-only). To find out how many
window objects are contained within this collection, check the value of:

...frames.length

If you were looking at a collection of frames within a root window, you would check the
value of:

frames.length

164 RadView Software

link (object)

If you were looking at a collection of frames within a document under an [implicit] root
window, you would check the value of:

document.frames.length

Access each child window’s properties directly using the following syntax:
document. frames[index#] .<child-property>

For example:

document.frames[1l].location

Forms collection

To find out how many form objects are contained within the forms collection of a
document, check the length value:

NumberOfItems = document.forms.length

To access each individual form’s properties directly with an index number, use the
following syntax:

document.forms[1l] .action

See also
Collections, page 47 form, page 102
frames, page 107 Index, page 151

link (object)

Property of Objects

When working in the HTTP Protocol mode, links on a Web page are accessed through 1ink
objects that are grouped into collections of 1inks. The 1inks collection is a property of the
document object.

When working in the User Activity mode, links on a Web page are accessed through 1ink
objects that are accessed through the document.all collection.

Description

A 1ink object contains information on an external document to which the current document is
linked. Each 1ink object points to one of the URL links (HTML <A> elements) within the
document. Each 1ink object stores the parsed data for the HTML link (<A> element).

link objects are local to a single thread. You cannot create new 1ink objects using the
JavaScript new operator, but you can access HTML links through the properties and methods
of the standard DOM objects. 1ink properties are read-only.

WebLOAD JavaScript Reference Manual 165

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

1link objects are organized into Collections of 1inks or anchors. To access an individual
link’s properties, check the 1ength property of the 1inks collection and use an index
number to access the individual links.

Syntax
HTTP Protocol mode:
To find out how many 1ink objects are contained within a document, check the value of:
document.links.length
Access each link’s properties directly using the following syntax:
document.links[#].<link-property>
User Activity mode:
<NA>
Example
HTTP Protocol mode:
document.links[1l] .protocol
Methods
wlClick(), page 326 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
Properties
id, page 143 Innerlmage, page 154
InnerText, page 155 Name, page 184
OnClick, page 190 title, page 296

Url, page 302

When working in HTTP Protocol mode, links include the following properties:

hash, page 137 host, page 141
hostname, page 141 href, page 142

id, page 143 InnerText, page 155
Name, page 184 pathname, page 199
port, page 202 protocol, page 208
search, page 230 target, page 290
title, page 296 Url, page 302

wlSearchPair, page 356

166 RadView Software

load() (method)

Comment

WebLOAD recommends managing links on a Web page through the standard
document.all collection of 1ink objects, rather than through the HTTP Protocol mode
links collection.

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Collections, page 47 document, page 79
FindObject(), page 102 length, page 167

load() (method)

Mode

The 1oad () method is usually inserted manually only when working in the HTTP Protocol
mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide,
for more information.

Method of Objects

When working in the HTTP Protocol mode, XML DOM objects on a Web page are accessed
through collections of w1Xmls objects. The Load () function is a method of the following
object:

wiXmls

Description

Call 1oad (URL) to download XML documents from a Web site and automatically load these
documents into XML DOM objects.

Do not include any external references when using 1oad ().

load () relies on the MSXML parser to performs any HTTP transactions needed to download
the XML document. The MSXML module accesses external servers and completes all
necessary transactions without any control or even knowledge on the part of the WebLOAD
system tester. From WebLOAD’s perspective, these transactions are never performed in the
context of the test session. For this reason, any settings that the user enters through the
WebLOAD Agenda or Console will not be relayed to the MSXML module and will have no
effect on the document ‘load’. For the same reason, the results of any transactions completed
this way will not be included in the WebLOAD statistics reports.

WebLOAD JavaScript Reference Manual 167

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax
load (URLString)
Parameters

URLString—String parameter with the URL or filename where the XML document may be
found.

Return Value

None.

Example

myXMLDoc = document.wlXmls[O0]

myXMLdoc.load ("http://server/xmls/file.xml")
Comment

You may use load () repeatedly to load and reload XML data into XML DOM objects.
Remember that each new ‘load’ into an XML DOM object will overwrite any earlier data
stored in that object.

WebLOAD recommends managing XML DOM objects on a Web page through the standard
document.all collection rather than using the wlXmls family of objects.

See also
Collections, page 47 id, page 143
InnerHTML, page 153 load(), page 170
loadXML(), page 175 load() and loadXML() method comparison, page
172
sre, page 255 wlXmls, page 370

XMLDocument, page 380

load() and loadXML() method comparison

Description

WebLOAD supports both the 1oad () and the 1oadXML () methods to provide the user with
maximum flexibility. The following table summarizes the advantages and disadvantages of
each method:

Table 2-2: load() and loadXML() comparison

Advantages Disadvantages

loadXML() Parameters that the user has The method fails if the DTD section of the XML
defined through WebLOAD for document string includes any external references.
the testing session will be

168

RadView Software

LoadGeneratorThreads (property)

Advantages

Disadvantages

applied to this transaction.

load() The user may load XML files
that include external references
in the DTD section.

Parameters that the user has defined through
WebLOAD for the testing session will not be
applied to this transaction.

WebLOAD does not record the HTTP Get
operation. (See note below).

The transaction results are not included in the
session statistics report.

Using this method may adversely affect the test
session results.

Comment

If you wish to measure the time it took to load the XML document using the 1oad () method,
create a timer whose results will appear in the WebLOAD statistics. For example:

SetTimer (“"GetXMLTime”)

SendTimer (“"GetXMLTime"”)

myXMLDoc = document.wlXmls[O]

myXMLdoc.load ("http://server/xmls/file.xml")

See also

Collections, page 47
InnerHTML, page 153
loadXML(), page 175

src, page 255
XMLDocument, page 380

id, page 143
load(), page 170

load() and loadXML() method comparison, page
172

wiXmls, page 370

LoadGeneratorThreads (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Properties of Objects

wlGlobals
wlHttp

wiLocals

WebLOAD JavaScript Reference Manual

169

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Description

Optionally, WebLOAD can allocate extra threads to download nested images and frames.

For clients that you define in a Load Generator, this option is controlled by the
LoadGeneratorThreads property. The default value of this property is "Single", which
means that Virtual Clients will not use extra threads to download data from the Server.

For the Probing Client, the option is controlled by the ProbingClientThreads property.
The default is "Multiple", which means that the client can use three extra threads for nested
downloads. This simulates the behavior of Web browsers, which often use extra threads to
download nested images and frames.

The possible values of these properties are:

4 Single—Do not use extra threads to download nested images and frames. (default for
LoadGeneratorThreads)

4 Multiple—Allocate three extra threads per client (for a total of four threads per client)
to download nested images and frames. (default for ProbingClientThreads)

4 Any specific number of threads between 1 and 8, such as " 5" —Allocate that exact
number of extra threads per client to download nested images and frames.

Example

You can assign any of these properties independently within a single Agenda. In that case, if
you configure a Probing Client to run the Agenda, WebLOAD uses the value of
ProbingClientThreads and ignores LoadGeneratorThreads (vice versa if you
configure a Load Generator to run the Agenda). For example, you might write:

function InitAgenda () {
//Do not use extra threads if a
// Probing Client runs the Agenda
wlGlobals.ProbingClientThreads = "Single"

//Use extra threads if a

// Load Generator runs the Agenda

wlGlobals.LoadGeneratorThreads = "Multiple"
}

Comment

The extra threads have no effect on the C1ientNum value of the client. The C1ientNum
variable reports only the main thread number of each client, not the extra threads.

GUI mode

WebLOAD recommends enabling or disabling multi-threaded virtual clients through the
Console GUI. Enable multi-threading for the Load Generator or for the Probing Client during a
test session by checking the appropriate box in the Browser Emulation tab of the Tools |
Default Options dialog box and setting the number of threads you prefer, as illustrated in the
following figure:

170

RadView Software

loadXML() (method)

MultT hread Yirtual Clients

¥ Probing Client [4 =
™ Load Generator |1 3:

Figure 2-22: Enabling multi-threading for Load Generator

See also
Browser configuration components, page 30 ProbingClientThreads, page 206
Rules of scope for local and global variables, wlGlobals, page 339

page 111 in the WebLOAD Programming Guide
wlHttp, page 342 wlLocals, page 343

loadXML() (method)

Mode

The 1oadXML () method is usually inserted manually only when working in the HTTP
Protocol mode. See Working in HITP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Method of Object

When working in the HTTP Protocol mode, XML DOM objects on a Web page are accessed
through collections of wlXmls objects. The LoadXML () function is a method of the
following objects:

wiXmls

Description

Call 1oadXML (XMLDocString) to load XML documents into XML DOM objects. This
allows users to work with XML documents and data that did not originate in HTML Data
Islands, such as with Native Browsing. In a typical scenario, a user downloads an XML
document. WebLOAD saves the document contents in string form. The string is then used as
the parameter for 1oadXML () . The information is loaded automatically into an XML object.

Notice that creating a new, blank XML DOM object with WLXm1Document () and then
loading it with a parsed XML string using 1oadXML () is essentially equivalent to creating a
new XML DOM object and loading it immediately using WLXm1Document (xml1Str). As
with the WLXml1Document (xm1Str) constructor, only standalone, self-contained DTD
strings may be used for the 1oadXML () parameter. External references in the DTD section are
not allowed.

Syntax
loadXML (XMLDocStr)

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD JavaScript Reference Manual 171

WebLOAD Actions, Objects, and Functions

Parameters

XMLDocStr—String parameter that contains a literal XML document in string format.

Return Values

None

Example

//create a new XML document object

NewXMLObj = new WLXmlDocument ()
wlHttp.SaveSource = "Yes"

wlHttp.Get ("http://www.server.com/xmls/doc.xml")
XMLDocStr = document.wlSource

//load the new object with XML data

//from the saved source. We are assuming
//no external references, as explained above
NewXMLObj .loadXML (XMLDocStr)

Comment

You may use 1oadXML () repeatedly to load and reload XML data into XML DOM objects.
Remember that each new ‘load’ into an XML DOM object will overwrite any earlier data
stored in that object.

WebLOAD recommends managing XML DOM objects on a Web page through the standard
document .all collection rather than using the wlXmls family of objects.

See also
Collections, page 47 id, page 143
InnerHTML, page 153 load(), page 170
loadXML(), page 175 load() and loadXML() method comparison, page
172
sre, page 255 wiXmls, page 370

XMLDocument, page 380

location (object)

Property of Objects
The 1ocation object is itself a property of the following objects:

document window

172 RadView Software

location (object)

Description

A location object stores the parsed URL and location data of the frame or root window. For
an overview of parsing, see Parsing Web pages, page 218 in the WebLOAD Programming
Guide.

location objects are local to a single thread. You cannot create new 1location objects
using the JavaScript new operator, but you can access HTML locations through the properties
and methods of the standard DOM objects. The properties of 1location are read-only.

Syntax
Access the location’s properties directly using the following syntax:
document.location.<location-property>

Note that location.href contains the entire URL. href is the default property for the
location object. For example, if

location='http://microsoft.com'

then the following two URL specifications are equivalent:

mylocation=location.href
and

mylocation=location

Properties

When working in HTTP Protocol mode, note that the properties of Location are identical to
those of 1 ink. The only exception is that location has no target property. Note that the

location object is not part of any collection. The 1ocation properties are listed below for
reference.

hash, page 137 host, page 141
hostname, page 141 href, page 142

id, page 143 InnerText, page 155
Name, page 184 pathname, page 199
port, page 202 protocol, page 208
search, page 230 title, page 296

Url, page 302 wiSearchPair, page 356

Comment

Note that the hre f property contains the entire URL. The other 1ocation properties contain
portions of the URL. location.href is the default property for the location object. For
example, if

location='http://microsoft.com'

WebLOAD JavaScript Reference Manual 173

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

then the following two URL specifications are equivalent:
mylocation=location.href
or
mylocation=location
See also

document, page 79 link, page 169
window, page 324

map (object)

Description

Each map object stores the coordinate data for a client-side image map. The map objects are
accessed through collections of document .all.

Syntax
<NA>
Properties

id Name

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Collections, page 47 FindObject(), page 102
id, page 143 length, page 167

Name, page 184

MatchBy (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

174 RadView Software

MatchBy (property)

Property of Object

TableCompare

Description

Specifies how the rows to be compared should be identified. Note that to use the MatchBy
property, the CompareRows property must be defined as “ al | " .

WebLOAD offers the following options:

e Compare By Row Numbers
e Compare By Column
Syntax

String [“row order”] (default)
or
Array of any combination of:

e Integer column numbers [x, vy, z, etc.]
e String range of column numbers [“1-3”, “6-8", etc.]
e String column names [“ColumnA”, “ColumnB”, etc.]
Example
a.MatchBy = [“ColumnA”, “ColumnC”]
Comment

The MatchBy property is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document . all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

id, page 143 (w1 Table property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)

wlTable, page 364

WebLOAD JavaScript Reference Manual 175

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

MaxLength (property)

Property of Object

element TextArea

Description
The maximum number of characters the user can enter into a Text or Password element.
Syntax
<NA>
Example
<NA>
Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also

element, page 83 TextArea, page 292

Message functions

Description

These functions display messages in the Log Window of the Visual AAT or Console. Some of
the functions raise errors and interrupt test session execution. For information on using the Log
Window and on message types, see the WebLOAD User’s Guide.

Example

In the following example, the Agenda attempts to download an HTML page. If it fails on the
first try, it pauses for 3 minutes and tries again. If it fails on the second try, it aborts the current
round.

176 RadView Software

MaxLength (property)

function InitClient () {

wlLocals.Url = "http://www.ABCDEF.com/index.html"
}

//First try

wlHttp.Get ()
if (document.wlStatusNumber != 200) {
InfoMessage ("Thread " + ClientNum.toString() +
" pausing for 3 min")

Sleep (180000)
//Second try

wlHttp.Get ()
if (document.wlStatusNumber != 200) {
ErrorMessage ("Aborting round " + RoundNum.toString() +
" of thread " + ClientNum.toString())
} // End of second try

}

GUI mode

Note that message functions are usually accessed and inserted into Agenda files directly
through the Visual AAT GUI. For example, the following figure illustrates a message icon
inserted into an Agenda Tree. The message icon is selected. The Properties pane to the right
displays the properties for this message, including the message text string and the severity level
of the message. The JavaScript code line that corresponds to this message function appears in
the JavaScript View pane in the center.

Function M ame: ModeS cript x

. temiame
.# Comments
E Message

_Uarningﬂessage [Roundiuam, ClientMum) Message

. hietizenbarkin
Image Testl

P Tet Roundrum, Clienthum
Sleep[E710] P Severity WLMinorError
Lol rrint b

Figure 2-23: Adding a Warning Message to an Agenda

Message function command lines may also be added directly to the code in a JavaScript Object
within an Agenda through the IntelliSense Editor, described in Using the IntelliSense
JavaScript Editor, page 18. Users who are programming their own JavaScript Object code
within their Agenda may still take advantage of the Visual AAT GUI to simplify their
programming efforts. Rather than manually type out the code for a message function, with the
risk of making a mistake, even a trivial typo, and adding invalid code to the Agenda file, users
may select the Edit | Insert | JavaScript | Message Commands menu to bring up a list of
available message functions. The Visual AAT automatically inserts the correct code for the
selected function into the JavaScript Object currently being edited. The user may then change
the message text without any concerns about mistakes in the function syntax.

WebLOAD JavaScript Reference Manual 177

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

[Z7/ 5t Edfing

Edit ¥iew Record Run Tools Window Help

7 Undo
o FHedn

il

e B ETEE S

Cil+Z
il

Insert

o Cut

oy

7 Delete
[feat)

Selec!

Easte :
il

Infotdessage]"cHessage_Text>")

(5=

Enortessage['<Message_Text>"] |

SevereEnotiessage('<Message_Text>"]

General

Init¢Teminate Functions

3
3

Copy/Include Files L3
0 3

3

Random Humber Commands

COM Objects 3

Java Objects 3

Figure 2-24: Message Commands list

See also

Error Management, page 104 in the WebLOAD

Programming Guide
ExceptionEnabled, page 92
GetSeverity(), page 133

LiveConnect Overview, page 255 in the
WebLOAD Programming Guide

ReportLog(), page 215

Using the IntelliSense JavaScript Editor, page 18

wlException, page 331

method (property)

ErrorMessage(), page 89

GetMessage(), page 129
InfoMessage(), page 152

Message functions, page 180

SevereErrorMessage(), page 245
WarningMessage(), page 323

wlException() object constructor, page 333

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Object

form

Description

Specifies the method that the browser should use to send the form data to the server (read-only
string). A value of "Get" will append the arguments to the action URL and open it as if it were
an anchor. A value of "Post" will send the data through an HTTP Post transaction. The default

is "Post".
Syntax
<NA>

178

RadView Software

MultilPSupport (property)

See also

form, page 102

MultilPSupport (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals wlLocals
wlHttp

Description

WebLOAD enables use of all available IP addresses. This allows testers to simulate clients with
different IP addresses using only one Load Generator.

Probing Clients use only one IP address. Load Generators are set by default to use only one IP
address, but may be set to use multiple IP addresses through the keyword MultiIPSupport.

The possible values of w1Globals.MultiIPSupport are:
4 No—Use only one IP address. (default)
¢ Yes—Use all available IP addresses.

When connecting Load Generators through a modem, MultiIPSupport should be set to
”NO”.

Example
<NA>
Comment

When the Load Generator has more than one IP address (one or more addresses on a network
interface card or one or more network interface cards) WebLOAD uses ALL of the available IP
addresses. Before setting MultiIPSupport to "Yes", make sure that all of the Applications
Being Tested to which the Agenda refers are accessible through all the network interface cards.

Use the GetIPAddress() method to check the identity of the current IP address.
See also

Browser configuration components, page 30 GetlPAddress(), page 123

WebLOAD JavaScript Reference Manual 179

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

wlLocals, page 343

Name (property)

wlGlobals, page 339

wiHttp, page 342

Property of Objects

Button
element
form
Image
InputCheckbox
Inputimage
InputRadio
length
location
Radiobutton
text
UlContainer

wiMeta

Description

Checkbox
File
frames
InputButton
InputFile
InputPassword
InputText
link

map

Select
TextArea

window

Sets or retrieves the identification string of the parent object. Note that you can access a
collection member either by its index number or by its HTML name attribute.

When working with a wlMetas collection, the Name property holds the value of the NAME

attribute of the META tag.

When working with an elements collection, the Name property holds the HTML name
attribute of the form element (read-only string). The is the identification string for elements of
type Button, CheckBox, File, Image, Password, Radio, Reset, Select, Submit, Text, and
TextArea. The name attribute is required. If a form element does not have a name, WebLOAD
does not include it in the elements collection.

Syntax

Collection members may be accessed either through an index number or through a member

name, if it exists. For example:

Access the first child window on a Web page using the following expression:

RadView Software

frames[0]

Navigate() (action)

Access the first child window’s 1ink objects directly using the following syntax:

frames[0].frames[0].links[#] .<property>

Alternatively, you may access a member of the f rames collection by its HTML name

attribute. For example:

document. frames[“namestring”]

OR

document. frames.namestring

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
element, page 83
form, page 102
httpEquiv, page 143
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
location, page 176
Name, page 184
Select, page 231
TextArea, page 292
Url, page 302
wiMeta, page 346

Navigate() (action)

Checkbox, page 38
content, page 56

File, page 99

frames, page 107
Image, page 148
InputCheckbox, page 158
Inputimage, page 160
InputText, page 164
link, page 169

map, page 178
Radiobutton, page 210
text, page 291
UlContainer, page 301
window, page 324

Method of Object

wiBrowser

WebLOAD JavaScript Reference Manual

181

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description
Navigate to a new URL, resetting the current active window.
Syntax
wlBrowser.Navigate (VURL")
Parameters
URL—String containing the URL of the window to which we are navigating.
Return Value
None
Example
wlBrowser.Navigate (“www.abc.com”)
See also
Actions, page 20 AutoNavigate(), page 26

Back(), page 27
Dynamic Object Recognition (DOR) components, — Dynamic Object Recognition (DOR) for Dynamic

page 81 HTML, page 95 in the WebLOAD Programming
Guide
event, page 91 ExpectNavigation(), page 97
FindObject(), page 102 Forward(), page 106
Navigate(), page 186 ObjectProperty[], page 189
OnClick, page 190 OnMouseOver, page 191
Refresh(), page 213 SetWindow(), page 244
wlBrowser, page 325 wlClick(), page 326
wlClose(), page 329 wilMouseDown(), page 347
wlMouseOver(), page 348 wilMouseUp(), page 349
wiMultiSelect(), page 350 wiSelect(), page 358
wiSubmit(), page 362 wlTypeln(), page 366

NTUserName, NTPassWord (properties)

Mode

These properties are usually inserted manually only when working in the HTTP Protocol mode.
See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for
more information.

182

RadView Software

NTUserName, NTPassWord (properties)

Properties of Objects

wlGlobals wiLocals
wlHttp

Description

The user name and password that the Agenda uses for Windows NT Challenge response
authentication. (NT Challenge Response)

Use the NTUserName and NTPassWord properties for the Windows NT Challenge Response
authentication protocol (see DefaultAuthentication, page 66). If the server uses the basic user
authentication protocol, use the UserName and PassWord properties.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the
current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |
Default or Current Options dialog box.

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box, illustrated in DefaultAuthentication,
page 66.

Syntax

You may also set NT user values using the wlGlobals properties. For example:

"Bill"
"Classified"

wlGlobals.NTUserName
wlGlobals.NTPassWord

Comment

WebLOAD automatically sends the user name and password when a wlHt tp object connects
to an HTTP site. If an HTTP server requests NT Challenge Response authentication and you
have not assigned values to NTUserName and NTPassWord, WebLOAD submits the
Windows NT user name and password under which the Agenda is running.

See also
Browser configuration components, page 30 Dialog box properties, page 73
Rules of scope for local and global variables, wlGlobals, page 339

page 111 in the WebLOAD Programming Guide
wiHttp, page 342 wlLocals, page 343

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 183

WebLOAD Actions, Objects, and Functions

Num() (method)

Method of Object

wilRand

Description
Return a random integer.
Syntax
wlRand.Num([seed])
Parameters

[seed]—Optional seed integer used on first call to this method only if there was no previous
call to the wlRand. Seed () method.

Return Value

A random integer.

Example
wlRand.Num(12345)

See also
Num(), page 188 Range(), page 211
Seed(), page 231 Select(), page 232

wlRand, page 355

ObjectProperty[] (property)

Property of Object

wilBrowser

Description

Array of object properties, identified by name strings. Used together with the DOR
wlBrowser.FindObject () method to find GUI elements on the Web page, excluding
form elements and map arrays. Typical object properties include Id, ContainerTag,
classid, etc.

Syntax
wlBrowser.ObjectProperty[“FieldName”] = “FieldValue”

184 RadView Software

ObjectPropertyl[] (property)

Example
wlBrowser.ObjectProperty[“Id”] = “MyID”

wlBrowser.ObjectProperty[“ContainerTag”] = “OBJECT”

See also

Browser configuration components, page 30 Dialog box properties, page 73

Dynamic Object Recognition (DOR) components, — Dynamic Object Recognition (DOR) for Dynamic

page 81 HTML, page 95 in the WebLOAD Programming
Guide

FindObject(), page 102 Navigate(), page 186

SetWindow(), page 244 Verification Test Components, page 315

wlBrowser, page 325

Objects

Description

Chapter 1, Introduction to JavaScript Agendas, page 3, presents an overview of the Document
Object Model (DOM), describing some of the basic objects used by standard Web browsers
when working with HTML Web pages. The classic browser DOM includes a wide range of
objects, properties, and methods for maximum utility and versatility. For more information
about the standard DOM structure and components, go to the following Web sites:

4 http://www.w3.0rg/TR/2000/WD-DOM-Level-1-20000929/introduction.html
4 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domoverview.asp

4 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmirefs.asp

Since WebLOAD emulates the browser activities included in a test session, WebLOAD
supports the standard DOM object set that implements those activities. Only the DOM objects,
properties, and methods of special interest to WebLOAD programmers working with test
session Agendas are listed here. This manual also includes reference material for the objects,
properties, and methods that were added by WebLOAD as extensions to the basic DOM, to
implement specific test session features.

Web site testing usually means testing how typical user activities are handled by the application
being tested. Are the user actions managed quickly, correctly, appropriately? Is the application
responsive to the user’s requests? Will the typical user be happy working with this application?
When verifying that an application handles user activities correctly, WebLOAD usually focuses
on the user activities, recording user actions through the Visual AAT when initially creating
Agendas and recreating those actions during subsequent test sessions. The focus on user
activities represents a high-level, conceptual approach to test session design.

Sometimes a tester may prefer to use a low-level, “nuts-and-bolts” approach that focuses on
specific internal implementation commands, such as HTTP transactions. The WebLOAD DOM

WebLOAD JavaScript Reference Manual 185

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

extension set includes objects, methods, properties, and functions that support this approach.
Items in the WebLOAD JavaScript Reference Manual that are relevant to the HTTP Transaction
Mode, as opposed to the more commonly used User Activity Mode, are noted as such in the
entry.

See also

Actions, page 20

OnClick (property)

Property of Objects
Button Div
link script
Span TableCell
UlContainer

Description

Marks the click event that occurred to the parent object or the click event for which the script is
written. For example, if the user clicks with the left mouse button on a Button, the event for
the Button object is set to OnClick.

Example

<NA>
Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 Button, page 34
Checkbox, page 38 Collections, page 47
event, page 91 File, page 99
form, page 102 Forward(), page 106
Image, page 148 InputButton, page 157
InputCheckbox, page 158 InputFile, page 159
Inputimage, page 160 InputRadio, page 162

186

RadView Software

InputText, page 164
Navigate(), page 186
OnMouseOver, page 191
Refresh(), page 213
SetWindow(), page 244
TextArea, page 292
wiBrowser, page 325
wiClose(), page 329
wlMouseOver(), page 348
wlMultiSelect(), page 350
wilSubmit(), page 362

OnMouseOver (property)

OnMouseOver (property)

length, page 167
OnClick, page 190
Radiobutton, page 210
Select, page 231

text, page 291
UlContainer, page 301
wlClick(), page 326
wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Property of Objects
Div
Span

UlContainer

Description

link
TableCell

Marks the mouseover event that occurred to the parent object or the mouseover event for which
the script is written. For example, if the user moves the mouse pointer into an Image, the
event for the Image object is set to OnMouseOver.

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.

See also

Actions, page 20
Back(), page 27
Checkbox, page 38
event, page 91
form, page 102
Image, page 148

AutoNavigate(), page 26
Button, page 34
Collections, page 47
File, page 99
Forward(), page 106
InputButton, page 157

WebLOAD JavaScript Reference Manual

187

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Navigate(), page 186
OnMouseQver, page 191
Refresh(), page 213
SetWindow(), page 244
TextArea, page 292
wlBrowser, page 325
wlClose(), page 329
wlMouseOver (), page 348
wlMultiSelect(), page 350
wlSubmit(), page 362

Open() (function)

InputFile, page 159
InputRadio, page 162
length, page 167
OnClick, page 190
Radiobutton, page 210
Select, page 231

text, page 291
UlContainer, page 301
wlClick(), page 326
wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358
wiTypeln(), page 366

Method of Object

wlOutputFile

Description

Opens a file. When called as a stand-alone function, opens an input file. When called as a
method of the wlOutputFile object, opens an output file.

Syntax

Stand-Alone function:

Open (filename, FileReadFlaq)

For example:

InitAgenda () {

Open (“MyInitFile.txt”,

}
wlOutputFile method:

WLRandom)

MyFileObj = new wlOutputFile (filename)

MyFileObj.Open ()

188

RadView Software

OpenStream() (method)

Parameters

Stand-Alone function:
filename—A string with the name of the ASCII input file to be opened.

FileReadFlag—One of two flags signifying whether the input file should be read
sequentially (WLSequential, default) or randomly (WLRandom).

wlOutputFile method:
None

Return Value

None.

Comment

The Open () function must be included in the InitAgenda () function with the WLRandom
flag set if you wish random access to the input file. If you prefer the standard sequential access
then the function is not required.

See also
Close(), page 45 CopyFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

OpenStream() (method)

Method of Object
wiMediaPlayer
Description
This method opens a stream file for reading and playback.

Syntax
MyMediaPlayerObject.OpenStream (streamName)

WebLOAD JavaScript Reference Manual 189

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Parameters

streamName—String containing the name of the stream to access.

Return Value

None.

Example

<NA>

Comment

(331)

If streamName is empty (“”), the £i1leName property must be set before calling this

method.

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wiMediaPlayer, page 344

option (object)

Property of Object
Option objects are grouped into collections of options that are themselves properties of the
following:
element Select

Description

A collection of the nested <OPTION> objects only found within elements of type SELECT,
i.e., forms [n] .elements [n] .type = “SELECT”. Each option object denotes one
choice in a select element, containing information about a selected form element.

option objects are local to a single thread. You cannot create new option objects using the
JavaScript new operator, but you can access HTML options through the properties and
methods of the standard DOM objects. option properties are read-only.

190

RadView Software

option (object)

option objects are grouped together within collections of options. To access an individual
option’s properties, check the 1ength property of the options collection and use an index
number to access the individual options.

Syntax

To find out how many option objects are contained within a form element, check the value
of:

document.forms[#] .elements[#].options.length

Access each option’s properties directly using the following syntax:

document.forms[#] .elements[#] .options[#].<option-property>

For example:

document.forms[1l].elements[2].options[0].selected
Comment

Note that options only exist if the type of the parent element is <SELECT>, i.e.,
forms[n].elements[n].type = “SELECT”. For example, to check whether a form

element is of type <SELECT> and includes an options collection, you could use the following
Agenda:

function InitAgenda ()

{
wlGlobals.Proxy = "webproxy.xyz.com:8080"
// Through proxy

wlGlobals.SaveSource = "Yes"
wlGlobals.ParseForms = "Yesg"
wlGlobals.ParseTables = "Yes"

}
function CheckElementType (WebTestSite)

{
wlHttp.Get (WebTestSite)
if (document.forms.length > 0)
if (document.forms[0].elements.length > 0)

{

InfoMessage ("We have a candidate. " +
"Element type is " +
document.forms[0] .elements[0] .type)

InfoMessage
("document.forms[0] .elements[0] .options.length is "
+ document.forms[0] .elements[0] .options.length)

}

CheckElementType ("http://www.TestSitel.com/domain/pulldown.htm")

WebLOAD JavaScript Reference Manual 191

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

CheckElementType ("http://www.TestSite2.com/")
ErrorMessage ("Done!")

Properties
defaultselected, page 68 selected, page 233
text, page 291 value, page 310
See also
element, page 83 Select, page 231

OuterLink (property)

Property of Objects

Image

Description

Represents the outer link field for the parent image object.
Syntax

<NA>
Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

192 RadView Software

Ouffile (property)

Outfile (property)

Property of Objects

wlBrowser

Description

The name of a file to which WebLOAD writes response data from the HTTP server.

The Out £ile will contain the data from the next HTTP transaction, so the Outfile
command must precede the next transaction.

The default is """, which means do not write the response data.

If there is more than one transaction after the Out £i1e property, only the response data from
the first transaction will be written. To write the response data from each transaction an
Outfile statement must be placed PRIOR to each transaction.

The Out file property is independent of the SaveSource property. Outfile saves in a
file. SaveSource stores the downloaded data in document .wlSource, in memory.

Example

To write the response data from
“http://note/radview/radview.html” in
“c:\temp.html”

you might write:

wlHttp.Outfile = “c:\\temp.html”
wlHttp.Get (“http://note/radview/radview.html”)

Comment

The Out f£ile property saves server response data. To save Agenda output messages, use the
wlOutputFile.

See also

wlOutputFile, page 351 wlBrowser, page 325

PassWord (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

WebLOAD JavaScript Reference Manual 193

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Properties of Objects

wiGlobals wlLocals
wlHttp

Description

The password that the Agenda uses to log onto a restricted HTTP site. WebLOAD
automatically uses the appropriate access protocol. For example, if a site expects clients to use
the NT Authentication protocol, the appropriate user name and password will be stored and sent
accordingly.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the
current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |
Default or Current Options dialog box.

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box, illustrated in DefaultAuthentication,
page 66.

Syntax

You may also set user values using the wlGlobals properties. WebLOAD automatically
sends the user name and password when a wlHt tp object connects to an HTTP site. For
example:

wlGlobals.UserName = "Bill"

wlGlobals.PassWord = "TopSecret"

See also
Browser configuration components, page 30 Dialog box properties, page 73
Rules of scope for local and global variables, wiGlobals, page 339

page 111 in the WebLOAD Programming Guide
wlHttp, page 342 wlLocals, page 343
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

194 RadView Software

pathname (property)

pathname (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

link location

Description

The URI portion of the URL, including the directory path and filename (read-only string).

Example

"/products/order.html"
"/search.exe"

See also

link, page 169 location, page 176

Pause() (method)

Method of Object

wiMediaPlayer

Description

This method temporarily pauses the current play operation without changing the logical stream
position.

Syntax
MyMediaPlayerObject.Pause ()
Parameters
None
Return Value

None.

Example

<NA>

WebLOAD JavaScript Reference Manual 195

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

Play() (method)

Method of Object

wlMediaPlayer

Description

This method starts playback at the point of the specified starting time offset.

Syntax
MyMediaPlayerObject.Play(startPosition, duration)

Parameters

st art Posi ti on—Specifies the starting position within the stream in milliseconds. Player
will seek to the correct position in the stream. If startPosition is set to
CURRENTPOSITION, playback will start from the current position in the stream. If no
position is specified, playback will start from the beginning of the stream.

duration—Specifies the total stream length in milliseconds. In addition to passing an
explicit number, one of two global flag options may be used:

e ASYNCH_PLAY—function will return immediately. Test session continues
execution. The stream continues playing in the background until the end of the current
round or until the Stop () method is called, whichever comes first. (default)

e INFINITE PLAY—function will play to the end of the file and not return. Test session
is held (paused) until the end of the stream is reached. If the stream is live and does not
end, the test session will be held indefinitely.

Player will seek to the correct position in the stream. If startPosition is set to
CURRENTPOSITION, playback will start from the current position in the stream. If no
position is specified, playback will start from the beginning of the stream.

196 RadView Software

port (property)

Return Value

None.

Example
<NA>

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

port (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

link location

Description

The port of the URL (read-only integer).

Example
80

See also

link, page 169 location, page 176

WebLOAD JavaScript Reference Manual 197

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Post() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

wlHttp

Description

Perform an HTTP or HTTPS Post command. The method sends the FormData, Data, or
DataFile properties in the Post command. In this way, you can submit any type of data to an
HTTP server.

Syntax

Post ([URL] [, TransName])

Parameters

[URL]—An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the method. Post() connects to first
URL that has been specified from the following list:

1. A Url parameter specified in the method call.
2. The Url property of the wl1Ht tp object.

3. The local default wlLocals.Url.

4. The global default wlGlobals.Url.

The URL must be a server that accepts the posted data.

[TransName]—An optional user-supplied string with the transaction name as it will appear
in the Statistics Report, described in Data Drilling—WebLOAD transaction reports, page 149
in the WebLOAD Programming Guide.

Use named transactions to identify specific HTTP transactions by name. This simplifies
assigning counters when you want WebLOAD to automatically calculate a specific
transaction’s occurrence, success, and failure rates.

The run-time statistics for transactions to which you have assigned a name appear in the
Statistics Report. For your convenience, WebLOAD offers an Automatic Transaction
option. On the Console, select Automatic Transaction from the General Tab of the Global
Options dialog box. Automatic Transaction is set to True by default. With Automatic
Transaction, WebLOAD automatically assigns a name to every Get and Post HTTP
transaction. This makes statistical analysis simpler, since all HTTP transaction activity is
measured, recorded, and reported for you automatically. You do not have to remember to

198

RadView Software

Post() (method)

add naming instructions to each Get and Post command in your Agenda. The name
assigned by WebLOAD is simply the URL used by that Get or Post transaction. If your
Agenda includes multiple transactions to the same URL, the information will be collected
cumulatively for those transactions.

Return Value

None

Example

function InitAgenda ()
//Set the default URL
wlGlobals.Url = "http://www.ABCDEF.com"

}
//Main script

//Connect to the default URL:
wlHttp.Post ()

//Connect to a different, explicitly set URL:
wlHttp.Post ("http://www.ABCDEF.com/product info.html")

//Assign a name to the following HTTP transact:
wlHttp.Get ("http://www.ABCDEF.com/product info.html",
“UpdateBankAccount”)

//Submit to a CGI program

wlHttp.Url = "http://www.ABCDEF.com/search.cgi"
wlHttp.FormData["SeachTerm"] = "oceantcurrents"
wlHttp.Post ()

//Submit to an HTTP server of any type
wlHttp.FormData["FirstName"] = "Bill"
wlHttp.FormData["LastName"] = "Smith"

wlHttp.Post ("http://www.ABCDEF.com/formprocessor.exe")

Use named transactions as a shortcut in place of the
BeginTransaction () ...EndTransaction () module. For example, this is one way to
identify a logical transaction unit:

BeginTransaction (“UpdateBankAccount”)
wlHttp.Get (url)
// the body of the transaction
.. // any valid JavaScript statements
wlHttp.Post (url) ;
EndTransaction (“UpdateBankAccount”)
// and so on

Using the named transaction syntax, you could write:

wlHttp.Get (url, “UpdateBankAccount”)
// the body of the transaction
// any valid JavaScript statements

WebLOAD JavaScript Reference Manual 199

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wlHttp.Post (url, “UpdateBankAccount”)
// and so on

For the HTTPS protocol, include "https://" in the URL and set the required properties of
the wlGlobals object:

wlHttp.Post ("https://www.ABCDEF.com")

The URL can contain a string of attribute data.

wlHttp.Post ("http://www.ABCDEF.com/query.exe"+
"?SearchFor=icebergs&SearchType=ExactTerm")

Alternatively, you can specify the attributes in the FormData or Data property. The method
automatically appends these in the correct syntax to the URL. Thus the following two code
fragments are each equivalent to the preceding Post command.

wlHttp.Data.Type = "application/x-www-form-urlencoded"
wlHttp.Data.Value = "SearchFor=icebergs&SearchType=ExactTerm"
wlHttp.Post ("http://www.ABCDEF.com/query.exe")

or

wlHttp.FormData.SearchFor = "icebergs"
wlHttp.FormData.SearchType = "ExactTerm"
wlHttp.Post ("http://www.ABCDEF.com/query.exe") <NA>

Comment

You may not use the TransName parameter by itself. Post () expects to receive either no
parameters, in which case it uses the Agenda’s default URL, or one parameter, which must be
an alternate URL value, or two parameters, including both a URL value and the transaction
name to be assigned to this transaction.

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59
Data, page 63

DataFile, page 65

Functional Testing and Reporting, page 127 in the
WebLOAD Programming Guide

SetFailureReason(), page 239
wlHttp, page 342

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

FormData, page 104
ReportEvent(), page 214

VerificationFunction() (user-defined), page 320

200

RadView Software

Prepare() (method)

Prepare() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

TableCompare

Description

This method prepares the expected table associated with a TableCompare object for later
comparison using the Compare method. Used in the InitClient () function, right after
creating a new TableCompare object.

Syntax
Prepare ()
Parameters

None

Return Value

None

Example

<NA>

Comment

The Prepare () method is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program.. WebLOAD recommends managing
tables on a Web page through the standard document.all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

WebLOAD JavaScript Reference Manual 201

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)
wlTable, page 364 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

ProbingClientThreads (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Properties of Objects

wilGlobals wiLocals
wlHttp

Description

Optionally, WebLOAD can allocate extra threads to download nested images and frames.

For clients that you define in a Load Generator, this option is controlled by the
LoadGeneratorThreads property. The default value of this property is "Single", which
means that Virtual Clients will not use extra threads to download data from the Server.

For the Probing Client, the option is controlled by the ProbingClientThreads property.
The default is "Multiple", which means that the client can use three extra threads for nested
downloads. This simulates the behavior of Web browsers, which often use extra threads to
download nested images and frames.

The possible values of these properties are:

4 Single—Do not use extra threads to download nested images and frames. (default for
LoadGeneratorThreads)

4 Multiple—Allocate three extra threads per client (for a total of four threads per client)
to download nested images and frames. (default for ProbingClientThreads)

4 Any specific number of threads between 1 and 8, such as " 5" —Allocate that exact
number of extra threads per client to download nested images and frames.

Example

You can assign any of these properties independently within a single Agenda. In that case, if
you configure a Probing Client to run the Agenda, WebLOAD uses the value of
ProbingClientThreads and ignores LoadGeneratorThreads (vice versa if you
configure a Load Generator to run the Agenda). For example, you might write:

202

RadView Software

protocol (property)

function InitAgenda() {
//Do not use extra threads if a
// Probing Client runs the Agenda
wlGlobals.ProbingClientThreads = "Single"

//Use extra threads if a
// Load Generator runs the Agenda
wlGlobals.LoadGeneratorThreads = "Multiple"

}

Comment

The extra threads have no effect on the C1ientNum value of the client. The C1ientNum
variable reports only the main thread number of each client, not the extra threads.

GUI mode

WebLOAD recommends enabling or disabling multi-threaded virtual clients through the
Console GUI. Enable multi-threading for the Load Generator or for the Probing Client during a
test session by checking the appropriate box in the Browser Emulation tab of the Tools |
Default Options dialog box and setting the number of threads you prefer, as illustrated in the
following figure:

MultT hread Yirtual Clients

¥ Probing Client [+ =
™ Load Generator |1 3:

Figure 2-25: Enabling multi-threading for Load Generator

See also
Browser configuration components, page 30 LoadGeneratorThreads, page 173
Rules of scope for local and global variables, wlGlobals, page 339

page 111 in the WebLOAD Programming Guide
wlHttp, page 342 wlLocals, page 343

protocol (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

Image link

WebLOAD JavaScript Reference Manual 203

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

location

Description
The HTTP protocol portion of the URL for the parent object (read-only string).

Example
"https://"

See also

Image, page 148 link, page 169

location, page 176

Proxy, ProxyUserName, ProxyPassWord (properties)

Mode

The following properties are usually inserted manually only when working in the HTTP
Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Properties of Objects

wilGlobals wiLocals
wlHttp

Description

Identifies the proxy server that the Agenda uses for HTTP access. The user name and password
are for proxy servers that require user authorization.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the
current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |
Default or Current Options dialog box.

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box, illustrated in DefaultAuthentication,
page 66.

204 RadView Software

Radiobutton (object)

Syntax

You may also set proxy user values using the wlGlobals properties. WebLOAD
automatically connects via the proxy when a wlHt tp object connects to an HTTP site.

W1lGlobals. ProxyProperty = “TextString”

Example
wlGlobals.Proxy = "proxy.ABCDEF.com:8080"
wlGlobals.ProxyUserName = "Bill"
wlGlobals.ProxyPassWord = "Classified"
See also
Browser configuration components, page 30 Dialog box properties, page 73
Rules of scope for local and global variables, Security, page 89 in the WebLOAD Programming
page 111 in the WebLOAD Programming Guide Guide
wiGlobals, page 339 wlHttp, page 342
wilLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

Radiobutton (object)

Property of Objects

Radiobutton objects on a Web page are accessed through the document.all collection
of the standard DOM structure.

Description

Each Radiobutton object represents one of the radiobuttons embedded in a document.
(Compare to the element object, which stores the parsed data for a single HTML form element,
where the element may be any one of a variety of types, and the form object, which stores the
parsed data for an entire HTML form.)

Syntax
document.all.tags[“RADIO"]

Methods
wlClick(), page 326 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
wlMultiSelect(), page 350 wiSelect(), page 358
Properties
AdjacentText, page 23 id, page 143

WebLOAD JavaScript Reference Manual 205

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Name, page 184 value, page 310

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

Range() (method)

Method of Object

wilRand

Description
Return a random integer between start and end.
Syntax
wlRand.Range (start, end, [seed])
Parameters
start—Integer signifying start of specified range of numbers.

end—Integer signifying end of specified range of numbers.

[seed]—Optional seed integer used on first call to this method only if there was no previous
call to the wlRand. Seed () method.

Return Value

A random integer that falls within the specified range.

206 RadView Software

ReceiveTimeout (property)

Example

wlRand.Num(12345)

See also
Num(), page 188 Range(), page 211
Seed(), page 231 Select(), page 232

wlRand, page 355

ReceiveTimeout (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals wiLocals
wlHttp

Description

If the Agenda is not able to connect to a server, the Agenda will wait and then retry to establish
a connection. ReceiveTimeout is the amount of time, in milliseconds, that the Agenda will
wait before attempting to reconnect.

GUI mode

Connection timeout values should be set through the Visual AAT or Console GUL

Example
wlBrowser.ReceiveTimeout = 900000
See also
Browser configuration components, page 30 Dialog box properties, page 73
RequestRetries, page 217 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wiHttp, page 342
wiLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 207

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

RedirectionLimit (property)

Property of Objects

wiBrowser

Description

The maximum number of redirection ‘hops’ allowed during a test session. The default value is
10.

GUI mode

WebLOAD recommends setting the redirection limit through the Console GUI. Check
Redirection Enabled and enter a limiting number on the Browser Emulation tab of the Tools |
Default or Current Options dialog box, as illustrated in the following figure:

Redirection

¥ Rediection Enabled

Redirection Limi: |10 -

Figure 2-26: Setting Redirection Limit

Syntax

You may also assign a redirection limit value using the wlBrowser.RedirectionLimit
property.
wlBrowser.RedirectionLimit = IntegerValue

Example

wlBrowser.RedirectionLimit = 10
See also

wlBrowser, page 325

Refresh() (action)

Method of Objects

wiBrowser

Description

Emulate clicking on the refresh button in the browser to reload the current page.

208 RadView Software

ReportEvent() (function)

Syntax

wlBrowser.Refresh ()
Parameters
None
Return Value
None
Example
<NA>
Comment

This method implements a special category of user action—clicking on a specific browser
shortcut button from the Microsoft IE toolbar.

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 event, page 91
Forward(), page 106 Navigate(), page 186
OnClick, page 190 OnMouseOver, page 191
Refresh(), page 213 SetWindow(), page 244
wiBrowser, page 325 wlClick(), page 326
wlClose(), page 329 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
wlMultiSelect(), page 350 wiSelect(), page 358
wilSubmit(), page 362 wlTypeln(), page 366

ReportEvent() (function)

Description

This function enables you to record specific events as they occur. This information is very
helpful when analyzing Web site performance with Data Drilling. (See Data Drilling—
WebLOAD transaction reports, page 149 in the WebLOAD Programming Guide, for more
information.)

Syntax

ReportEvent (EventName [, description])

WebLOAD JavaScript Reference Manual 209

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Parameters

EventName—A user-supplied string that identifies the specific event and appears in the
results tables of the WebLOAD Data Drilling feature. Since this name is used as a table header
and sort key, it must be a short string that is used consistently to identify events, such as

“URLMismatch”.

[description]—An optional user-supplied string that may be longer and more detailed
than the EventName, providing more information about the specific event.

Return Value

None.

Example

<NA>

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

ReportLog() (method)

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wlBrowser, page 325

Method of Object

wlException

Description

Sends a message to the Log Window that includes the error message and severity level stored

in this wlException object.

210

RadView Software

Syntax
ReportLog ()
Parameters

None

Return Value

None

Example

myUserException.ReportLog ()
See also

Error Management, page 104 in the WebLOAD
Programming Guide

ExceptionEnabled, page 92
GetSeverity(), page 133

LiveConnect Overview, page 255 in the
WebLOAD Programming Guide

ReportLog(), page 215
Using the IntelliSense JavaScript Editor, page 18
wlException, page 331

ReportUnexpectedRows (property)

ErrorMessage(), page 89

GetMessage(), page 129
InfoMessage(), page 152
Message functions, page 180

SevereErrorMessage(), page 245
WarningMessage(), page 323

wlException() object constructor, page 333

ReportUnexpectedRows (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Object

TableCompare

Description

Specifies whether table comparison should simply be completed for rows found in the first
table, compared against rows found in the second table, ignoring any extra, additional rows
found in the second table (false), or whether the user should be notified about any unexpected

rows found in the second table (true).

WebLOAD JavaScript Reference Manual

211

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax

Boolean (true/false, default true)

Example
a.ReportUnexpectedRows = false
Comment

The ReportUnexpectedRows property is used with the TableCompare Wizard, which is
only available to users of the manual AAT Agenda recording program. WebLOAD
recommends managing tables on a Web page through the standard document.all

collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (w1 Table property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72
id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178
Prepare(), page 205 ReportUnexpectedRows, page 216
row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cel1l property)

wlTable, page 364
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

RequestRetries (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wilGlobals wiLocals
wlHttp

212 RadView Software

Reset

Description

If a Virtual Client is not able to connect to a server, the Virtual Client will wait and then retry to
establish a connection. RequestRetries isthe maximum number of times that the Virtual
Client will attempt to reconnect.

GUI mode
Connection retry values should be set through the Visual AAT or Console GUI.

Example

wlGlobals.RequestRetries = 7

See also

Browser configuration components, page 30 Dialog box properties, page 73

ReceiveTimeout, page 212 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

wilGlobals, page 339 wlHttp, page 342

wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Reset

Reset (object)

Property of Objects

Reset objects on a Web page are accessed through the document.all collection of the
standard DOM structure.

Description

One of the form input controls, where input type = reset. Each Reset object
represents a button that, when clicked, resets the form's controls to their initial values.
(Compare to the element object, which stores the parsed data for a single HTML form element,
where the element may be any one of a variety of types, and the form object, which stores the
parsed data for an entire HTML form.)

Syntax

document.all.tags[“RESET"”]
Methods

wlClick(), page 326 wlMouseDown(), page 347

WebLOAD JavaScript Reference Manual 213

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wlMouseOver (), page 348
wlMultiSelect(), page 350

Properties

event, page 91
InnerText, page 155
OnClick, page 190
value, page 310

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

Reset() (method)

wiMouseUp(), page 349
wiSelect(), page 358

id, page 143
Name, page 184
title, page 296

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputimage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

Method of Object

wlOutputFile()

Description

Return to the beginning of the output file.

Syntax
Reset ()
Parameters
None
Return Value

None

214

RadView Software

Example

MyFileObj =

MyFileObj.Reset ()

See also

Close(), page 45
delete(), page 70
GetLine(), page 124
Open(), page 193

Using the Form Data Wizard, page 35 in the
WebLOAD Programming Guide

wlOutputFile, page 351
Write(), page 372

Resume() (method)

Resume() (method)

new wlOutputFile (filename)

CopyFile(), page 57

File management functions, page 100
IncludeFile(), page 150

Reset(), page 219

Using the IntelliSense JavaScript Editor, page 18

wlOutputFile(), page 354
Writeln(), page 373

Method of Object

wiMediaPlayer

Description

This method resumes playback from the current point in the stream following a Pause ()

method call.
Syntax
MyMediaPlayerObject.Resume ()
Parameters
None
Return Value
None.
Example
<NA>
See also

bitrate, page 30

currentPosition, page 62

connectionBandwidth, page 53

currentStreamName, page 62

WebLOAD JavaScript Reference Manual

215

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200

Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278

type, page 300 wlMediaPlayer, page 344

RoundNum (variable)

Description

The number of times that WebLOAD has executed the main script of a client during the
WebLOAD test, including the current execution. RoundNum is a read-only local variable,
reporting the number of rounds for the specific WebLOAD client, no matter how many other
clients may be running the same Agenda.

RoundNum does not exist in the global context of an Agenda (InitAgenda (), etc.). In the
local context:

¢ InInitClient (), RoundNum= 0.
4 In the main script, RoundNum= 1, 2, 3,

4 InTerminateClient(),OnScriptAbort (), or
OnErrorTerminateClient (), RoundNum keeps its value from the final round.

The WebLOAD clients do not necessarily remain in synchronization. The RoundNum may
differ for different clients running the same Agenda.

If a thread stops and restarts for any reason, the RoundNum continues from its value before the

interruption. This can occur, for example, after you issue a Pause command from the
WebLOAD Console.

If you mix Agendas in a single Load Generator, WebLOAD maintains an independent round
counter for each Agenda. For example, if agendal has executed twice and agenda?2 has
executed three times on a particular thread, the RoundNum of agendal is 2 and the
RoundNum of agenda? is 3.

Example

<NA>

GUI mode

WebLOAD recommends accessing global system variables, including the RoundNum
identification variable, through the Visual AAT GUI. To see a list of global system variables,
highlight the top-level Agenda node in the Agenda Tree, find the GlobalVariables section
of the Properties pane, and click on the browse button of the System field. A complete list of
system variables and macros pops up, as illustrated in the following figure. The variables that

216

RadView Software

appear in this list are available for use at any point in an Agenda file. For example, it is

RoundNum (variable)

convenient to add RoundNum to a Message Node to clarify the round in which the messages
that appear in the Console Log window originated.

& Global System Yariables x|
J E ﬁ +"* T a = Attributes ;I
e P Agenda
Hame Description P Comments
Roundrum Returns the number of raun 2 GlobalVariables
Cliertrtum Returnz the main thread nu _I
Generatorflame]) Returns the name of this loa _# UserDefined
SCURiguelD) Returns & string unique to t
Randomtumber() Generate a random number
TodaysDate() Currert date (1-31)
TodaysDay() Current Day (0-6, 0==Sund
Todaysharth() Current Month (0-117
Thisear() Currert Year (4-digit, .. 2
Hours() Current Hour (0-23)
Minutes() Current minutes (0-59)
Seconds() Current seconds (0-59)
Millizeconds() Currert ms value
Timer) Time in ms since 144970
GMTDate) Current date in GMTUTC as
LocalDate) Currert date in local time as

Figure 2-27: Global System Variables List

Note that RoundNum can also be added directly to the code in an Agenda through the
IntelliSense Editor, described in Using the IntelliSense JavaScript Editor, page 18. Select a
function from the Edit | Insert | JavaScript | Copy/Include Files menu. The Visual AAT
automatically inserts the correct code for the selected variable into the Agenda file. The user
may then edit variable values without any concerns about mistakes in the function syntax.

WebLOAD JavaScript Reference Manual

217

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

il Import Java Script File. ..
Clgar Java Script Editor
wiGlobals
IkitA T erminate Functions 3
| Foundum | ,
Sleep(«<Time:] i Meszage Commands 3
.) . Fandom MHumber Commands »
<Line_Amay: = GetLine("<File_Mame:"['"<Separator:"])
<File_Line_Murmz = <Line_Arrays LingMun COM Objects 4
<File_[teration_Mumz = <Line_amay: RoundMum Java Objects »

<Tokenr = <Line_aAmay:[<Toker_|ndex:]

<File_Ohject> = new wiDutputFile"<File_Mame:"']
wlDutputFile. Dpen(*'<File_Mame:")

wiDutputFile. Cloze['<File_Mame>")

wlDutputFile. Delete] "< File_Mame:"

wiDutputFile ke[« String: |

w0 utputFile kel < String:

wiDutputFile. Reset[)

Figure 2-28: Inserting RoundNum

See also
ClientNum, page 43 GeneratorName(), page 108
GetOperatingSystem(), page 130 Identification variables and functions, page 146
RoundNum, page 221 User-defined global properties, page 304

Using the IntelliSense JavaScript Editor, page 18 VCUniquelD(), page 312

row (object)

Mode

This object is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

row objects are grouped into collections of rows. The rows collection is a property of the
following objects:

TextArea wiTable

Description

When working with TextArea element objects, a row object contains the number of rows in
the TextArea.

218 RadView Software

row (object)

When working with wlTables objects, a row object contains all the data found in a single
table row. Individual row objects may be addressed by index number, similar to any object
within a collection.

Syntax
Elements object:
<NA>
wiTables object:

Individual row objects are addressed by index number, similar to any object within a
collection. Access each row’s properties directly using the following syntax:

document.wlTables.myTable.rows [#] .<row-property>
Example
wiTables object:
To find out how many row objects are contained within myTable, check the value of:

document.wlTables.myTable.rows.length

To access a property of the 16™ row in myTable, with the first row indexed at 0, you could
write:

document .wlTables.myTable.rows[15] .rowIndex

To access a property of the 4™ cell in the 3™ row in myTable, counting across rows and with
the first cell indexed at 0, you could write:

document .wlTables.myTable.rows[2] .cells[3] .<cell-property>

Properties

wlTables object:

Each row object contains information about the data found in the cells of a single table row.
The row object includes the following properties:

rowlndex, page 225 (row property) cell, page 35 (row property)

Comment

The row object may be accessed as a member of the w1l Tables family of table, row, and cell
objects. WebLOAD recommends managing tables on a Web page through the standard
document.all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]

WebLOAD recommends accessing the first table on a page through the following:

WebLOAD JavaScript Reference Manual 219

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

myFirstTableObject = document.all.tags ("TABLE") [0]

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72
id, page 143 (w1 Table property) InnerHTML, page 153 (cel1l property)
InnerText, page 155 (cell property) MatchBy, page 178
Prepare(), page 205 ReportUnexpectedRows, page 216
row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)
wlTable, page 364 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

rowilndex (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

row

Description

An integer containing the ordinal index number of this row object within the parent table.
Rows are indexed starting from zero, so the rowIndex of the first row in a table is 0.

Syntax
<NA>

Example
<NA>

Comment

The rowIndex property is a member of the wlTables family of table, row, and cell objects.
WebLOAD recommends managing tables on a Web page through the standard

220 RadView Software

SaveSource (property)

document.all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

myFirstTableObject = document.all.tags ("TABLE") [0]

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)

wiTable, page 364 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

SaveSource (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals wlLocals
wlHttp

Description

Instruct WebLOAD to store the complete HTML source code downloaded in an HTTP
command.

4 No—Do not store the source HTML. (default)

4 Yes—Store the source HTML in document .wlSource.

WebLOAD JavaScript Reference Manual 221

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

If you enable SaveSource, WebLOAD automatically stores the downloaded HTML
whenever the Agenda calls the wlHttp.Get () or wlHttp.Post () method. WebLOAD
stores the most recent download in the document . wlSource property, refreshing it when
the Agenda calls wlHttp.Get () or wlHttp.Post () again. The stored code includes any
scripts or other data embedded in the HTML. Your Agenda can retrieve the code from
document .wlSource and interpret it in any desired way.

Example
<NA>
See also
Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlHttp, page 342
wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

SaveTransaction (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wilGlobals

Description

Instruct WebLOAD to save detailed information about all transactions, both successes and
failures, for later analysis in the Data Drilling reports. (See Data Drilling—WebLOAD
transaction reports, page 149 in the WebLOAD Programming Guide, for more information
about the Data Drilling report set.)

By default, WebLOAD only saves detailed information about transaction failures for later
analysis, since most test sessions are focused on tracking down and identifying the causes of
errors and failures. WebLOAD also provides the option of storing and analyzing the data for all
transactions in a test session, successes and failures, through the SaveTransaction
property. However, this property should be used carefully, since a successful test session may
run for an extended period, and saving data on each transaction success could quickly use up all
available space. Possible values are:

4 No—Do not store detailed data on successful transactions. (default)

¢ Yes—Store detailed data on successful transactions.

222

RadView Software

SaveWSTransaction (property)

Example

function InitAgenda () {
wlGlobals.SaveTransaction = True

}

Comment
As with all wlGlobals configuration properties, the SaveTransaction property must be
set in the InitAgenda () function, as illustrated in the preceding example.

See also

Adding transactions, page 49 in the WebLOAD BeginTransaction(), page 28
Programming Guide

Browser configuration components, page 30 Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in SaveWSTransaction, page 228
the WebLOAD Programming Guide

wlGlobals, page 339 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

SaveWSTransaction (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals

Description

Instruct WebLOAD to save detailed information about all WebServices transactions for later
analysis in the Data Drilling reports, both failures and successes. (See Data Drilling—
WebLOAD transaction reports, page 149 in the WebLOAD Programming Guide, for more
information about the Data Drilling report set.) Web Services transactions are identified in the
Data Drilling reports by the name of the Web Service combined with the name of the specific
method being called.

By default, WebLOAD only saves detailed information about transaction failures for later
analysis, since most test sessions are focused on tracking down and identifying the causes of
errors and failures. WebLOAD also provides the option of storing and analyzing the data for all
transactions in a test session, successes and failures, through the SaveTransaction
property. However, this property should be used carefully, since a successful test session may

WebLOAD JavaScript Reference Manual 223

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

run for an extended period, and saving data on each transaction success could quickly use up all
available space. For test sessions that are focusing on Web Services, WebLOAD provides the
compromise option of saving data on all transaction failures, as usual, plus data on all Web
Services transactions, both failures and successes. This provides maximum information about
the Web Services activities while minimizing the storage space required. Possible values are:

4 No—Do not save all WebServices transaction information. (default)
4 Yes—Store detailed data on all WebServices transactions, both successes and failures.

Example

function InitAgenda () {
wlGlobals.SaveWSTransaction = True

}

function InitClient () {
var BNQuoteService = new WSWebService ("BNQuoteService",
"http://www.xmethods.net/sd/2001/BNQuoteService.wsdl") ;
}

var retVal = BNQuoteService.getPrice ("12344");

In this case, data on all Web Services transactions would be included in the Data Drilling report
set. The Web Services transactions would be identified in the tables as
BNQuoteServices.getPrice.

Comment

As with all wlGlobals configuration properties, the SaveWSTransaction property must
be set in the InitAgenda () function, as is illustrated in the preceding example.

See also

Adding transactions, page 49 in the WebLOAD BeginTransaction(), page 28

Programming Guide

Browser configuration components, page 30 Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in SaveTransaction, page 227

the WebLOAD Programming Guide

wlGlobals, page 339 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Working with Web Services, page 30, in the Working with Web Services complex types, page

WebLOAD Programming Guide 207, in the WebLOAD Programming Guide

224 RadView Software

script (object)

script (object)

Property of Object

When working in the HTTP Protocol mode, scripts on a Web page are accessed through
script objects that are grouped into collections of scripts. The scripts collection is a
property of the following object:

document

Description

Specifies a script object in the current document that is interpreted by a script engine.
script objects are grouped together within collections of scripts.

Syntax

The scripts collection includes a length property that reports the number of script objects
within a document (read-only). To access an individual script’s properties, check the length
property of the scripts collection and use an index number to access the individual scripts.
For example, to find out how many script objects are contained within a document, check the
value of:

document.scripts.length
Access each script’s properties directly using the following syntax:
document.scripts[index#] .<scripts-property>

Example

document.scripts[l].language

Properties
event, page 91 id, page 143
InnerHTML, page 153 language, page 167

src, page 255

See also

Collections, page 47 document, page 79

length, page 167

WebLOAD JavaScript Reference Manual 225

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

search (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

link location

Description

The search attribute string of the URL, not including the initial ? symbol (read-only string).
Example

"SearchFor=modems&SearchType=ExactTerm"

See also

link, page 169 location, page 176

Seed() (method)

Method of Object

wilRand

Description

Initialize the random number generator. Call the Seed () method in the InitAgenda ()
function of an Agenda, using any integer as a seed.

Syntax
wlRand. Seed (seed)
Parameters
seed—seed integer.
Return Value

None.

Example

wlRand.Seed (12345)

226

RadView Software

Select

See also
Num(), page 188 Range(), page 211
Seed(), page 231 Select(), page 232

wlRand, page 355

Select

Select (object)

Property of Objects
Select objects on a Web page are accessed through the document.all collection of the
standard DOM structure.

Description

Denotes a list box or drop-down list. Each Select object represents one of the input selection
fields embedded in a document. (Compare to the element object, which stores the parsed data
for a single HTML form element, where the element may be any one of a variety of types, and
the form object, which stores the parsed data for an entire HTML form.)

Syntax
document.all.tags[“SELECT"”]

Methods
wlClick(), page 326 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
wlMultiSelect(), page 350 wiSelect(), page 358

wlTypeln(), page 366

Properties

id, page 143 Name, page 184
Size, page 247

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148

WebLOAD JavaScript Reference Manual 227

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291

TextArea, page 292 UlContainer, page 301

Select() (method)

Method of Object

wilRand

Description

Select one element of a set at random.
Syntax

wlRand.Select (vall, valz, ., valN)
Parameters

vall...valN—Any number of parameters itemizing the elements in a set. The parameters can be
numbers, strings, or any other objects.

Return Value
The value of one of its parameters, selected at random.

Example

wlRand.Select (21, 57, 88, 93)

See also
Num(), page 188 Range(), page 211
Seed(), page 231 Select(), page 232

wlRand, page 355

228 RadView Software

selected (property)

selected (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects
option

Description

The selected property has a value of true if this <OPTION> element has been selected, or
false otherwise (read-only).

Syntax
<NA>

See also

location, page 176 option, page 195

selectedindex (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

element location

Description

Indicates which of the nested <OPTION> elements is selected in an element of type
<SELECT>. The possible valuesare 0, 1, 2, ... For example, if the first <OPTION>
element is selected, then selectedindex = 0 (read-only). The default value is 0.

Syntax
<NA>

See also

element, page 83 location, page 176

WebLOAD JavaScript Reference Manual 229

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

SendCounter() (function)

Description

Use this function to count the number of times an event occurs and output the value to the
WebLOAD Console. Call SendCounter () in the main script of an Agenda.

Syntax

SendCounter (EventName)
Parameters

EventName—A string with the name of the event being counted.
Return Value

None

Example
<NA>

See also

Adding timers, page 26 in the WebLOAD Programming Guide

SendCounter(), page 234 SendMeasurement(), page 235
SendTimer(), page 236 SetTimer(), page 241
Sleep(), page 247 SynchronizationPoint(), page 281

Timing functions, page 295

SendMeasurement() (function)

Description

Use this function to assign a value to the specified statistical measurement. Call
SendMeasurement () in the main script of an Agenda.

Syntax
SendMeasurement (MeasurementName, value)

Parameters
MeasurementName—A string with the name of the measurement being set.
value—An integer value to set.

Return Value

None

230 RadView Software

SendTimer() (function)

Example

wlHttp.Navigate ("http://www.yahoo.com/")
NumberOfImagesInPage = document.images.length
SendMeasurement ("NumberOfImagesInPage", NumberOfImagesInPage)

GUI mode

WebLOAD recommends setting measurement functions within Agenda files directly through
the Visual AAT GUI. For example, the following figure illustrates adding a
SendMeasurement () function to an Agenda Tree. The corresponding code appears in the
JavaScript View pane in the center and the properties are in the Properties pane on the right.

.Sleep[441] Function Mame: ModeScript i

Click::lmage

Bl

. temiame SendMeas...

SendMeasurement ["Measurementl1™, 25)

hittp: £ Ao netizen ..# Comments

hdkeasurement:: = SendMeasurement
& JavaScriptObie ..F Mame Measurem...
Sleep(1703) P value 25

Mouzel)p::Imag

Figure 2-29: Adding a measurement node to an Agenda

See also

Adding timers, page 26 in the WebLOAD Programming Guide

SendCounter(), page 234 SendMeasurement(), page 235
SendTimer(), page 236 SetTimer(), page 241
Sleep(), page 247 SynchronizationPoint(), page 281

Timing functions, page 295

SendTimer() (function)

Description

Use this function to output the value of a timer to the WebLOAD Console. Call
SendTimer () in the main script of an Agenda, immediately after any step or sequence of
steps whose time you want to measure. Before the sequence of steps, you must call
SetTimer () to zero the timer.

Syntax

SendTimer (TimerName)
Parameters

TimerName—A string with the name of the timer being sent to the Console.
Return Value

None

WebLOAD JavaScript Reference Manual 231

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

SendTimer ("Link 3 Time")

GUI mode

WebLOAD recommends setting timer functions within Agenda files directly through the Visual

AAT GUI. For example, the following figure illustrates adding a SendTimer () function to

an Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

]

Sleep[2?84];|
- @2 Click::Link
(B SendTimer:
@ hittp: £ A neti;
e B JavaScrptd
Sleep(9764]

-HE: BeginTrans:

Function M ame: ModeS cript

| SendTimer ("Timeri™)

=]

temiame
.# Comments

SendTimer

* Mame

Attributes

SendTimer: Timer1

Timer1

Figure 2-30: Adding a SendTimer node to an Agenda

See also

Adding timers, page 26 in the WebLOAD Programming Guide
SendCounter(), page 234

SendTimer(), page 236
Sleep(), page 247

Timing functions, page 295

Set() (method)

SendMeasurement(), page 235
SetTimer(), page 241

SynchronizationPoint(), page 281

Set() (addition method)

Method of Objects

wilGeneratorGlobal

Description

wiSystemGlobal

Assigns a number, Boolean, or string value to the specified shared variable. If the variable does

not exist, WebLOAD will create a new variable.

Syntax

Set (“SharedvarName”, wvalue, ScopeFlag)

232

RadView Software

Parameters

Set() (method)

SharedVarName—The name of a shared variable to be set.

value—The value to be assigned to the specified variable.

ScopeFlag—One of two flags, WLCurrentAgenda or WLA11Agendas, signifying the

scope of the shared variable.

e When used as a method of the wlGeneratorGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, part of a single process, running on a

single Load Generator.

¢ The WLAl11Agendas scope flag signifies variable values that you wish to share
between all threads of one or more Agendas, common to a single spawned process,
running on a single Load Generator.

e When used as a method of the wlSystemGlobal object:

¢ The WLCurrentAgenda scope flag signifies variable values that you wish to
share between all threads of a single Agenda, potentially shared by multiple
processes, running on multiple Load Generators, system wide.

¢ The WLAl1Agendas scope flag signifies variable values that you wish to share
between all threads of all Agendas, run by all processes, on all Load Generators,

system-wide.
Return Value

None

Example

wlGeneratorGlobal.Set (“MySharedCounter”, 0, WLCurrentAgenda)

wlSystemGlobal.Set (“MyGlobalCounter”, 0, WLCurrentAgenda)

See also

Add(), page 21

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

wlGeneratorGlobal, page 334

Set() (cookie method)

Get(), page 110
User-defined global properties, page 304

wiSystemGlobal, page 363

Method of Object

location

wlCookie

WebLOAD JavaScript Reference Manual

233

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Description

Creates a cookie.

You can set an arbitrary number of cookies in any thread. If you set more than one cookie
applying to a particular domain, WebLOAD submits them all when it connects to the domain.

Syntax
wlCookie.Set (name, value, domain, path [, expirel])
Parameters

name—A descriptive name identifying the type of information stored in the cookie, for
example, "CUSTOMER".

value—A value for the named cookie, for example, "JOHN SMITH".

domain—The top-level domain name to which the cookie should be submitted, for example,
"www .ABCDEF . com".

path—The top-level directory path, within the specified domain, to which the cookie is
submitted, for example, "/".

expire—An optional expiration timestamp of the cookie, in a format such as "Wed, 08-
Apr-98 17:29:00 GMT".

Return Value

None

Comment

Set cookies within the main script of the Agenda. WebLOAD deletes all the cookies at the end
of each round. If you wish to delete cookies in the middle of a round, use the Delete () or
ClearAll () method.

Example

If you combine the examples used to illustrate the parameters for this method, you end up with
the following:

wlCookie.Set ("CUSTOMER", "JOHN SMITH", "www.ABCDEF.com", “/”,
"Wed, 08-Apr-98 17:29:00 GMT")

Where:

4 The method creates a cookie containing the data CUSTOMER=JOHN SMITH. This is the
data that the thread submits when it connects to a URL in the domain.

4 The domain of our sample cookie is www . ABCDEF . com/. The thread submits the cookie
when it connects to any URL in or below this domain, for example,
http://info.www.ABCDEF.com/customers/FormProcessor.exe.

234 RadView Software

SetFailureReason() (function)

4 The cookie is valid until the expiration time, which in this case is Wednesday, April
8, 1998, at 17:29 GMT.

See also

location, page 176 wlCookie, page 330

SetFailureReason() (function)

Mode

This function is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Description

This function enables you to specify possible reasons for a transaction failure within your
transaction verification function. These reasons will also appear in the Statistics Report. The
default reason for most HTTP command (Get, Post, and Head) failures is simply HTTP-Failure.
Unless you specify another reason for failure, HTTP-Failure will be set automatically whenever
an HTTP transaction fails on the HTTP protocol level. SetFailureReason () allows you
to add more meaningful information to your error reports.

Syntax
SetFailureReason (ReasonName)
Parameters

ReasonName—A user-supplied string that identifies and categorizes the reason for this
transaction instance failure.

Return Value

None.

Example

<NA>
Comment

Note that the SetFailureReason () function accepts a literal string as the parameter. This
string identifies the cause of the failure. To get an accurate picture of different failure causes,
be sure to use identification strings consistently for each failure type. For example, don’t use
both ‘User Not Logged’ and ‘User Not LoggedIn’ for the same type of failure, or
your reports statistics will not be as informative. If you do not specify a specific reason for the
failure, the system will register a ‘General Failure’, the default fail value.

WebLOAD JavaScript Reference Manual 235

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293

TransactionTime, page 298

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297

Validate(), page 309

Verification Test Components, page 315 Verification Test Property List: Global and Page

Level, page 318
VerificationFunction() (user-defined), page 320 wlBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

SetTimer() (function)

Description

Use this function to zero a timer. Call SetTimer () in the main script of an Agenda,
immediately before any step or sequence of steps whose time you want to measure. Be sure to
zero the timer in every round of the Agenda; the timer continues running between rounds if you
do not zero it.

Syntax

SetTimer (TimerName)
Parameters

TimerName—A string with the name of the timer being zeroed.
Return Value

None

Example

SetTimer ("Link 3 Time")

236 RadView Software

setType() (method)

GUI mode

WebLOAD recommends setting timer functions within Agenda files directly through the Visual
AAT GUI. For example, the following figure illustrates adding a SetTimer () function to an
Agenda Tree. The corresponding code appears in the JavaScript View pane on the right.

Sleep(441) (<]
Click::lmage
hittp: £ A neti;
tTimer: Timer]
JavaScriptd

Function Name:

ModeScript

| SetTimer ("Timerl™)

=]

. temiame
.# Comments

SetTimer
. Mame

SetTimer:: Timer1

Timer1

et Sleep[1703)

Figure 2-31: Adding a SetTimer node to an Agenda

See also

Adding timers, page 26 in the WebLOAD Programming Guide
SendCounter(), page 234 SendMeasurement(), page 235
SendTimer(), page 236

Sleep(), page 247

SetTimer(), page 241
SynchronizationPoint(), page 281
Timing functions, page 295

setType() (method)

Method of Object

WSComplexObject

Description

Defines the #ype of a new WSComplexObject object. The objects and their types correspond
to the objects defined in a WSDL file.

Syntax

newComplexObjectName.setType (“ComplexObjectName”)
Parameters

ComplexObjectName—The object being defined, a text string.
Return Value

None.

WebLOAD JavaScript Reference Manual 237

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Example

Worker = new WSComplexObject () ;
Worker.setType ("Worker") ;
Worker.addProperty ("Name", "string");
Worker.addProperty ("Age", "integer");

Comment

New WSComplexObject objects must be created, and their properties defined, within the
InitClient () function. Otherwise, a new object will be created with each iteration of the
Agenda during a test session and the system will quickly run out of memory.

Web Services tools are usually based on the basic variable types, such as integer or string. Even
when a complex type is used, it is usually assembled from properties that are themselves simple
variables. Occasionally, an application may require complex types that are assembled from
complex properties, properties that are themselves complex objects. WebLOAD supports a
completely recursive system of complex object definition. The WebLOAD
WSComplexObject object, with the setType (), addProperty (), and setValue ()
methods, systematically handles as many levels of complexity as are required to test a Web
Services tool appropriately.

See also

Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 setValue(), page 243

WSComplexObject, page 374 WSComplexObject(), page 375
WSGetSimpleValue(), page 376 WSWebService, page 377

WSWebService(), page 379

setValue() (method)

Method of Object

WSComplexObject

Description

Assigns or resets a value for the properties of a WSComplexObject object.

Syntax

newComplexObject.setValue (“PropertyName”, “PropertyValue”)

Parameters

PropertyName—Name of the property to which a value is being assigned, a text string.

238

RadView Software

SetWindow() (action)

PropertyValue—Value being assigned to the designated property. The value must match

the type of the specified property. For example, if the property is a string, the method should be

passed a text string. If the property is an integer, the method should be passed an integer.

Return Value

None.

Example

Worker = new WSComplexObject () ;
Worker.setType ("Worker") ;
Worker.addProperty ("Name", "string");
Worker.addProperty ("Age", "integer");
Worker.setValue ("Name", "Robert") ;
Worker.setValue ("Age", 28);

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 setType(), page 242
WSComplexObject, page 374 WSComplexObject(), page 375
WSGetSimpleValue(), page 376 WSWebService, page 377

WSWebService(), page 379

SetWindow() (action)

Method of Object

wiBrowser

Description

Find the specified window and make it the active window.

Syntax

wlBrowser.SetWindow (“Name” [, “Title”] [, "Url"])
Parameters

Name—Name identifying the window to be set.
Title—Title of the window to be set. Optional

URL—URL of the document that is currently in the window to be set. Optional

WebLOAD JavaScript Reference Manual 239

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Return Value

None
Example

wlBrowser.SetWindow (“ShoppingBasket”)
Comment

SetWindow () is added to the Agenda being recorded only if the focus is changed to a new
window and at the same point an additional activity also occurs, such as taking a snapshot.

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 Dynamic Object Recognition (DOR) components,

page 81

Dynamic Object Recognition (DOR) for Dynamic event, page 91
HTML, page 95 in the WebLOAD Programming

Guide

FindObject(), page 102 Forward(), page 106
Navigate(), page 186 ObjectProperty[], page 189
OnClick, page 190 OnMouseOver, page 191
Refresh(), page 213 SetWindow(), page 244
wlBrowser, page 325 wlClick(), page 326
wlClose(), page 329 wiIMouseDown(), page 347
wiIMouseOver(), page 348 wiIMouseUp(), page 349
wiIMultiSelect(), page 350 wiSelect(), page 358
wiSubmit(), page 362 wlTypeln(), page 366

SevereErrorMessage() (function)

Description

Use this function to display a severe error message in the Log Window of the WebLOAD
Console and abort the Load Generator.

Syntax
SevereErrorMessage (msqg)
Parameters

msg—A string with a severe error message to be sent to the Console.

240 RadView Software

SevereErrorMessage() (function)

Return Value

None.

Example

<NA>

Comment

If you call SevereErrorMessage () in the main script, WebLOAD stops all activity in the
Load Generator and runs the error handling functions (OnScriptAbort (), etc.), if they exist
in the Agenda. You may also use the wlException object with the built-in

try () /catch () commands to catch errors within your Agenda. For more information about
error management and execution sequence options, see Error Management, page 104 in the
WebLOAD Programming Guide.

GUI mode

WebLOAD recommends adding message functions to your Agenda files directly through the
Visual AAT GUI. For example, the following figure illustrates adding a Message Node to an
Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

Expected Agenda Tree |3

Function M ame: MaodeS cript - Attributes
| WarningMessage (RoundNum, ClientMum) P tembame | Message
.# Comments
E Message
Image Testl P Tet Roundrum, Clienthum

Sleep[E710] P Severity WLMinorError

1 C i by

Figure 2-32: Adding a Message Node to an Agenda

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152
LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide

ReportLog(), page 215 SevereErrorMessage(), page 245

Using the IntelliSense JavaScript Editor, page 18 WarningMessage(), page 323
wlException, page 331 wlException() object constructor, page 333

WebLOAD JavaScript Reference Manual 241

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Shape (property)

Property of Object

area

Description

Sets or retrieves the shape of the area object.
Syntax

<NA>
Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

See also
area, page 24 Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide
Size (property)
Property of Object
element InputFile
InputPassword InputText
Select
Description

The size of a File, Password, Select, or Text element. When working with a Select
element, determines the number of rows that will be displayed, regardless of the number of
options chosen.

Syntax
<NA>

Comment

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD
Programming Guide, for more information.

242 RadView Software

Sleep() (function)

See also

Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD Programming

Guide
element, page 83 InputFile, page 159
InputPassword, page 161 InputText, page 164

Select, page 231

Sleep() (function)

Description

Pause for a specified number of milliseconds.
Syntax

Sleep (PauseTime)
Parameters

PauseTime—An integer value specifying the number of milliseconds to pause.

Return Value

None

Example
To pause for 1 second, write:
Sleep (1000)

GUI mode

WebLOAD recommends setting sleep functions within Agenda files directly through the Visual
AAT GUL For example, the following figure illustrates a typical Sleep Node highlighted in the
Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

Expected Agenda Tree m

JavaScriptObject = Function Name: NodeSciipt 5

- S Message
@ wiw netizenbanking. com

. temiame
.# Comments

= ldentification

P Pause Time 6710

| Sleep (67100 Sleep(B7101

Figure 2-33: Sleep node added to an Agenda

Sleep function command lines may also be added directly to the code in a JavaScript Object
within an Agenda through the IntelliSense Editor, described in Using the IntelliSense
JavaScript Editor, page 18. Users who are programming their own JavaScript Object code

WebLOAD JavaScript Reference Manual 243

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

within their Agenda may still take advantage of the Visual AAT GUI to simplify their
programming efforts. Rather than manually type out the code for a sleep function, with the risk
of making a mistake, even a trivial typo, and adding invalid code to the Agenda file, users may
click on the Sleep () command line in the Edit | Insert | JavaScript | General menu to add a
sleep command to their code. The Visual AAT automatically inserts the correct code for the
sleep function into the JavaScript Object currently being edited. The user may then change the
sleep time without any concerns about mistakes in the function syntax.

_b:EiIe Edit ¥iew Record Run Tools Wir
j @'—» @ StarEditng

3 [Uede (1
G| Bledn [Strl
Inzert Agenda ltems L4
wiGlobalz General

InitdT erminate Functions
Roundtum

Sleep(<Time:] Message Commands

3
3
Copy/nclude Files L4
3
3

R andom Mumber Commands

<Line_Array> = GetLing("'<File_MName:"" [."'<Separatar:"])

<File_Line_Mumz = <Line_Amay: . LineMum COM Objects 3

<File_[teration_Mumz = <Line_Array: RoundMum Java Objects 3

Figure 2-34: Sleep command
Comment

Specify one of three sleep options when running a test Agenda, preferably through the
WebLOAD GUI using the Sleep Time Control tab from the Tools | Default options:

4 Run the Agenda with the exact same sleep periods as occurred when the Agenda was
originally recorded,

4 Run the Agenda with no sleep periods at all,

4 Run the Agenda with sleep periods of random lengths, simulating the variety of pauses that
occur naturally in the real world.

WebLOAD recommends setting the sleep mode through the Visual AAT or Console GUI.
Choose a setting from the Sleep Time Control tab of the Tools | Default, Current or Agenda
Options dialog box, illustrated below:

244 RadView Software

SleepDeviation (property)

Default Options I
Diagnostic I Functional Testing I 551 I Client Type
Browser Emulation | Authentication for protocol scripts I Connection
Sleep Time Cantral | Pass/Fail Definition I Java
Flayback Sleep Time:

' |gnore recorded sleep time

" Set random sleep time between |2 3: and I‘ID 3: seconds

Figure 2-35: Setting the sleep mode

See also

Adding timers, page 26 in the WebLOAD Programming Guide

DisableSleep, page 75 SendCounter(), page 234
SendMeasurement(), page 235 SendTimer(), page 236
SetTimer(), page 241 Sleep(), page 247

Sleeping or pausing in mid-session, page 28 in the WebLOAD Programming Guide

SleepDeviation, page 250 SleepRandomMax, page 251
SleepRandomMin, page 252 SynchronizationPoint(), page 281
Timing functions, page 295 Using the IntelliSense JavaScript Editor, page 18

wlBrowser, page 325

SleepDeviation (property)

Property of Object

wiBrowser

Description

Integer that indicates the percentage by which recreated sleep periods should deviate from the
original recorded time.

Example
wlBrowser.SleepDeviation = 10
Recreated sleep periods will be within a range of +- 10% of the original recorded time.

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period recorded
by the user during the original recording session. If you wish to include sleep intervals but

WebLOAD JavaScript Reference Manual 245

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

change the time period, set DisableSleep to False and assign values to the other sleep
properties as follows:

4 SleepRandomMin—Assign random sleep interval lengths, with the minimum time
period equal to this property value.

4 SleepRandomMax—Assign random sleep interval lengths, with the maximum time
period equal to this property value.

4 SleepDeviation—Assign random sleep interval lengths, with the time period ranging
between this percentage value more or less than the original recorded time period.

GUI mode

WebLOAD recommends setting the sleep mode through the Visual AAT or Console GUI.
Choose a setting from the Sleep Time Control tab of the Tools | Default, Current or Agenda
Options dialog box, illustrated below:

Default Options I

Diagnostic I Functional Testing I 551 I Client Type
Browser Emulation | Authentication for protocol scripts I Connection
Sleep Time Control | Paszs/Fail Definition I Java
Flayback Sleep Time:

' |gnore recorded sleep time

" Set random sleep time between |2 3: and I‘ID 3: seconds

Figure 2-36: Setting the sleep mode
See also

Adding timers, page 26 in the WebLOAD DisableSleep, page 75
Programming Guide

Sleep(), page 247 SleepDeviation, page 250

Sleeping or pausing in mid-session, page 28 in the SleepRandomMax, page 251
WebLOAD Programming Guide

SleepRandomMin, page 252 wlBrowser, page 325

SleepRandomMax (property)

Property of Objects

wiBrowser

246 RadView Software

SleepRandomMax (property)

Description
Integer that indicates the maximum length of a recreated sleep period when not using the
original recorded time.

Syntax
wlBrowser.SleepRandomMax = 5000

Recreated sleep periods will fall within a range whose maximum value is 5000 milliseconds.

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period recorded
by the user during the original recording session. If you wish to include sleep intervals but
change the time period, set DisableSleep to False and assign values to the other sleep
properties as follows:

4 SleepRandomMin—Assign random sleep interval lengths, with the minimum time
period equal to this property value.

4 SleepRandomMax—Assign random sleep interval lengths, with the maximum time
period equal to this property value.

4 SleepDeviation—Assign random sleep interval lengths, with the time period ranging
between this percentage value more or less than the original recorded time period.

GUI mode

WebLOAD recommends setting the sleep mode through the Visual AAT or Console GUI.
Choose a setting from the Sleep Time Control tab of the Tools | Default, Current or Agenda
Options dialog box, illustrated below:

Default Options I
Diagnostic I Functional Testing I 551 I Client Type
Browser Emulation | Authentication for protocol scripts I Connection
Sleep Time Cantral | Pass/Fail Definition I Java
Flayback Sleep Time:

' |gnore recorded sleep time

" Set random sleep time between |2 3: and I‘ID 3: seconds

Figure 2-37: Setting the sleep mode

See also

Adding timers, page 26 in the WebLOAD DisableSleep, page 75
Programming Guide

WebLOAD JavaScript Reference Manual 247

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Sleep(), page 247 SleepDeviation, page 250

Sleeping or pausing in mid-session, page 28 in the SleepRandomMax, page 251
WebLOAD Programming Guide

SleepRandomMin, page 252 wiBrowser, page 325

SleepRandomMin (property)

Property of Object

wiBrowser

Description

Integer that indicates the minimum length of a recreated sleep period when not using the
original recorded time.

Syntax
wlBrowser.SleepRandomMin = 1000

Recreated sleep periods will fall within a range whose minimum value is 1000 milliseconds.

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period recorded
by the user during the original recording session. If you wish to include sleep intervals but
change the time period, set DisableSleep to False and assign values to the other sleep

properties as follows:
4 SleepRandomMin—Assign random sleep interval lengths, with the minimum time
period equal to this property value.

4 SleepRandomMax—Assign random sleep interval lengths, with the maximum time
period equal to this property value.

4 SleepDeviation—Assign random sleep interval lengths, with the time period ranging
between this percentage value more or less than the original recorded time period.
GUI mode

WebLOAD recommends setting the sleep mode through the Visual AAT or Console GUI.
Choose a setting from the Sleep Time Control tab of the Tools | Default, Current or Agenda
Options dialog box, illustrated below:

248 RadView Software

Span (object)

Default Options I
Diagnostic I Functional Testing I 551 I Client Type
Browser Emulation | Authentication for protocol scripts I Connection
Sleep Time Cantral | Pass/Fail Definition I Java
Flayback Sleep Time:

' |gnore recorded sleep time

" Set random sleep time between |2 3: and I‘ID 3: seconds

Figure 2-38: Setting the sleep mode

See also

Adding timers, page 26 in the WebLOAD DisableSleep, page 75
Programming Guide

Sleep(), page 247 SleepDeviation, page 250

Sleeping or pausing in mid-session, page 28 in the SleepRandomMax, page 251
WebLOAD Programming Guide

SleepRandomMin, page 252 wlBrowser, page 325

Span (object)

Property of Objects

Span objects on a Web page are accessed through the document.all collection of the
standard DOM structure.

Description

Specifies an inline text container. Each Span object represents one of the user
interface fields embedded in a document. One of the set of UIContainer objects. (Compare to
the element object, which stores the parsed data for a single HTML form element, where the
element may be any one of a variety of types, and the form object, which stores the parsed data
for an entire HTML form.)

Syntax
document.all.tags[“SPAN"]

Methods
wlClick(), page 326 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
wlMultiSelect(), page 350 wiSelect(), page 358

WebLOAD JavaScript Reference Manual 249

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlTypeln(), page 366

Properties
ContainerTag, page 55 event, page 91
id, page 143 InnerText, page 155
OnClick, page 190 OnMouseOver, page 191
Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

src (property)

Property of Object

Image script

wiXmls

Description

Retrieves the complete URL of the parent object, that is the URL to an external file that
contains the source code or data for this image, script, or XML DOM object.

Example

"www.ABCDEF.com/images/logo.gif"

250 RadView Software

src (property)

Comment

WebLOAD recommends managing images, scripts, and XML DOM objects on a Web page
through the standard document .all collection.

See also
Collections, page 47 id, page 143
Image, page 148 InnerHTML, page 153
load(), page 170 loadXML(), page 175
load() and loadXML() method comparison, page 172
script, page 229 src, page 255
wiXmls, page 370 XMLDocument, page 380

SSL Cipher Command Suite

Description

WebLOAD provides full SSL/TLS 1.0 protocol support through a set of a set of SSL properties
for the wlGlobals object combined with a set of functions called the Cipher Command Suite.
These SSL functions allow you to identify, enable, and disable selected SSL protocols or
security levels. For a complete list of the supported SSL protocols, see Appendix A,
WebLOAD-supported SSL Protocol Versions, page 381.

Functions

The Cipher Command Suite includes the following functions:

SSLCipherSuiteCommand (), page 258 SSLDisableCipherID (), page 263
SSLDisableCipherName (), page 265 SSLEnableCipherID (), page 266
SSLEnableCipherName (), page 267 SSLGetCipherCount (), page 268
SSLGetCipherID (), page 269 SSLGetCipherInfo (), page 270

SSLGetCipherName (), page 271 SSLGetCipherStrength (), page 272

Comment

Use the Cipher Command Suite to check or verify SSL configuration information at any point
in your Agenda. However, any changes to an Agenda’s SSL property configuration, whether
through the w1Globals properties or the Cipher Command Suite functions, must be made in
the Agenda’s initialization functions. Configuration changes made in the InitAgenda ()
function will affect all client threads spawned during that Agenda’s test session. Configuration
changes made in the TnitClient () function will affect only individual clients. Do not make

WebLOAD JavaScript Reference Manual 251

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

changes to the SSL property configuration using wlHttp or wlLocals properties or in an
Agenda’s main body. The results will be undefined for all subsequent transactions.

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

SSLBitLimit (property)

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.

Property of Object

wiGlobals

Description

WebLOAD provides the option of setting a limit to the maximum SSL bit length available to
Virtual Clients when contacting the Server. By default, WebLOAD supports a maximum
SSLBitLimit of 128 bits. Users may lower the SSLBitLimit as necessary.

You may assign an SSL bit limit value using the wlGlobals.SSLBitLimit property.
Check the value of this property if you wish to verify the maximum cipher strength (SSL bit

252

RadView Software

SSLBitLimit (property)

limit) available for the current test session. For example, if all ciphers are enabled, then the
maximum cipher strength is 128.

Note: Defining an SSL bit limit with the SSLBitLimit property is a low-level approach to
enabling or disabling individual protocols. Even if you prefer to program property values
directly rather than working through the GUI, it is usually preferable to use the
SSLCryptoStrength, described on page 262, to define and enable cipher levels and
cryptographic strengths using a higher, more categorical approach.

Syntax

wlGlobals.SSLBitLimit = IntegerValue
Example

wlGlobals.SSLBitLimit = 56

or
CurrentBitLimit = wlGlobals.SSLBitLimit
GUI mode

WebLOAD recommends setting the SSL bit limit through the Console GUI. Check SSL Bit
Limit and select a value from the drop-down list on the SSL tab of the Tools | Default or
Current Options dialog box, illustrated in the following figure:

Default Options m
Browser Emulation I Authentication for protocol scripts I Connection I
Sleep Time Contral I Fazz/Fail Definition | Java I
Diagnostic I Functional Testing SSL | Client Type I

I ssLBitlime [Nene 7]

Figure 2-39: Setting SSL Bit Limit

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)

Guide
SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258

SSLClientCertificateFile, SSLCryptoStrength, page 262 (wlGlobals
SSLClientCertificatePassword, page 260 only)

SSLDisableCipherID(), page 263 SSLDisableCipherName(), page 265
SSLEnableCipherID(), page 266

SSLGetCipherCount(), page 268 SSLGetCipherID(), page 269

SSLEnableCipherName(), page 267

WebLOAD JavaScript Reference Manual 253

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

SSLGetCipherInfo(), page 270 SSLGetCipherName(), page 271

SSLGetCipherStrength(), page 272 SSLUseCache, page 273

SSLVersion, page 275 WebLOAD-supported SSL Protocol Versions,
page 381

Working in HTTP Protocol Mode, page 213 inthe ~ wlGlobals, page 339
WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343

SSLCipherSuiteCommand() (function)

Description

Set the SSL configuration environment before running a test Agenda.
Syntax

SSLCipherSuiteCommand (SSLCipherCommand)
Parameters

SSLCipherCommand—One of the following commands, used to set the SSL configuration
environment before running a test Agenda.

e EnableAll—enable all SSL protocols (default)
e DisableAll—disable all SSL protocols

e ShowAll—listall SSL protocols
(provides internal information for RadView Support Diagnostics)

e ShowEnabled—Ilist currently enabled SSL protocols
(provides internal information for RadView Support Diagnostics)

Return Value

None.
Example

You may wish to test your application with only a single SSL protocol enabled. The easiest
way to do that would be to disable all protocols, and then enable the selected protocol in the
InitAgenda () function.

InitAgenda ()
{

SSLCipherSuiteCommand (DisableAll)
SSLEnableCipherName
("TLS RSA EXPORT WITH RC4 40 MD5")

254

RadView Software

SSLClientCertificateFile, SSLClientCertificatePassword (properties)

}

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

SSLClientCertificateFile, SSLClientCertificatePassword
(properties)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Properties of Objects

wlGlobals wlHttp

wlLocals

Description

SSL Client certificates offer a more secure method of authenticating users in an Internet
commerce scenario then traditional username and password solutions. For servers that support
client authentication, the server will request an identification certificate that contains
information to identify the client and is signed by a recognized certificate authority. WebLOAD

WebLOAD JavaScript Reference Manual 255

WebLOAD Actions, Objects, and Functions

supports use of SSL client certificates by supplying the certificate filename and password to the
SSL server. SSL.ClientCertificateFile and SSIL.ClientCertificatePassword
are the filename (optionally including a directory path) and password of a certificate, which
WebLOAD makes available to SSL servers. When the Agenda issues an HTTPS Get, Post, or
Head command, the server can request the certificate as part of the handshake procedure. In
that case, WebLOAD sends the certificate to the server, and the server can use it to authenticate
the client transmission.

You may set client certificate values using the wlGlobals properties.

Note: You can obtain a certificate file by exporting an X.509 certificate from Microsoft
Internet Explorer or Netscape Navigator. Then use the WebLOAD Certificate Wizard to
convert the certificate to an ASCII (*.pem) format. For detailed instructions, see the
Recording WebLOAD Agendas manual.

Syntax

Example

wlGlobals.SSLProperty = "TextString"
wlGlobals.SSLClientCertificateFile = "c:\\certs\\certl.pem"
wlGlobals.SSLClientCertificatePassword = "topsecret"

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the
current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |
Default or Current Options dialog box.

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box, illustrated in DefaultAuthentication,
page 66.

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)
Guide

SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258
SSLClientCertificateFile, SSLCryptoStrength, page 262 (wlGlobals
SSLClientCertificatePassword, page 260 only)

SSLDisableCipherID(), page 263 SSLDisableCipherName(), page 265
SSLEnableCipherID(), page 266 SSLEnableCipherName(), page 267

256

RadView Software

SSLGetCipherCount(), page 268
SSLGetCipheriInfo(), page 270

SSLCryptoStrength (property)

SSLGetCipherID(), page 269
SSLGetCipherName(), page 271

SSLGetCipherStrength(), page 272 SSLUseCache, page 273
SSLVersion, page 275 WebLOAD-supported SSL Protocol Versions,
page 381

Working in HTTP Protocol Mode, page 213 inthe ~ wlGlobals, page 339
WebLOAD Programming Guide

wiHttp, page 342 wiLocals, page 343

SSLCryptoStrength (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wlGlobals

Description

Used to define the cryptographic categories to be used in the current test session. The following
categories are available:

¢
¢

"SSL AllCrypto"—enable cryptography of all strengths (default).

"SSL_StrongCryptoOnly"—enable only ciphers with strong cryptography (RSA keys
greater than 512-bit and DES/EC keys greater than 40-bit)

"SSL_ExportCryptoOnly"—enable only ciphers available for export, including only
RSA keys 512-bit or weaker and DES/EC keys 40-bit or weaker.

"SSL_ServerGatedCrypto"—verify that the communicating server is legally
authorized to use strong cryptography before using stronger ciphers. Otherwise use export
ciphers only.

These definitions work with your Agenda’s current set of enabled ciphers. If you have enabled
only certain ciphers, then setting SSLCryptoStrength would affect only the subset of
enabled ciphers.

Example

Assume you have enabled the following four ciphers:
TLS DHE DSS WITH RC4 128 SHA,
SSL_RSA WITH DES CBC_MDS5,

WebLOAD JavaScript Reference Manual 257

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

TLS_ECDH_anon EXPORT WITH RC4 40 SHA,and
TLS_DH anon EXPORT WITH RC4 40 MD5

If you then set SSLCryptoStrength to SSL_ExportCryptoOnly, then only the last
two ciphers, TLS ECDH anon EXPORT WITH RC4 40 SHA,and
TLS DH anon EXPORT WITH RC4 40 MD5, will be enabled.

InitAgenda ()
{

SSLEnableCipherName
SSLEnableCipherName
SSLEnableCipherName
SSLEnableCipherName

—~ e~~~

"TLS DHE DSS WITH RC4 128 SHA")

"SSL RSA WITH DES CBC MD5")

"TLS ECDH anon EXPORT WITH RC4 40 SHA")
"TLS DH anon EXPORT WITH RC4 40 MD5")

wlGlobals.SSLCryptoStrength="SSL ExportCryptoOnly"

}

Comment

Defining a global, categorical value for SSLCryptoStrength is a high-level approach to
cryptographic strength definition. This ‘smarter’ approach of selecting appropriate categories is
usually preferable to the low-level approach of enabling or disabling individual protocols or
defining specific SSL bit limits with the SSLBitLimit and SSLVersion properties. However,
ideally SSL configuration values should be set through the WebLOAD GUI.

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

258

RadView Software

SSLDisableCipherlD() (function)

SSLDisableCipherlD() (function)

Description

Disables the specified SSL cipher for the current session.

Syntax
SSLDisableCipherID (CipherID)

Parameters

CipherID—Any of the SSL protocol ID numbers. Use the SSLGetCipherID () function
to get the ID number associated with a specified protocol name. See Appendix A, WebLOAD-
supported SSL Protocol Versions, page 381, for a complete list of protocol names.

Return Value

None.

Example

Your test session may include a variety of function calls related to specific protocols. For
example, you may wish to test your application with all but one SSL protocol enabled.
Unfortunately, protocol names can be long and awkward. To simplify your Agenda code, you
could get the ID number of a selected protocol and refer to the selected protocol by ID number
for the remainder of the Agenda. The following InitAgenda () function fragment gets a
protocol ID number and disables the selected protocol in the InitAgenda () function.

InitAgenda ()
{

MyCipherID = SSLGetCipherID
("TLS_RSA EXPORT WITH RC4 40 MD5")
SSLDisableCipherID (MyCipherID)

}

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)

Guide
SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258

SSLClientCertificateFile, SSLCryptoStrength, page 262 (w1lGlobals
SSLClientCertificatePassword, page 260 only)

SSLDisableCipherID(), page 263 SSLDisableCipherName(), page 265

WebLOAD JavaScript Reference Manual 259

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

SSLEnableCipherID(), page 266 SSLEnableCipherName(), page 267

SSLGetCipherCount(), page 268 SSLGetCipherID(), page 269

SSLGetCipherInfo(), page 270 SSLGetCipherName(), page 271

SSLGetCipherStrength(), page 272 SSLUseCache, page 273

SSLVersion, page 275 WebLOAD-supported SSL Protocol Versions,
page 381

Working in HTTP Protocol Mode, page 213 inthe ~ wlGlobals, page 339
WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343

SSLDisableCipherName() (function)

Description

Disables the specified SSL cipher for the current session.
Syntax

SSLDisableCipherName (CipherName)
Parameters

CipherName—Any of the SSL protocol names. See Appendix A, WebLOAD-supported SSL
Protocol Versions, page 381, for a complete list of protocol names.

Return Value

None.

Example

You may wish to test your application with all but one SSL protocol enabled. The easiest way
to do that would be to disable the selected protocol in the InitAgenda () function.

InitAgenda ()
{

SSLDisableCipherName
("TLS RSA EXPORT WITH RC4 40 MD5")
}

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)
Guide

260 RadView Software

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

SSLEnableCipherlD() (function)

SSLEnableCipherlD() (function)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wilLocals, page 343

Description

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

Enables the specified SSL cipher for the current session.

Syntax
SSLEnableCipherID (CipherID)

Parameters

CipherID—Any of the SSL protocol ID numbers. Use the SSLGetCipherID () function
to get the ID number associated with a specified protocol name. See Appendix A, WebLOAD-
supported SSL Protocol Versions, page 381, for a complete list of protocol names.

Return Value

None.

Example

Your test session may include a variety of function calls related to specific protocols. For
example, you may wish to test your application with only a single SSL protocol enabled.
Unfortunately, protocol names can be long and awkward. To simplify your Agenda code, you
could get the ID number of a selected protocol and refer to the selected protocol by ID number
for the remainder of the Agenda. The following InitAgenda () function fragment disables
all protocols, gets a protocol ID number, and enables the selected protocol in the in the
InitAgenda () function.

InitAgenda ()
{

WebLOAD JavaScript Reference Manual 261

WebLOAD Actions, Objects, and Functions

SSLCipherSuiteCommand (DisableAll)
MyCipherID = SSLGetCipherID ("TLS RSA EXPORT WITH RC4 40 MD5")
SSLEnableCipherID (MyCipherID)

}
See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)

Guide

SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258
SSLClientCertificateFile, SSLCryptoStrength, page 262 (wlGlobals
SSLClientCertificatePassword, page 260 only)

SSLDisableCipherID(), page 263 SSLDisableCipherName(), page 265
SSLEnableCipherID(), page 266 SSLEnableCipherName(), page 267
SSLGetCipherCount(), page 268 SSLGetCipherID(), page 269
SSLGetCipherInfo(), page 270 SSLGetCipherName(), page 271
SSLGetCipherStrength(), page 272 SSLUseCache, page 273

SSLVersion, page 275 WebLOAD-supported SSL Protocol Versions,

page 381

Working in HTTP Protocol Mode, page 213 inthe ~ w/Globals, page 339
WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343

SSLEnableCipherName() (function)

Description

Enables the specified SSL cipher for the current session.
Syntax

SSLEnableCipherName (CipherName)
Parameters

CipherName—Any of the SSL protocol names. See Appendix A, WebLOAD-supported SSL
Protocol Versions, page 381, for a complete list of protocol names.

Return Value

None.

262 RadView Software

SSLGetCipherCount() (function)

Example

You may wish to test your application with only a single SSL protocol enabled. The easiest
way to do that would be to disable all protocols, and then enable the selected protocol in the
InitAgenda () function:

InitAgenda ()
{

SSLCipherSuiteCommand (DisableAll)
SSLEnableCipherName ("TLS RSA EXPORT WITH RC4 40 MD5")
}

See also

Browser configuration components, page 30 Rules of scope for local and global variables,

page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming
Guide

SSLBitLimit, page 257 (wlGlobals only)

SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipheriInfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wiHttp, page 342

SSLGetCipherCount() (function)

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wiLocals, page 343

Description

Returns an integer, the number of ciphers enabled for the current test session. While that may
seem obvious if your Agenda explicitly enables two or three ciphers, it may be necessary if, for
example, you have set a cipher strength limit of 40 and then wish to know how many ciphers

are currently available at that limit.

WebLOAD JavaScript Reference Manual

263

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Syntax
SSLGetCipherCount ()

Parameters

None.

Return Value

Returns an integer representing the number of ciphers enabled for the current test session.

Example

CurrentCipherCount = SSLGetCipherCount ()

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming

Guide
SSL Cipher Command Suite, page 256
SSLClientCertificateFile,

SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherInfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide
wlHttp, page 342

SSLGetCipherlID() (function)

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

Description

Returns the ID number associated with the specified cipher.

Syntax

SSLGetCipherID (CipherName)

264

RadView Software

Parameters

SSLGetCipherinfo() (function)

CipherName—Any of the SSL protocol names. See Appendix A, WebLOAD-supported SSL
Protocol Versions, page 381, for a complete list of protocol names.

Return Value

Returns the ID number associated with the specified cipher.

Example

MyCipherID = SSLGetCipherID ("TLS ECDH ECDSA WITH RC4 128 SHA")

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide
wlHttp, page 342

SSLGetCipherinfo() (function)

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

Description

Prints a message on the Console with information about the specified SSL protocol.

Syntax

SSLGetCipherInfo (CipherName | CipherID)

Parameters

Accepts either one of the following parameters:

WebLOAD JavaScript Reference Manual

265

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

CipherName—Any of the SSL protocol names. See Appendix A, WebLOAD-supported SSL
Protocol Versions, page 381, for a complete list of protocol names.

CipherID—Any of the SSL protocol ID numbers. Use the SSL.GetCipherID () function
to get the ID number associated with a specified protocol name.

Return Value

None.

Example

You may specify an SSL protocol using either the protocol name or the ID number. The
function accepts either a string or an integer parameter, as illustrated here:

SSLGetCipherInfo ("TLS ECDH ECDSA WITH RC4 128 SHA")

or
SSLGetCipherInfo (2)

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming

Guide
SSL Cipher Command Suite, page 256
SSLClientCertificateFile,

SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherInfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide
wlHttp, page 342

SSLGetCipherName() (function)

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

Description

Returns the name of the cipher associated with the specified ID number.

266

RadView Software

SSLGetCipherStrength() (function)

Syntax
SSLGetCipherName (CipherID)
Parameters

CipherID—Any of the SSL protocol ID numbers.

Return Value

Returns the name of the cipher associated with the specified ID number.

Example

MyCipherName = SSLGetCipherName (16)
See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)

Guide
SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258

SSLClientCertificateFile, SSLCryptoStrength, page 262 (wlGlobals

SSLClientCertificatePassword, page 260 only)
SSLDisableCipherID(), page 263 SSLDisableCipherName(), page 265

SSLEnableCipherID(), page 266 SSLEnableCipherName(), page 267

SSLGetCipherCount(), page 268 SSLGetCipherID(), page 269

SSLGetCipherinfo(), page 270 SSLGetCipherName(), page 271

SSLGetCipherStrength(), page 272 SSLUseCache, page 273

SSLVersion, page 275 WebLOAD-supported SSL Protocol Versions,
page 381

Working in HTTP Protocol Mode, page 213 inthe ~ wi/Globals, page 339
WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343

SSLGetCipherStrength() (function)

Description

Returns an integer, the maximum cipher strength (SSL bit limit) available for the current test
session. For example, if all ciphers are enabled, then the maximum cipher strength is 128.

Syntax
SSLGetCipherStrength ()

WebLOAD JavaScript Reference Manual 267

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Parameters

None.
Return Value
Returns an integer representing the maximum available cipher strength for the current session.

Example
CurrentCipherStrength = SSLGetCipherStrength ()

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

SSLUseCache (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wiGlobals wiLocals

wlHttp

268 RadView Software

SSLUseCache (property)

Description
Enable caching of SSL decoding keys received from an SSL (HTTPS) server. The value of
SSLUseCache may be:

4 No—Disable caching.
4 Yes—Enable caching. (default)

A "Yes" value means that WebLOAD receives the key only on the first SSL connection in
each round. In subsequent connections, WebLOAD retrieves the key from the cache.

Assign a "Yes" value to reduce transmission time during SSL communication. Assign a "No"
value if you want to measure the transmission time of the decoding key in the WebLOAD
performance statistics for each SSL connection.

If you enable caching, you can clear the cache at any time by calling the
wlHttp.ClearSSLCache () method. The cache is automatically cleared at the end of each
round.

Example
<NA>
GUI mode

WebLOAD recommends enabling or disabling the SSL cache through the Console GUI. Enable
caching for the Load Generator or for the Probing Client during a test session by checking the
appropriate box in the Browser Emulation tab of the Tools | Default Options dialog box,
illustrated in the following figure:

55L Cache
IV Prabing Client

¥ Load Generator

Figure 2-40: Enabling SSL Cache for Load Generator

Comment

To clear the SSL cache when working in HTTP Protocol mode, set the ClearSSLCache()
property, described on page 42.

See also

Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

Security, page 89 in the WebLOAD Programming SSLBitLimit, page 257 (wlGlobals only)

Guide
SSL Cipher Command Suite, page 256 SSLCipherSuiteCommand(), page 258
SSLClientCertificateFile, SSLCryptoStrength, page 262 (wlGlobals

WebLOAD JavaScript Reference Manual 269

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

SSLClientCertificatePassword, page 260
SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipherinfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wlHttp, page 342

SSLVersion (property)

only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

wlLocals, page 343

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Objects
wlGlobals

wiLocals

Description

wlHttp

The SSL version that WebLOAD should use for the current test session. The possible values of

wlGlobals.SSLVersion are:

4 SSL Version Undetermined—(Default) WebLOAD can use any SSL protocol
version, allowing the broadest interoperability with other SSL installations. WebLOAD
sends initial messages using SSL 2.0, then attempts to negotiate up to SSL 3.0. If the peer
requests SSL 2.0 communications, SSL 2.0 is used for further communication.

Note: WebLOAD does not recommend changing the default value.

4 SSL Version 3 0 With 2 0 Hello—WebLOAD sends initial messages using

SSL 2.0, but all subsequent communication must be through SSL 3.0 only. Otherwise the
connection will fail with a meaningful error message.

¢ TLS Version 1.0 With 2 0 Hello—WebLOAD sends initial messages using
SSL 2.0, but all subsequent communication must be through TLS 1.0 only. Otherwise the
connection will fail with a meaningful error message.

270

RadView Software

SSLVersion (property)

4 SSL Version 3 0 Only—All communication is by SSL 3.0 only. If the peer does not

support SSL 3.0, the handshake fails without a meaningful indication of why it failed. Use
this option for highest security when working with peers that definitely support SSL 3.0.

4 TLS Version 1 0 Only—All communication is by TLS 1.0 only. If the peer does not

support TLS 1.0, the handshake fails without a meaningful indication of why it failed. Use
this option for highest security when working with peers that definitely support TLS 1.0.

4 SSL Version 3 0—WebLOAD sends initial messages using SSL 3.0. If the peer
requests SSL 2.0 communications, SSL 2.0 is used for further communication.

4 SSL Version 2 0—WebLOAD sends initial messages and all further communication
using SSL 2.0. This option is not recommended other than for testing, because SSL 3.0 is

more functional and secure than SSL 2.0.

4 TLS Version 1 0—WebLOAD sends initial messages using TLS 1.0. If the peer
requests SSL 3.0 communications, SSL 3.0 is used for further communication.

To connect to a server using any of the SSL options, include https: // in the URL.

Example

wlGlobals.SSLVersion = "SSL Version 3 0 Only"

wlGlobals.Url =

https://www.ABCDEF.com

See Appendix A, WebLOAD-supported SSL Protocol Versions, page 381, for a table
illustrating all the Client/Server SSL version handshake combination possibilities and a

complete list of SSL/TLS protocol names.

See also

Browser configuration components, page 30

Security, page 89 in the WebLOAD Programming
Guide

SSL Cipher Command Suite, page 256

SSLClientCertificateFile,
SSLClientCertificatePassword, page 260

SSLDisableCipherID(), page 263
SSLEnableCipherID(), page 266
SSLGetCipherCount(), page 268
SSLGetCipheriInfo(), page 270
SSLGetCipherStrength(), page 272
SSLVersion, page 275

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

SSLBitLimit, page 257 (wlGlobals only)

SSLCipherSuiteCommand(), page 258

SSLCryptoStrength, page 262 (wlGlobals
only)

SSLDisableCipherName(), page 265
SSLEnableCipherName(), page 267
SSLGetCipherID(), page 269
SSLGetCipherName(), page 271
SSLUseCache, page 273

WebLOAD-supported SSL Protocol Versions,
page 381

wlGlobals, page 339

WebLOAD JavaScript Reference Manual

271

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlHttp, page 342 wlLocals, page 343

state (property)

Property of Object

wlMediaPlayer

Description

Retrieves a value indicating the state of the Media Player operation, such as connecting,
buffering, playing, etc. (read-only long number)

Syntax
MyMediaPlayerObject.state

Example
<NA>

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

Stop() (method)

Method of Object

wlMediaPlayer

Description

This method stops playing without changing the logical stream position.

Syntax
MyMediaPlayerObject.Stop ()

272 RadView Software

string (property)

Parameters

None

Return Value

None.

Example
<NA>

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

string (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

title

Description

Stores the document title in a text string.

Syntax
<NA>

See also

title, page 296

WebLOAD JavaScript Reference Manual 273

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Submit (object)

Property of Objects

Submit objects on a Web page are accessed through the document.all collection of the

standard DOM structure.

Description

One of the form input controls, where input type = submit.Each Submit object
represents a button that, when clicked, submits the form. (Compare to the element object, which
stores the parsed data for a single HTML form element, where the element may be any one of a
variety of types, and the form object, which stores the parsed data for an entire HTML form.)

Syntax

document.all.tags[“SUBMIT"”]

Methods

wlClick(), page 326
wlMouseOver(), page 348
wiMultiSelect(), page 350

Properties

event, page 91
InnerText, page 155
OnClick, page 190
value, page 310

See also

Button, page 34
Collections, page 47
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
Select, page 231
TextArea, page 292

wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358

id, page 143
Name, page 184
title, page 296

Checkbox, page 38

File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Radiobutton, page 210
text, page 291
UlContainer, page 301

274

RadView Software

SyncDOM() (method)

SyncDOM() (method)

Method of Object

wlBrowser

Description

Saves a complete snapshot of the current state of the DOM into the actual database after any
navigation activity or changes in window content or focus. Session snapshots are created
automatically during recording and testing sessions following every navigation action or
change of focus. The method description and sample code fragment included here are intended
only to clarify the code that you may see in the JavaScript Agendas created for you
automatically by the Visual AAT.

Syntax
wlBrowser.SyncDOM (IndexNumber)

Parameters

IndexNumber—Index number of the snapshot in the actual database.

Return Value

None.

Example

wlBrowser.Navigate ("http://www.abc.com")
wlBrowser.SyncDOM (1)

// this action completes a navigation action and a snapshot

wlBrowser.ObjectProperty["Image Url"]="http://www.abc.com/images/prod.gif”
wlBrowser.ObjectProperty["Location"] = "bottom#l.left#0"
wlBrowser.ObjectProperty["Url"] = “http://www.abc.com/products.htm”

linkl = wlBrowser.FindObject (FT_ LINK, 1)
wlBrowser.ExpectNavigation (“http://www.abc.com/images/prod.gif”)
linkl.wlClick()

wlBrowser.SyncDOM (2)

// this action does not complete a navigation event,
// so does not automatically create a snapshot

wlBrowser.ObjectProperty["Image Url"]=“http://www.abc.com/images/prod.gif”
wlBrowser.ObjectProperty["Location"] = "bottom#l.left#0"
wlBrowser.ObjectProperty["Url"] = “http://www.abc.com/products.htm”

Imagel = wlBrowser.FindObject (FT IMAGE, 2)
Imagel.wlMouseOver ()

// this action does not normally trigger an automatic snapshot,
// but the user inserted one through the WebLOAD GUI

WebLOAD JavaScript Reference Manual

275

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wlBrowser.ObjectProperty["Location"] = "bottom#l.left#0"
wlBrowser.ObjectProperty ["Url"] = “http://www.abc.com/products.htm”
ImageZ2 = wlBrowser.FindObject (FT IMAGE, 3)
Image2.wlMouseOver ()

wlBrowser.SyncDOM(3)

// here the user selected a different window and changed focus
// to that window, again triggering an automatic snapshot
wlBrowser.SetWindow (“ProductList”)

wlBrowser.SyncDOM (4)

See also

wlBrowser, page 325

SynchronizationPoint() (function)

Description

WebLOAD provides Synchronization Points to coordinate the actions of multiple Virtual
Clients. A Synchronization Point is a meeting place where Virtual Clients wait before
continuing with an Agenda. When one Virtual Client arrives at a Synchronization Point,
WebLOAD holds the Client at the point until all the other Virtual Clients arrive. When all the
Virtual Clients have arrived, they are all released at once to perform the next action in the
Agenda simultaneously. For more information on Synchronization Points, see
SynchronizationPoint(), page 281 in the WebLOAD Programming Guide.

Syntax

SynchronizationPoint ([timeout])

Parameters

timeout—An optional integer value that sets the number of milliseconds that WebLOAD
will wait for all of the Virtual Clients to arrive at the Synchronization Point. The timeout
parameter is a safety mechanism that prevents an infinite wait if any of the Virtual Clients does
not arrive at the Synchronization Point for any reason. Once the timeout period expires,
WebLOAD releases the rest of the Virtual Clients. By default, there is no timeout value.
WebLOAD will wait an infinite amount of time for all Virtual Clients to arrive. Setting a
timeout value is important to ensure that the test session will not ‘hang’ indefinitely in case of
error.

Return Value

SynchronizationPoint () functions return one of the following values. These values
may be checked during the Agenda runtime.

4 WLSuccess—synchronization succeeded. All Virtual Clients arrived at the
Synchronization Point and were released together.

276

RadView Software

SynchronizationPoint() (function)

4 WLLoadChanged—synchronization failed. A change in the Load Size was detected while
Virtual Clients were being held at the Synchronization Point. All Virtual clients were
released.

4 WLTimeout—synchronization failed. The timeout expired before all Virtual Clients
arrived at the Synchronization Point. All Virtual Clients were released.

4 WLError—synchronization failed. Invalid timeout value. All Virtual Clients were
released.

Example

To test a Web application with all the Virtual Clients performing a particular Post operation
simultaneously, add a Synchronization Point as follows. The various return values are
highlighted:

The following Agenda fragment illustrates a typical use of synchronization points. To test a
Web application with all the Virtual Clients performing a particular Post operation
simultaneously, add a Synchronization Point as follows. The various return values are
highlighted:

wlHttp.Get (Murl”)

SP = SynchronizationPoint (10000)

if (SP == WLLoadChanged)
{
InfoMessage (“Syncronization failed, Load Size changed”)
InfoMessage ("SP = " + SP.toString() + ™ ” + ClientNum)
}
if (SP == WLTimeout)
{
InfoMessage (“Syncronization failed, Timeout expired”)
InfoMessage (“SP = " + SP.toString() + ™ 7 + ClientNum)
}
if (SP == WLError)
{
InfoMessage (“Syncronization failed”)
InfoMessage ("SP = " + SP.toString() + ™ ” + ClientNum)
}
if (SP == WLSuccess)

InfoMessage (“Synchronization succeeded”)
InfoMessage ("SP = ” + SP.toString() + “ 7+ ClientNum)

}
wlHttp.Post (url)

WebLOAD JavaScript Reference Manual 277

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

GUI mode

WebLOAD recommends setting synchronization functions within Agenda files directly through
the Visual AAT GUI. For example, the following figure illustrates a typical Synchronization
Point highlighted in the Agenda Tree. The JavaScript code line that corresponds to the
Synchronization Point in the Agenda Tree appears in the JavaScript View pane in the center,
and the property list for that Synchronization Point appears in the Properties pane to the right.

x]
B, hronizationE o P Function Mame: MaodeS cript - ;I
| SynchronizationPoint (1000) -# ttembame Synchronizat...
.# Comments
= SynchronizationPoint
A TimeOut 1000

Figure 2-41: Adding a Synchronization Point to an Agenda

Comment

If there is a change in the Load Size (scheduled or unscheduled) or if any WebLOAD
component is paused or stopped during the test session, all Synchronization Points are disabled.

Only client threads running within a single spawned process, on the same Load Generator, are
able to share user-defined global variables and synchronization points. So if, for example, you
have spawning set to 100 and you are running a total of 300 threads, realize that you are
actually running three spawned processes on three separate Load Generators. You will
therefore only be able to synchronize 100 client threads at a time, and not all 300.

See also

Adding timers, page 26 in the WebLOAD Programming Guide

SendCounter(), page 234 SendMeasurement(), page 235
SendTimer(), page 236 SetTimer(), page 241
Sleep(), page 247 SynchronizationPoint(), page 281

Timing functions, page 295

table (object)

Description

Each table object stores Web page material that has been organized into rows and columns.
The table objects are accessed through collections of document .all table objects.
(Individual items within a table are accessed through the TableCell.)

Syntax
document.all.tags (“"TABLE”) [index#] .tableProperty

278 RadView Software

TableCell (object)

Example

mnyFirstTableObject = document.all.tags ("TABLE") [0]
Access specific rows or columns or table cells the same way. For example:
document.all.tags ("TABLE") [0] .rows[1l].rowProperty
OR (in a shorter format)
myFirstTableObject.rows[1l].rowProperty

Properties

id, page 143

Comment

WebLOAD recommends working with tables on a Web page through the table object rather
than the wlTables collection.

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Collections, page 47 Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide
FindObject(), page 102 length, page 167
table, page 284 TableCell, page 285

wlTable, page 364

TableCell (object)

Description

Each TableCell object stores one component of the data found on a table. TableCells
are used to represent both a table’s header (TH) and data (TD) cells. (The complete collection
of table cells is represented by the table object.)

Syntax
<NA>

Methods
wlClick(), page 326 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349

WebLOAD JavaScript Reference Manual 279

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Properties
id, page 143 InnerText, page 155
event, page 91 OnClick, page 190

OnMouseOver, page 191

Comment

WebLOAD recommends working with tables on a Web page through the table object rather
than the wlTables collection.

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Collections, page 47 Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide
FindObject(), page 102 length, page 167
table, page 284 TableCell, page 285

wlTable, page 364

TableCompare (object)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Description

If you choose to work with the manual-mode AAT rather than the Visual AAT, WebLOAD
provides a Table Compare Definition Wizard to simplify the sometimes-complex task of
comparing Web site table entries. To maintain a long-term record of the Table Compare results,
WebLOAD also provides a TableCompare object that may be added manually to your
Agenda. Use the TableCompare object to record any failures or discrepancies as
TableCompareEvent entries in the Data Drilling report, described in Data Drilling—
WebLOAD transaction reports, page 149 in the WebLOAD Programming Guide.

Syntax
<NA>

280 RadView Software

TableCompare (object)

Comment

TableCompare objects must not be global. Each new object must be declared locally within
each thread. Generally, you should create new TableCompare objects only in the
InitClient () function of an Agenda, not in the main script. If a statement in the main
script creates an object, a new object is created each time the statement is executed. If
WebLOAD repeats the main script many times, a large number of objects may be created and
the system may run out of memory.

A complete implementation of the TableCompare object, with all its properties and methods,
is provided in the WebLOAD include directory in the tablecompare. js file. For a detailed
discussion of the various issues and factors that should be considered and decisions that must
be made when defining and working with a TableCompare object, see Table Compare
Definition Wizard, page 142 in the WebLOAD Programming Guide.

Methods

Compare(), page 49 Prepare(), page 205
TableCompare(), page 287

Properties
CompareColumns, page 51 CompareRows, page 52
Details, page 72 MatchBy, page 178

ReportUnexpectedRows, page 216

Comment

The TableCompare object is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document .all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)

Dynamic Object Recognition (DOR) for Dynamic FindObject(), page 102
HTML, page 95 in the WebLOAD Programming
Guide

id, page 143 (w1 Table property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) length, page 167

row, page 223 (wlTable property) rowlndex, page 225 (row property)

table, page 284 TableCell, page 285
TableCompare, page 286 tagName, page 289 (cell property)
wlTable, page 364 Working in HTTP Protocol Mode, page 213 in the

WebLOAD JavaScript Reference Manual 281

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

WebLOAD Programming Guide

TableCompare() (constructor)

Method of Object

TableCompare

Description

Creates a new TableCompare object.

Syntax

Recommended:
Tabl eConpar e(Expect edTabl e)

Alternate:
TableCompare (ExpectedTable, ActualTable)

Parameters

ExpectedTable—Pointer to an HTML table, the table being used as a ‘standard’, against
which another table will be compared.

ActualTable—Pointer to an HTML table, the table you wish to compare to the ‘standard’
table.

Return Value

Returns a new TableCompare object.

Example

Recommended:
a=new Tabl eConpar e(Expect edTabl e)

Alternate:
b=new Tabl eConpar e(Expect edTabl e, Actual Tabl e)

Comment

The TableCompare object is used with the TableCompare Wizard, which is only available to
users of the manual AAT Agenda recording program. WebLOAD recommends managing
tables on a Web page through the standard document.all collection.

See also
cell, page 35 (wlTable and row property) celllndex, page 37 (cell property)
Collections, page 47 cols, page 48 (wlTable property)
Compare(), page 49 CompareColumns, page 51

282 RadView Software

tagName (property)

CompareRows, page 52 Details, page 72
id, page 143 (wlTable property) InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216

row, page 223 (wlTable property) rowlndex, page 225 (row property)
TableCompare, page 286 tagName, page 289 (cell property)

wiTable, page 364 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

tagName (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

cell

Description
A string containing the cell type, either <TD> or <TH>.
Syntax
Use the following syntax to check a particular table cell type:
document.wlTables.myTable.cells[index#] .tagName
Example
<NA>
Comment

The tagName property is a member of the wlTables family of table, row, and cell objects.
WebLOAD recommends managing tables on a Web page through the standard

document .all collection. For example, rather than using the following approach to access
the first table on a page:

myFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

myFirstTableObject = document.all.tags ("TABLE") [0]

WebLOAD JavaScript Reference Manual 283

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

See also

cell, page 35 (wlTable and row property)
Collections, page 47

Compare(), page 49

CompareRows, page 52

id, page 143 (wlTable property)

InnerText, page 155 (cell property)
Prepare(), page 205

row, page 223 (wlTable property)
TableCompare, page 286

wlTable, page 364

target (property)

celllndex, page 37 (cell property)
cols, page 48 (w1 Table property)
CompareColumns, page 51

Details, page 72

InnerHTML, page 153 (cell property)
MatchBy, page 178
ReportUnexpectedRows, page 216
rowlndex, page 225 (row property)
tagName, page 289 (cel1l property)

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Object

form

Description

link

The name of the window or frame into which the form or link should be downloaded (read-only

string).
Syntax

<NA>
Example

In the following code fragment:

Go to New Page.

The target property would equal “ top” and the link will load the page into the top frame of

the current frameset.

284

RadView Software

text (property)

Comment

Note that while 1ink and 1ocation objects share most of their properties, the target
property is used by the 1ink object only and is not accessed by the 1ocation object.

The form.target and 1ink. target properties identify the most recent, immediate
location of the target frame using the name string or keyword that was assigned to that frame.
Compare this to the wlHttp.wlTarget property of a transaction, which uses the
WebLOAD shorthand notation, described in Identifying frame locations, page 224 in the
WebLOAD Programming Guide, to store the complete path of the frame, from the root window
of the Web page. The last field of the wlHttp.wlTarget string is the target name stored in
the form. target and 1ink. target properties.

See also

form, page 102 link, page 169
wlTarget, page 366

text (property)

Property of Objects

Text objects on a Web page are accessed through the document.all collection of the
standard DOM structure. Text objects are also properties of the following object:

option

Description

Each Text object represents one of the text fields embedded in a document. When a property
of the option object, holds the text contained within the <OPTION> element. (Compare to the
element object, which stores the parsed data for a single HTML form element, where the
element may be any one of a variety of types, and the form object, which stores the parsed data
for an entire HTML form.)

Syntax
document.all.tags[“"TEXT"]

Methods
wlClick(), page 326 wilMouseDown(), page 347
wilMouseOver(), page 348 wlMouseUp(), page 349
wiMultiSelect(), page 350 wiSelect(), page 358

wlTypeln(), page 366

WebLOAD JavaScript Reference Manual 285

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Properties

id, page 143 Name, page 184
Size, page 247

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

TextArea (object)

Property of Objects

TextArea objects on a Web page are accessed through the document.all collection of
the standard DOM structure.

Description

Each TextArea object specifies a multiline text input control, representing one of the text
fields embedded in a document. (Compare to the element object, which stores the parsed data
for a single HTML form element, where the element may be any one of a variety of types, and
the form object, which stores the parsed data for an entire HTML form.)

Syntax
document.all.tags[“"TEXTAREA"]

Methods
wiClick(), page 326 wiMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349

286 RadView Software

TimeoutSeverity (property)

wlMultiSelect(), page 350 wiSelect(), page 358

wiTypeln(), page 366

Properties

id, page 143 MaxLength, page 180
Name, page 184

Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also
Button, page 34 Checkbox, page 38
Collections, page 47 File, page 99
form, page 102 Image, page 148
InputButton, page 157 InputCheckbox, page 158
InputFile, page 159 Inputlmage, page 160
InputRadio, page 162 InputText, page 164
length, page 167 Radiobutton, page 210
Select, page 231 text, page 291
TextArea, page 292 UlContainer, page 301

TimeoutSeverity (property)

Property of Objects

wiBrowser

Description

When conducting Page Verification tests, TimeoutSeverity stores the error level to be
triggered if the full set of verification tests requested for the current page are not completed
within the specified time limit.

GUI mode

WebLOAD recommends setting page verification severity levels through the Visual AAT or
Console GUI. Check Page Verification and select an error severity level from the drop-down
box in the Functional Testing tab of the Tools | Default or Current Project Options dialog box,
illustrated in the following figure:

WebLOAD JavaScript Reference Manual 287

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Default Options I

Browser Emulation I Authentication for protocol scripts I Connection

Sleep Time Contral | FPaszz/Fail Definition I Java

Diagrostic Functional Testing | 551 | Client Type

Automatic data collection Fage Time
vV Pages v ‘erification

™ object level Max Time: Severity Level:

=l -
I~ HTTP level 20 =itsel |4 pinor Enor =]

Figure 2-42: Setting Page Verification error thresholds

Syntax

You may also assign a severity level using the TimeoutSeverity property.

wlBrowser.TimeoutSeverity =

The following error codes are available:

ErrorFlag

4 WLSuccess—the transaction terminated successfully.

4 WLMinorError—this specific transaction failed, but the test session may continue as
usual. The Agenda displays a warning message in the Log window and continues execution

from the next statement.

4 WLError—this specific transaction failed and the current test round was aborted. The
Agenda displays an error message in the Log window and begins a new round.

¢ WLSevereError—this specific transaction failed and the test session must be stopped
completely. The Agenda displays an error message in the Log window and the Load
Generator on which the error occurred is stopped.

Example
wlBrowser.TimeoutSeverity =

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

WLError.

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

288

RadView Software

TimeoutSeverity (property)

VerificationFunction() (user-defined), page 320 wiBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Timing functions

Description

The timer functions let you time or synchronize any operation or group of user activities in an
Agenda, such as a navigation or mouse click, and send the time statistics to the WebLOAD
Console.

Example

The following Agenda connects to the home Web page of company. On every fifth round, the
Agenda also connects to a second Web page. The Agenda uses different timers to measure the
time for each connection. Note that this Agenda fragment contains a main script only.

WebLOAD reports three time statistics:
4 The round time, which includes both connections.
4 Page 1 Time, reported in every round for the first connection only.

4 Page 2 Time, reported in every fifth round for the second connection only.

SetTimer ("Page 1 Time")

wlHttp.Get ("http://www.ABCDEF.com")

SendTimer ("Page 1 Time")

if (RoundNum%5 == 0) {
SetTimer ("Page 2 Time")
wlHttp.Get ("http://www.ABCDEF.com/product info.html")
SendTimer ("Page 2 Time")

Functions

The set of timer functions includes the following:

SendCounter(), page 234 SendMeasurement(), page 235

SendTimer(), page 236 SetTimer(), page 241

Sleep(), page 247 SynchronizationPoint(), page 281
See also

Adding timers, page 26 in the WebLOAD Timing functions, page 295

Programming Guide

WebLOAD JavaScript Reference Manual 289

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

title (property)

Property of Objects
Button Div
document element
frames Image
InputButton InputCheckbox
link location
script Span
TableCell UlContainer
window

Description

Stores the title value associated with the parent object.

When working with document objects, a title property is an object that contains the
document title, stored as a text string. When working with window objects, the title is
extracted from the document inside the window. title objects are local to a single thread.
You cannot create new title objects using the JavaScript new operator, but you can access a
document title through the properties and methods of the standard DOM objects. The properties
of title are read-only.

When working with element, 1ink, or location objects, a title property contains the
title of the parent Button, Checkbox, Reset, or Submit element or link object. May be used as a
tooltip string. When working with document objects, a title property is an object that
contains the document title, stored as a text string. When working with window objects, the
title is extracted from the document inside the window.

Syntax
Document object:
Access the title’s properties directly using the following syntax:
document.title.<titleproperty>
Example
Document object:
CurrentDocumentTitle = document.title.string
Properties

Document object:

290 RadView Software

string, page 278

Comment

title (property)

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.

See also

Button, page 34
Collections, page 47
element, page 83
form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
length, page 167
location, page 176
Select, page 231
TextArea, page 292
window, page 324

Checkbox, page 38
document, page 79
File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
link, page 169
Radiobutton, page 210
text, page 291
UlContainer, page 301

Transaction verification components

Description

Customized transaction verification functions are created out of the following components:

BeginTransaction(), page 28

CreateTable(), page 60

ReportEvent(), page 214

VerificationFunction() (user-defined), page 320

CreateDOM(), page 59
EndTransaction(), page 85
SetFailureReason(), page 239

For a more complete explanation and examples of functional testing and transaction
verification, see Functional Testing and Reporting, beginning on page 127 in the WebLOAD

Programming Guide.

See also

Adding transactions, page 49 in the WebLOAD

Custom verification functions, page 137 in the

WebLOAD JavaScript Reference Manual

291

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Programming Guide WebLOAD Programming Guide

Data Drilling—WebLOAD transaction reports, Functional Testing and Reporting, page 127 in
page 149 in the WebLOAD Programming Guide the WebLOAD Programming Guide
TimeoutSeverity, page 293 Transaction verification components, page 297
TransactionTime, page 298 Validate(), page 309

Verification Test Components, page 315 Verification Test Property List: Global and Page

Level, page 318

wlBrowser, page 325 Working in HTTP Protocol Mode, page 213 in
the WebLOAD Programming Guide

TransactionTime (property)

Property of Objects

wiBrowser

Description

Assign a timeout value using the wlBrowser.TransactionTime property. When
conducting Page Verification tests, TransactionTime stores the maximum amount of time
that should be needed to complete the full set of verification tests requested for the current

page.

GUI mode
WebLOAD recommends setting page verification timeout values through the Visual AAT or
Console GUI. Check Page Verification and enter a maximum number of seconds in the

Functional Testing tab of the Tools | Default or Current Project Options dialog box, illustrated
in the following figure:

Default Options I

Browser Emulation I Authentication for protocol scripts I Connection

Sleep Time Contral | FPaszz/Fail Definition I Java
Diagrostic Functional Testing | 551 | Client Type
Automatic data collection Fage Time
vV Pages v ‘erification

™ object level Max Time: Severity Level:

=l -
I~ HTTP level 20 =itsel |4 pinor Enor =]

Figure 2-43: Setting Page Verification error thresholds

Syntax
You may also assign a timeout value using the TransactionTime property.

wlBrowser.TransactionTime = TimeValue

292 RadView Software

type (property)

Example

The value assigned to TransactionTime may be written in either string or integer format,
where the integer represents the number of milliseconds to wait and the string represents the
decimal fraction of a whole second. Therefore, the following two lines are equivalent, both
setting TransactionTime to one millisecond:

1

wlBrowser.TransactionTime

or

wlBrowser.TransactionTime "o.o001"

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

BeginTransaction(), page 28

CreateDOM(), page 59 CreateTable(), page 60

Custom verification functions, page 137 in the
WebLOAD Programming Guide

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

EndTransaction(), page 85 Functional Testing and Reporting, page 127 in

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315

VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

type (property)

the WebLOAD Programming Guide
SetFailureReason(), page 239

Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wlBrowser, page 325

Property of Objects

element
wlBrowser
wlHttp.Data
wiMediaPlayer

Description

form
wlHttp
wlHttp.DataFile

This property is a string that holds the ‘type’ of the parent object.

WebLOAD JavaScript Reference Manual

293

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

If the parent is a form element object, then type holds the HTML type attribute of the form
element. For example, an <INPUT> element can have a type of "TEXT", "CHECKBOX", or
"RADIO". Certain HTML form elements, such as <SELECT> do not have a type attribute. In
that case, element . type is the element tag itself, for example "SELECT".

If the parent is a wlBrowser object, then Type holds the HTML type attribute value that the
WebLOAD DOM has stored for the current object, such as “A” for links or anchors, “AREA”
for client-side image maps, “Map” for server-side image maps, “FORM” for forms, “META”
for meta objects, and “NO_OBJ” when there is no value set. Note that the Type value does not
change. Even when working with dynamic HTML, the type of a specific object remains the
same through all subsequent transactions with that object.

If the parent is awlHttp.Data or wlHttp.DataFile object, then Type holds the MIME
type of the string or form data being submitted through an HTTP Post command.

If the parent is a wlMediaPlayer object, then t ype retrieves the major type of the stream.
(audio/video/script) (read-only string)

Syntax

element:
When working with element objects, use the lowercase form:
<NA>
wiBrowser:
When working with wlBrowser objects, use the uppercase form:
wlHttp.Type = “A”
wlHttp.Data:
When working with wlHt tp.Data objects, use the uppercase form:
wlHttp.Data.Type = "application/x-www-form-urlencoded"
wlMediaPlayer
When working with wlMediaPlayer objects, use the lowercase form:
MyMediaPlayerObject.type

Comment

Notice that the Type property for wlHttp.Data and wlHttp.DataFile objects is written
in uppercase.

See also

bitrate, page 30 connectionBandwidth, page 53

currentPosition, page 62 currentStreamName, page 62

294

RadView Software

Data, page 63

duration, page 80
Erase, page 87

form, page 102

Get(), page 110
OpenStream(), page 194
Play(), page 200
Resume(), page 220
Stop(), page 278

value, page 310
wiClear(), page 328
wlMediaPlayer, page 344

UlContainer (object)

UlContainer (object)

DataFile, page 65
element, page 83
fileName, page 100
FormData, page 104
Header, page 138
Pause(), page 200
Post(), page 202
state, page 277

type, page 300
wilBrowser, page 325
wlHttp, page 342
wlMediaPlayer(), page 345

Description

The UIContainer object is a generic term used by WebLOAD to represent any of the set of
objects that are user interface containers, such as <DIV> or . UIContainer objects
are accessed through collections of document .all.

Syntax
<NA>

Methods

wlClick(), page 326
wlMouseOver(), page 348
wlMultiSelect(), page 350

wiTypeln(), page 366

Properties
ContainerTag, page 55
id, page 143
OnClick, page 190
See also

Button, page 34

wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358

event, page 91
InnerText, page 155
OnMouseOver, page 191

Checkbox, page 38

WebLOAD JavaScript Reference Manual

295

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Collections, page 47
File, page 99

Image, page 148
InputCheckbox, page 158
Inputlmage, page 160
InputText, page 164
Select, page 231

text, page 291

Url (property)

Div, page 77

form, page 102
InputButton, page 157
InputFile, page 159
InputRadio, page 162
Radiobutton, page 210
Span, page 254
TextArea, page 292

Property of Objects
area
form
Image
link

window

Description

element
frames
Inputlmage
location

wlHttp

Sets or retrieves the URL of the parent object on the Web page (read-only). If the parent object
is of type , then this property holds the URL of the image element.

If the parent object is wlGlobals, this property holds the URL address to which the
wlGlobals object connects.

If the parent object is wlMeta, then if ht tpEquiv="REFRESH” and the content property
holds a URL, then the URL is extracted and stored in a 1ink object (read-only).

Example
Area, element, form, frame, image, link, location:
<NA>
wlGlobals:
wlGlobals.Url = "http://www.ABCDEF.com"
wiMeta:
When working with w1Meta objects, use the all-uppercase caps form:

CurrentLink = document.wlMetas[0].URL

296 RadView Software

Comment

UseHistory (property)

Notice that the URL property for area, element, form, frame, image, 1ink,
location, and wlMeta objects is written in all-uppercase caps.

This is one of the properties to which users may assign a weight for Dynamic Object
Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the
WebLOAD Programming Guide, for more information.

See also

area, page 24

content, page 56

element, page 83
frames, page 107
Image, page 148
link, page 169
Name, page 184

Url, page 302
wlBrowser, page 325
wlHttp, page 342
wlMeta, page 346

UseHistory (property)

Browser configuration components, page 30

Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide

form, page 102
httpEquiv, page 143
Inputlmage, page 160
location, page 176

Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide

window, page 324
wlGlobals, page 339
wlLocals, page 343

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Property of Objects

wlGlobals

Description

Flag that instructs WebLOAD to use a stored set of previous commands.

Example

<NA>

HistoryLimit, page 140

wlGlobals, page 339

WebLOAD JavaScript Reference Manual

297

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

User-defined global properties

Property of Object

wiBrowser

Description

Global properties defined through wlGlobals are shared between all the threads of a single
Agenda, running on a single Load Generator. Their values may be reset and changed within the
main body of an Agenda. The new value will be recognized immediately by all threads sharing
that global value. (Compare to the w1 SystemGlobal, which enables sharing of global
variables and values system-wide, between all threads of all Load Generators participating in a
test session, and to the wlGeneratorGlobal, which enables sharing of global variables and
values, between all threads of a single Load Generator, even when running multiple Agendas.)

Globally shared variables are useful when tracking a value or maintaining a count across
multiple threads or platforms. For example, you may include these shared values in the
messages sent to the Log window during a test session.

If you are working within the JavaScript code in your Agenda, you may create user-defined
properties for any object. To add a user-defined property to an object, simply assign it a value.
This feature is particularly useful with the w1 Globals object, which you can use to define
your own global properties.

Use wlGlobals property variables to create and access variable values that you wish to share
between threads of an Agenda. Edit your wlGlobals properties through the IntelliSense
editor, described in Using the IntelliSense JavaScript Editor, page 18. While global variables
may be accessed anywhere in your Agenda, be sure to initially declare w1Globals values in
the TnitAgenda () function only. Do not define new values within the main body of an
Agenda, for they will not be shared correctly by all threads.

Syntax

wlBrowser.UserDefinedProperty = Value

Example

function InitAgenda () {
// create a user-defined global variable
wlGlobals.myGlobalProperty = 10

}

GUI mode

Both system and user-defined global variables should be defined, set, and assigned through the
Global Variables dialog boxes of the Visual AAT Properties pane. The following figure
illustrates the Global UserDefined Variables dialog box with a single user-defined variable
appearing.

298

RadView Software

UserAgent (property)

Lflx

..F temiame Agenda
. Comments

= GlobalVariables
P System

* serDefined _I

& Global UserDefined Variables m
I F -

| I Hame I Type I Value I
|1_|MyGIObaIVar |String |String Te>d| |

Figure 2-44: Defining a global variable

You may also work with global variables by adding or editing wlBrowser properties through
the IntelliSense editor, described in Using the IntelliSense JavaScript Editor, page 18. While
global variables may be accessed anywhere in your Agenda, be sure to initially declare
wlBrowser values in the InitAgenda () function only. Do not define new values within

the main body of an Agenda.

See also
Message functions, page 180 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wlBrowser, page 325 wlGeneratorGlobal, page 334
wlGlobals, page 339 wiHttp, page 342
wlLocals, page 343 wiSystemGlobal, page 363,

UserAgent (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more

information.
Property of Objects

wlGlobals wlHttp

wiLocals

Description

Defines the type of Web browser that the Agenda should simulate, such as Navigator or
Explorer. See the RadView Web site

WebLOAD JavaScript Reference Manual 299

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

(http://www.radview.com/support/resourcectr/agenda.htm) for the most up-to-date list of
supported browsers.

Example
<NA>
GUI mode
WebLOAD recommends setting user agent values through the Visual AAT or Console GUI.

Select a browser type and user agent through the Browser Emulation tab of the Tools | Default
or Current Project Options dialog box, illustrated in the following figure:

Browser Type

Select Browser Type: IDefauIt j

user-agent: | Mozila/4.0 (compatible; MSIE 5.01; wind) = | Update...l

Figure 2-45: Setting user-agent value

See also

Browser configuration components, page 30 Rules of scope for local and global variables,

page 111 in the WebLOAD Programming Guide

wlGlobals, page 339 wlHttp, page 342

wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

UserName (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Properties of Objects

wlGlobals wlHttp

wiLocals

Description

The user name that the Agenda uses to log onto a restricted HTTP site. WebLOAD
automatically uses the appropriate access protocol. For example, if a site expects clients to use

the NT Authentication protocol, the appropriate user name and password will be stored and sent
accordingly.

300 RadView Software

UsingTimer (property)

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for the
current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting user
authentication values through the Console GUI using one of the following approaches:

4 Enter user authentication information through the Browser Dialogs tab of the Tools |
Default or Current Options dialog box.

4 Enter user authentication information through the Authentication for Protocol Scripts tab of
the Tools | Default or Current Options dialog box. This approach is illustrated in
DefaultAuthentication, page 66.

Syntax

You may also set user values using the wlGlobals properties. WebLOAD automatically
sends the user name and password when a wlHt tp object connects to an HTTP site. For

example:
wlGlobals.UserName = "Bill"
wlGlobals.PassWord = "TopSecret"
See also
Browser configuration components, page 30 Dialog box properties, page 73
NTUserName, NTPassWord, page 187 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wiGlobals, page 339 wlHttp, page 342
wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the

WebLOAD Programming Guide

UsingTimer (property)

Mode

These properties are usually inserted manually only when working in the HTTP Protocol mode.
See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for
more information.

Property of Object

wlHttp

Description

The name of a timer to use for the Get () or Post () method.

WebLOAD JavaScript Reference Manual 301

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

WebLOAD zeros the timer immediately before a Get () or Post () call and sends the timer
value to the WebLOAD Console immediately after the call. This is equivalent to calling the
SetTimer () and SendTimer () functions. Thus the following two code examples are
equivalent:

//Version 1

wlHttp.UsingTimer = "Timerl"
wlHttp.Get ("http://www.ABCDEF.com")
//Version 2

SetTimer ("Timerl")

wlHttp.Get ("http://www.ABCDEF.com")
SendTimer ("Timerl")

See also
Browser configuration components, page 30 SendTimer(), page 236
SetTimer(), page 241 wiHttp, page 342

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

Validate() (method)

Method of Object

wiBrowser

Description

Completes the specified verification tests. All failures are logged and displayed in the Log
window.

Syntax
Validate (TestType [, ErrorLevell])

Parameters

TestType—One or more constants indicating type of test to be executed. If multiple tests
listed, all must trigger the same type of error on failure. A complete list of verification test
constants is provided in Verification Test Components, page 315.

ErrorLevel—Constant indicating the error level triggered if the test does not succeed.
Optional. ErrorLevel is a very useful tool for redirecting Agenda behavior. Use the severity
level to determine the execution path to be followed. Less severe errors may be noted and
ignored. More severe failures may cause the whole test to be aborted. The error level may be
one of the following:

4 WLSuccess—the transaction terminated successfully.

302 RadView Software

value (property)

4 WLMinorError—this specific transaction failed, but the test session may continue as
usual. The Agenda displays a warning message in the Log window and continues execution

from the next statement.

4 WLError—this specific transaction failed and the current test round was aborted. The
Agenda displays an error message in the Log window and begins a new round.

4 WLSevereError—this specific transaction failed and the test session must be stopped
completely. The Agenda displays an error message in the Log window and the Load
Generator on which the error occurred is stopped.

Return Value

None.

Example

wlBrowser.Verification.Validate (wlGlobalTests, WLMinorError)

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

ReportEvent(), page 214
TimeoutSeverity, page 293
TransactionTime, page 298

Verification Test Components, page 315
VerificationFunction() (user-defined), page 320

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

value (property)

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

SetFailureReason(), page 239
Transaction verification components, page 297
Validate(), page 309

Verification Test Property List: Global and Page
Level, page 318

wlBrowser, page 325

Property of Objects

Button
InputButton

InputRadio

element
InputCheckbox

option

WebLOAD JavaScript Reference Manual

303

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlHeader wlHttp.Data
wlHttp.Header wiSearchPair
Description

Sets and retrieves the value associated with the parent object.

When working with elements or options, this property holds the text associated with this
object. This is the value that is returned to the server when a FORM control of type Button,
Checkbox, Radiobutton, Reset, or Submit is submitted. Thus the value property holds the
HTML value attribute of the object (the <OPTION> element). If the element does not have a
value attribute, WebLOAD sets the value property equal to the text property.

When working with wlHeader or wlSearchPair objects, this property holds the value of
the search key.

When working with wlHttp.Data or wlHttp.Header objects, this property holds the
value of the data string being submitted through an HTTP Post command.

Syntax
For elements and options:
<NA>
For wiHeaders:
document.wlHeaders|[index#] .value = "TextString"
For example:
document.wlHeaders[0] .value = "Netscape-Enterprise/3.0F"
For wlSearchPairs:
document.links[1l] .wlSearchPairs[index#].value = "TextString"
For example:
document.links([1l] .wlSearchPairs[0].value = "OpticsResearch"
For wiHttp.Header:
wlHttp.Header["value"] = "TextString"
For wiHttp.Data:
When working with wlHttp.Data objects, use the uppercase form:
wlHttp.Data.Value = "SearchFor=icebergs&SearchType=ExactTerm"
Comment

Notice that the Value property for element and wlHttp.Data objects is written in
uppercase.

304 RadView Software

Comment

value (property)

One of the properties to which users may assign a weight for Dynamic Object Recognition. See
Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in the WebLOAD

Programming Guide, for more information.

See also

bitrate, page 30

Checkbox, page 38
Collections, page 47
currentStreamName, page 62
DataFile, page 65

Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide

Erase, page 87
fileName, page 100
FormData, page 104
Header, page 138
InputButton, page 157
InputFile, page 159
InputRadio, page 162
key, page 166
OpenStream(), page 194
Pause(), page 200
Post(), page 202
Resume(), page 220
state, page 277

text, page 291

type, page 300

value, page 310
wlHeader, page 340
wiMediaPlayer, page 344
wiSearchPair, page 356

Button, page 34
connectionBandwidth, page 53
currentPosition, page 62
Data, page 63

duration, page 80

element, page 83

File, page 99

form, page 102

Get(), page 110

Image, page 148
InputCheckbox, page 158
Inputimage, page 160
InputText, page 164
length, page 167

option, page 195

Play(), page 200
Radiobutton, page 210
Select, page 231

Stop(), page 278
TextArea, page 292
UlContainer, page 301
wlClear(), page 328
wlHttp, page 342
wiMediaPlayer(), page 345

WebLOAD JavaScript Reference Manual

305

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

VCUniquelD() (function)

Description

VCUniquelID () provides a unique identification for the current Virtual Client instance which
is unique system-wide, across multiple Load Generators, even with multiple spawned processes
running simultaneously. Compare this to ClientNum, which provides an identification number
that is only unique within a single Load Generator. The identification string is composed of a
combination of the current thread number, round number, and other internal markers.

Syntax

VCUniquelID ()
Parameters

None
Return Value

Returns a unique identification string for the current Virtual Client instance.

Example
<NA>
See also
ClientNum, page 43 GeneratorName(), page 108
GetOperatingSystem(), page 130 Identification variables and functions, page 146
RoundNum, page 221 VCUniquelD(), page 312

Verification (property)

Property of Object

wilBrowser

Description

When used in array form, array of items used when configuring or completing global
verification tests. When used as a single property with the sub-property array Properties[],
stores the parameter values needed to configure or complete object-specific verification tests.

In addition to the general Verification[] and Verification.Properties|]
verification access properties, each verification test includes its own list of specific properties
and constants, used as parameters to customize and tailor the tests as needed. These specific
verification test properties are listed in Verification Test Components, page 315.

306

RadView Software

Example

Verification (property)

wlBrowser.Verification.Properties[“TestName”] = “TextTest”

A more complete example of verification function use within a longer Agenda fragment
appears in Functional Testing and Reporting, page 127 in the WebLOAD Programming Guide.

GUI mode

Once a test session Agenda has been recorded, WebLOAD recommends that users add
verification tests to their testing Agenda or reset error levels through the convenient Visual
AAT or Console GUI. Verification tests may be run either on a single Web page or on all Web
pages accessed in a test session. Configure your verification test selections through the
Functional Testing tab of the Tools | Default or Current Project Options dialog box, illustrated

in the following figure:

Default Options I

Sleep Time Contral I Fazz/Fail Definition I Java
Browser Emulation | Authentication for protocol scripts I Connection
Diagrostic Functional Testing | 551 | Client Type
—Automatic data collection Fage Time
v Pages V' ‘erification
™ object level Max Time: Severity Level:
—| -
I~ HTTP level 20 =itsel |4 pinor Enor =]
— Werification
™ Werification |2 _|;°/°
Test Name | Severity Level

&
&

Set az Defaultl Cancel | Help |

Figure 2-46: Selecting Verification Tests

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual

307

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

EndTransaction(), page 85 Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

ReportEvent(), page 214 SetFailureReason(), page 239

TimeoutSeverity, page 293 Transaction verification components, page 297

TransactionTime, page 298 Validate(), page 309

Verification Test Components, page 315 Verification Test Property List: Global and Page

Level, page 318
VerificationFunction() (user-defined), page 320 wlBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Verification Test Components

Properties of Objects

wiBrowser

Description

Verification tests are essentially comparisons between snapshots of the DOM state stored in the
expected and actual databases. Once a test session Agenda has been recorded, WebLOAD users
add verification tests through the Verification Test Wizards. Use the Text, Table, and Page
Verification Test Wizards to add as many verification tests as needed, covering almost every
aspect of a typical client session. Test strings may be taken from input files or assigned to
variables, simplifying testing with many different testing values. Tests may be defined as global
defaults for all test sessions, for a complete Agenda, or for a single Web page. You can also
create your own user-defined verification function, tailored to the unique aspects of the
application being tested.

Global and page level tests are essentially identical. The user simply specifies through the GUI
if the selected tests should be completed for every Web page in the current test session or for a
single Web page only. The verification tests currently available to WebLOAD users, together
with the properties associated with each test, are itemized in Verification Test Property List:
Global and Page Level, page 318. Each test is listed by name, followed by a table that includes
the WebLOAD identification constant, properties, and values associated with the test. Each
verification test includes its own list of specific properties and constants, used as parameters to
customize and tailor the tests as needed.

In most cases WebLOAD users select or customize their preferred verification tests through the
Verification Test Wizards, described in the WebLOAD User’s Guide, and these tests are added
to the Agenda code and executed by WebLOAD automatically. The property and method
descriptions and sample code fragments included in this chapter are meant only to clarify the
code that you may see in the JavaScript Agendas, created for you automatically by WebLOAD.
If you prefer to design a customized verification function that fills a specific testing need, add a

308

RadView Software

Verification (property)

user-defined verification function to your Agenda as described in Custom verification
functions, page 137 in the WebLOAD Programming Guide. See VerificationFunction() (user-
defined), page 320, for a complete syntax specification.

Syntax

Specific verification test properties are accessed through the general purpose
wlBrowser.Verification property, which is an object in its own right. The
Verification property links to a Properties[] array that provides access to the full set
of properties for each verification test. Values for specific verification test properties are set
through the wlBrowser .Verification.Properties|[] array.

In addition to this general wlBrowser verification access property, each verification test
includes its own list of specific properties and constants, used as parameters to customize and
tailor the tests as needed. These specific verification test properties are listed in Verification
Test Property List: Global and Page Level, page 318.

Example

wlBrowser.Verification.Properties[“TestName”] = “TextTest”

A more complete example of verification function use within a longer Agenda fragment
appears in Functional Testing and Reporting, page 127.

GUI mode

Once a test session Agenda has been recorded, WebLOAD recommends that users add
verification tests to their testing Agenda or reset error levels through the convenient Visual
AAT or Console GUI. Verification tests may be run either on a single Web page or on all Web
pages accessed in a test session. Configure your verification test selections through the
Functional Testing tab of the Tools | Default or Current Project Options dialog box, illustrated
in the following figure:

WebLOAD JavaScript Reference Manual 309

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Default Options I
Sleep Time Contral I Fazz/Fail Definition I Java
Browser Emulation | Authentication for protocol scripts I Connection
Diagrostic Functional Testing 551 | Client Type
—Automatic data collection Fage Time
v Pages V' ‘erification
™ object level Max Time: Severity Level:
—| -
I~ HTTP level 20 =itsel |4 pinor Enor =]
— Werification
™ Werification |2 _|::' 4
Test Name | Severity Level
&
&
Set az Defaultl Cancel | Help |

Figure 2-47: Selecting Verification Tests

Methods

Validate() (used with the wIBrowser object only)

Properties

Verification, page 313

In addition to this general wlBrowser .Verification verification access property, each
verification test includes its own list of specific properties and constants, used as parameters to
customize and tailor the tests as needed. These specific verification test properties are listed in
the following table. Verification tests are performed on a complete Web page. Comparisons are
completed between snapshots of the DOM state stored in the expected and actual databases.
The constant name is the name by which WebLOAD identifies the test internally.

See also

Adding transactions, page 49 in the WebLOAD
Programming Guide

CreateDOM(), page 59

Custom verification functions, page 137 in the
WebLOAD Programming Guide

EndTransaction(), page 85

BeginTransaction(), page 28

CreateTable(), page 60

Data Drilling—WebLOAD transaction reports,
page 149 in the WebLOAD Programming Guide

Functional Testing and Reporting, page 127 in

310

RadView Software

Verification Test Property List: Global and Page Level

the WebLOAD Programming Guide

ReportEvent(), page 214 SetFailureReason(), page 239

TimeoutSeverity, page 293 Transaction verification components, page 297

TransactionTime, page 298 Validate(), page 309

Verification Test Components, page 315 Verification Test Property List: Global and Page

Level, page 318
VerificationFunction() (user-defined), page 320 wlBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Verification Test Property List: Global and Page Level

Test Identification Constant

Name
w G obal Tests

Description

Run the specified global verification tests on a single Web page or on all Web pages

included in a session.

Verification.Properties[] values for available tests:

Name

w Conpar eFor ns

wl Conpar eFr anmes

wl Conpar el mages

wl Conpar eLi nks

wl Conpar eTabl es

w ConpareTitle

Description
Compare the following expected and actual

form components:

e Number of forms
e Number of elements on the forms
e DOR match

Compare the expected and actual number
of nested frames.

Compare the number of expected and
actual images and complete an optional
CRC and DOR check.

Compare the number of expected and
actual links and complete a DOR match.

Compare the expected and actual number
of tables and table structure.

Compare the expected and actual title.

Possible Value

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

WebLOAD JavaScript Reference Manual

311

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

w Li nkCheck Verify all the links on the page to make
sure they are valid.

wl Repor t Def aul t Report current default values.
Val ues
w Text Sear ch Search the page for the defined expression.

The test may be set to ignore white spaces
or be case sensitive.

CRCcheck Perform a CRC confirmation check on the
selected image.

Optionally available with the
wlCompareImages test.

Text ToFi nd{| ndex} Text string for which WebLOAD should
search.

Included with the wlTextSearch test.

Text Not ToFi nd{ 1 ndex} Text string which WebLOAD should not
find.

Included with the wlTextSearch test.

Global Verification Test Example

Global verification tests are completed immediately upon navigating to a new Web page, as illustrated in the following

example:

function InitAgenda() ({

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

DO_NOT_CHECK
REPORT_AS_M NOR_ERROR
REPORT_AS_ERROR
REPORT_AS_SEVERE_ERROR

“Yes” or “No”
default value Yes

w Browser. Verification.Properties[“w Conpar el nages”] =REPORT_AS_M NOR_ERROR
W Browser. Verification.Properties[“w Text Search”] =REPORT_AS_SEVERE_ERROR
w Browser. Verification.Properties[“TextToFindl"]="error”

/] Start of Main Agenda Body

W Br owser . Expect Navi gati on(“http://ww. abc. cont)
W Browser. Navi gate(“http://ww. abc. cont)
w Browser. SyncDOM 1)

wl Browser . Verification. Validate(w G obal Test s)

/1 Indicates that all global tests should be

/1 performed at this point using the GU defaults

See also

Adding transactions, page 49 in the WebLOAD BeginTransaction(), page 28

Programming Guide

CreateDOM(), page 59 CreateTable(), page 60

312

RadView Software

VerificationFunction() (user-defined) (function)

Custom verification functions, page 137 in the Data Drilling—WebLOAD transaction reports,

WebLOAD Programming Guide page 149 in the WebLOAD Programming Guide

EndTransaction(), page 85 Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

ReportEvent(), page 214 SetFailureReason(), page 239

TimeoutSeverity, page 293 Transaction verification components, page 297

TransactionTime, page 298 Validate(), page 309

Verification Test Components, page 315 Verification Test Property List: Global and Page

Level, page 318
VerificationFunction() (user-defined), page 320 wiBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

VerificationFunction() (user-defined) (function)

Description

User-defined verification function to be used with a 'named' transaction. A function written by
the user, tailored to the specific testing and verification needs of the application being tested.

Syntax

UserDefinedVerificationFunction (specified by user)

{

<any valid JavaScript code>
return value

}
Parameters

Specified by user.

Return Value

The user-defined Verification () function returns a value based on user-specified
criterion. You define the success and failure criterion for user-defined transactions. You also
determine the severity level of any failures. The severity level determines the execution path
when the main Agenda resumes control. Less severe failures may be noted and ignored. More
severe failures may cause the whole test to be aborted.

Set the severity level in the verification function return statement. All failures are logged and
displayed in the WebLOAD Log Window, similar to any other WebLOAD test failure. Refer to
Appendix A in the WebLOAD User’s Guide for more information on return values and error
codes. Transactions may be assigned one of the following return values:

4 WLSuccess—the transaction terminated successfully.

WebLOAD JavaScript Reference Manual 313

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

4 WLMinorError—this specific transaction failed, but the test session may continue as

usual. The Agenda displays a warning message in the Log window and continues execution
from the next statement.

4 WLError—this specific transaction failed and the current test round was aborted. The
Agenda displays an error message in the Log window and begins a new round.

4 WLSevereError—this specific transaction failed and the test session must be stopped
completely. The Agenda displays an error message in the Log window and the Load
Generator on which the error occurred is stopped.

The default return value is WLSuccess. If no other return value is specified for the
transaction, WebLOAD will assume that the transaction terminated successfully.

Example

The following sample verification function checks if the current title of the Web page matches
the page title expected at this point. (In this case, the function looks for a match with a Googol
page.)

function Transactionl VerificationFunction /()
{
InfoMessage (document.title)
if (document.title.indexOf ("Googol")>0)
return WLSuccess
else
return WLMinorError

}

Comment

Note that all functions must be declared in the Agenda before they can be called.

For a more complete explanation and examples of functional testing and transaction

verification, see Functional Testing and Reporting, page 127 in the WebLOAD Programming
Guide.

See also

Adding transactions, page 49 in the WebLOAD BeginTransaction(), page 28

Programming Guide

CreateDOM(), page 59 CreateTable(), page 60

Custom verification functions, page 137 in the Data Drilling—WebLOAD transaction reports,

WebLOAD Programming Guide page 149 in the WebLOAD Programming Guide

EndTransaction(), page 85 Functional Testing and Reporting, page 127 in
the WebLOAD Programming Guide

ReportEvent(), page 214 SetFailureReason(), page 239

TimeoutSeverity, page 293 Transaction verification components, page 297

TransactionTime, page 298 Validate(), page 309

314

RadView Software

Version (property)

Verification Test Components, page 315 Verification Test Property List: Global and Page
Level, page 318

VerificationFunction() (user-defined), page 320 wiBrowser, page 325

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

Version (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Objects

wiGlobals wlHttp

wlLocals

Description
Stores the HTTP version number for the current test session. Current supported versions
include 1.0 and 1.1.

Example
<NA>

GUI mode

WebLOAD recommends selecting an HTTP version through the Console GUI. Click on the
appropriate version number radio button in the Browser Emulation tab of the Tools | Default
Options dialog box, illustrated in the following figure:

HTTP ¥ersion
& HTTP Yersion 1.0

€ HTTR Yersion 1.1

Figure 2-48: Selecting HTTP version number

See also
Browser configuration components, page 30 Rules of scope for local and global variables,
page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlHttp, page 342

WebLOAD JavaScript Reference Manual 315

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlLocals, page 343 Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

WarningMessage() (function)

Description

Use this function to display a warning message in the Log Window.
Syntax

WarningMessage (msq)
Parameters

msg—A string with a warning message to be sent to the Log window.

Return Value
None.

Example
<NA>

Comment

If you call WarningMessage () in the main script, WebLOAD sends a warning message to
the Log window and continues with Agenda execution as usual. The message has no impact on
the continued execution of the test session.

GUI mode

WebLOAD recommends adding message functions to your Agenda files directly through the
Visual AAT GUI. For example, the following figure illustrates adding a Message Node to an
Agenda Tree. The corresponding code appears in the JavaScript View pane in the center and
the properties are in the Properties pane on the right.

Expected Agenda Tree |3

-8= Agenda = Funiction Narme: NodeScript X Attributes
; g JavaScriptObject [WarningMessage (RoundMum, ClientNum) ..F temiame Meszage
edD .# Comments
E Message
Image Testl P Tet Roundrum, Clienthum

Sleep(E710]
Lo orinibg

P Severity WLMinorError

Figure 2-49: Adding a Message Node to an Agenda

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

316 RadView Software

window (object)

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152
LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide
ReportLog(), page 215 SevereErrorMessage(), page 245
Using the IntelliSense JavaScript Editor, page 18 ~ WarningMessage(), page 323

wiException, page 331 wlException() object constructor, page 333

window (object)

Property of Object

frames

Description

The window object represents an open browser window. window objects store the complete
parse results for downloaded HTML pages. Use the window object to gain access to the
document in the window. From the window properties you can retrieve the document itself,
check the location, and access other subframes that are nested within that window. Typically,
the browser creates a single window object when it opens an HTML document. However, if a
document defines one or more frames the browser creates one window object for the original
document and one additional window object (a child window) for each frame. The child
window may be affected by actions that occur in the parent. For example, closing the parent
window causes all child windows to close. Note that the ‘parent’ window item is usually
implicitly understood when accessing the HTML document information.

window objects are also accessed through nested frames, where the frame object’s window
property points to a child window nested within the given frame (read-only).

Example

When working with multiple child windows of a frames collection, access the first child
window using the following expressions:

frames[0]
or
document.frames[0]

Access the properties (document, location, or frames) of the first child window with the
following expressions:

frames[0] .<child-property>

or

WebLOAD JavaScript Reference Manual 317

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

document.frames[0] .<child-property>
For example:

frames[0] .location

or

document.frames[0].location

Methods

wlClose(), page 329

Properties
document, page 79 frames, page 107
location, page 176 title, page 296
Name, page 184 Url, page 302
Comment

This is one of the objects for which users may request a weighted search through Dynamic
Object Recognition. See Dynamic Object Recognition (DOR) for Dynamic HTML, page 95 in
the WebLOAD Programming Guide, for more information.

See also

Collections, page 47 length, page 167

wiBrowser (object)

Description

The wlBrowser object stores configuration information for immediate user activities,
including properties defining expected dialog boxes, verification test selections, and dynamic
state management. The wlBrowser object also contains the methods that implement the user
activities saved during the Visual AAT recording session.

Properties and Methods

The wlBrowser object includes the following property and method classes:

Actions, page 20 Dialog box properties, page 73
Dynamic Object Recognition (DOR) components, Verification Test Components, page 315
page 81

Syntax

Each individual function class includes the syntax specifications that apply to that class.

318 RadView Software

GUI mode

wiClick() (action)

The wlBrowser property and method descriptions explain how to explicitly set values for
these session configuration properties within your JavaScript Agenda files. Note that the
recommended way to set configuration values is through the WebLOAD GUI, using the
Default, Current, and Global Options dialog boxes under the Tools menu in the WebLOAD
desktop. The GUI dialog boxes provide a means of defining and setting configuration values

with ease, simplicity, and clarity.

See also

Actions, page 20

Dynamic Object Recognition (DOR) components,
page 81

ExpectNavigation(), page 97
Navigate(), page 186
SetWindow(), page 244

Sleeping or pausing in mid-session, page 28 in the
WebLOAD Programming Guide

Verification Test Components, page 315

wiClick() (action)

Dialog box properties, page 73

Dynamic Object Recognition (DOR) for Dynamic
HTML, page 95 in the WebLOAD Programming
Guide

FindObject(), page 102
ObjectProperty[], page 189
Sleep(), page 247
SyncDOM(), page 280

Method of Objects

area
Checkbox
InputButton
Inputlmage
link

Reset

TableCell

Description

Button

Image
InputCheckbox
InputRadio
Radiobutton
Submit

UlContainer

Clicks the mouse button on an object, triggering an OnClick event.

If during the original recording session the mouse was clicked on an image, this action includes
two integer parameters with the coordinates that define where within the image the mouse was
clicked. The coordinates specify the offset from the upper left hand corner of the image.

WebLOAD JavaScript Reference Manual

319

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

If during the original recording session the mouse was clicked on a checkbox, this action
includes a Boolean parameter that specifies whether or not the checkbox was actually checked
at the time this click was recorded.

Syntax
Object.wlClick ()
OR
InputImage.wlClick(offsetX, offsetY)
OR
CheckBox.wlClick (CheckStatus)
Parameters

of £ setX—Integer value with the X coordinate of the cursor at the time this click was
recorded. Applies only when clicked on an input image. Represents offset from upper left
corner of image.

of fsetY—Integer value with the Y coordinate of the cursor at the time this click was
recorded. Applies only when clicked on an input image. Represents offset from upper left
corner of image.

CheckStatus—Boolean flag indicating (t rue or false) whether or not the object was
checked at the time this click was recorded. Applies only when clicked on a checkbox.

Return Value

None

Example

linkl = wlBrowser.FindObject (FT_LINK, 2)
linkl.wlClick()

FlashObjectl = wlBrowser.FindObject (FT_OBJECT_ELEMENT, 0)
FlashObjectl.wlClick (0.274,0.457)

See also
Actions, page 20 area, page 24
AutoNavigate(), page 26 Back(), page 27
Button, page 34 Checkbox, page 38
event, page 91 Forward(), page 106
Image, page 148 InputButton, page 157
InputCheckbox, page 158 Inputlmage, page 160
InputRadio, page 162 link, page 169
Navigate(), page 186 OnClick, page 190

320 RadView Software

wiClear() (method)

OnMouseOver, page 191 Radiobutton, page 210
Refresh(), page 213 Reset, page 218
SetWindow(), page 244 Submit, page 279
TableCell, page 285 UlContainer, page 301
wiBrowser, page 325 wlClick(), page 326
wiClose(), page 329 wlMouseDown(), page 347
wlMouseOver(), page 348 wlMouseUp(), page 349
wilMultiSelect(), page 350 wiSelect(), page 358
wilSubmit(), page 362 wlTypeln(), page 366

wiClear() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Objects

The wlHttp object includes the following collections for storing data. These data storage
collections each include the method wlClear ().

wlHttp.Data wlHttp.DataFile
wlHttp.FormData wlHttp.Header
Description

wlClear () is used to clear property values from the specified w1 Ht tp data collection.
Syntax

wlHttp.DataCollection.wlClear ([FieldName])
Parameters

[FieldName]—An optional user-supplied string with the name of the field to be cleared.
Return Value

None

Example

If called with no parameters, then all values set for the collection are cleared:

WebLOAD JavaScript Reference Manual 321

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlHttp.FormData(["a"] = "DDD"
wlHttp.FormbData["B"] = "FFE"
wlHttp.FormData.wlClear ()

// Clear all value from all fields in FormData

InfoMessage (wlHttp.FormDatal["a"])
// This statement has no meaning, since there
// 1s currently no value assigned to “a”

IfwlClear () is passed a FieldName parameter, then only the value of the specified field is
cleared:

wlHttp.FormData.wlClear ("FirstName")
// Clears only value assigned to “FirstName”

See also
Collections, page 47 Data, page 63
DataFile, page 65 FormData, page 104
Header, page 138 wlHttp, page 342

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wiClose() (action)

Method of Object

window

Description

Closes the current window.
Syntax

window.wlClose ()
Parameters

None
Return Value

None
Example

<NA>

See also

Actions, page 20 AutoNavigate(), page 26

322 RadView Software

wlCookie (object)

Back(), page 27 event, page 91
Forward(), page 106 Navigate(), page 186
OnClick, page 190 OnMouseQOver, page 191
Refresh(), page 213 SetWindow(), page 244
window, page 324 wlClick(), page 326
wlClose(), page 329 wlBrowser, page 325

wlMouseDown(), page 347 wlMouseOver(), page 348
wiMouseUp(), page 349 wiMultiSelect(), page 350
wiSelect(), page 358 wilSubmit(), page 362

wiTypeln(), page 366

wlCookie (object)

Description

The wlCookie object sets and deletes cookies. These activities may be required by an HTTP

server. Note that cookie management is usually handled automatically through the standard
DOM document . cookie property. WebLOAD supports the wlCookie object as an

alternate approach to cookie management. You may use the methods of wlCookie to create as
many cookies as needed. For example, each WebLOAD client running an Agenda can set its

own cookie identified by a unique name. wlCookie is a local object. WebLOAD
automatically creates an independent w1 Cookie object for each thread of an Agenda. You
cannot manually declare w1 Cookie objects yourself.

By default, WebLOAD always accepts cookies that are sent from a server. When WebLOAD

connects to a server, it automatically submits any cookies in the server's domain that it has

stored. The wlCookie object lets you supplement or override this behavior in the following

ways:
¢ A thread can create its own cookies.
¢ A thread can delete cookies that it created.

Aside from these two abilities, WebLOAD does not distinguish in any way between cookies

that it receives from a server and those that you create yourself. For example, if a thread creates

a cookie in a particular domain, it automatically submits the cookie when it connects to any
server in the domain.

Syntax
wlCookie.method()

Example

‘//Set a cookie

WebLOAD JavaScript Reference Manual

323

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wlCookie.Set ("CUSTOMER", "JOHN SMITH", "www.ABCDEF.com",
"/", "Wed, 08-Apr-98 17:29:00 GMT")

//WebLOAD submits the cookie

wlHttp.Get ("www.ABCDEF.com/products/OrderForm.cgi")
//Delete the cookie

wlCookie.ClearAll ()

Methods

ClearAll(), page 40 delete(), page 70
Set(), page 238

See also

wlException (object)

Description

Agenda scripts that encounter an error during runtime do not simply fail and die. This would
not be helpful to testers who are trying to analyze when, where, and why an error in their
application occurs. WebLOAD Agendas incorporate a set of error management routines to
provide a robust error logging and recovery mechanism whenever possible. The
wlException object is part of the WebLOAD error management protocol.

WebLOAD users have a variety of options for error recovery during a test session. The built-in
error flags provide the simplest set of options; an informative message, a simple warning, stop
the current round and skip to the beginning of the next round, or stop the test session
completely. Users may also use try () /catch () commands to enclose logical blocks of
code within a round. This provides the option of catching any minor errors that occur within the
enclosed block and continuing with the next logical block of code within the current round,
rather than skipping the rest of the round completely.

During a recording session, the Visual AAT automatically encloses each navigation block in
the Agenda withina try ()/catch () pair of commands. Each automatic try ()/catch ()
pair delimits a single navigation block. If an error is caught while the Agenda is in the middle
of executing the code within a navigation block, WebLOAD will detour to a user-defined error
function and then continue execution with the next navigation block in the Agenda. Users may
add their own try () /catch () pairs to an Agenda, delimiting their own logical code blocks

and defining their own alternate set of activities to be executed in case an error occurs within
that block.

wlException objects store information about errors that have occurred, including
informative message strings and error severity levels. Users writing error recovery functions to
handle the errors caught withina try () /catch () pair may utilize the wlException

324

RadView Software

wlException (object)

object. Use the wlException methods to perhaps send error messages to the Log Window or
trigger a system error of the specified severity level.

Example

The following code fragment illustrates a typical error-handling routine:

InitAgenda () {
wlBrowser.ExceptionEnabled=True

}
try{

//do a lot of things

wlBrowser.Navigate (“http://www.abc.com”)
//error occurs here

}

catch (e) {
//things to do in case of error
if (e.GetSeverity() == WLError) {
// Do one set of Error activities
e.ReportLog ()
}
else {
// Do a different set of Severe Error activities

throw e

}

Note that wlBrowser.ExceptionEnabled must be set to True in the InitAgenda ()
function to be able to use the wlException object later in the Agenda. WebLOAD by
default always sets this property to True automatically.

Methods

GetMessage(), page 129 GetSeverity(), page 133

ReportLog(), page 215 wlException() object constructor, page 333
Comment

wlGlobals.ExceptionEnabled must be set to True inthe InitAgenda () function
to be able to use the wlException object later in the Agenda. WebLOAD by default always
sets this property to True. This is illustrated in the preceding example.

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 InfoMessage(), page 152

WebLOAD JavaScript Reference Manual 325

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide

SevereErrorMessage(), page 245 Using the IntelliSense JavaScript Editor, page 18
WarningMessage(), page 323 wlException, page 331

wlException() (constructor)

Method of Object

wlException

Description

Creates a new wlException object.
Syntax

NewExceptionObject = new wlException (severity, message)
Parameters

severity—One of the following integer constants:

¢ WLError—this specific transaction failed and the current test round was aborted.
The Agenda displays an error message in the Log window and begins a new round.

¢ UWLSevereError—this specific transaction failed and the test session must be
stopped completely. The Agenda displays an error message in the Log window and
the Load Generator on which the error occurred is stopped.

message—The exception message stored as a text string.
Return Value
Returns a new wlException object.
Example
myUserException=new wlException (WLError, “Invalid date”)

See also

Error Management, page 104 in the WebLOAD ErrorMessage(), page 89
Programming Guide

ExceptionEnabled, page 92 GetMessage(), page 129
GetSeverity(), page 133 InfoMessage(), page 152
LiveConnect Overview, page 255 in the Message functions, page 180

WebLOAD Programming Guide

ReportLog(), page 215 SevereErrorMessage(), page 245

326 RadView Software

wlGeneratorGlobal (object)

Using the IntelliSense JavaScript Editor, page 18 ~ WarningMessage(), page 323

wiException, page 331 wlException() object constructor, page 333

wlGeneratorGlobal (object)

Description

WebLOAD provides a global object called wlGeneratorGlobal. The
wlGeneratorGlobal object enables sharing of global variables and values between all
threads of a single Load Generator, even when running multiple Agendas. (Compare to the
wlSystemGlobal, which enables sharing of global variables and values system-wide,
between all threads of all Load Generators participating in a test session, and to the
wlGlobals, which enables sharing of global variables and values between threads of a single
Agenda, running on a single Load Generator.)

Globally shared variables are useful when tracking a value or maintaining a count across
multiple threads or platforms. For example, you may include these shared values in the
messages sent to the Log window during a test session.

WebLOAD creates exactly one wlGeneratorGlobal object for each Load Generator
participating in a test session. Use the wlGeneratorGlobal methods to create and access
variable values that you wish to share between threads of a Load Generator. Edit
wlGeneratorGlobal properties and methods through the IntelliSense editor, described in
Using the IntelliSense JavaScript Editor, page 18. While global variables may be accessed
anywhere in your Agenda, be sure to initially declare wlGeneratorGlobal values in the
InitAgenda () function only. Do not define new values within the main body of an Agenda,
for they will not be shared correctly by all threads.

Syntax

<NA>
Methods
The wlGeneratorGlobal object includes the following methods:

Add(), page 21 Get(), page 110
Set(), page 237

Properties

wlGeneratorGlobal incorporates a dynamic property set that consists of whatever global
variables have been defined, set, and accessed by the user through the wlGeneratorGlobal
method set only.

See also

Rules of scope for local and global variables, page 111 in the WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 327

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

User-defined global properties, page 304 wiSystemGlobal, page 363

wliGet() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

Each of the different types of collections of elements found in the parsed DOM tree include the
method wlGet ().

Description

wlGet () is used when getting data from a property in the collection to distinguish between
keywords and user-defined variables that share the same names. The need for this care is
explained in this section.

Syntax
Collection.wlGet (PropertyName)
Parameters

PropertyName—A string with the name of the property whose value is to be gotten.

Return Value

The value of the specified property
Example

document.forms[0] .elements.wlGet ("FirstName")
Comment

In JavaScript, users may work interchangeably with either an array[index] or
array.index notation. For example, the following two references are interchangeable:

wlHttp.FormData[“Sunday”]
or
wlHttp.FormData.Sunday

This flexibility is convenient for programmers, who are able to select the syntax that is most
appropriate for the context. However, it could potentially lead to ambiguity. For example,
assume a Web site included a form with a field called 1ength. This could lead to a confusing
situation, where the word 1ength appearing in an Agenda could represent either the number

328

RadView Software

wlGetAllIForms() (method)

of elements in a FormData array, as explained in length, page 167, or the value of the
length field in the form. Errors would arise from a reasonable assignment statement such as:

wlHttp.FormData[“1length”] = 7
This is equivalent to the illegal assignment statement:
wlHttp.FormData.length = 7

WebLOAD therefore uses wlGet () to retrieve field data whenever the name could lead to
potential ambiguity. When recording Agendas with the Visual AAT, WebLOAD recognizes
potential ambiguities and inserts the appropriate wlGet () statements automatically.

See also

Collections, page 47 wlHttp, page 342

wliGetAllForms() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

document

Description
Retrieve a collection of all forms (SFORM> elements) in an HTML page and its nested frames.
Syntax
wlGetAllForms ()
Parameters
None
Return Value

A collection that includes the forms in the top-level frame (from which you called the method)
and all its subframes at any level of nesting.

Example
<NA>
See also
Browser configuration components, page 30 document, page 79

WebLOAD JavaScript Reference Manual 329

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

wliGetAllFrames() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Object

document

Description
Retrieve a collection of all frames in an HTML page, at any level of nesting.
Syntax
wlGetAllFrames ()
Parameters
None
Return Value

A collection that includes the top-level frame (from which you called the method) and all its
subframes.

Example
<NA>

See also

Browser configuration components, page 30 document, page 79

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

wiGetAlILinks() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HITP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

330 RadView Software

wiGlobals (object)

Method of Object

document

Description

Retrieve a collection of all links (<A> elements) in an HTML page and its nested frames.
Syntax

wlGetAllLinks ()
Parameters

None

Return Value

A collection that includes links in the top-level frame (from which you called the method) and
all its subframes at any level of nesting.

Example
<NA>
See also
Browser configuration components, page 30 document, page 79

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

wlGlobals (object)

Description

The wlGlobals object stores the default global configuration properties set by the user
through the Visual AAT or Console GUI, including properties defining expected dialog boxes,
verification test selections, and dynamic state management.

wlGlobals is a global object, whose property values are shared by all threads of an Agenda
running on a single Load Generator. The w1Globals object enables sharing of user-defined
global variables and values between threads of a single Agenda, running on a single Load
Generator. (Compare to the wlGeneratorGlobal, which enables sharing of global
variables and values between all threads of a single Load Generator, and the
wlSystemGlobal, which enables sharing of global variables and values system-wide,
between all threads of all Load Generators participating in a test session.)

Note that most global configuration property values and user-defined variables should be set
through the Visual AAT or Console GUI, as described in the WebLOAD User’s Guide. The
property descriptions here are intended mainly to explain the lines of code seen in the
JavaScript View of the Visual AAT desktop. Syntax details are also provided for the benefit of
users who prefer to manually edit the JavaScript code of their Agendas through the IntelliSense

WebLOAD JavaScript Reference Manual 331

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

editor, described in Using the IntelliSense JavaScript Editor, page 18. If you do decide to edit
the global variable values in your Agenda, set wlGlobals properties in the TnitAgenda ()
function only. Do not define new values within the main body of an Agenda. The values will
not be shared correctly by all Agenda threads.

The configuration properties of the w1 Globals object are almost all duplicated in the
wlLocals, which contains the local configuration settings for browser actions, and in the w/Htzp,
which contains configuration settings that are limited to a single specific browser action. To
understand how there could potentially be three different settings for a single configuration
property, see Rules of scope for local and global variables, page 111 in the WebLOAD
Programming Guide.

Properties
The wlGlobals object includes the following property classes:
Automatic State Management for HTTP Protocol ~ Browser configuration components, page 30
Mode, page 25

Transaction verification components, page 297 User-defined global properties, page 304

Syntax

Each individual property class includes the syntax specifications that apply to that class.

GUI mode

The wlGLobals property and method descriptions explain how to explicitly set values for
these session configuration properties within your JavaScript Agenda files. Note that the
recommended way to set configuration values is through the WebLOAD GUI, using the
Default, Current, and Global Options dialog boxes under the Tools menu in the Visual AAT or
Console desktop. The GUI dialog boxes provide a means of defining and setting configuration
values with ease, simplicity, and clarity.

See also

Rules of scope for local and global variables, wlGeneratorGlobal, page 334
page 111 in the WebLOAD Programming Guide

wlHttp, page 342 wlLocals, page 343
wiSystemGlobal, page 363

wlHeader (object)

Mode

The wlHeader object is usually inserted manually only when working in the HTTP Protocol
mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide,
for more information.

332 RadView Software

wlHeader (object)

Property of Objects

When working in the HTTP Protocol mode, headers on a Web page are accessed through
wlHeader objects that are grouped into collections of wlHeaders. The wlHeaders
collection is a property of the following objects:

document

Description

Each wlHeader object contains a key-value pair. wlHeader objects provide access to the
key/value pairs in the HTTP response headers. (Information found in request headers is
available through the wlHttp . Header property. For key-value pairs found in URL search
strings, see wiSearchPair.)

wlHeader objects are local to a single thread. You cannot create new wlHeader objects
using the JavaScript new operator, but you can access them through the properties and methods
of the standard DOM objects. wlHeader properties are read only.

Syntax

wlHeader objects are grouped together within collections of wlHeaders. To access an

individual wlHeader’s properties, check the 1ength property of the wlHeaders collection
and use an index number to access the individual wlHeader object, with the following syntax:

NumberofHeaderObjects = document.wlHeaders.length

document.wlHeaders [index#] .<wlHeader-property>

Example

WebLOAD stores the header pairs from the most recent Get, Post, or Head command in the
document .wlHeaders collection. The following statement would retrieve an HTTP header:

wlHttp.Head ("http://www.ABCDEF.com")

For a header that looks something like this:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F
Date: Sun, 11 Jan 1998 08:25:20 GMT
Content-type: text/html

Connection: close

Host: Server2.MyCompany.com

WebLOAD parses the header pairs as follows:

document .wlHeaders[0] .key = "Server"

document .wlHeaders[0] .value = "Netscape-Enterprise/3.0F"
document.wlHeaders[1l].key = "Date"

document .wlHeaders([1l] .value = "Sun, 11 Jan 1998 08:25:20 GMT"

WebLOAD JavaScript Reference Manual 333

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Properties

The wlHeader object includes the following properties:

key, page 166

See also

Collections, page 47
Header, page 138

value, page 310

document, page 79

wiSearchPair, page 356

wiHtml (object)

Mode

The wlHtml object is usually inserted manually only when working in the HTTP Protocol
mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide,
for more information.

Description

If your Agenda downloads HTML code, you can use the wlHtm1 object to retrieve parsed
elements of the code. The w1Htm1 object also lets you retrieve the HTTP header fields and
status and parse URL addresses into their host, port, and URI components.

wlHtml is a local object. WebLOAD automatically creates an independent wlHtm1 object for
each thread of an Agenda. You cannot manually declare w1Html objects yourself.

Syntax
<NA>

Methods

GetFieldValue(), page 115 GetFieldValuelnForm(), page 116

GetFormAction(), page 117
GetFrameUrl(), page 119
GetHost(), page 121
GetLinkByName(), page 127
GetPortNum(), page 131
GetStatusLine(), page 134
GetUri(), page 136

GetFrameByUrl(), page 118
GetHeaderValue(), page 120
GetHostName(), page 122
GetLinkByUrl(), page 128
GetQSFieldValue(), page 132
GetStatusNumber (), page 135

334

RadView Software

wiHttp (object)

See also

wlHttp (object)

Description

The wlHttp object stores configuration information for immediate user activities, including
properties defining expected dialog boxes, verification test selections, and dynamic state
management. Many of these properties are duplicated in the w/Globals, which contains the
default global configuration settings for browser actions, and in the wlLocals, which contains
the local configuration settings for browser actions. To understand how there could potentially
be three different settings for a single configuration property, see Rules of scope for local and
global variables, page 111 in the WebLOAD Programming Guide. The wlHttp object also
contains the methods that implement the user activities saved during the Visual AAT recording
session. User activities may be recreated through one of two approaches: the high-level User
Action mode or the low-level HTTP Protocol mode. Methods for each of these testing modes
are included in the w1Http object.

Properties and Methods
The wlHttp object includes the following property and method classes:
Automatic State Management for HTTP Protocol ~ Browser configuration components, page 30
Mode, page 25

Transaction verification components, page 297

Syntax

Each individual function class includes the syntax specifications that apply to that class.

GUI mode

The wlHt tp property and method descriptions explain how to explicitly set values for these
session configuration properties within your JavaScript Agenda files. Note that the
recommended way to set configuration values is through the WebLOAD GUI, using the
Default, Current, and Global Options dialog boxes under the Tools menu in the Visual AAT or
Console desktop. The GUI dialog boxes provide a means of defining and setting configuration
values with ease, simplicity, and clarity.

See also

Rules of scope for local and global variables, page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlLocals, page 343

WebLOAD JavaScript Reference Manual 335

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlLocals (object)

Description

The wlLocals object stores the local default configuration information for user activities,
such as the URL, user name and password, proxy server, and dialog box management.
wlLocals is a local object. WebLOAD creates an independent wlLocals object for each
thread of an Agenda. You cannot declare wlLocals objects yourself.

The properties of the wlLocals object are all duplicated in the wlGlobals, which contains the
default global settings, and in the w/Http, which contains the settings for an immediate action.
To understand how there could potentially be three different settings for a single configuration
property, see Rules of scope for local and global variables, page 111 in the WebLOAD
Programming Guide.

Properties
The wlLocals object includes the following property classes:
Automatic State Management for HTTP Protocol ~ Browser configuration components, page 30

Mode, page 25

Transaction verification components, page 297

Syntax

Each individual function class includes the syntax specifications that apply to that class.

GUI mode

The wlLocals property and method descriptions explain how to explicitly set values for these
session configuration properties within your JavaScript Agenda files. Note that the
recommended way to set configuration values is through the WebLOAD GUI, using the
Default, Current, and Global Options dialog boxes under the Tools menu in the Visual AAT or
Console desktop. The GUI dialog boxes provide a means of defining and setting configuration
values with ease, simplicity, and clarity.

See also

Rules of scope for local and global variables, page 111 in the WebLOAD Programming Guide
wlGlobals, page 339 wlHttp, page 342

wiMediaPlayer (object)

Description

WebLOAD provides support for streaming media applications through the wlMediaPlayer
object. Each wlMediaPlayer object handles streaming media data, such as an audio or video
clip. wlMediaPlayer objects are local to a single thread.

336 RadView Software

wiMediaPlayer() (constructor)

Syntax
wlMediaPlayerObject. Property
wlMediaPlayerObject.Method ()
Example

Each individual property includes examples of the syntax for that property.

Methods
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
Stop(), page 278 wlMediaPlayer() object constructor, page 345
Properties
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
state, page 277 type, page 300
See also

wiMediaPlayer() (constructor)

Method of Object

wlMediaPlayer

Description
Returns a new wlMediaPlayer object.
Syntax
new wlMediaPlayer ()
Parameters
None
Return Value

A pointer to a new wlMediaPlayer object.

WebLOAD JavaScript Reference Manual 337

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Example

MyMediaPlayerObject = new wlMediaPlayer ()

See also
bitrate, page 30 connectionBandwidth, page 53
currentPosition, page 62 currentStreamName, page 62
duration, page 80 fileName, page 100
OpenStream(), page 194 Pause(), page 200
Play(), page 200 Resume(), page 220
state, page 277 Stop(), page 278
type, page 300 wlMediaPlayer, page 344

wlMediaPlayer() object constructor, page 345

wiMeta (object)

Mode

The wlMeta object is usually inserted manually only when working in the HTTP Protocol
mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide,
for more information.

Property of Objects

When working in the HTTP Protocol mode, META objects on a Web page are accessed
through wlMeta objects that are grouped into collections of wlMetas. The wlMetas
collection is a property of the following objects:

document

Description

Each wlMeta object stores the parsed data for an HTML meta object (<META> tag). wlMeta
objects are local to a single thread. You cannot create new wlMeta objects using the
JavaScript new operator, but you can access them through the properties and methods of the
standard DOM objects. wlMeta properties are read only.

Syntax

wlMeta objects are grouped together within collections of wlMetas. To access an individual
wlMeta’s properties, check the length property of the wlMetas collection and use an index
number to access the individual wlMeta object, with the following syntax:

NumberofMetaObjects = document.wlMetas.length
document.wlMetas [#] .<wlMeta-property>

338 RadView Software

wiMouseDown() (action)

Example

To find out how many wlMeta objects are contained within a document header, check the
value of:

document.wlMetas.length
Access each wlMeta’s properties directly using the preceding syntax. For example:
document .wlMetas[0].key

Properties

The wlMeta object includes the following properties:

content, page 56 httpEquiv, page 143
Name, page 184 Url, page 302

See also
Collections, page 47 document, page 79

length, page 167

wilMouseDown() (action)

Method of Objects
area Button
Image InputButton
Inputimage link
TableCell UlContainer
Description

Presses down on the mouse button over an object.
Syntax

Object.wlMouseDown ()
Parameters

None
Return Value

None

WebLOAD JavaScript Reference Manual 339

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wiMouseOver() (action)

Example

linkl = wlBrowser.FindObject (FT_LINK, 2)

linkl.wlMouseDown ()

See also

Actions, page 20
AutoNavigate(), page 26
Button, page 34
Forward(), page 106
InputButton, page 157
link, page 169

OnClick, page 190
Refresh(), page 213
TableCell, page 285
wlBrowser, page 325
wlClose(), page 329
wiIMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

area, page 24

Back(), page 27

event, page 91

Image, page 148
Inputimage, page 160
Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
UlContainer, page 301
wlClick(), page 326
wiIMouseDown(), page 347
wiIMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Method of Objects

area
Image
Inputlmage
TableCell

Description
Rolls the mouse over an object.
Syntax
Object.wlMouseOver ()

Parameters

None

Button
InputButton
link

UlContainer

340

RadView Software

Return Value

None

Example

wiMouseUp() (action)

linkl = wlBrowser.FindObject (FT_LINK, 2)

linkl.wlMouseOver ()

See also

Actions, page 20
AutoNavigate(), page 26
Button, page 34
Forward(), page 106
InputButton, page 157
link, page 169

OnClick, page 190
Refresh(), page 213
TableCell, page 285
wlBrowser, page 325
wlClose(), page 329
wiIMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

wilMouseUp() (action)

area, page 24

Back(), page 27

event, page 91

Image, page 148
Inputimage, page 160
Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
UlContainer, page 301
wlClick(), page 326
wilMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Method of Objects
area
Image

Inputimage
TableCell

Description

Releases the mouse button over an object.

Syntax
Object.wlMouseUp ()

Button
InputButton
link

UlContainer

WebLOAD JavaScript Reference Manual

341

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Parameters

None

Return Value

None

Example

linkl = wlBrowser.FindObject (FT_LINK, 2)

linkl.wlMouseUp ()
See also

Actions, page 20
AutoNavigate(), page 26
Button, page 34
Forward(), page 106
InputButton, page 157
link, page 169

OnClick, page 190
Refresh(), page 213
TableCell, page 285
wlBrowser, page 325
wlClose(), page 329
wlMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

wlIMultiSelect() (action)

area, page 24

Back(), page 27

event, page 91

Image, page 148
Inputlmage, page 160
Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
UlContainer, page 301
wlClick(), page 326
wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

Method of Object

Select

Description

Selects one or more objects from a list on the Web page while the control key is pressed.
Pointers to each selected object are stored in the method parameters.

Syntax

Object.wlMultiSelect (“Optionl”,

“Option2”, ...)

342

RadView Software

Parameters

Optionl. . .n—Pointers to the one or more objects being selected.

Return Value

None

Example

<NA>
See also

Actions, page 20
Back(), page 27
Forward(), page 106
OnClick, page 190
Refresh(), page 213
Select, page 231
wlClose(), page 329
wilMouseDown(), page 347
wilMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

wlOutputFile (object)

AutoNavigate(), page 26
event, page 91
Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
wlClick(), page 326
wlBrowser, page 325
wlMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

wlOutputFile (object)

Description

The wlOutputFile object writes Agenda output messages to a global output file. Create
wlOutputFile objects and manage your files using the constructor and methods described

in this section.

Syntax

MyFileObj = new wlOutputFile (“filename”)

MyFileObj.Write (“Happy Birthday”)

delete MyFileObj

Example

Each individual property includes examples of the syntax for that property.

WebLOAD JavaScript Reference Manual

343

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

GUI mode

The wlOutputFile objects and methods described in this chapter may be added directly to
the code in a JavaScript Object within an Agenda through the IntelliSense Editor, described in
Using the IntelliSense JavaScript Editor, page 18. Users who are programming their own
JavaScript Object code within their Agenda may still take advantage of the Visual AAT GUI to
simplify their programming efforts. Rather than manually type out the code to create a
wlOutputFile object, with the risk of making a mistake, even a trivial typo, and adding
invalid code to the Agenda file, users may select the Edit | Insert | JavaScript | General menu to
bring up a list of available wlOutputFile constructor and methods, as illustrated in the
following figure. The Visual AAT automatically inserts the correct code for the selected
command into the JavaScript Object currently being edited. The user may then change the
parameters without any concerns about mistakes in the object syntax.

\;‘;’ File | Edit Wiew Becord Run Tool: Window Help

Start Edi — = = _ | e -
oI e e Gl e
3 [Uede (1
Z (B ou Hedo (et ModeScript
E
Inzert Agenda ltems L4 |
é wiGlobalz General L4
C Raundhum InitdT erminate F.unc:tions L4
Copy/nclude Files L4
El] Slesp(<Time:] Mezzage Commands L4
3
‘ <Line_Aray> = GetLing("'<File_MName:"" [."'<Separatar:"]) Izt ey Camimegls
<File_Line_Mumz = <Line_Amay: . LineMum COM Objects 3
G <File_[teration_Mumz = <Line_Array: RoundMum Java Objects 3
e <Token: = <Line_Amay:[<Token_|ndex:]

wiOutputFile. Open(*'<File_M ame:"]

L 'y s,

wiOutputFile. Cloze("'<File_Mame:"]
wiOutputFile. Delete("'<File_Mame:"]
wilutputFile. \Write[<String: |
wiOutputFile. \Writeln[< String: |
wilutputFile. Reset(]

Figure 2-50: wlOutputFile object methods list

Methods

wlOutputFile() object constructor, page 354

Close(), page 45 delete(), page 70
Open(), page 193 Reset(), page 219
Write(), page 372 Writeln(), page 373

Comment

You may also use the WebLOAD functions listed here to open and close output files.

344

RadView Software

Note

wlOutputFile (object)

4 To open an output file:

Open (filename)

4 To close an output file:

Close (filename)
When you use the Close () function to close a file data will be flashed to the disk.

The wlOutputFile object saves Agenda output messages. To save server response data, use
the wlBrowser.Outfile property.

Declaring a new wlOutputFile object creates a new, empty output file. If a file of that name
already exists, the file will be completely overwritten. Information will not be appended to the
end of an existing file. Be sure to choose a unique filename for the new output file if you do not
want to overwrite previous Agenda data.

If you declare a new wlOutputFile object in the InitAgenda () function of an Agenda,
the output file will be shared by all the Agenda threads. There is no way to specify a specific
thread writing sequence—each thread will write to the output file in real time as it reaches that
line in the Agenda execution.

If you declare a new wlOutputFile objectin the InitClient () function or main body
of an Agenda, use the thread number variable as part of the new filename to be sure that each
thread will create a unique output file.

If you declare a new wlOutputFile object in the main body of an Agenda, and then run
your Agenda for multiple iterations, use the RoundNum variable as part of the new filename to
be sure that each new round will create a unique output file.

Generally, you should only create new wlOutputFile objects in the InitAgenda () or
InitClient () functions of an Agenda, not in the main script. If a statement in the main
script creates an object, a new object is created each time the statement is executed. If
WebLOAD repeats the main script many times, a large number of objects may be created and
the system may run out of memory.

See also

CopyFile(), page 57 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150

Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual 345

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wlOutputFile() (constructor)

Method of Object

wlOutputFile

Description

To create a new wlOutputFile object, use the wlOutputFile () constructor.

Syntax

new wlOutputFile (filename)
Parameters

filename—Name of the new output file to be created.

Return Value

A pointer to a new wlOutputFile object.

Example
MyFileObj = new wlOutputFile (“FileName”)

Note

Declaring a new wlOutputFile object creates a new, empty output file. If a file of that name
already exists, the file will be completely overwritten. Information will not be appended to the
end of an existing file. Be sure to choose a unique filename for the new output file if you do not
want to overwrite previous Agenda data.

If you declare a new wlOutputFile object in the InitAgenda () function of an Agenda,
the output file will be shared by all the Agenda threads. There is no way to specify a specific
thread writing sequence—each thread will write to the output file in real time as it reaches that
line in the Agenda execution.

If you declare a new wlOutputFile objectinthe InitClient () function or main body
of an Agenda, use the thread number variable as part of the new filename to be sure that each
thread will create a unique output file.

If you declare a new wlOutputFile object in the main body of an Agenda, and then run
your Agenda for multiple iterations, use the RoundNum variable as part of the new filename to
be sure that each new round will create a unique output file.

Ideally, create new wlOutputFile objects only in the InitAgenda () function of an
Agenda, not in the main script. If a statement in the main script creates an object, a new object
is created each time the statement is executed. If WebLOAD repeats the main script many
times, a large number of objects may be created and the system may run out of memory.

346

RadView Software

wlRand (object)

See also
Close(), page 45 CopyfFile(), page 57
delete(), page 70 File management functions, page 100
GetLine(), page 124 IncludeFile(), page 150
Open(), page 193 Reset(), page 219
Using the Form Data Wizard, page 35 in the Using the IntelliSense JavaScript Editor, page 18
WebLOAD Programming Guide
wlOutputFile, page 351 wlOutputFile(), page 354
Write(), page 372 Writeln(), page 373

wlRand (object)

Description

The wlRand object is a random number generator.

wlRand is a local object. WebLOAD automatically creates an independent wlRand object for
the test session Agenda. You cannot declare wlRand objects yourself.

Syntax
wlRand.Method/()
Example
The following example generates three random numbers having the following possible values:
4 Any integer.
4 Aninteger from 1 to 9.
4 One of the three numbers 0, 1, or 1.5.

function InitAgenda() {
wlRand.Seed (23)
}

AnyInteger = wlRand.Num/()
OneToNine = wlRand.Range (1, 9)
OneOfThreeNumbers = wlRand.Select (0, 1, 1.5)

GUI mode

wlRand object command lines may be added directly to the code in a JavaScript Object within
an Agenda through the IntelliSense Editor, described in Using the IntelliSense JavaScript
Editor, page 18. Users who are programming their own JavaScript Object code within their
Agenda may still take advantage of the Visual AAT GUI to simplify their programming efforts.
Rather than manually type out the code for a random number function, with the risk of making

WebLOAD JavaScript Reference Manual 347

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

a mistake, even a trivial typo, and adding invalid code to the Agenda file, users may click on
the Random Number Commands command line in the Edit | Insert | JavaScript | General menu
and select a wlRand method to add to their code. The Visual AAT automatically inserts the
correct code for the random number function into the JavaScript Object currently being edited.
The user may then change the parameters without any concerns about mistakes in the function

syntax.
89 Visual AAT - NetizenB anking.pft - [Java Script View- [JavaScriptObject]]
\;‘;’ File | Edit Wiew Becord Run Tool: Window Help
Start Edi — = = - | :
D@w@_ar fificy 6= 2= (= 5 & Gl w2 HJE@@@|
E 3 [Uede (1
Z (B ou Hedo (et ModeScript
E
Inzert
= G | 4
S Easte (B ! x.e::ra . - ,
I, i 1
o e il it/ Terminate Functions
3 Copy/lnclude Files L4
[Eopy [Si7 (5
E[B - , - Meszage Commands L4
ﬁ wiRand.See d_Yaluer) Fandom Mumber Commands 4
<Marr = wiRand Mum([<5Seed_Value:]) COM Objects N
@ <Mary = wiRand. Fange(<Start: <End> [<5eed Value:]) .
Java Objects L4
<Marr = wiRand Select[<Value> [<Value:]%
Figure 2-51: wiRand commands
Methods
Num(), page 188 Range(), page 211
Seed(), page 231 Select(), page 232
See also

wliSearchPair (object)

Method of Object

link location

Description

Each wlSearchPair object contains a parsed version of the search attribute string, storing
the key/value pairs found in a document’s URL search strings. (For key-value pairs found in
HTTP response headers, see wlHeader. Information found in request headers is available
through the wlHttp . Header property.)

348 RadView Software

wlSearchPair (object)

wlSearchPair objects are grouped into wlSearchPairs collections, where the
collections are themselves properties of the 1ink and location objects.

wlSearchPair objects are local to a single thread. You cannot create new wlSearchPair
objects using the JavaScript new operator, but you can access them through the properties and
methods of the standard DOM objects. wl SearchPair properties are read only.

Syntax

wlSearchPair objects are grouped together within collections of wlSearchPairs. To
access an individual wlSearchPair’s properties, check the 1ength property of the
wlSearchPairs collection and use an index number to access the individual
wlSearchPair object, with the following syntax:

NumberofSearchPairObjects =
document.links[1l].wlSearchPairs.length

document.links[1l] .wlSearchPairs|[index#] .<wlSearchPair-property>

Example

To find out how many wlSearchPair objects are contained within a document’s link, check
the value of:

document.links[1l].wlSearchPairs.length

Access each wlSearchPair’s properties directly through the index number of that item. For
example:

document.links[1l] .wlSearchPairs[0].key

Suppose that the third link on a Web page has the following HTML code:

<A href="http://www.ABCDEF.com/ProductFind.exe?
Product=modems&Type=ISDN"> ISDN Modems

You can download the page and parse the links using the following Agenda:

function InitAgenda () {
wlGlobals.Url = "http://www.ABCDEF.com"
//Enable link parsing
wlGlobals.ParseLinks = "Yes"

}

wlHttp.Get ()

For the link in question, WebLOAD stores the attribute pairs in the
document.links[2] .wlSearchPairs property. This property is actually a collection
containing two wlSearchPair objects. The following is a complete listing of the collection.

document.links[2] .wlSearchPairs[0].key = "Product"
document.links[2] .wlSearchPairs[0].value = "modems"
document.links[2].wlSearchPairs[1l].key = "Type"
document.links[2] .wlSearchPairs[l].value = "ISDN"

WebLOAD JavaScript Reference Manual 349

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

Properties

The wlSearchPair object includes the following properties:

key, page 166 value, page 310
See also

Collections, page 47 Header, page 138

link, page 169 location, page 176

wlHeader, page 340 wlHttp, page 342

wiSelect() (action)

Method of Object

Select

Description

Selects a single object from a list on the Web page. A pointer to the selected object is stored in
the method parameter.

Syntax
Object.wlSelect (“Option”)

Parameters

Option—A string, placed in quotation marks, that contains the name of the option selected from
a list.

Return Value

None

Example
<NA>

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 event, page 91
Forward(), page 106 Navigate(), page 186
OnClick, page 190 OnMouseOver, page 191
Refresh(), page 213 Select, page 231

350 RadView Software

wiSet() (method)

SetWindow(), page 244 wilBrowser, page 325
wiClick(), page 326 wlClose(), page 329
wlMouseDown(), page 347 wlMouseOver(), page 348
wiMouseUp(), page 349 wiMultiSelect(), page 350
wiSelect(), page 358 wilSubmit(), page 362

wiTypeln(), page 366

wiSet() (method)

Mode

This method is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Method of Objects

The wlHttp object includes the following collections for storing data. These data storage
collections each include the method wlSet ().

wlHttp.Data wlHttp.DataFile
wlHttp.FormData wlHttp.Header
Description

wlSet () is used when assigning a value to an element in the collection, to distinguish
between keywords and user-defined variables that share the same names. The need for this care
is explained in this section.

Syntax
wlHttp.Collection.wlSet (FieldName, Value)
Parameters
FieldName—A string with the name of the field whose value is to be set.
Value—The value to be assigned to the specified field.
Return Value
The value of the specified property.

Example
wlHttp.FormData.wlSet ("FirstName", “Bill”)

WebLOAD JavaScript Reference Manual 351

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Comment

In JavaScript, users may work interchangeably with either an array [index] or
array.index notation. For example, the following two references are interchangeable:

wlHttp.FormData[“Sunday”]
or
wlHttp.FormData.Sunday

This flexibility is convenient for programmers, who are able to select the syntax that is most
appropriate for the context. However, it could potentially lead to ambiguity. For example,
assume a Web site included a form with a field called 1ength. This could lead to a confusing
situation, where the word 1ength appearing in an Agenda could represent either the number
of elements in a FormData array, as explained in /ength, page 167, or the value of the
length field in the form. Errors would arise from a reasonable assignment statement such as:

wlHttp.FormData[“length”] = 7
This is equivalent to the illegal assignment statement:
wlHttp.FormData.length = 7

WebLOAD therefore uses wlSet () to set field data whenever the name could lead to
potential ambiguity. When recording Agendas with the AAT, WebLOAD recognizes potential
ambiguities and inserts the appropriate wlSet () statements automatically. In this case:

wlHttp.FormData.wlSet ("length", 7)

See also

Collections, page 47 Data, page 63
DataFile, page 65 FormData, page 104
Header, page 138 wlHttp, page 342

Working in HTTP Protocol Mode, page 213 in the
WebLOAD Programming Guide

wiSource (property)

The wlSource property is usually inserted manually only when working in the HTTP
Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Property of Object

document

352

RadView Software

wiStatusLine (property)

Description

The complete HTML source code of the frame (read-only string).

You can use the HTML source to search for any desired information in an HTML page. For
information on JavaScript searching capabilities, see Regular Expressions in the Netscape
JavaScript Guide, which is supplied with the WebLOAD software.

Syntax
document.wlSource

Comment

To use the HTML source when working in HTTP Protocol mode, you must enable the
SaveSource property of the wlGlobals, wlLocals, or wlHttp object. To save the source
in a file, use the Outfile property.

See also

document, page 79

SaveSource, page 226 Outfile, page 197

wiStatusLine (property)

Mode

The wlStatusLine property is usually inserted manually only when working in the HTTP
Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Property of Object
document
Description
The status line of the HTTP header (read-only string, for example "OK").

Syntax

document.wlStatusLine
See also

document, page 79

WebLOAD JavaScript Reference Manual 353

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

wiStatusNumber (property)

Mode

The wlStatusNumber property is usually inserted manually only when working in the
HTTP Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Property of Object

document

Description

The HTTP status value, which WebLOAD retrieves from the HTTP header (read-only integer,
for example 200).

Syntax

document.wlStatusNumber

See also

document, page 79

wiSubmit() (action)

Method of Object

form

Description

Submits the form pointed to by the current form object. Recorded when the user presses the
ENTER key to submit a form.

Syntax
form.wlSubmit ()
Parameters

None

Return Value

None

Example

<NA>

354 RadView Software

wISystemGlobal (object)

See also
Actions, page 20 AutoNavigate(), page 26
Back(), page 27 event, page 91
form, page 102 Forward(), page 106
Navigate(), page 186 OnClick, page 190
OnMouseOver, page 191 Refresh(), page 213
SetWindow(), page 244 wilBrowser, page 325
wiClick(), page 326 wlClose(), page 329
wlMouseDown(), page 347 wlMouseOver(), page 348
wlMouseUp(), page 349 wlMultiSelect(), page 350
wiSelect(), page 358 wilSubmit(), page 362

wiTypeln(), page 366

wliSystemGlobal (object)

suonoun4

Description

WebLOAD provides a global object called wl1SystemGlobal. The wlSystemGlobal
object enables sharing of global variables and values between all elements of a test session,
across multiple Agendas running on multiple Load Generators. (Compare to the
wlGeneratorGlobal, which enables sharing of global variables and values between all
threads of a single Load Generator, and to the w1Globals, which enables sharing of global
variables and values between all threads of a single Agenda, running on a single Load
Generator.)

Globally shared variables are useful when tracking a value or maintaining a count across
multiple threads or platforms. For example, you may include these shared values in the
messages sent to the Log window during a test session.

WebLOAD creates exactly one w1l SystemGlobal object per a test session. Use the
wlSystemGlobal object methods to create and access variable values that you wish to share
system-wide. Edit w1 SystemGlobal object properties and methods through the IntelliSense
editor, described in Using the IntelliSense JavaScript Editor, page 18. While global variables
may be accessed anywhere in your Agenda, be sure to initially declare w1 SystemGlobal
values in the TnitAgenda () function only. Do not define new values within the main body
of an Agenda, for they will not be shared correctly by all threads.

Syntax
<NA>

WebLOAD JavaScript Reference Manual 355

pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

Methods
Add(), page 21 Get(), page 110
Set(), page 237

Properties

wlSystemGlobal incorporates a dynamic property set that consists of whatever global
variables have been defined, set, and accessed by the user through the wlSystemGlobal
method set only.

See also

Rules of scope for local and global variables, page 111 in the WebLOAD Programming Guide
User-defined global properties, page 304 wlGeneratorGlobal, page 334

wiTable (object)

Mode

The wlTable object is usually inserted manually only when working in the HTTP Protocol
mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide,
for more information.

Property of Object

When working in the HTTP Protocol mode, TABLE objects on a Web page are accessed
through wlTable objects that are grouped into collections of wlTables. The wlTables
collection is a property of the following object:

document

Description

Each wlTable object contains the parsed data for an HTML table (STABLE> tag), and
serves as a means of providing access to the cells of the HTML table. Because table data is
organized into rows and cells, the w1 Table object is also linked to row and cel1l objects and
their properties.

wlTable objects are grouped together within collections of wlTables. The tables are
arranged in the order in which they appear on the HTML page.

Syntax

To access an individual w1 Table’s properties, check the 1ength property of the wlTables
collection and use an index number to access the individual w1 Table object, with the
following syntax:

NumberofTableObjects = document.wlTables.length

356 RadView Software

wiTable (object)

document.wlTables[index#] .<wlTable-property>
Example

Access each wlTable’s properties directly through the index number of that item. For
example:

document.wlTables[0] .cols

wlTable objects may also be accessed directly using the table ID. This is illustrated in the id
property description.

Properties

Each wlTable object contains information about the data found in the whole table, organized
by rows, columns, and cells. The wlTables object includes the following properties:

cell, page 35 (wlTable and row property) cols, page 48 (wlTable property)
id, page 143 (wlTable property) row, page 223 (wlTable property)
Comment

WebLOAD recommends managing tables on a Web page through the standard
document.all collection. For example, rather than using the following approach to access
the first table on a page:

mnyFirstTableObject = document.wlTables[0]
WebLOAD recommends accessing the first table on a page through the following:

mnyFirstTableObject = document.all.tags ("TABLE") [0]

See also

celllndex, page 37 (cell property) Collections, page 47

Compare(), page 49 CompareColumns, page 51
CompareRows, page 52 Details, page 72

document, page 79 InnerHTML, page 153 (cell property)
InnerText, page 155 (cell property) MatchBy, page 178

Prepare(), page 205 ReportUnexpectedRows, page 216
rowlndex, page 225 (row property) TableCompare, page 286

tagName, page 289 (cell property) wlTable, page 364

Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide

WebLOAD JavaScript Reference Manual

357

suonoun4
pue ‘s}08lqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wliTarget (property)

Mode

This property is usually inserted manually only when working in the HTTP Protocol mode. See
Working in HTTP Protocol Mode, page 213 in the WebLOAD Programming Guide, for more
information.

Property of Object

wlHttp

Description

The exact location within the Web page of the frame into which the transaction should be
downloaded.

Syntax
wlHttp.wlTarget = “LocationString”

Comment

wlTarget uses the WebLOAD shorthand notation, described in Identifying frame locations,
page 224 in the WebLOAD Programming Guide. For example, assume the expected location is
setto #1 . #1. Since frame numbering begins with 0, this refers to the second subframe located
within the second frame on the Web page. Neither frame has been assigned an optional name
value.

The wlHttp.wlTarget property of a transaction stores the complete path of the frame, from
the root window of the Web page. Compare this to the form. target and 1ink.target
properties, which identify the most recent, immediate location of the target frame using the
name string or keyword that was assigned to that frame. The last field of the
wlHttp.wlTarget string is the target name stored in the form. target and
link.target properties.

See also

Identifying frame locations, page 224 in the wlHttp, page 342
WebLOAD Programming Guide

wiTypeln() (action)

Method of Objects
File InputFile
InputPassword InputText
text TextArea

358 RadView Software

Description

Type the new text, letter by letter, into the text area of the object in focus, recreating the text
input activity recorded by the user.

Syntax

Object.wlTypeln (“"Text”)

Parameters

wiTypeln() (action)

Text—Text typed in by the user while the selected object was in focus.

Return Value

None

Example

The following code fragment submits a text string as a query to a Web page search engine:

Forml

= wlBrowser.FindObject (FT _FORM, 4, “Query”)

Textl = Forml.FindObject (Input Text, 1, “searchstring”)

Textl.wlTypeIn (“WebLOAD"”)

Submitl = Forml.FindObject (FT_ INPUT SUBMIT, 2, “search”)

Submitl.wlClick ()

See also

Actions, page 20

Back(), page 27

File, page 99

InputFile, page 159
InputText, page 164
OnClick, page 190
Refresh(), page 213

text, page 291
wlBrowser, page 325
wlClose(), page 329
wilMouseOver(), page 348
wiMultiSelect(), page 350
wiSubmit(), page 362

AutoNavigate(), page 26
event, page 91
Forward(), page 106
InputPassword, page 161
Navigate(), page 186
OnMouseOver, page 191
SetWindow(), page 244
TextArea, page 292
wlClick(), page 326
wlMouseDown(), page 347
wlMouseUp(), page 349
wiSelect(), page 358
wlTypeln(), page 366

WebLOAD JavaScript Reference Manual

359

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

wlVersion (property)

Mode

The wlVersion property is usually inserted manually only when working in the HTTP
Protocol mode. See Working in HTTP Protocol Mode, page 213 in the WebLOAD
Programming Guide, for more information.

Property of Objects

document

Description

The HTTP protocol version, which WebLOAD retrieves from the HTTP header (read-only
string, for example "1.1").

Example
currentVersionNumber = document.wlVersion
GUI mode

WebLOAD recommends setting the HTTP version through the Console GUI. Click on the
appropriate radio button in the Browser Emulation tab of the Tools | Default Options dialog
box, illustrated in the following figure:

HTTP ¥ersion
& HTTP Yersion 1.0

€ HTTR Yersion 1.1

Figure 2-52: Selecting HTTP Version 1.0

See also

document, page 79

WLXmIDocument() (constructor)

Method of Object

wiXmls

Description

Call WLXm1Document () without any parameters to create a new, blank XML DOM object.
The new object may be filled later with any new data you prefer. If the DTD section of your
XML document includes any external references, use this form of the WLXm1Document ()

360 RadView Software

wiXmls (object)

constructor to create new XML DOM objects. You may add nodes and post the new XML data
to a Web site as described in Working with the XML DOM, page 161 in the WebLOAD
Programming Guide.

Call WLXm1Document () with a string parameter to create new XML DOM objects from an
XML string that includes a completely self-contained DTD section with no external references.

Syntax
new WLXmlDocument ([xmlString])
Parameters

[xmlString]—Optional string parameter that contains a complete set of XML document
data.

Return Value

Returns a new XML DOM object. If the constructor was called with no parameters, the new
object will be empty. If the constructor was called with an XML string, the new object will
contain an XML DOM hierarchy based on the XML data found in the parameter string.

Example
NewBlankXMLObj = new WLXmlDocument ()
or
NewXMLObj = new WLXmlDocument (xmlStr)
Comment

Objects created by the WLXm1Document () constructor provide access to the XML DOM
Document Interface. They do not expose the HTML property set, (id, innerHTML, and src),
as those properties have no meaning for XML DOM objects created this way.

See also
Collections, page 47 id, page 143
InnerHTML, page 153 load(), page 170
load() and loadXML() method comparison, page loadXML(), page 175
172
src, page 255 wlXmls, page 370

XMLDocument, page 380

wiXmls (object)

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

Property of Object

document

WebLOAD JavaScript Reference Manual 361

WebLOAD Actions, Objects, and Functions

Description

WebLOAD has extended the standard IE Browser DOM document object with the wlXmls
collection of XML DOM objects, providing full access to XML structures. Using XML DOM
objects, WebLOAD Agendas are able to both access XML site information, and generate new
XML data to send back to the server for processing, taking advantage of all the additional
benefits that XML provides.

Both WebLOAD and the IE Browser use the MSXML parser to create XML DOM objects.
Since WebLOAD XML DOM objects and Browser XML DOM objects are created by the same
MSXML parser, the XML DOM objects that are produced for both WebLOAD and the IE
Browser are identical.

When working through the IE Browser, XML DOM objects are found in the a1l collection.
When working through WebLOAD, XML DOM objects are found in the w1 Xmls collection.
Since a WebLOAD XML DOM object is identical to an IE Browser XML DOM object, the
WebLOAD XML DOM uses the same Document Interface (programming methods and
properties) found in the IE Browser XML DOM.

This section describes the w1Xmls collection and the properties and methods used most often
when working with WebLOAD XML DOM objects. For an explanation of the XML DOM, see
Working with the XML DOM, page 161 in the WebLOAD Programming Guide. For a complete
list of the XML DOM properties and methods supported by WebLOAD, see Appendix B,
WebLOAD-supported XML DOM Interfaces, page 391.

Syntax

XML DOM objects are grouped together within w1Xmls collections. The XML DOM objects
are arranged in the order in which they appear on the HTML page.

To access an individual XML DOM object’s data and Document Interface, check the length
property of the wlXmls collection and use an index number to access the individual XML
DOM object.

Access the HTML properties for each XML DOM object directly using the following syntax:
document.wlXmls [#].<html-DOM property>

Access the XML DOM Document Interface for each document element directly using the
following syntax:

document.wlXmls [#] .XMLDocument.documentElement.<property>

Example

To find out how many XML DOM objects are contained within a document, check the value
of:

document.wlXmls.length
Access the HTML property src as follows:

document.wlXmls([0].src

362

RadView Software

wiXmls (object)

Access the XML DOM document interface as follows:
document..wlXmls[0] .XMLDocument.documentElement .nodeName

XML DOM objects may also be accessed directly using the XML ID. For example, if the first
XML object on a page is assigned the ID tag myXmlDoc, you could access the object using
any of the following:

MyBookstore = document.wlXmls[O]
or
MyBookstore = document.wlXmls.myXmlDoc

or
MyBookstore = document.wlXmls[“myXmlDoc”]

The following example illustrates HTML property usage. Assume you are working with a Web
Bookstore site that includes the following inventory database code fragment:

<xml ID=“xmlBookSite”>
<?xml version=“1.0"7?>

<!-- Bookstore inventory database -->
<bookstore>
<book>

<author>Mark Twain</author>
<title>Tom Sawyer</title>
<price>$11.00</price>
</book>
<book>
<author>Oscar Wilde</author>
<title>The Giant And His Garden</title>
<price>$8.00</price>
</book>
</bookstore>
</xml>

When accessing this Web site, your Agenda may use the standard HTML properties 1d and
innerHTML to print out text strings showing the information found within the XML tags, as
follows:

var XMLBookstoreDoc = document.wlXmls[0]
InfoMessage (“ID = ” + XMLBookstoreDoc.id)
InfoMessage (“HTML text = ” + XMLBookstoreDoc.innerHTML)

Running this Agenda produces the following output:

ID = xmlBookSite
HTML text = <?xml version="1.0"?>
..etc.

Methods and Properties

WebLOAD supports all standard W3C XML DOM properties and methods, listed in Appendix
B, WebLOAD-supported XML DOM Interfaces, page 391. These HTML properties and

WebLOAD JavaScript Reference Manual 363

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

methods are accessed via the XMLDocument property. In addition, if the object is constructed
from a Data Island, the 1d, InnerHTML, and src HTML properties are exposed. Each

property is described in its own section.

id, page 143 InnerHTML, page 153
load(), page 170 loadXML(), page 175
sre, page 255 WLXmlDocument(), page 368

XMLDocument, page 380

Comment

WebLOAD recommends managing XML DOM objects on a Web page through the standard

document.all collection rather than using the wlXmls family of objects.

See also

Collections, page 47 document, page 79

load() and loadXML() method comparison, page 172

Write() (method)

Method of Object

wlOutputFile

Description

This method writes a string to the output file.

Syntax
Write (string)

Parameters
string—The text string you wish added to the output.
Return Value
None.
Example
MyFileObj = new wlOutputFile (filename)
MyFileObj.Write(“Happy Birthday”)

See also

Close(), page 45 CopyfFile(), page 57

364

RadView Software

delete(), page 70
GetLine(), page 124
Open(), page 193

Using the Form Data Wizard, page 35 in the
WebLOAD Programming Guide

wlOutputFile, page 351
Write(), page 372

Writeln() (method)

Writeln() (method)

File management functions, page 100
IncludeFile(), page 150
Reset(), page 219

Using the IntelliSense JavaScript Editor, page 18

wlOutputFile(), page 354
Writeln(), page 373

Method of Object

wlOutputFile

Description

This method writes a string followed by a newline character to the output file.

Syntax
Writeln (string)

Parameters

string—The text string you wish added to the output.

Return Value

None.

Example

MyFileObj = new wlOutputFile (filename)

MyFileObj.Writeln (“Happy Birthday”)

See also

Close(), page 45
delete(), page 70
GetLine(), page 124
Open(), page 193

Using the Form Data Wizard, page 35 in the
WebLOAD Programming Guide

wlOutputFile, page 351
Write(), page 372

CopyfFile(), page 57

File management functions, page 100
IncludeFile(), page 150

Reset(), page 219

Using the IntelliSense JavaScript Editor, page 18

wlOutputFile(), page 354
Writeln(), page 373

WebLOAD JavaScript Reference Manual

365

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

WebLOAD Actions, Objects, and Functions

WSComplexObject (object)

Description

The WSComplexObject object is part of the WebLOAD WebServices test suite. If the Web
Services tool being accessed during a test session involves complex object types, it may be
necessary to manually edit the Agenda code, as described in Using the IntelliSense JavaScript
Editor, page 18. WebLOAD provides the WSComplexObject object to handle complex
object types.

Example

The following code fragment illustrates work with a complex Web Services object:

function InitClient () {

var Factory = new WSWebService ("Factory",
"http://ga39-ntsp6:8080/axis/services/factory?wsdl") ;

Worker = new WSComplexObject () ;
Worker.setType ("Worker") ;
Worker.addProperty ("Name", "string");
Worker.addProperty ("Age", "integer");

}

Worker.setValue ("Name", "Robert") ;
Worker.setValue ("Age", 28) ;

var retVal = factory.addWorker (Worker);
InfoMessage (retvVal);

Methods

addProperty(), page 22 setType(), page 242
setValue(), page 243 WSComplexObject(), page 375

Proprietary methods specific to each Web Service tool, as listed in the WSDL files

Comment

The new complex object defined in the preceding example is based on information found in the
public WSDL file associated with the Web Service tool being tested. In the preceding example,
the following methods were used to create and work with the complex object needed by the
Web Services Factory tool:

4 The setType () method defines the fype of the new object being created. In this example,
we are creating a Worker object for the Factory Web Service tool.

4 The addProperty () method adds properties to the new Worker object that correspond
to the properties defined for this object in the WSDL file. In this case, each Worker object
includes two properties: Name and Age.

366

RadView Software

WSComplexObject() (constructor)

¢ The setValue () method assigns values to the newly added properties. In this case, the
Worker object is assigned values for Name, (Robert), and Age, (28).

4 The addWorker () method that appears in the preceding example is not a WebLOAD
method. addWorker () is proprietary to the Factory Web Service tool. Use of this
method is based on information provided by the Web Service’s WSDL file. See Working
with Web Services, page 30 in the WebLOAD Programming Guide, for more information.

Note that new WSComplexObject objects must be created, and all their properties added, in
the InitClient () function. Otherwise, a new object will be created with each iteration of
the Agenda during a test session and the system will quickly run out of memory. This is
illustrated in the preceding example. Values may be assigned to the existing properties, and
complex object may be accessed and used, at any point in the Agenda file.

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
WSGetSimpleValue(), page 376 WSWebService, page 377

WSWebService(), page 379

WSComplexObject() (constructor)

Method of Object

WSComplexObject

Description

Creates a new WSComplexObject object.

Syntax
newComplexObject = new WSComplexObject () ;

Parameters

None.

Return Value

Returns a new WSComplexObject object.

Example

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

function InitClient () {
var Factory = new WSWebService ("Factory",
"http://qa39-ntsp6:8080/axis/services/factory?wsdl") ;
Worker = new WSComplexObject () ;
Worker.setType ("Worker") ;

WebLOAD JavaScript Reference Manual 367

WebLOAD Actions, Objects, and Functions

Worker.addProperty ("Name", "string");
Worker.addProperty ("Age", "integer");
}

Comment

New WSComplexObject objects must be created, and their properties defined, within the
InitClient () function. Otherwise, a new object will be created with each iteration of the
Agenda during a test session and the system will quickly run out of memory. This is illustrated
in the preceding example.

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 setType(), page 242
setValue(), page 243 WSComplexObject, page 374
WSGetSimpleValue(), page 376 WSWebService, page 377

WSWebService(), page 379

WSGetSimpleValue() (function)

Description

Extracts a simple value that has been stored within an XML string structure.

Syntax

var rVal = WSGetSimpleValue (retval);
Parameters

retVal—The XML string structure returned by a Web Services function call.
Return Value

The simple value, (integer, string, Boolean, etc.), stored within an XML structure.

Example

var BNQuoteService = new WSWebService ("BNQuoteService",
"http://www.xmethods.net/sd/2001/BNQuoteService.wsdl") ;

// Call the getPrice() method, assign the XML return value
// structure to retVal
var retVal = BNQuoteService.getPrice("12344");

// Convert the return value structure to the expected
// simple numerical wvalue
var rVal = WSGetSimpleValue (retVal) ;

368 RadView Software

http://www.xmethods.net/sd/2001/BNQuoteService.wsdl

WSWebService (object)

// Verify that the actual value matches the expected value

if (xval !'= 5.9)
InfoMessage (V“getPrice () method call failed”);
else

InfoMessage (“getPrice () method call succeeded”);

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 SaveWSTransaction, page 228
setType(), page 242 setValue(), page 243
WSComplexObject, page 374 WSComplexObject(), page 375
WSWebService, page 377 WSWebService(), page 379

WSWebService (object)

Description

Many programs today take advantage of Web Services, publicly available tools that simplify
the creation and maintenance of complex, large scale applications. As a complete testing
platform, WebLOAD provides full testing support for the Web Services tools included in the
application being tested. The WebServices Wizard, described in Working with Web Services,
page 30, in the WebLOAD Programming Guide, simplifies the addition of Web Services testing
to your Agenda. The WebServices Wizard handles most Web Services testing scenarios. For
the occasional Web Services tools that involve complex object types, testers may have to work
with the code within the testing Agenda, as described in Working with Web Services complex
types, page 207, in the WebLOAD Programming Guide. This Reference Manual documents the
syntax of the objects and methods used to implement the WebLOAD WebServices test suite.

The WSWebService object is part of the WebLOAD WebServices test suite. Use the
WebServices Wizard to define a new WSWebService object for each Web Services tool
being tested. Each WSWebService object stores information based on the WSDL file
associated with a Web Service tool. In most cases, you select the methods of the Web Services
tool that you wish tested through the WebServices Wizard. The corresponding lines of code are
added automatically to your Agenda. When dealing with complex object types, you may have
to add some lines of code within the Agenda file.

Example

The following code fragment illustrates a typical Web Service object:

suonoun4
pue ‘s}08lqo
‘suoidy AvOoT199M

function InitClient () {
var BNQuoteService = new WSWebService ("BNQuoteService",
"http://www.xmethods.net/sd/2001/BNQuoteService.wsdl") ;
}

WebLOAD JavaScript Reference Manual 369

WebLOAD Actions, Objects, and Functions

var retVal = BNQuoteService.getPrice("12344");

Methods

WSWebService(), page 379

Proprietary methods specific to each Web Services tool, as listed in the corresponding WSDL file

Comment

New WSWebService objects must be created in the InitClient () function. Otherwise, a
new object will be created with each iteration of the Agenda during a test session and the
system will quickly run out of memory. This is illustrated in the preceding example.

The getPrice () method that appears in the preceding example is not a WebLOAD method.
getPrice () is proprietary to the BNQuoteService Web Services tool. The WebServices
Wizard added the line that calls this method to the Agenda file when the test session designer
selected this method for testing.

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 setType(), page 242
setValue(), page 243 WSComplexObject, page 374
WSComplexObject(), page 375 WSGetSimpleValue(), page 376

WSWebService(), page 379

WSWebService() (constructor)

Method of Object

WSWebService

Description
Creates a new WSWebService object.

Syntax

var WebServiceToolName = new
WSWebService (“WebServiceToolName”, “WSDLurl”)

Parameters

WebServiceToolName—Name of the Web Service tool being accessed, a text string.

WSDLurl—Location of the WSDL file associated with this Web Service tool, a text string.

370 RadView Software

XMLDocument (property)

Return Value

Returns a new WSWebService object.

Example

function InitClient () {
var BNQuoteService = new WSWebService ("BNQuoteService",
"http://www.xmethods.net/sd/2001/BNQuoteService.wsdl") ;

}

Comment

New WSWebService objects must be created in the InitClient () function. Otherwise, a

new object will be created with each iteration of the Agenda during a test session and the
system will quickly run out of memory. This is illustrated in the preceding example.

See also
Working with Web Services, page 30, in the Working with Web Services complex types, page
WebLOAD Programming Guide 207, in the WebLOAD Programming Guide
addProperty(), page 22 setType(), page 242
setValue(), page 243 WSComplexObject, page 374

WSComplexObject(), page 375 WSGetSimpleValue(), page 376

WSWebService, page 377

XMLDocument (property)

Method of Object

wiXmls

Description

The XMLDocument property represents the actual XML DOM object. Through
XMLDocument you are able to access all the standard XML DOM properties and methods
listed in Appendix B, WebLOAD-supported XML DOM Interfaces, page 391.

Syntax
Use the following syntax:

document.wlXmls[#] .XMLDocument.documentElement.<property>

XMLDocument is also understood by default. You may access the XML DOM properties and

methods without including XMLDocument in the object reference. For example:

document . wlXmls[0] .documentElement.<property>

WebLOAD JavaScript Reference Manual

371

suonoun4
pue ‘s}0alqo
‘suoidy AvoT199M

WebLOAD Actions, Objects, and Functions

However, including XMLDocument is a good programming practice, to emphasize the fact
that you are dealing directly with an XML DOM object and not a Data Island.

Example
document .wlXmls[0] .XMLDocument.documentElement.nodeName
Comment

WebLOAD recommends managing XML DOM objects on a Web page through the standard
document.all collection rather than using the wlXmls family of objects.

See also
Collections, page 47 id, page 143
InnerHTML, page 153 load(), page 170
loadXML(), page 175 load() and loadXML() method comparison, page
172
sre, page 255 wlXmls, page 370

372 RadView Software

WebLOAD-supported SSL Protocol Versions

SSL handshake combinations

WebLOAD supports a variety of SSL versions, ranging from the earlier SSL versions and up to
the most current TLS versions. The following table illustrates the results of different handshake
combinations, depending on the Client and Server SSL version:
Table A-1: SSL handshake combinations
Client setting Server Setting

Undetermined 3.0W/2.0Hello 3.0 Only 2.0 Only
Undetermined 3.0 3.0 (a) 2.0
3.0W/2.0Hello 3.0 3.0 (a) (b)
3.0 Only 3.0 3.0 3.0 (©)
2.0 Only 3.0 3.0 3.0 2.0

Each entry specifies the negotiated protocol version. In the noted instances, negotiation is
impossible for the following reasons:

(a) These protocols all support SSL 3.0, but the SSL 3.0 Only setting on the server prevents
the SSL 2.0 Hello message sent by the client from being recognized.

(b) The SSL 2.0 Hello message sent by the client is recognized, but the SSL 2.0 Only setting
on the server sends a 2.0 response. The client rejects this response as it is set to
communicate using only SSL 3.0.

WebLOAD JavaScript Reference Manual 381

SUOISI9/ [090}01d
1SS pauoddns
-avo19eM

WebLOAD-supported SSL Protocol Versions

(¢) The SSL 3.0 Hello message sent by the client will not be understood by the SSL 2.0 only

SCrver.

Commercial browsers and servers generally act as if they are set for
SSL_Version_Undetermined, unless SSL 2.0 is disabled, in which case they act as if
they are set for SSL_Version_3 0 With 2 0_Hello.

SSL protocols—complete list

WebLOAD supports the following SSL protocols. The protocols are sorted by bit limit. A short
description follows each item, including noting whether or not the protocol is cleared for
export.

128-bit encryption

The following SSL protocols work with 128-bit encryption.

¢

SSL_RSA_WITH_3DES_EDE_CBC_MDS5

RSA key exchange with MD5 hashing and 128-bit triple DES encryption using EDE in
CBC mode. No export.

SSL RSA WITH IDEA CBC MDS5
RSA key exchange with MD5 hashing and IDEA encryption in CBC mode. No export.
TLS DHE DSS WITH RC4 128 SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and 128-bit ARC4/RC4
encryption. No export.

TLS_ECDH_anon WITH_3DES_EDE_CBC_SHA

Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing and 128-bit triple DES
encryption using EDE in CBC mode. No export.

TLS_ECDH_anon WITH_RC4 128 SHA

Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing and 128-bit ARC4/RC4
encryption. No export.

TLS_ECMQV_ECNRA_WITH 3DES_EDE_CBC_SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve NRA analog with SHA-1 hashing
and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECMQV_ECNRA_WITH RC4 128 SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve NRA analog with SHA-1 hashing
and 128-bit ARC4/RC4 encryption. No export.

TLS_ECMQV_ECDSA WITH 3DES EDE CBC_SHA

382

RadView Software

SSL protocols—complete list

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve DSA key exchange with SHA-1
hashing and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS ECMQV_ECDSA WITH RC4 128 SHA

Elliptic Curve Menezes-Qu-Vanstone key exchange with SHA-1 hashing and 128-bit
ARC4/RC4 encryption. No export.

TLS_ECDH_ECNRA_WITH_3DES_EDE_CBC_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with SHA-1 hashing
and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECDH_ECNRA_WITH_RC4 128 SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with SHA-1 hashing
and 128-bit ARC4/RC4 encryption. No export.

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECDH_ECDSA_ WITH RC4 128 SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 128-bit ARC4/RC4 encryption. No export.

TLS_ECDHE_ECNRA_WITH 3DES_EDE_CBC_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with SHA-1 hashing
and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECDHE_ECNRA_WITH_RC4 128 SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with
SHA-1 hashing and 128-bit ARC4/RC4 encryption. No export.

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with
SHA-1 hashing and 128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECDHE _ECDSA_WITH RC4 128 SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 128-bit ARC4/RC4 encryption. No export.

TLS_ECES_ECNRA_WITH 3DES EDE_CBC_SHA

Elliptic Curve encryption scheme and Elliptic Curve NRA analog with SHA-1 hashing and
128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECES_ECNRA WITH RC4 128 SHA

Elliptic Curve encryption scheme and Elliptic Curve NRA analog with SHA-1 hashing and
128-bit ARC4/RC4 encryption. No export.

WebLOAD JavaScript Reference Manual 383

SUOISIa/\ |090]0Id

1SS pauoddns

-avo199M

WebLOAD-supported SSL Protocol Versions

TLS_ECES_ECDSA_WITH 3DES_EDE_CBC_SHA

Elliptic Curve encryption scheme and Elliptic Curve DSA analog with SHA-1 hashing and
128-bit triple DES encryption using EDE in CBC mode. No export.

TLS_ECES_ECDSA_WITH_RC4 128 SHA

Elliptic Curve encryption scheme and Elliptic Curve DSA analog with SHA-1 hashing and
128-bit ARC4/RC4 encryption. No export.

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

Anonymous Diffie-Hellman key exchange with SHA-1 hashing and triple DES 128-bit
encryption using EDE in CBC mode. No export.

TLS_DH_anon WITH_RC4 128 MD5

Anonymous Diffie-Hellman key exchange with MDS5 hashing and 128-bit ARC4/RC4
encryption. No export.

TLS_DHE_RSA_ WITH_3DES_EDE_CBC_SHA

Ephemeral Diffie-Hellman with RSA key exchange with SHA-1 hashing and triple DES
128-bit encryption using EDE in CBC mode. No export.

TLS_DHE DSS_WITH 3DES EDE CBC_SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and triple DES 128-bit
encryption using EDE in CBC mode. No export.

TLS_DH RSA WITH 3DES_EDE CBC_SHA

Diffie-Hellman with RSA key exchange with SHA-1 hashing and triple DES 128-bit
encryption using EDE in CBC mode. No export.

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

Diffie-Hellman key exchange with SHA-1 hashing and triple DES 128-bit encryption using
EDE in CBC mode. No export.

TLS_RSA_WITH_3DES_EDE_CBC_SHA

RSA key exchange with SHA-1 hashing and triple DES 128-bit encryption using EDE in
CBC mode. No export.

TLS RSA WITH IDEA CBC SHA

RSA key exchange with SHA-1 hashing and IDEA encryption in CBC mode. For export.
TLS RSA WITH RC4 128 SHA

RSA key exchange with SHA-1 hashing and ARC4/RC4 128-bit encryption. No export.
TLS RSA WITH RC4 128 MDS5

RSA key exchange with MDS5 hashing and ARC4/RC4 128-bit encryption. No export.

384

RadView Software

SSL protocols—complete list

56-bit encryption

The following SSL protocols work with 56-bit encryption.

¢

TLS_ECDH_ECDSA_EXPORT WITH RC4 56 SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 56-bit ARC4/RC4 encryption. For export.

SSL_RSA_WITH_DES_CBC_MD5

RSA key exchange with MD5 hashing and 56-bit DES encryption in CBC mode. No
export.

TLS_DHE_DSS_EXPORT1024 WITH_RC4 56 _SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and 56-bit ARC4/RC4
encryption. For export.

TLS RSA EXPORT1024 WITH RC4 56 SHA
RSA key exchange with SHA-1 hashing and 56-bit ARC4/RC4 encryption. For export.
TLS_DHE DSS EXPORT1024 WITH DES CBC SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and 56-bit DES encryption
in CBC mode. For export.

TLS_RSA_EXPORT1024 WITH DES_CBC_SHA

RSA key exchange with SHA-1 hashing and 56-bit DES encryption in CBC mode. For
export.

TLS_ECDH_anon WITH DES CBC_SHA

Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing and 56-bit DES encryption
in CBC mode. No export.

TLS_ECMQV_ECNRA_ WITH DES _CBC SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve NRA analog with SHA-1 hashing
and 56-bit DES encryption in CBC mode. No export.

TLS_ECMQV_ECDSA_ WITH_DES_CBC_SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve DSA key exchange with SHA-1
hashing and 56-bit DES encryption in CBC mode. No export.

TLS_ECDH_ECNRA_WITH_DES CBC_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with SHA-1 hashing
and 56-bit DES encryption in CBC mode. No export.

TLS_ECDH_ECDSA_WITH_DES_CBC_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 56-bit DES encryption in CBC mode. No export.

WebLOAD JavaScript Reference Manual 385

SUOISIa/\ |090]0Id

1SS pauoddns

-avo199M

WebLOAD-supported SSL Protocol Versions

¢ TLS_ECDHE ECNRA_WITH DES CBC_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with
SHA-1 hashing and 56-bit DES encryption in CBC mode. No export.

¢ TLS_ECDHE ECDSA_WITH DES CBC_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with
SHA-1 hashing and 56-bit DES encryption in CBC mode. No export.

¢ TLS ECES ECNRA_WITH DES CBC_SHA

Elliptic Curve encryption scheme and Elliptic Curve NRA analog with SHA-1 hashing and
56-bit DES encryption in CBC mode. No export.

¢ TLS_ECES ECDSA WITH DES_CBC_SHA

Elliptic Curve encryption scheme and Elliptic Curve DSA analog with SHA-1 hashing and
56-bit DES encryption in CBC mode. No export.

¢ TLS_DH_anon WITH DES_CBC_SHA

Anonymous Diffie-Hellman key exchange with SHA-1 hashing and DES 56-bit encryption
in CBC mode. No export.

¢ TLS DHE RSA WITH DES CBC_SHA

Ephemeral Diffie-Hellman with RSA key exchange with SHA-1 hashing and DES 56-bit
encryption in CBC mode. No export.

¢ TLS DHE DSS WITH DES CBC SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and DES 56-bit encryption
in CBC mode. No export.

¢ TLS DH RSA WITH DES CBC_SHA

Diffie-Hellman with RSA key exchange with SHA-1 hashing and DES 56-bit encryption in
CBC mode. No export.

¢ TLS DH DSS WITH DES_CBC_SHA

Diffie-Hellman key exchange with SHA-1 hashing and DES 56-bit encryption in CBC
mode. No export.

¢ TLS RSA WITH DES CBC_SHA

RSA key exchange with SHA-1 hashing and DES 56-bit encryption in CBC mode. No
export.

40-bit encryption

The following SSL protocols work with 40-bit encryption.
4 TLS ECDH _ECDSA_EXPORT WITH RC4 40 SHA

386 RadView Software

SSL protocols—complete list

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing
and 40-bit ARC4/RC4 encryption. For export.

SSL_RSA_WITH _RC2 CBC_MD5

RSA key exchange with MDS5 hashing and RC2 40-bit encryption in CBC mode. No
export.

TLS_ECDH_anon EXPORT WITH _RC4 40 SHA

Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing and 40-bit ARC4/RC4
encryption. For export.

TLS_ECDH_anon EXPORT WITH_DES40 CBC_SHA

Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing and 40-bit DES encryption
in CBC mode. For export.

TLS_ECDHE_ECNRA_EXPORT WITH RC4 40 SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with
SHA-1 hashing and 40-bit ARC4/RC4 encryption. For export.

TLS_ECDHE_ECNRA_EXPORT WITH DES40 CBC_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with
SHA-1 hashing and 40-bit DES encryption in CBC mode. For export.

TLS_ECDHE_ECDSA_EXPORT WITH_RC4 40 SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with
SHA-1 hashing and 40-bit ARC4/RC4 encryption. For export.

TLS_ECDHE_ECDSA_EXPORT WITH DES40 CBC_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with
SHA-1 hashing and 40-bit DES encryption in CBC mode. For export.

TLS_DH_anon EXPORT WITH DES40 CBC_SHA

Anonymous Diffie-Hellman key exchange with SHA-1 hashing and DES 40-bit encryption
in CBC mode. For export.

TLS_DH_anon EXPORT WITH RC4 40 MD5

Anonymous Diffie-Hellman key exchange with MDS5 hashing and 40-bit ARC4/RC4
encryption. For export.

TLS_DHE _RSA_EXPORT WITH DES40 CBC_SHA

Ephemeral Diffie-Hellman with RSA key exchange with SHA-1 hashing and DES 40-bit
encryption in CBC mode. For export.

TLS_DHE_DSS_EXPORT WITH_DES40 CBC_SHA

Ephemeral Diffie-Hellman key exchange with SHA-1 hashing and DES 40-bit encryption
in CBC mode. For export.

WebLOAD JavaScript Reference Manual 387

SUOISIa/\ |090]0Id

1SS pauoddns

-avo199M

WebLOAD-supported SSL Protocol Versions

TLS_DH_RSA_EXPORT WITH_DES40 CBC_SHA

Diffie-Hellman with RSA key exchange with SHA-1 hashing and DES 40-bit encryption in
CBC mode. For export.

TLS_DH_DSS_EXPORT WITH_DES40 CBC_SHA

Diffie-Hellman key exchange with SHA-1 hashing and DES 40-bit encryption in CBC
mode. For export.

TLS_RSA_EXPORT WITH_DES40 CBC_SHA

RSA key exchange with SHA-1 hashing and DES 40-bit encryption in CBC mode. For
export.

TLS_RSA_EXPORT WITH_RC2 CBC_40 MD5

RSA key exchange with MDS5 hashing and RC2 40-bit encryption in CBC mode. For
export.

TLS RSA EXPORT WITH RC4 40 MDS35
RSA key exchange with MD5 hashing and ARC4/RC4 40-bit encryption. For export.

0-bit encryption

The following SSL protocols work with 0-bit encryption.

¢

TLS ECDH anon NULL WITH SHA
Elliptic Curve Anonymous Diffie-Hellman with SHA-1 hashing. For export.
TLS_ECMQV_ECNRA NULL SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve NRA analog with SHA-1 hashing.
For export.

TLS_ECMQV_ECDSA NULL_SHA

Elliptic Curve Menezes-Qu-Vanstone and Elliptic Curve DSA key exchange with SHA-1
hashing. For export.

TLS_ECDH_ECNRA_NULL_SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with SHA-1 hashing.
For export.

TLS_ECDH_ECDSA_NULL SHA

Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with SHA-1 hashing.
For export.

TLS_ECDHE_ECNRA NULL _SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve NRA analog with
SHA-1 hashing. For export.

388

RadView Software

SSL protocols—complete list

TLS_ECDHE_ECDSA NULL_SHA

Ephemeral Elliptic Curve Diffie-Hellman analog and Elliptic Curve DSA analog with
SHA-1 hashing. For export.

TLS_ECES_ECNRA NULL SHA

Elliptic Curve encryption scheme and Elliptic Curve NRA analog with SHA-1 hashing. For
export.

TLS_ECES_ECDSA NULL_SHA

Elliptic Curve encryption scheme and Elliptic Curve DSA analog with SHA-1 hashing. For
export.

TLS RSA WITH NULL SHA

RSA key exchange with SHA-1 hashing. For export.
TLS RSA WITH NULL MDS5

RSA key exchange with MD5 hashing. For export.
TLS NULL WITH NULL NULL

No key exchange, hashing or encryption. For export.

WebLOAD JavaScript Reference Manual 389

SUOISIa/\ |090]0Id

1SS pauoddns

-avo199M

WebLOAD-supported SSL Protocol Versions

390 RadView Software

WebLOAD-supported XML DOM Interfaces

WebLOAD supports the following XML DOM Document Interfaces:
XML Document Interface

Node Interface

Node List Interface

NamedNodeMap Interface

* & o o

ParseError Interface
Implementation Interface

The tables in this appendix list the properties and methods of the interfaces supported by
WebLOAD.

saoepsiu| NOd
TNX pauoddns
-avo19eMm

WebLOAD JavaScript Reference Manual 391

WebLOAD-supported XML DOM Interfaces

Table B-1: XML Document Interface Properties

Property Description

doctype A read-only property that gets the node for the DTD specified
for the document. If no DTD was specified, null is returned.

document El enent A read/write property that gets/sets the root node of the
document.

i npl enent ation A read-only property that returns the implementation

interface for this document.

parsekrror A read-only property that provides an object that summarizes
the last parsing error encountered.

preserveWhi t espace A read-write property that informs the parser whether the
default mode of processing is to preserve whitespace or not.
The default value of this property is false.

readyState A read-only property indicating the status of instantiating the
XML processor and document download.

resol vekxternal s A read-write property that informs the parser that resolvable
namespaces (a namespaces URI that begin with an “x—
schema :” prefix), DTD external subsets, and external entity
references should be resolved at parse time.

url A read-only property that returns the canonicalized URL for
the XML document specified in the last call to 1oad () .

val i dat eOnPar se A read/write property that turns validation on at parse time if
the value of bool is true, off if validate is false.

392 RadView Software

Table B-2: XML Document Interface Methods

Table B-2: XML Document Interface Methods

Method

Description

abort ()

Aborts an asynchronous download in progress.

createAttri bute(nane)

Creates a node of type ATTRIBUTE with the name supplied.

Cr eat eCDATASect i on
(data)

Creates a node of type CDATA_SECTION with nodeValue
set to data.

cr eat eConment (dat a)

Creates a node of type COMMENT with nodeValue set to
data.

cr eat eDocunent Fr agnment

Creates a node of type DOCUMENT FRAGMENT in the
context of the current document.

creat eEl enent (t agNane)

Creates a node of type ELEMENT with the nodeName of
tagName.

createEntityReference(n
ane)

Creates a node of type ENTITY REFERENCE where name is
the name of the entity referenced.

Cr eat eNode(type,
namespaceURl)

nane,

Creates a node of the type specified in the context of the
current document. Allows nodes to be created as a specified
namespace.

Cr eat eProcessi ng
I nstruction
(target, data)

Creates a node of type PROCESSING _INSTRUCTION with
the target specified and nodeValue set to data.

creat eText Node(dat a)

Creates a node of type TEXT with nodeValue set to data.

Cet El enent sByTagName
(tagnarme)

Returns a collection of all descendent Element nodes with a
given tagName.

| oad(url)

Loads an XML document from the location specified by the
url. Ifthe url cannot be resolved or accessed or does not
reference an XML document, the documentElement is set to
null and an error is returned. Returns a Boolean.

| oadXM_(xm string)

Loads an XML document using the supplied string. xmlstring
can be an entire XML document or a well-formed fragment. If
the XML within xmlstring cannot be loaded, the
documentElement is set to null and an error is returned.

NodeFrom D(i dstri ng)

Returns the node that has an ID attribute with the value
corresponding to idString.

Save()

Serialize the XML. The parameter can be a filename, an ASP
response, an XML Document, or any other COM object that
supports Istream, IpersistStream, or IpersistStreamlInit.

WebLOAD JavaScript Reference Manual

393

seoepaul NOQ

TANX pauoddns

-QvO199M

WebLOAD-supported XML DOM Interfaces

Table B-3: Node Interface Properties

Property

Description

attributes

A read-only property that returns a NamedNodeMap
containing attributes for this node.

BaseNanme

A read-only property that returns the right-hand side of a
namespace qualified name. For example, yyy for the element
<xxx:yyy>. BaseName must always return a non-empty
string.

chi | dNode

A read-only property that returns a NodeList containing all
children of the node.

Dat aType

A read-write property that indicates the node type.

Definition

A read-only property whose value is the node that contains the
definition for this node.

FirstChild

A read-only property that returns the first child node. If the
node has no children, £firstChild returns null.

Last Child

A read-only property that returns the last child node. If the
node has no children, 1astChi 1d returns null.

Next Si bl i ng

A read-only property that returns the node immediately
following this node in the children of this node’s parent.
Returns null if no such node exists.

NamespaceURI

A read-only property that returns the URI for the namespace
(the uuu portion of the namespace declaration
xmlns:nnn="uuu”). If there is no namespace on the
node that is defined within the context of the document, “” is
returned.

NodeName

A read-only property indicating the name of the node.

NodeType

A read-only property indicating the type of node.

NodeTypeStri ng

Returns the node type in string form.

NodeTypedVal ue

A read/write property for the typed value of the node.

NodeVal ue

A read/write property for the value of the node.

Owner Document

A property that indicates the document to which the node
belongs or when the node is removed from a document.

par ent Node

A read-only property that provides a pointer to the parent.

par sed

A read-only property that indicates that this node and all of its
descendants have been parsed and instantiated. This is used in
conjunction with asynchronous access to the document.

394

RadView Software

Table B-4: Node Interface Methods

Table B-3: Node Interface Properties

Property

Description

prefix

A read-only property that returns the prefix specified on the
clement, attribute of entity reference. For example, xxx for
the element <xxx : yyy>. If there is no prefix specified, “” is
returned.

previ ousSi bl i ng

A read-only property that returns the node immediately
preceding this node in the children of this node’s parent.
Returns null if no such node exists.

speci fi ed

A read-only property indicating the node was specified directly
in the XML source and not implied by the DTD schema.

t ext

A string representing the content of the element and all
descendents. For example “content of tag”in
<sometag size=34>

content of tag
</sometag>.

xm

A read-only property that returns the XML representation of
the node and all its descendants as a string.

Table B-4: Node Interface Methods

Method

Description

appendChi | d(newChi | d)

A method to append newCh i 1d as the last child of this
node.

cl oneNode(deep)

A method to create a new node that is an exact clone (same
name, same attributes) as this node. When deep is false, only
the node and attributes without its children are cloned. When
deep is true, the node and all its descendants are cloned.

hasChi | dNodes()

A method that indicates whether the node has children.

I nsert Before
(newChi I d, ol dChild)

A method to insert newChi1d as a child of this node.
01dChild is returned. o 1dNode must be a child node of
the element, otherwise an error is returned. If newChildis
null, the 01dChild is removed.

removeChi | d(chil d)

A method to remove a childNode from a node. If
childNode is not a child of the node, an error is returned.

Repl aceChi l d
(newChi I d, ol dChild)

A method to replace 01dChild with newChild as a child
of this node.

WebLOAD JavaScript Reference Manual

395

seoepaul NOQ

TANX pauoddns

-QvO199M

WebLOAD-supported XML DOM Interfaces

Table B-4: Node Interface Methods

Method Description

sel ect Nodes(query) Returns a NodeLi st containing the results of the query
indicated by query, using the current node as the query
context. If no nodes match the query, an empty NodeList is
returned. If there is an error in the query string, the DOM error
reporting is used.

Sel ect Si ngl eNode Returns a single node that is the first node in the NodeList

(query) returned from the query, using the current node as the query
context. If no nodes match the query, null is returned. If there
is an error in the query string, an error is returned.

Transf or mMNode Returns the results of processing the source DOMNode and its

(styl esheet DOVNode) children with the stylesheet indicated by
stylesheetDOMNode. The source defines the entire
context on which the stylesheet operates, so ancestor or id
navigation outside of the scope is not allowed. The stylesheet
parameter must be either a DOM Document node, in which
case the document is assumed to be an ASL stylesheet, or a
DOM Node in the xsl namespace, in which case this node is
treated as a standalone.

Transf or mModeToObj ect Sends the results of the transform to the requested object,
(stylesheet, Qbject) either in TSt ream or a DOM Document.

Table B-5: Node List Interface

Property Description

I ength The number of nodes in the NodeLi st. The length of the
list will change dynamically as children or attributes are
added/deleted from the element.

next Node Returns the next node in the NodeList based on the current
node.

Met hod

i tem(i ndex) Returns the node in the NodeL1i st with the specified index.

reset () Returns the iterator to the uninstantiated state; that is, before

the first node in the NodeList.

396 RadView Software

Table B-6: NamedNodeMap Interface

Table B-6: NamedNodeMap Interface

Property Description

I ength The number of nodes in the NamedNodeMap. The length of
the list will change dynamically as children or attributes are
added/deleted from the element.

Method

get Namedl t em(nane)

Returns the node corresponding to the attribute with name. If
name is not an attribute, null is returned.

CetQualifiedltem
(baseNane,
namespaceURl)

Allows the specification of a qualifying namespaceURI to
access a namespace qualified attribute. It returns the node
corresponding to the attribute with baseName in the
namespace specified by nameSpaceURT. If the qualified
name (baseName+nameSpaceURI) is not an attribute,
null is returned.

i tem(i ndex)

Returns the node in the NameNodeMap with the specified
index. If the index is greater than the total number of nodes,
null is returned. If the index is less than zero, null is returned.

next node()

Returns the next node in the NodeL1i st based on the current
node.

RermovedNanedl t em
(nane)

Removes the attribute node corresponding to name and returns
the node. If name is not an attribute, null is returned.

RenmoveQual i fiedltem
(basenane,
namespaceURl)

Removes the name SpaceURTI qualified attribute node
corresponding to baseName and returns the node. If the
qualified name is not an attribute, null is returned.

reset()

Returns the iterator to the uninstantiated state; that is before
the first node in the NodeList.

Set Nanedl t em
(nanedl tem

Adds the attribute Node to the list. If an attribute already
exists with the same name as that specified by nodeName of
DOMNode, the attribute is replaced and the node is returned.
Otherwise, Node is returned.

WebLOAD JavaScript Reference Manual

397

seoepaul NOQ

TANX pauoddns

-QvO199M

WebLOAD-supported XML DOM Interfaces

Table B-7: ParseError Interface

Item Description

errorcode Returns the error code number in decimal.

filepos Returns the absolute file position where the error occurred.
Iine Returns number of the line containing the error.

I'i nepos Returns the character position where the error occurred.
reason Returns the reason for the error.

srcText Returns the full text of the line containing the error.

url Returns the URL of the XML file containing the error.

Table B-8: Implementation Interface

Item Description

HasFeat ure] The method returns true if the specified version of the parser
(feature, version) supports the specified feature. In Level 1, “1.0” is the only
valid version value.

398 RadView Software

WebLOAD Internet Protocols Reference

This chapter provides detailed reference information on WebLOAD support for the following
Internet protocols:

4 FTP, through the w/FTP Object, description beginning on page 400
IMAP, through the w/IMAP Object, description beginning on page 413
NNTP, through the wINNTP Object, description beginning on page 425
POP, through the w/POP Object, description beginning on page 436
SMTP, through the wISMTP Object, description beginning on page 444
TCP, through the w/TCP Object, description beginning on page 451
Telnet, through the wiTelnet Object, description beginning on page 457

®* & & o oo o

UDP, through the w/UDP Object, description beginning on page 463

WebLOAD JavaScript Reference Manual 399

—

WebLOAD Internet Protocols Reference

WwIFTP Object

The w1FTP object provides support for FTP (File Transfer Protocol) load and functional
testing within WebLOAD. Support for standard FTP operation is included. FTP over secure
connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Logon () method; otherwise
an exception is thrown.

To access the w1 FTP object, you must include the wlFtp. js file in your InitAgenda ()
function.

WIFTP Properties

Data

The Data property lets you specify the local data stream to upload to the host. You use this
property to upload data. For example:

ftp.Data = datastream

DataFile

The DataFile property lets you specify the local file to upload to the host. For example:

ftp.DataFile = filename

document

The document property is an array containing the files downloaded and uploaded in the
current FTP session. For example:

var recentdownload = ftp.document[1]

Ouftfile

The Outfile property lets you specify the name of a downloaded file. You use this property
to rename a downloaded file as it is transferred to your computer. This property must be an
explicit file name, not a pattern. If you specify the Out £ile property, the document

400 RadView Software

wIFTP Object

property remains empty. If you are downloading a series of files, only the last file downloaded
is stored in the Outfile.

If you want to store all of the files downloaded, either delete the Out £11e property or specify
an empty value. The downloaded files are then stored in the document property. For example:

ftp.Outfile = filename

PassiveMode

The PassiveMode property lets you use FTP through firewalls. Valid values are:

4 True - passive mode is set, and you may FTP through firewalls.
4 False - active mode is set, and you may not FTP through firewalls.

For example:

ftp.PassiveMode = modesetting

PassWord

The PassWord property lets you specify a password when logging on to a host. You use this
property to log onto a restricted FTP host. WebLOAD automatically sends the password to the
FTP host when a w1 FTP object connects to an FTP host.

ftp.PassWord = password

Caution: The password appears in plain text in the Agenda. The password is visible to
any user who has access to the Agenda.

Size
The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption.
var filesize = ftp.Size

StartByte

The StartByte property lets you specify the byte offset to start transferring from. The
default value is zero. This property automatically resets to zero after each transfer. You use this
property to specify a starting point when resuming interrupted transfers.

ftp.StartByte = byteoffset

WebLOAD JavaScript Reference Manual 401

WebLOAD Internet Protocols Reference

TransferMode

The TransferMode property lets you specify the transfer mode for uploaded and
downloaded files. You must specify the transfer mode before each transfer. If you do not
specify a transfer mode, auto, the default mode, is used. Valid values are:

¢ auto-0
¢ text-1
4 binary -2

You may also specify the transfer mode using the following constants:
4 WLFtp.TMODE_ASCII - text

4 WLFtp.TMODE_BINARY - binary

4 WLFtp.TMODE DEFAULT - auto

For example:

ftp.TransferMode = transfermode

UserName

The UserName property lets you specify a User ID when logging on to a host. You use this
property to log onto a restricted FTP host. WebLOAD automatically sends the user name to the
FTP host when a w1FTP object connects to an FTP host.

ftp.UserName = username

wIFTP Methods

Append()
Syntax Append(pattern)
Parameters
pattern The file to which you are appending. This may be a specific file name, or it may
contain wildcards.
Return Value Null if successful, an exception if unsuccessful.
Comments Similar to the Upload () method, Append () adds the data to the target file
instead of overwriting it. If the target file does not exist, Append () creates it.
402 RadView Software

wIFTP Object

AppendFile()
Syntax AppendFi |l e(fil ename)
Parameters
filename The remote file to which you want to append data.

Return Value

Null if successful, an exception if unsuccessful.

Return Value

Comments Uploads a local file and appends it to the specified file on the host. The local file
is specified by the DataFile property. The destination file is specified by the
filename parameter. If the DataFile property is not specified, then the
contents of the Data property are sent as a datastream to be appended to the file
specified by the £ilename parameter. If the target file does not exist,
AppendFile() creates it.

ChangeDir()

Syntax ChangeDi r (nane)

Parameters

name The name of the directory to which you want to move.

Null if successful, an exception if unsuccessful.

attributes

Return Value

Comments

Comments Changes the current working directory on the host to the one specified by the
name parameter.
ChFileMod()
Syntax ChFi |l eMod(fil ename, attributes)
Parameters
fil ename The name of the file you want to alter. This parameter may be a specific

file name, or it may contain wildcards.

The new attributes assigned to the file. Values are specified in the three
digit 0-7 format.
Null if successful, an exception if unsuccessful.

Changes attributes of the specified file according to the values specified in the
attribute parameter.

WebLOAD JavaScript Reference Manual

403

WebLOAD Internet Protocols Reference

ChMod()
Syntax ChMod(pattern, attributes)
Parameters
pattern The name of the files and directories you want to alter. This parameter

attributes

Return Value

may be a specific file name, or it may contain wildcards.

The new attributes assigned to the file. Values are specified in the three
digit 0-7 format.

Null if successful, an exception if unsuccessful.

Comments Uses a loop to changes attributes of the specified files and directories according
to the values specified in the at tribute parameter. If an iteration of the loop
fails, the loop is cancelled, potentially leaving some files unchanged. To avoid
this risk you must write your own loop with error handling capability.

Delete()

Syntax Del et e(pattern)

Parameters

pattern The file you are deleting. This may be a specific file name, or it may contain
wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the specified files from the FTP host. This function calls the
DeleteFile () method in a loop to delete all the specified files. If an iteration
of the loop fails, the loop is cancelled, potentially leaving some files undeleted.

DeleteFile()

Syntax Del ete(fil enane)

Parameters

fil enanme The file you are deleting. This must be a specific file name.

Return Value

Comments

Null if successful, an exception if unsuccessful.

Deletes the specified file from the FTP host.

404

RadView Software

wIFTP Object

Dir()

Syntax Dir(pattern)

Parameters

pattern The name of the file or directory for which you are searching. This may be a
specific file name, or it may contain wildcards.

Return Value Returns a JavaScript array with the following members if successful, an
exception if unsuccessful.

al[].fileName // name of file

al]l.fileAttributes // attribute string

al].fileTime // date and time of last modification
all.fileSize // size of file in bytes

al].isDir // 1 if the entry represents a
directory, 0 for a file

Note: If the host supports only basic information, only the £ileName property
of the array is defined.

Comments Lists files and directories that match the pat tern parameter in the current
directory of the host. This method returns detailed information if the server
supports it.

Download()

Syntax Downl oad(pattern)

Parameters

pattern The file you are downloading. This may be a specific file name, or it may
contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to download the specified files to the local computer. If the
property has been set, the data is saved to the specified file. If the Outfile
property has not been set, the file is saved with its current name. If an iteration
of the loop fails, the loop is cancelled, potentially leaving some files not
downloaded.

DownloadFile()

Syntax Downl oad(fi | enane)

Parameters

filename The file you are downloading. This must be a specific file name.

Return Value

Null if successful, an exception if unsuccessful.

WebLOAD JavaScript Reference Manual 405

80UBI8Jay S|000104d

Jsulsiu| Avo199M

WebLOAD Internet Protocols Reference

Return Value

Comments Downloads a file to the local computer. If the property has been set, the data is
saved to the specified file. If the Outfile property has not been set, the file is
saved with its current name.

GetCurrentPath()
Syntax Get Current Pat h()
Parameters None

A string containing the current path if successful, an exception if unsuccessful.

Comments Returns the current path on the host.
GetStatusLine()

Syntax Get St at usLi ne()

Parameters None

Return Value

A string containing the current path if successful, an exception if unsuccessful.

Return Value

Comments

Comments A string containing the latest response string if successful, an exception if
unsuccessful.
ListLocalFiles()
Syntax Li st Local Files(filter)
Parameters
filter The files you want to list. The filter may be a patter or a specific file name.

An array of matching objects with following properties if successful, an
exception if unsuccessful.

all.fileName // A string containing name of the file
al[].isDir // A Boolean, true if the entry represents a
directory

Lists files matching the £i1lter parameter in the current directory of the local
computer.

RadView Software

wIFTP Object

Logoff()

Syntax Logof f ()

Parameters None

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the FTP host.

Logon()

Syntax Logon(host, [port])

Parameters

host The host to which you are connecting. You may express the host using either the
DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a port, the default
FTP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a conversation with the FTP host. If you are logging on to a restricted site,
you must have specified the UserName and PassWord properties before using
this method.

MakeDir()

Syntax MakeDi r (nane)

Parameters

name The name of the new directory that you are creating.

Return Value Null if successful, an exception if unsuccessful.

Comments Creates a new directory beneath the current directory on the host.

RemoveDir()

Syntax RenmoveDi r (nane)

Parameters

name The name of the directory that you are deleting.

Return Value

Comments

Null if successful, an exception if unsuccessful.

Deletes the named directory from the host.

WebLOAD JavaScript Reference Manual 407

WebLOAD Internet Protocols Reference

Note: You may not delete a directory until that directory is empty. Remove all
files from the directory before using the RemoveDir () method. You may use
the Delete () method to delete files on the host.

Rename()
Syntax Rename(from to)
Parameters
from The file that you want to rename.
to The new file name for the file. If this file already exists, it is overwritten.

Return Value

Null if successful, an exception if unsuccessful.

Return Value

Comments Renames the files in the current directory described by the from parameter to
the name described in the to parameter.
SendCommand()
Syntax SendCommuand(stri ng)
Parameters
string The string you are sending to the host.

Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is useful for
interacting directly with the host using non-standard or unsupported extensions.

Syntax Upl cad(pattern)

Parameters

pattern The file you are uploading. This may be a specific file name, or it may contain

Return Value

Comments

wildcards.
Null if successful, an exception if unsuccessful.

Uses a loop to upload the local files specified by the pat tern parameter to the
host. The file is not renamed, and values specified by the DataFile and Data
property are ignored. If an iteration of the loop fails, the loop is cancelled,
potentially leaving some files not transported.

RadView Software

wIFTP Object

UploadFile()
Syntax Upl oadFi |l e(fil enane)
Parameters
filename The destination name of the local file. This parameter may be the same name as

Return Value

the local file name, or it may be used to rename the file once it arrives at the
host.

Null if successful, an exception if unsuccessful.

Comments Uploads a local file to the host. The local file is specified by the DataFile
property. The destination file name is specified by the £iIename parameter. If
the DataF1ile property is not specified, then the contents of the Data
property are sent as a datastream to be saved under the name specified by the
filename parameter.

UploadUnique()
Syntax Upl oadUni que()
Parameters None

Return Value

A string containing the name of the newly created file if successful, an exception
if unsuccessful.

Comments Uploads data or a file to a newly created, unique file on the host. The file name
is created by the host, and returned as a string value. The local file is specified
by the DataFile property. If the DataFile property is not specified, then the
contents of the Data property are sent as a datastream.

WLFtp()

Syntax new W.Ftp()

Parameters None

Return Value A new WIFTP object.

Comments

Example

Creates a new WIFTP object, used to interact with the server.

function InitCient(){
my NewFt pCbj ect = new W.Ft p()

WebLOAD JavaScript Reference Manual 409

WebLOAD Internet Protocols Reference

FTP Sample Code

// Agenda Initialization
function InitAgenda() {
// include the file that enables FTP
IncludeFile ("wlFtp.]js",WLExecuteScript)
}

function InitClient() {
// Create the FTP object we need to interact with the server
ftp=new WLFtp ()

}

function TerminateClient () {
// Delete the FTP object we used

delete ftp
}
//
//Body Of Agenda. Give user name and password and login
ftp.UserName="UserID" // Set the user name
ftp.PassWord="TopSecret" // Set the password
//this.PassiveMode=true; // Enable this if firewall is in the way
ftp.Logon ("localhost") // Login to the server
//

//Test Download
ftp.TransferMode = ftp.TMODE ASCII; // Force all downloads ASCII
ftp.Outfile="c:\\downloaded.txt";

// Define a local file to save the downloaded file
ftp.Download ("file.txt"); // Grab the remote file

// The remote file may be a wildcard, so for each file

// downloaded an entry is made in the document array.

// With this approach an Outfile is not required. Instead the
// document object holds the downloaded files for this client.

// The loop below loops through each entry in the document
// array and writes the file contents out to the log
for (var 1 = 0; 1 < ftp.document.length; i++)

{
InfoMessage (ftp.document[i]) ;

}

//

//Test Upload
ftp.TransferMode = ftp.TMODE ASCITI;
ftp.DataFile="c:\\upload.txt";
// define local file to upload
ftp.UploadFile ("hello.txt");
// upload it to the remote host as "hello.txt"

410

RadView Software

wIFTP Object

ftp.Data="hello world";
// define a string to send to the remote host
ftp.UploadFile ("hello.txt");
// upload the string and save it as "hello.txt"

//Test Append
ftp.TransferMode = ftp.TMODE ASCII;
ftp.DataFile="c:\\append.txt";
// identify a local file to upload
ftp.AppendFile ("hello.txt");
// add it to the existing contents of "hello.txt"

//Test Delete
ftp.Delete("hello.txt");
// delete "hello.txt" from the remote server

/ [============

//Test Directory Functions

ftp.MakeDir ("DirectoryName") ; // make a new directory
ftp.ChangeDir ("DirectoryName") ; // change to that directory
ftp.DataFile="c:\\filel.txt"; // select a local file
ftp.Upload ("filel.txt"); // upload it to the new directory

var files = ftp.Dir("*.*");
// Generate a list of the files in that directory
for (var 1 = 0 ; 1 < files.length; i++)
{
InfoMessage ("the file name is:" + files[i].fileName);
// Print each file’s name to the log

}

ftp.Delete ("*.*"); // delete the files on the directory
ftp.ChangeDir (".."); // go up a level in the tree
ftp.RemoveDir ("DirectoryName") ; // delete the directory itself
//===== ==============

//Test Advanced Directory Handling
var files = ftp.Dir("*.txt"); // show all the text files
if (files.length > 0)

// IF there are any entries to go through

// THEN print their detailed attributes to the log
for (var 1 = 0 ; 1 < files.length; i++)
{
// Print each file’s details to the log

InfoMessage (files[0].fileName) ; // name
InfoMessage (files[0].fileAttributes) ; // attributes
InfoMessage (files[0].fileTime) ; // timestamp
InfoMessage (files[0].fileSize); // size in bytes

WebLOAD JavaScript Reference Manual 411

WebLOAD Internet Protocols Reference

InfoMessage (files[0] .dirFlag) ;
// set when the object is a directory

}
//

//Test General Functions
status = ftp.GetStatusLine();
// what was the last response from the server?

InfoMessage ("status= "+ status); // print it
path = ftp.GetCurrentPath(); // where am I?
InfoMessage ("path="+ path); // right here
//

catch (e)

{

InfoMessage ("Error" + e)

}
ftp.Logoff () // do not forget to log out of the session
InfoMessage ("done") // this is the end of the FTP sample script

412

RadView Software

wlIMAP Object

wIIMAP Object

The w1IMAP object provides support for IMAP4 (Internet Message Access Protocol) load and
functional testing within WebLOAD. Support for standard IMAP operation is included. IMAP
over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method;
otherwise an exception is thrown.

To access the w1 IMAP object, you must include the wl Imap. js file in your
InitAgenda () function.

WIIMAP Properties

CurrentMessage

The CurrentMessage property returns the number of the current message. You use this
property to track the current message in relation to other messages on the host. For example:

var currentmessagenumber = imap.CurrentMessage

CurrentMessagelD

The CurrentMessageID property returns the ID of the current message. You use this
property to track the current message in relation to other messages on the host. For example:

var messagenumber = imap.CurrentMessagelD

document

The document property is an object with four properties:

4 Headers - A string containing the header of the message

4 MessageText - A string containing the text of the message
4 Size - Aninteger describing the size of the message in bytes
¢

Attachments - An array of objects, with each attachment existing as an object with the
following properties:

e contentencoding - The encoding of the attachment

WebLOAD JavaScript Reference Manual 413

WebLOAD Internet Protocols Reference

Mailbox

e contenttype - The content type of the attachment
e filename - The file name of the attachment
e messagetext - The text of the attachment
e partname - The part name of the message
e size - The size of the attachment in bytes
For example:

var recentdocument = imap.document

var messageheaders = recentdocument.MessageHeaders
var messagetext = recentdocument.MessageText

var messagesize = recentdocument.MessageSize

var messageattachments = recentdocument.attachments

The Mailbox property specifies the name of the mailbox with which you want to interact.
You use this property to create, edit, and delete mailboxes. For example:

imap.Mailbox = mailboxname

MaxLines

Ouftfile

The MaxLines property lets you specify the maximum number of lines per email to retrieve
from an IMAP host. You use this property to specify the number of lines to retrieve from each
email. For example:

imap.Maxlines = numberoflines

The Out £1ile property lets you specify the name of an output file. You use this property to
save a file or message locally on your computer. When you write to the Outfile, you
overwrite the existing content. To avoid overwriting the existing content, you must specify a
new Outfile each time you write. For example:

imap.Outfile = filename

414

RadView Software

wlIMAP Object

PassWord

The PassWord property lets you specify a password when logging on to a host. You use this
property to log onto a restricted IMAP host. WebLOAD automatically sends the password to
the IMAP host when a wlIMAP object connects to an IMAP host. For example:

imap.PassWord = password

Size
The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:
var filesize = imap.Size

UserName

The UserName property lets you specify a User ID when logging on to a host. You use this
property to log onto a restricted IMAP host. WebLOAD automatically sends the user name to
the IMAP host when a wlIMAP object connects to an IMAP host. For example:

imap.UserName = username

wIlIMAP Methods

Connect()

Syntax Connect (host, [port])

Parameters

host The host to which you are connecting. You may describe the host using its DNS
number, or by giving its name.

port The port to which you are connecting. If you do not specify a port, the default
IMAP port (port 143) is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts an IMAP session with the host. When you connect, you are connecting to

a specific mailbox within the host, as specified by your User ID.

WebLOAD JavaScript Reference Manual 415

WebLOAD Internet Protocols Reference

CreateMailbox()
Syntax Creat eMai | box()
Parameters None

Return Value

Null if successful, an exception if unsuccessful.

Comments Creates the mailbox specified in the Mailbox property. The created mailboxes
continue to exist after the end of the Agenda. To remove a mailbox, use the
DeleteMailbox () method.
Delete()
Syntax Del et e([MessageSet])
Parameters
MessageSet The identifier of the message you want to delete. You may specify a single
message number, or you may specify a range, separated by a colon. For
example, 1:10 deletes messages one through ten. If you do not specify a message
ID, the current message is deleted.
Return Value Null if successful, an exception if unsuccessful.
Comments Deletes the message with the corresponding ID. If no ID is specified, then the
current message is deleted.
DeleteMailbox()
Syntax Del et eMai | box()
Parameters None
Return Value Null if successful, an exception if unsuccessful.
Comments Deletes the mailbox specified in the Mailbox property.
Disconnect()
Syntax Di sconnect ()
Parameters None

Return Value

Comments

Null if successful, an exception if unsuccessful.

Terminates a connection to the IMAP host.

416

RadView Software

wlIMAP Object

GetMessageCount()
Syntax Get MessageCount ()
Parameters None

Return Value

A string containing the number of messages on the host if successful, an
exception if unsuccessful.

Comments Returns the number of messages waiting on the host.
GetStatusLine()

Syntax Get St at usLi ne()

Parameters None

Return Value

A string containing the latest response string if successful, an exception if
unsuccessful.

Return Value

Comments Returns the latest response string from the host.
ListMailboxes()
Syntax Li st Mai | boxes(pattern)
Parameters
pattern The mailbox that you want to appear in the list. This may be a specific name, or

it may contain wildcards.

A string listing the matching mailboxes if successful, an exception if
unsuccessful.

Comments Lists mailboxes matching the pattern parameter.
RecentMessageCount()

Syntax Recent MessageCount ()

Parameters None

Return Value

Comments

A string containing the number of new messages on the host if successful, an
exception if unsuccessful.

Returns the number of new messages waiting on the host.

WebLOAD JavaScript Reference Manual 417

WebLOAD Internet Protocols Reference

RenameMailbox()

Syntax RenameMai | box(string)
Parameters
string The new name for the mailbox.
Return Value Null if successful, an exception if unsuccessful.
Comments Renames the mailbox specified in the Mailbox property.
Retrieve()
Syntax Retrieve([MessageSet])
Parameters
MessageSet The identifier of the message you want to retrieve. You may specify a single

message number, or you may specify a range, separated by a colon. For
example, 1:10 returns messages one through ten. If you do not specify a message
ID, the next message is returned.

Return Value A document for each message specified if successful, an exception if
unsuccessful.
Comments Returns the message with the corresponding ID. If no ID is specified, then the

next message is returned.

Search()

Syntax Search(string)

Parameters

string

418 RadView Software

wlIMAP Object

The criteria for your search. Valid values are:

e ALL - All messages in the mailbox - this is the default initial key for
AND-ing.

e ANSWERED - Messages with the \\Answered flag set.

e BCC - Messages that contain the specified string in the envelope structure's
BCC field.

e BEFORE - Messages whose internal date is earlier than the specified date.

e BODY - Messages that contain the specified string in the body of the
message.

e CC - Messages that contain the specified string in the envelope structure's
CC field.

e DELETED - Messages with the \\Deleted flag set.
e DRAFT - Messages with the \\Draft flag set.
e FLAGGED - Messages with the \\Flagged flag set.

e FROM - Messages that contain the specified string in the envelope
structure's FROM field.

e HEADER - Messages that have a header with the specified field-name (as
defined in) and that contains the specified string in the field-body.

e KEYWORD - Messages with the specified keyword set.

e LARGER - Messages with an size larger than the specified number of
octets.

e NEW Messages that have the \\Recent flag set but not the \\Seen flag. This
is functionally equivalent to "(RECENT UNSEEN)".

e NOT - Messages that do not match the specified search key.

e OLD - Messages that do not have the \\Recent flag set. This is functionally
equivalent to "NOT RECENT" (as opposed to "NOT NEW").

e ON - Messages whose internal date is within the specified date.
e OR - Messages that match either search key.

e RECENT - Messages that have the \\Recent flag set.

e SEEN - Messages that have the \\Seen flag set.

e SENTBEFORE - Messages whose Date: header is earlier than the specified
date.

e SENTON - Messages whose Date: header is within the specified date.
e SENTSINCE - Messages whose Date: header is within or later than the
specified date.

e SINCE - Messages whose internal date is within or later than the specified
date.

e SMALLER - Messages with an RFC822.SIZE smaller than the specified
number of octets.

e SUBIJECT - Messages that contain the specified string in the envelope
structure's SUBJECT field.

e TEXT - Messages that contain the specified string in the header or body of

+h

WebLOAD JavaScript Reference Manual = . . o 419
e TO - Messages that contain the specified string in the envelope structure's

TO field.

e UID - Messages with unique identifiers corresponding to the specified
unique identifier set.

e UNANSWERED - Messages that do not have the \\Answered flag set.
e UNDELETED - Messages that do not have the \\Deleted flag set.
e UNDRAFT - Messages that do not have the \\Draft flag set.

WebLOAD Internet Protocols Reference

Return Value A string containing the IDs of messages that meet the search criteria if
successful, an exception if unsuccessful.

Comments Searches the current mailbox for messages meeting the specified search criteria.
SendCommand()

Syntax SendCommuand(stri ng)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is useful for

interacting directly with the host using non-standard or unsupported extensions.

SubscribeMailbox()
Syntax Subscri beMai | box()
Parameters None
Return Value Null if successful, an exception if unsuccessful.
Comments Subscribes to the mailbox specified in the Mailbox property.

UnsubscribeMailbox()

Syntax Unsubscri beMai | box()

Parameters None

Return Value Null if successful, an exception if unsuccessful.

Comments Unsubscribes from the mailbox specified in the Mailbox property.
WLImap()

Syntax new W.I nmap()

Parameters None

Return Value A new WIIMAP object.

Comments Creates a new wlIMAP object, used to interact with the server.

Example function InitClient() {

myNewl mapCbj ect = new VLI map()
my Newl mapObj ect . Connect (" Host Nanme")

420 RadView Software

IMAP Sample Code

wlIMAP Object

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlImap.js",WLExecuteScript)

}

function InitClient () ({

imap=new WLImap ()
// 1imap.Connect ("HostName") ;

}

// create the new IMAP
// connect to the

object
server

function TerminateClient() ¢{

imap.Disconnect () ;

delete imap

// Body Of Agenda
InfoMessage ("Speed:
wlGlobals.Debug=1;

// logout from the
// delete the IMAP

server
object

"+twlGlobals.ConnectionSpeed)

imap.UserName="UserID";
imap.PassWord="TopSecret";
imap.Mailbox="Inbox";
imap.Connect ("00.0.0.00"™);

//Test Retrieve

/*imap.Retrieve ("100") ;

for (var 1 = 0; 1 < imap.wlSource.length; i++)

{
InfoMessage (imap.wlSource[i]) ;
InfoMessage (imap.document.length) ;
InfoMessage (imap.document [i] .headers) ;
InfoMessage (imap.document [i] .messageText) ;
InfoMessage (imap.document [i] .size);
InfoMessage (imap.document[i] .attachments.length);

for (var j 0; j < imap.document[i].attachments.length; Jj++)

{

InfoMessage (imap.document [1] .attachments[j].contentEncoding) ;
InfoMessage (imap.document[i] .attachments[j].contentType) ;
InfoMessage (imap.document[i] .attachments[j].filename) ;
InfoMessage (imap.document[i] .attachments[]j] .messageText) ;
InfoMessage (imap.document [i] .attachments[]j].partName) ;
InfoMessage (imap.document[i] .attachments[j].size);

}

}x/
[/==
WebLOAD JavaScript Reference Manual 421

WebLOAD Internet Protocols Reference

//Test Delete

imap.Mailbox="Inbox";

InfoMessage (imap.GetMessageCount ()) ;
imap.Mailbox="Inbox";

imap.Delete ("2");
imap.Mailbox="Inbox";

InfoMessage (imap.GetMessageCount ()) ;

//

//Test Mailbox Functions:
// list mailboxes, create mailbox, and then list again
/*InfoMessage ("mailboxes are:")
var vl = imap.ListMailboxes();
for(var 1i=0; i < vl.length; i++)
InfoMessage (v1[i]);
imap.Mailbox="mailboxname";
imap.CreateMailbox () ;
InfoMessage ("mailboxes are:")
var vl = imap.ListMailboxes();
for(var i=0; i < vl.length; i++)
InfoMessage (v1[i]);
*/
//
// subscribe mailbox, list all subscribed mailboxes
//imap.Mailbox="mailboxname";
//imap.SubscribeMailbox () ;
/*InfoMessage ("subscribed mailboxes are:")
var v2 = imap.ListSubscribedMailboxes () ;
for(var 3=0; j < v2.length; j++)
{

InfoMessage (v2[3]);

imap.Mailbox=v2[]j];
y*/
//
// list subscribed mailboxes,unsubscribe mailbox,
// and then list all subscribed mailboxes again
/*InfoMessage ("subscribed mailboxes are:")
var v2 = imap.ListSubscribedMailboxes () ;

for(var 3=0; j < v2.length; j++)
{
InfoMessage (v2

(31);
imap.Mailbox=v2[]j];
}
imap.Mailbox="mailboxname";
imap.UnsubscribeMailbox () ;

InfoMessage ("subscribed mailboxes are:")
var v2 = imap.ListSubscribedMailboxes () ;
for(var j=0; j < v2.length; J++)

{

422

RadView Software

wlIMAP Object

InfoMessage(v2[3]);
imap.Mailbox=v2[]j];
}
*/
[/mmmmmmmm e e e e
// list mailboxes, rename mailbox,
// and then list mailboxes again
/*InfoMessage ("mailboxes are:")
var vl = imap.ListMailboxes();

for(var i=0; i < vl.length; i++)
InfoMessage (v1[il]);
imap.Mailbox="boxname";
imap.RenameMailbox ("newName") ;
InfoMessage ("mailboxes are:")
var vl = imap.ListMailboxes();
for(var i=0; i < vl.length; i++)
InfoMessage (v1[il]);

// get number of messages from a mailbox
/*imap.Mailbox="main";

InfoMessage (imap.GetMessageCount ()) ;

imap.Mailbox="Inbox";

InfoMessage (imap.GetRecentMessageCount ()) ;

// delete mailbox and list all the mailboxes
/*imap.Mailbox="mailboxname";

imap.DeleteMailbox () ;

InfoMessage ("subscribed mailboxes are:")

var v2 = imap.ListSubscribedMailboxes () ;

for(var j=0; j < v2.length; j++)

{

InfoMessage (v2[3]);
imap.Mailbox=v2[]j];
}
*/
J e
// search

/*imap.Mailbox="Inbox";
var found = imap.Search ("CC user@address.com");
InfoMessage ("found:")
for (var j=0; j < found.length; j++)
{
InfoMessage (found[j]);
}
catch (e)
{
InfoMessage ("Error" + e)

}

WebLOAD JavaScript Reference Manual 423

WebLOAD Internet Protocols Reference

*/

//

imap.Disconnect () ;
delete imap
InfoMessage ("done")

424

RadView Software

WINNTP Object

WINNTP Object

The w1NNTP (Network News Transfer Protocol) object provides support for NNTP load and
functional testing within WebLOAD. Support for standard NNTP operation is included. NNTP
over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method;
otherwise an exception is thrown.

You must include catch and try functions in your script to handle exceptions when using
the w1NNTP object. If you do not, the object may cause your Agenda to freeze. A sample catch
appears in the NNTP code sample at the end of this section.

To access the w1 NNTP object, you must include the wlNntp. js file in your
InitAgenda () function.

WINNTP Properties

ArticleText

The ArticleText property lets you specify the text appearing in the body of your article.
You use this property to write the text of the article itself. For example:

nntp.ArticleText = articlecontent

Attachments

The Attachments property lets you specify an attachment to a posting. The filename
variable should contain the name of the local file or datastream that you want to attach to the
posting. For example:

nntp.Attachments = filename

AttachmentsEncoding

The AttachmentsEncoding property lets you specify the type of encoding you are
applying to a message attachment. This property must be specified for each attachment. Valid
values are:

¢ 7Bit

WebLOAD JavaScript Reference Manual 425

WebLOAD Internet Protocols Reference

4 Quoted

4 Base64

4 38Bit
8BitBinary

You may also specify the encoding using the following constants:
WLNntp.ENC_7BIT - 7bit encoding
WLNntp.ENC_QUOTED - Quoted Printable encoding
WLNntp.ENC BASE64 - Base64 encoding

WLNntp.ENC_8BIT - 8Bit encoding

® & o o

WLNntp.ENC_ 8BITBINARY - Binary encoding
For example:

nntp.AttachmentsEncoding = encodingtype

AttachmentsTypes

The AttachmentsTypes property lets you specify the type of attachment you are including
in a posting. This property must be specified for each attachment. Valid values are:

¢ True - specifies a type of file
4 False - specifies a type of data
For example:

nntp.AttachmentsTypes = typeofattachment

document

The Document property is an object with two properties. One is a string, MessageText
containing the text of the article, and the other is an array containing the article attachments and
headers. For example:

var recentdocument = nntp.document

var messagetext = recentdocument.MessageText

var messageattachments = recentdocument.attachments
var firstattachment = messageattachments[0]

var secondattachment = messageattachments[1]

426

RadView Software

WINNTP Object

From

The From property lets you describe the Reply To in plain language. You may use this
property to identify your Reply To email address in a plain language format. For example:

nntp.From = replyname

Group

The Group property specifies the article group with which you are interacting. You use this to
limit searches, posts, and other activities to a specific group. For example:

nntp.Group = groupname

MaxHeadersLength

The MaxHeadersLength property lets you specify the maximum length for headers in a
article. You use this property to prevent line folding. For example:

nntp.MaxHeadersLength = headersize

Organization

The Organization property identifies the affiliation of the author. You use this property to
identify your professional or personal affiliation. For example:

nntp.Organization = organizationname

Outfile
The Outfile property lets you specify the name of an output file. You use this property to
save a file or article locally on your computer. For example:
nntp.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You use this
property to log onto a restricted NNTP host. WebLOAD automatically sends the password to
the NNTP host when a w1NNTP object connects to an NNTP host. For example:

nntp.PassWord = password

Caution: The password appears in plain text in the Agenda. The password is visible to
any user who has access to the Agenda

WebLOAD JavaScript Reference Manual 427

WebLOAD Internet Protocols Reference

References

ReplyTo

The References property lets you specify articles that the posted article follows. You use
this property to create a thread of related articles. If the resulting reference header is longer than
the limit specified in the MaxHeadersLength property, it is folded. References must be
separated by commas with no spaces in between. For example:

nntp.References = articlel,article?

Size

The ReplyTo property lets you specify the reply address for additional postings. For example:

nntp.ReplyTo = replyaddress

Subject

The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:

var filesize = nntp.Size

To

The Subject property lets you specify the text appearing the subject field of your email. You
use this property to provide a brief description of the contents of your article. For example:

nntp.Subject = subjectheader

The To property lets you specify the newsgroup to receive your posting. You may specify
multiple addresses in a semicolon-separated list. You must specify this property with every
article. For example:

nntp.To = alt.newsgroup.name; rec.newsgroup.name

UserName

The UserName property lets you specify a User ID when logging on to a host. You use this
property to log onto a restricted NNTP host. WebLOAD automatically sends the user name to
the NNTP host when a wINNTP object connects to an NNTP host. For example:

nntp.UserName = username

428

RadView Software

WINNTP Object

WINNTP Methods

[encodi ng]

Return Value

AddAttachment()
Syntax AddAt t achment (string, type, [encoding])
Parameters
string The string you are sending to the host. If you are sending a file, the string is the
location and name of the file. If you are sending a data attachment, the string is
the data to be attached.
type The type of attachment you are sending. Valid values are:

e TFile (default)

(] Data

The type of encoding to apply to the file. Valid values are:
e 7Bit (default)

. Quoted
° Base64
(] 8Bit

. 8BitBinary

Returns an integer value Attachment ID if successful, an exception if
unsuccessful.

Return Value

Comments

Comments Adds an attachment to the message.
Connect()
Syntax Connect (host, [port])
Parameters
host The host to which you are connecting. You may describe the host using its DNS
number, or by giving its name.
[port] The port to which you are connecting. If you do not specify a port, the default

NNTP port is used.
Null if successful, an exception if unsuccessful.

Starts an NNTP session with the host.

WebLOAD JavaScript Reference Manual 429

WebLOAD Internet Protocols Reference

DeleteAttachment()
Syntax Del et eAtt achnment (stri ng)
Parameters
string The ID of the attachment you are deleting.

Return Value

Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the article.
Disconnect()

Syntax Di sconnect ()

Parameters None

Return Value

Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the NNTP host.
GetArticle()

Syntax Get Articl e(messageNumnber)

Parameters

nmessage The number of the message that you want to retrieve.

Nunber

Return Value

Null if successful. The article is stored in the document property. An exception
if unsuccessful.

Comments Gets the headers and body of the article specified in the messageNumber
parameter for the group specified in the Group property. If the Outfile
property is specified, the returned article is stored in the output file as well as in
the document property.

GetArticleCount()
Syntax Get Articl eCount ()
Parameters None

Return Value

Comments

An integer count of the number of articles in the group if successful, an
exception if unsuccessful.

Returns the number of articles in the group specified by the Group property.

430

RadView Software

WINNTP Object

GetStatusLine()
Syntax Get St at usLi ne()
Parameters None

Return Value

A string containing the latest response string if successful, an exception if
unsuccessful.

Return Value

Comments Returns the latest response string from the host.
GroupOverview()
Syntax G oupOvervi ew([range])
Parameters
[range] The range for articles you want to view. The format for range is first-last,

nn

where first is "" (an empty string) or positive number, and last is
number, or the token end.

, a positive

An array of objects if successful. Each object contains one article, and the
properties articleDate, articlelines, articleNumber, from,
messagelD, otherHeaders, references, and subject. The method
returns an exception if unsuccessful.

Comments Returns an overview for the articles in range for the group specified in the
Group property.
ListGroups()
Syntax Li st Groups([startDate])
Parameters

[start Date]

Return Value

Comments

The earliest creation date to search. Groups created before this date are not
listed. If you do not specify a start date, all groups are listed.

The format for startDate is YYMMDD HHMMSS.

An array of objects if successful. Each object contains the following properties,
Canpost, lastArticle, firstArticle, and group. The method
returns an exception if unsuccessful.

Lists the newsgroups available on the host.

WebLOAD JavaScript Reference Manual 431

WebLOAD Internet Protocols Reference

PostArticle()
Syntax Post Articl e()
Parameters None

Return Value

Null if successful. The article is stored in the document property. An exception
if unsuccessful

Comments Posts the article to the host, attaching files using MIME as necessary. The article
is constructed using the following properties and methods:
Header Properties
° From
. Subject
o Organization
e To
° ReplyTo
e References
e MaxHeadersLength
Body Properties/Methods
e ArticleText()
e AddAttachment()
e DeleteAttachment()

SendCommand()

Syntax SendCommand(stri ng)

Parameters

string The string you are sending to the host.

Return Value

Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is useful for
interacting directly with the host using non-standard or unsupported extensions.
WLNntp()
Syntax new W.Nnt p()
Parameters None
Return Value A new WINNTP object.

Comments

Example

Creates a new WINNTP object, used to interact with the server.

my NewNnt pObj ect = new W.Nnt p()

432

RadView Software

WINNTP Object

NNTP Sample Code

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlNntp.js",WLExecuteScript)

//Body Of Agenda

InfoMessage ("Speed: "+wlGlobals.ConnectionSpeed)
nntp=new WLNntp ()

wlGlobals.Debug=1;

InfoMessage ("before login™)
nntp.UserName="UserID"
nntp.PassWord="TopSecret"

nntp.Connect ("hostname")

//Test ListGoups

/*v = nntp.ListGroups();
InfoMessage (v.length);

for (var 1 = 0; 1 < v.length; i++)

{

InfoMessage ("canPost = "+v[i].canPost);
InfoMessage ("first article = "+v[i].firstArticle);
InfoMessage ("group = "+v[i].group);
InfoMessage ("last article = "+v[i].lastArticle);
}
*/
[/===

//Test GroupOverview
/*nntp.Group="alt.groupname";

v = nntp.GroupOverview () ;
InfoMessage (v.length);

for (var 1 = 0; 1 < v.length; i++)

{

InfoMessage ("article date = "+v[i].articleDate);
InfoMessage ("article lines = "+v[i].articlelines);
InfoMessage ("article number = "+v[i].articleNumber) ;
InfoMessage ("article size = "+v[i].articleSize);
InfoMessage ("from = "+v[i].from);
InfoMessage ("messageld = "+v[i] .messageld);
InfoMessage ("other headers = "+v[i].otherHeaders);
InfoMessage ("references = "+v[i].references);
InfoMessage ("subject = "+v[i].subject);

}

*/

/[===============

WebLOAD JavaScript Reference Manual 433

WebLOAD Internet Protocols Reference

//Test GetArticleCount
//nntp.Group="alt.groupname";
//InfoMessage (nntp.GetArticleCount ()) ;
nntp.Group="alt.groupname";
InfoMessage (nntp.GetArticleCount());

//

//Test GetArticle
/*nntp.Group="alt.groupname";
nntp.Outfile="c:\\temp\\article.txt";
nntp.GetArticle (1) ;

InfoMessage (nntp.document) ;

*/
//

//Test post article

nntp.From="poster name";

nntp.Subject="nntp test posting";
nntp.Organization="0OrgName";

nntp.To="control.cancel, alt.groupname";
nntp.ReplyTo="poster@organization.org";
nntp.References="<referencelD@server.organization.org>";
nntp.MaxHeadersLength=100;

nntp.ArticleText="hello world";

//1idl = nntp.AddAttachment
// ("c:\\temp\\filel.txt", "file", WLNntp.ENC 7BIT);
//1d2 = nntp.AddAttachment
// ("c:\\temp\\file2.txt", "file", WLNntp.ENC 7BIT);
//1d5 = nntp.AddAttachment
// ("c:\\downloded.gif", "file", WLNntp.ENC BASEG64);
//1d3 = nntp.AddAttachment
// ("c:\\temp\\file3.txt", "file", WLNntp.ENC 7BIT);
//1id4 = nntp.AddAttachment
// ("c:\\temp\\filed.txt", "file", WLNntp.ENC 7BIT);

//nntp.DeleteAttachment (id3) ;
//nntp.DeleteAttachment (idl) ;
//nntp.DeleteAttachment (id4) ;

try //catch to handle exceptions

{
nntp.PostArticle();

}

catch (e)

{

InfoMessage ("Error" + e)

}
//

434

RadView Software

WINNTP Object

//InfoMessage (nntp.GetStatusLine()) ;
nntp.Disconnect ()

delete nntp

InfoMessage ("done")

WebLOAD JavaScript Reference Manual 435

WebLOAD Internet Protocols Reference

wlIPOP Object

The w1POP object provides support for POP3 (Post Office Protocol) load and functional
testing within WebLOAD. Support for standard POP operation is included. POP over secure
connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method;
otherwise an exception is thrown.

To access the w1 POP object, you must include the wlPop.js filein your InitAgenda ()
function.

wlIPOP Properties

AutoDelete

The AutoDelete property lets you specify whether or not to automatically delete an email
once it has been read. You use this property to save or remove messages from your host. For
example:

pop.AutoDelete = status

document

The document property is an object with four properties:

4 Headers - A string containing the header of the message

4 MessageText - A string containing the text of the message
4 Size - Aninteger describing the size of the message in bytes
¢

Attachments - An array of objects, with each attachment existing as an object with the
following properties:

e contentencoding - The encoding of the attachment
e contenttype - The content type of the attachment

e filename - The file name of the attachment

e messagetext - The text of the attachment

e partname - The part name of the message

436

RadView Software

wlPOP Object

e size - The size of the attachment in bytes
For example:

var recentdocument = pop.document

var messageheaders = recentdocument.MessageHeaders
var messagetext = recentdocument.MessageText

var messagesize = recentdocument.MessageSize

var messageattachments = recentdocument.attachments

HeadersJ]

The Headers property is an array of objects containing header information from the host.
Each object contains a key and an array of headers. For example:

var headersvalue = pop.Headers[0]
var headerskey=headersvalue.key
var headerstringvalues=headersvalue.values[0]

MaxLines

Outfile

The MaxLines property lets you specify the maximum number of lines per email to retrieve
from a POP host. You use this property to specify the number of lines to retrieve from each
email. For example:

pop.Maxlines = numberoflines

The Out £1ile property lets you specify the name of an output file. You use this property to
save a file or message locally on your computer. When you write to the Outfile, you
overwrite the existing content. To avoid overwriting the existing content, you must specify a
new Outfile each time you write. For example:

pop.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You use this
property to log onto a restricted POP host. WebLOAD automatically sends the password to the
POP host when a wIPOP object connects to an POP host. For example:

pop.PassWord = password

Caution: The password appears in plain text in the Agenda. The password is visible to
any user who has access to the Agenda

WebLOAD JavaScript Reference Manual 437

WebLOAD Internet Protocols Reference

Size

The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption For
example:

var filesize = pop.Size

UserName

The UserName property lets you specify a User ID when logging on to a host. You use this
property to log onto a restricted POP host. WebLOAD automatically sends the user name to the
POP host when a wIPOP object connects to an POP host. For example:

pop.UserName = username

wlSource

The wlSource property contains the encoded multipart source of the message. This is the
format in which the message is stored in the Outfile property. For example:

var messagesource = pop.wlSource

wilPOP Methods

Connect()

Syntax Connect (host, [port])

Parameters

host The host to which you are connecting. You may describe the host using its DNS
number, or by giving its name.

[port] The port to which you are connecting. If you do not specify a port, the default
POP port is used.

Return Value An exception if unsuccessful. On success the return value is undefined.

Comments Starts a POP session with the host. When you connect, you are connecting to a

specific mailbox within the host, as specified by your UserID.

438

RadView Software

wlPOP Object

Delete()
Syntax Del et e([Messagel D])
Parameters
messagel D The identifier of the message you want to delete. If you do not specify a
message 1D, the current message is deleted.
Return Value Null if successful, an exception if unsuccessful.
Comments Deletes the message with the corresponding ID. If no ID is specified, then the
current message is deleted.
Disconnect()
Syntax Di sconnect ()
Parameters None

Return Value

Comments

Null if successful, an exception if unsuccessful.

Terminates a connection to the POP server.

GetCurrentMessagelD()

Syntax
Parameters

Return Value

Get Current Messagel D()

None

The ID of the current message if successful, an exception if unsuccessful.

Comments Returns the ID of the current message.
GetMailboxSize()

Syntax Get Mai | boxSi ze()

Parameters None

Return Value

Comments

A string describing the size of the mailbox in bytes if successful.

Returns the total size of the mailbox in bytes.

WebLOAD JavaScript Reference Manual

439

WebLOAD Internet Protocols Reference

GetMessageCount()
Syntax Get MessageCount ()
Parameters None

Return Value

A string containing the number of messages on the host if successful.

Comments Returns the number of messages waiting on the host.
GetStatusLine()

Syntax Get St at usLi ne()

Parameters None

Return Value

A string containing the latest response string if successful, an exception if
unsuccessful.

Comments Returns the latest response string from the host.
Reset()

Syntax Reset ()

Parameters None

Return Value

Null if successful, an exception if unsuccessful.

Comments Undoes all actions, including deletions, returning the host to its state at the start
of the session. If this call is not made, disconnecting from the POP host applies
all actions.

Retrieve()

Syntax Retrieve([Messagel D])

Parameters

Messagel D The identifier of the message you want to retrieve. If you do not specify a

Return Value

Comments

message 1D, the next message is returned.

Returns the message and populates the document property

Returns the message with the corresponding ID. If no ID is specified, then the
next message is returned

440

RadView Software

wlPOP Object

SendCommand()

Syntax SendCommand(stri ng)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is useful for

interacting directly with the host using non-standard or unsupported extensions.

WLPop()

Syntax new W.Pop()

Parameters None

Return Value A new wIPOP object.

Comments Creates a new wIPOP object, used to interact with the server.

Example var myNewPopObj ect = new W.Pop();

POP Sample Code

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlPop.js",WLExecuteScript)

}
/*function InitClient() {

</

/*function TerminateClient() {
delete pop;

}x/

/[======================

//Body Of Agenda.

//InfoMessage ("Speed: "+wlGlobals.ConnectionSpeed)
wlGlobals.Debug=1

var pop=new WLPop()

pop.UserName="UserID"

pop.PassWord="TopSecret"

pop.Connect ("00.0.0.00") ;

WebLOAD JavaScript Reference Manual 441

WebLOAD Internet Protocols Reference

//Test General Functions
/*count = pop.GetMessageCount () ;

InfoMessage ("number of messages= "+ count);
count = pop.GetMailboxSize ()

InfoMessage ("size= "+ count);

status = pop.GetStatusLine () ;

InfoMessage ("status= "+ status);

pop.SendCommand ("hello") ;

status = pop.GetStatusLine();
InfoMessage ("status= "+ status);
*/
//

//Test Delete And Reset

//two tests:

//1. if run as is, # of msgs should remain the same

//2. 1f run with pop.Reset commented out, # of msgs should be smaller
InfoMessage ("number of messages= "+ pop.GetMessageCount()):;
//InfoMessage (pop.GetCurrentMessagelD) ;

//pop.MaxLines=0;

pop.Delete(15);

InfoMessage ("number of messages= "+ pop.GetMessageCount()):;
//InfoMessage (pop.GetCurrentMessagelD) ;

//pop.Reset () ;

pop.Disconnect () ;

pop.Connect ("00.0.0.00")

InfoMessage (pop.GetStatusLine()) ;

//InfoMessage (pop.GetCurrentMessagelD) ;

InfoMessage ("number of messages= "+ pop.GetMessageCount());

//

//Test Retrieve
//InfoMessage ("number of messages= "+ pop.GetMessageCount());
//InfoMessage (pop.GetCurrentMessagelD) ;
//pop.AutoDelete=true
/*pop.Outfile="*_xyz";
//pop.MaxLines=0;
var count = pop.GetMessageCount () ;
InfoMessage (count) ;
for(var w = 1; w <= count; w++)
{
pop.Retrieve (w) ;
InfoMessage (pop.document.headers) ;
InfoMessage (pop.document .messageText) ;
InfoMessage (pop.document.size) ;
InfoMessage (pop.document.attachments.length) ;
for (var j = 0; j < pop.document.attachments.length; j++)
{
InfoMessage
(pop.document.attachments[j].contentEncoding) ;
InfoMessage (pop.document.attachments[j].contentType) ;

442 RadView Software

wlPOP Object

InfoMessage (pop.document.attachments[j].filename) ;
InfoMessage (pop.document.attachments|[]] .messageText) ;
InfoMessage (pop.document.attachments|[j] .partName) ;
InfoMessage (pop.document.attachments([j].size);

}

InfoMessage ("Headers:") ;

for (var 1 = 0; 1 < pop.Headers.length; i++)
{
for (var j = 0; j < pop.Headers[i].values.length; j++)
{
InfoMessage (pop.Headers[i] .key + " = " +
pop.Headers[i] .values[]]);
}
}
InfoMessage ("body"+pop.wlSource) ;
}x/
catch (e)
{
InfoMessage ("Error" + e)

}

pop.Disconnect () ;

WebLOAD JavaScript Reference Manual 443

WebLOAD Internet Protocols Reference

wISMTP Object

The w1SMTP object provides support for SMTP (Mail Transfer Protocol) load and functional
testing within WebLOAD. Support for standard SMTP operation is included. SMTP over
secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method;
otherwise an exception should be thrown.

To access the w1 SMTP object, you must include the wlSmtp. js file in your
InitAgenda () function.

wISMTP Properties

Attachments

The Attachments property lets you specify an attachment to an email message. The
filename parameter is the name of the local file or datastream that you want to attach to the
email message. For example:

smtp.Attachments = filename

AttachmentsEncoding

The AttachmentsEncoding property lets you specify the type of encoding you are
applying to an email attachment. This property must be specified for each attachment. Valid
values are:

TBit

4 Quoted

4 Base64

4 38Bit
8BitBinary

You may also specify the encoding using the following constants:

¢ WLSmtp.ENC_7BIT - 7bit encoding

¢ WLSmtp.ENC_ QUOTED - Quoted Printable encoding

444

RadView Software

wISMTP Object

4 WLSmtp.ENC BASEG64 - Base64 encoding

4 WLSmtp.ENC_8BIT - 8Bit encoding

4 WLSmtp.ENC 8BITBINARY - Binary encoding
For example:

smtp.AttachmentsEncoding = encodingtype

AttachmentsTypes

The AttachmentsTypes property lets you specify the type of attachment you are including
in an email message. This property must be specified for each attachment. Valid values are:

4 True - specifies a type of file
4 False - specifies a type of data
For example:

smtp.AttachmentsTypes = typeofattachment

Bcc

The Bcc property lets you specify the email addresses of additional recipients to be blind
copied in an email. You may specify multiple addresses in a semicolon-separated list. You must
specify this property with every email. Addresses may be specified in the format of
"Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For example:

smtp.Bcc = blindcopyaddresses

Cc

The Cc property lets you specify the email addresses of additional recipients to be copied in an
email. You may specify multiple addresses in a semicolon-separated list. You must specify this
property with every email. Addresses may be specified in the format of
"Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For example:

smtp.Cc = copyaddress; copyaddress

From

The From property lets you describe the Reply To in plain language. You may use this
property to identify your Reply To email address in a plain language format. For example:

smtp.From = replyname

WebLOAD JavaScript Reference Manual 445

WebLOAD Internet Protocols Reference

Message

The Message property lets you specify the text appearing in the body of your email. You use
this property to write the text of the email message itself.

ReplyTo

The ReplyTo property lets you specify the return address of your email. You may specify
multiple addresses in a semicolon-separated list. Addresses may be specified in the format of
"Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For example:

smtp.ReplyTo = replyaddress

Size

The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:

var filesize = smtp.Size

Subject

The Subject property lets you specify the text appearing the subject field of your email. You
use this property to provide a brief description of the contents of your email. For example:

smtp.Subject = subjectheader

To

The To property lets you specify a recipient's email address. You may specify multiple
addresses in a semicolon-separated list. You must specify this property with every email.
Addresses may be specified in the format of "Me@MyCompany . com" or as "My Name
<Me@MyCompany .com>". For example:

smtp.To = recipientaddress; recipientaddress

Type

The Type property lets you specify the type of server with which you are working. The default
value for this property is SMTP. Valid values are:

¢ SMTP - a standard STMP server

446 RadView Software

wISMTP Object

¢ ESMTP - an extended SMTP server
For example:

smtp.Type = servertype

wiSMTP Methods

AddAttachment()

Syntax AddAt t achment (string, type, [encoding])

Parameters

String The string you are sending to the host. If you are sending a file, the string is the
location and name of the file. If you are sending a data attachment, the string is
the data to be attached.

Type The type of attachment you are sending. The default value is File. Valid values
are:
e File
e Data

encodi ng The type of encoding to apply to the file. The default value is 7Bit. Valid values
are:
e 7Bit
e Quoted
e Base64
e 8Bit
e 8BitBinary

Return Value Returns an integer value Attachment ID if successful, an exception if
unsuccessful.

Comments Adds an attachment to the email message.

Connect()

Syntax Connect (host, [port])

Parameters

host The host to which you are connecting. You may express the host using either the

DNS number or the full name of the host.

WebLOAD JavaScript Reference Manual 447

80UBI8Jay S|000104d

Jsulsiu] avo199M

WebLOAD Internet Protocols Reference

port

Return Value

The port to which you are connecting. If you do not specify a port, the default

SMTP port is used.

Null if successful, an exception if unsuccessful.

Comments Starts an SMTP session with the host.
DeleteAttachment()

Syntax Del et eAtt achment (| D)

Parameters

ID The ID of the attachment you are deleting.

Return Value

Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the email message.
Disconnect()

Syntax Di sconnect ()

Parameters None

Return Value

Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the SMTP host.
Send()

Syntax Send()

Parameters None

Return Value Null if successful, an exception if unsuccessful.

Comments Sends mail to recipients, attaching files using MIME as necessary. After sending

the attachments, data is deleted.

SendCommand()

Syntax SendComuand(stri ng)

Parameters

string The string you are sending to the host.

Return Value

Null if successful, an exception if unsuccessful.

448

RadView Software

wISMTP Object

Comments Sends a string to the host without modification. This method is useful for
interacting directly with the host using non-standard or unsupported extensions.

Verify()
Syntax Verify()
Parameters None
Return Value Returns a 1 if the address is valid, a 0 if the address is invalid. If the method is
unable to verify the address due to authentication or other reasons, it returns an
exception.
Comments Checks that the address in the To property is valid. To use this method, include
only one address in the To property.
WLSmtp()
Syntax new W.Snt p()
Parameters None
Return Value A new wWISMTP object.
Comments Creates a new wISMTP object, used to interact with the server.
Example function InitClient()

{
my NewSnt pObj ect = new WLSnt p()

SMTP Sample Code

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlSmtp.js",WLExecuteScript)
// include the file that enables SMTP
}

function InitClient () ({
Smtp=new WLSmtp () // create the new SMTP object
Smtp.Connect ("HostName") ; // connect to the server

}

function TerminateClient() {
Smtp.Disconnect () ; // logout from the server
delete Smtp // delete the SMTP object

WebLOAD JavaScript Reference Manual 449

WebLOAD Internet Protocols Reference

// Body Of Agenda

//Test Send Attachments
Smtp.To=" \"Recipient Name\" <Recipient@recipient.com>";
Smtp.From= "Sender@sender.com";
Smtp.Cc="Copyl@copy.here.org, Copy2@copy.there.org";
// multiple CC’s

Smtp.ReplyTo="Sender@sender.com";

// optional different reply to address
Smtp.Subject="Message Subject "; // Text string
Smtp.Message="Greetings from the wlSMTP class"; // Message text

// Add attachments from local file using different
// encoding techniques
// TBIT are text files, the BASE64 is for a binary file
// (in this case an image)
idl = Smtp.AddAttachment
("c:\\filel.txt","file",WLSmtp.ENC 7BIT);
id2 = Smtp.AddAttachment
("c:\\file2.txt","file",WLSmtp.ENC 7BIT) ;
id3 = Smtp.AddAttachment
("c:\\file3.txt","file",WLSmtp.ENC 7BIT);
Smtp.AddAttachment
("c:\\filed.txt","file",WLSmtp.ENC 7BIT) ;
id5 = Smtp.AddAttachment
("c:\\downloded.gif","file",WLSmtp.ENC BASE64) ;

id4

// You may delete attachments prior to sending the mail message
Smtp.DeleteAttachment (1d3) ;
Smtp.DeleteAttachment (idl) ;
Smtp.DeleteAttachment (1id4) ;
Smtp.Send() ; // and send it!

InfoMessage (Smtp.GetStatusLine ()) ;
// print out the last response from the server

ch (e)

InfoMessage ("Error" + e)

}

//
InfoMessage ("done") // End of SMTP sample script

450 RadView Software

Adina Sherer
Missing try caused error here, but I do not know where to add try statement. Some of the other examples also have no try statement. All should be checked.

wiTCP Object

wITCP Object

The w1TCP object provides support for TCP (Transfer Control Protocol) load and functional
testing within WebLOAD. Support for standard TCP operation is included. TCP over secure
connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method;
otherwise an exception is thrown.

To access the w1 TCP object, you must include the wlTcp. js file in your InitAgenda ()
function.

wITCP Properties

document

The document property contains all responses from the host since the last time the Send ()
method was used. Each time a message is returned, it is concatenated to the document object.
The document may be cleared manually using the Erase () method. For example:

var recentdocument = tcp.document

InBufferSize

The InBufferSize property specifies the size, in bytes, of the incoming data buffer. To
remove this setting, either delete the property, or set it to a negative value. For example:

tcp.InBufferSize = maximuminsize

LocalPort

The LocalPort property specifies the TCP port to which you are connecting. If you do not
specify the LocalPort property, you connect to a randomly selected port. For example:

tcp.LocalPort = portnumber

WebLOAD JavaScript Reference Manual 451

WebLOAD Internet Protocols Reference

NextPrompt

The NextPrompt property specifies the text for the Agenda to look for in the next prompt
from the host. A Receive () call is viewed as successful if the prompt contains the text string
specified by the NextPrompt variable. To specify a prompt with no message, specify a
NextPrompt with an empty value, or delete the Next Prompt property. Once this property
is specified, it limits all subsequent instances of the Receive () method. Either delete the
property or set it to zero to remove the limitation. For example:

tcp.NextPrompt = promptmessage

NextSize

The NextSize property specifies the size, in bytes, of the expected data. If you specify a
NextSize of 100 bytes, for example, the Receive () method returns to the Agenda when
the document object contains 100 bytes of data. Once this property is specified, it limits all
subsequent instances of the Receive () method. Either delete the property or set it to zero to
remove the limitation. For example:

tcp.NextSize = expectedsize

OutBufferSize

The OutBuf ferSize property specifies the size, in bytes, of the outgoing data buffer. To
remove this setting, either delete the property, or set it to a negative value. For example:

tcp.OutBufferSize = maximumoutsize

Ouftfile

The Out £1ile property lets you specify the name of an output file. You use this property to
save the responses from the host locally on your computer. You must specify the output file
before calling the Receive () method to save the responses to that file.

You write to the output file each time you use the Receive () method. If you call the
Receive () method more than once, you must specify a different output file each time, or
you overwrite the previous output file. For example:

tcp.Outfile = filename

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped responding.
You use this property to determine the state of the host. Possible values are:

452 RadView Software

wiTCP Object

4 Prompt was found - The host returned the prompt specified in the Next Prompt property.
4 Timeout - The last command exceeded the time limit specified by the Timeout property.

4 Byte length reached - The host received the amount of data specified in the NextSize
property.

InfoMessage (TCP.ReceiveMessageText) ;

Size
The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:
var filesize = tcp.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before the
Agenda breaks its connection with the host. If you do not specify the timeout property, the
Agenda may freeze if the host does not respond as you expect it to. To set an unlimited timeout,
specify a value of zero, or a negative value. For example:

tcp.Timeout = timedelay

Note: It is recommended that you include a Timeout property in all Agendas that use the
w1TCP object. If you do not, and the Agenda fails to return a prompt, your session may
freeze.

wITCP Methods

Connect()

Syntax Connect (host, [port])

Parameters

host The host to which you are connecting. You may express the host using either the
DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a port, the default
TCP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a TCP session with the host.

WebLOAD JavaScript Reference Manual 453

WebLOAD Internet Protocols Reference

Disconnect()
Syntax Di sconnect ()
Parameters None

Return Value

Null if successful, an exception if unsuccessful.

Terminates a connection to the TCP host.

Comments
Erase()
Syntax Erase()
Parameters None
Return Value Null if successful, an exception if unsuccessful.
Comments Clears the contents of the document object.
Receive()
Syntax Recei ve()
Parameters None
Return Value Null if successful, an exception if unsuccessful.
Comments Returns all responses from the host since the last time the Send () method was
used. A Receive () method returns to the Agenda when the Next Prompt,
NextSize, or Timeout properties are met. If more than one of these
properties is specified, the method returns to the Agenda when the first one is
met. Subsequent uses of Receive () find the next instance of the limiting
property, returning additional information from the buffer. The content returned
depends upon which of the three limiting properties triggered the return.
Send()
Syntax Send(dat a_t o_send)
Parameters
data to The data that you want to send to the host.
send

Return Value

Comments

A string containing the response from the host if successful, an exception if
unsuccessful.

Sends data to the host via TCP and clears the document object.

454

RadView Software

wiTCP Object

WLTcp()
Syntax new W.Tcp()
Parameters None
Return Value A new wWITCP object.
Comments Creates a new WITCP object, used to interact with the server.
Example function InitClient() {

myNewTcpObj ect = new W.Tcp();

WebLOAD JavaScript Reference Manual 455

WebLOAD Internet Protocols Reference

TCP Sample Code

// Agenda Initialization
function InitAgenda() {

IncludeFile ("wlTcp.]js",WLExecuteScript)
}

function InitClient() {
tcp=new WLTcp () ;
}

function TerminateClient ()
{

delete tcp;
}
//

//Body Of Agenda.
InfoMessage ("Speed: "+wlGlobals.ConnectionSpeed)
wlGlobals.Debug=1;

tcp.Outfile = "c:\\tcp.txt";
tcp.Timeout = 2000;
tcp.NextPrompt = "\r\n\r\n";
//tcp.NextSize=1900;

//

try

{
tcp.Connect ("www.sitename.com", 80);
tcp.Send ("GET /products/index.htm HTTP/1.0\r\n\r\n");
//Sleep (3000);
tcp.Receive () ;
InfoMessage (tcp.document) ;
InfoMessage (tcp.ReceiveMessageText) ;
tcp.NextSize=10091;
tcp.NextPrompt="";
tcp.Erase() ;
tcp.Receive () ;
InfoMessage (tcp.document) ;
InfoMessage (tcp.ReceiveMessageText) ;

}

catch (e)
{

InfoMessage (e) ;
}
//

InfoMessage ("done") ;

456

RadView Software

wiTelnet Object

wliTelnet Object

The wlTelnet object provides support for Telnet load and functional testing within
WebLOAD. Support for standard Telnet operation is included. Telnet over secure connections
(SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the underlying code
attempts to login. Logging in requires you to call the appropriate Connect () method
otherwise an exception is thrown.

To access the wlTelnet object, you must include the wlTelnet . js file in your
InitAgenda () function.

wliTelnet Properties

document

The document property contains all responses from the host since the last time the Send ()
method was used. Each time a message is returned, it is concatenated to the document object.
The document may be cleared manually using the Erase () method. For example:

var recentdocument = telnet.document

NextPrompt

Outfile

The Next Prompt property specifies the text for the Agenda to look for in the next prompt
from the host. A Receive () callis viewed as successful if the prompt contains the text
string specified by the Next Prompt variable. To specify a prompt with no message, specify a
NextPrompt with an empty value, or delete the Next Prompt property. Once this property
is specified, it limits all subsequent instances of the Receive () method. Either delete the
property or set it to zero to remove the limitation. For example:

telnet.NextPrompt = promptmessage

The Out file property lets you specify the name of an output file. You use this property to
save the responses from the host locally on your computer. You must specify the output file
before calling the Receive () method to save the responses to that file.

WebLOAD JavaScript Reference Manual 457

WebLOAD Internet Protocols Reference

You write to the output file each time you use the Receive () method. If you call the
Receive () method more than once, you must specify a different output file each time, or
you overwrite the previous output file. For example:

telnet.Outfile = filename

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped responding.
You use this property to determine the state of the host. Possible values are:

4 Prompt was found - The host returned the prompt specified in the Next Prompt property.
4 Timeout - The last command exceeded the time limit specified by the Timeout property.

4 Byte length reached - The host received the amount of data specified in the NextSize
property.

For example:

InfoMessage (Telnet.ReceiveMessageText) ;

Size
The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:
var filesize = telnet.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before the
Agenda breaks its connection with the host. If you do not specify the timeout property, the
Agenda may freeze if the host does not respond as you expect it to. To set an unlimited timeout,
specify a value of zero, or a negative value. For example:

telnet.Timeout = timedelay

Note: It is recommended that you include a Timeout property in all Agendas that use the
wlTelnet object. If you do not, and the Agenda fails to return a prompt, your session
may freeze.

458 RadView Software

wliTelnet Methods

wiTelnet Object

Connect()
Syntax Connect (host, [port])
Parameters
host The host to which you are connecting. You may express the host using either the
DNS number or the full name of the host.
port The port to which you are connecting. If you do not specify a port, the default

Return Value

Telnet port is used.

Null if successful, an exception if unsuccessful.

Comments Starts a Telnet session with the host.
Disconnect()

Syntax Di sconnect ()

Parameters None

Return Value

Null if successful, an exception if unsuccessful

Terminates a connection to the Telnet host.

Comments
Erase()

Syntax Erase()

Parameters None

Return Value Null if successful, an exception if unsuccessful

Comments Clears the contents of the document object.
Receive()

Syntax Recei ve()

Parameters None

Return Value

Null if successful, an exception if unsuccessful.

WebLOAD JavaScript Reference Manual 459

WebLOAD Internet Protocols Reference

Comments Returns all responses from the host since the last time the Send () method was
used. A Receive () method returns to the Agenda when the NextPrompt,
NextSize, or Timeout properties are met. If more than one of these
properties is specified, the method returns to the Agenda when the first one is
met. Subsequent uses of Receive () find the next instance of the limiting
property, returning additional information from the buffer. The content returned
depends upon which of the three limiting properties triggered the return.
Send()
Syntax Send(dat a_t o_send)
Parameters
data to The data that you want to send to the host.
send
Return Value A string containing the response from the host if successful, an exception if
unsuccessful.
Comments Sends data to the host via Telnet and clears the document object.
WLTelnet()
Syntax new W.Tel net ()
Parameters None

Return Value
Comments

Example

A new wliTelnet object.

Creates a new wlTelnet object, used to interact with the server.

function InitClient() {
myNewTel net Obj ect = new WLTel net ()

Telnet Sample Code

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlTelnet.js",WLExecuteScript)

}

// include the file that enables Telnet

function InitClient() {

Telnet=new WLTelnet ()

}

function TerminateClient()

{

460

RadView Software

// create a new telnet object

wiTelnet Object

delete Telnet // delete the object we were using

// Body Of Agenda

// Set timeout and prompt

// IMPORTANT: Set a timeout when setting a prompt. Otherwise,
// If the prompt is unexpected or incorrect the Agenda will
// freeze while waiting for a prompt that will never arrive

Telnet.Timeout=1000; // one second
Telnet.NextPrompt="User name: "; // text to look for
Telnet.Connect ("000.0.0.0"); // connect
Telnet.Receive () ; // wait for data from the remote host
Telnet.Send ("myname") ; // send login name
InfoMessage (Telnet.document) ; // write out the data received

InfoMessage (Telnet.ReceiveMessageText) ;
// write out why the call returned
Telnet.NextPrompt="Password: "; // next prompt to look for
Telnet.Receive () ; // wait for data
Telnet.Outfile="c:\\filename.txt";
// save this next response to file as well

InfoMessage (Telnet.document) ; // what did we get?

InfoMessage (Telnet.ReceiveMessageText) ;
// write out why the call returned

Telnet.Send ("mypassword") ; // send password
Telnet.NextPrompt=">"; // new prompt to wait for
Telnet.Receive () ; // wait for a response
Telnet.Send ("command") ; // send command text to the host
Telnet.Receive () ; // wait for a response
InfoMessage (Telnet.document) ; // what did we get?

InfoMessage (Telnet.ReceiveMessageText) ;
// write out why the call returned
Telnet.Disconnect () ; // finally disconnect

//This is another way to work with telnet. When no prompt

//is set the timeout is ignored. Instead the agenda writer
//must manually keep receiving the data by calling the receive
//command. Receive () returns the response as well as assigning
//the value to the this.document property. It is up to the user
//to perform a delay before he/she receives the data.

Telnet.Connect ("000.0.0.0"); // log in to a remote host

// In this case we receive three times.

// In your script you may keep calling Receive () until the

// telnet object’s document property contains the data you are
// looking for, or until you decide to do something else

WebLOAD JavaScript Reference Manual 461

WebLOAD Internet Protocols Reference

Telnet.Receive () ; // fetch the data
Telnet.Receive () ; // Wait for more
Telnet.Receive () ; // Wait for more
InfoMessage (Telnet.document); // Contains text from ALL receives
InfoMessage (Telnet.ReceiveMessageText); // reason calls returned
Telnet.Send ("Command") ; // clears the document object
Telnet.Receive () ; // fetch the data
Telnet.Receive(); // Wait for more
Telnet.Receive () ; // Wait for more

InfoMessage (Telnet.document) ;
InfoMessage (Telnet.ReceiveMessageText) ;

Telnet.Send ("command") ;

Telnet.Receive () ;

Telnet.Receive () ; // Wait for more
Telnet.Receive () ; // Wait for more
InfoMessage (Telnet.document) ;

InfoMessage (Telnet.ReceiveMessageText) ;

Telnet.Send ("dir") ;

Telnet.Receive();

Telnet.Receive () ; // Wait for more
Telnet.Receive () ; // Wait for more
InfoMessage (Telnet.document) ;

InfoMessage (Telnet.ReceiveMessageText) ;

catch (e)

{

InfoMessage ("Error" + e)

}

Telnet.Disconnect () ; // log out from the remote host
InfoMessage ("done") // End of telnet sample script

462

RadView Software

wlUDP Object

wlUDP Object

The w1UDP object provides support for UDP (User Datagram Protocol) load and functional
testing within WebLOAD. Support for standard UDP operation is included. UDP over secure
connections (SSL) is not currently supported.

To access the w1 UDP object, you must include the w1lUdp. js file in your InitAgenda ()
function.

wlUDP Properties

document

The document property is an array of objects sent in the current session, with each object
containing the following properties:

4 datagram - The datagram retrieved from the database
4 address - The address of the datagram
4 port - The port used to communicate with the database

The document property contains all responses from the host since the last time the Send ()
method was used. Each time a message is returned, it is concatenated to the document object.
The document may be cleared manually using the Erase () method. For example:

var recentdocument = udp.document

InBufferSize

The InBufferSize property specifies the size, in bytes, of the incoming data buffer. For
example:

udp.InBufferSize = maximuminsize

LocalHost

The LocalHost property lets you specify a local host for use in broadcasting via UDP. For
example:

udp.LocalHost = localhostname

WebLOAD JavaScript Reference Manual 463

WebLOAD Internet Protocols Reference

LocalPort

The LocalPort property specifies the UDP port to which you are connecting. If you do not
specify the LocalPort property, you connect to a randomly selected port. For example:

udp.LocalPort = portnumber

MaxDatagramsSize

The MaxDatagramSize property specifies the maximum size, in bytes, of datagrams that
you may send or receive via UDP. For example:

udp.MaxDatagramSize = maximumsize

NumOfResponses

The NumOfResponses property specifies the number of responses the testing machine waits
for before proceeding. You use this property to make sure that all of your hosts have responded.
To specify an unlimited number of responses, specify a NumOfResponses value of zero. For
example:

udp.NumOfResponses = numberofhosts

OutBufferSize

The OutBufferSize property specifies the size, in bytes, of the outgoing data buffer. For
example:

udp.OutBufferSize = maximumoutsize

Ouftfile

The Out £1ile property lets you specify the name of an output file. You use this property to
save the responses from the host locally on your computer. You must specify the output file
before calling the Receive () method to save the responses to that file.

You write to the output file each time you use the Receive () method. If you call the
Receive () method more than once, you must specify a different output file each time, or
you will overwrite the previous output file. For example:

udp.Outfile = filename

464 RadView Software

wlUDP Object

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped responding.
You use this property to determine the state of the host. Possible values are:

4 Prompt received - The host returned a prompt and is waiting for further instructions.
4 Timeout - The last command exceeded the limit specified by the Timeout property.

4 No prompt specified - The host is unable to return a prompt. Often, this means there is an
error in the Agenda.

For example:

InfoMessage (udp.ReceiveMessageText) ;

RequestedPackets

The RequestedPackets property specifies the number of packets the testing machine waits
for before proceeding. To specify an unlimited number of packets, specify a
RequestedPackets value of zero. For example:

udp.RequestedPackets = numberofpackets

Size
The Size property returns the byte length of data transferred to the host. You use this property
to compare starting and finishing sizes to verify that files have arrived without corruption. For
example:
var filesize = udp.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before the
Agenda breaks its connection with the host. If you do not specify the timeout property, the
Agenda may freeze if the host does not respond as you expect it to. For example:

udp.Timeout = timedelay

Note: It is recommended that you include a Timeout property in all Agendas that use the
wlUDP object. If you do not, and the Agenda fails to return a prompt, your session may
freeze.

WebLOAD JavaScript Reference Manual 465

WebLOAD Internet Protocols Reference

wlUDP Methods

Bind()

Syntax Bi nd()

Parameters None

Return Value Null if successful, an exception if unsuccessful.

Comments Creates a UDP port and sets the OutBufferSize, InBufferSize,
MaxDatagramSize, LocalHost, and LocalPort properties. The value of
these properties is fixed when the Bind () method is used. To change the value
of any of these properties, you must use the UnBind () method, change the
value of the property and using the Bind () method again.

Broadcast()

Syntax Br oadcast (port, data_to_send)

Parameters

Port The port to which you are connecting.

data_to_ The data that you want to send to the local net.

send

Return Value A string containing the response from the host if successful, an exception if
unsuccessful.

Comments Broadcasts data to the local net.

Erase()

Syntax Erase()

Parameters None

Return Value Null if successful, an exception if unsuccessful

Comments Clears the contents of the document property, setting it to an empty array.

Receive()
Syntax Recei ve()
Parameters None

466

RadView Software

Return Value

wlUDP Object

Null if successful, an exception if unsuccessful.

Comments

Example

Comments Returns all responses from the host since the last time the Send () method was
used. The Receive () method returns to the Agenda when the
RequestedPackets or Timeout property is met. Subsequent uses of
Receive () find the next instance of the limiting property, returning additional
information from the buffer.
Send()
Syntax Send(host, port, data_to_send)
Parameters
Host The host to which you are connecting. You may express the host using either the
DNS number or the full name of the host.
port The port to which you are connecting.
data_to_ The data that you want to send to the host.
send
Return Value A string containing the response from the host if successful, an exception if
unsuccessful.
Comments Sends data to the host via UDP.
UnBind()
Syntax UnBi nd()
Parameters None
Return Value Null if successful, an exception if unsuccessful.
Comments Closes a UDP socket. You must use this command to close an existing UDP
socket before you may use the Bind () again.
WLUdp()
Syntax new W Udp()
Parameters None
Return Value A new wlUDP object.

Creates a new wlUDP object, used to interact with the server.

function InitClient() {
my NewUDPObj ect = new W.Udp()

WebLOAD JavaScript Reference Manual 467

WebLOAD Internet Protocols Reference

UDP Sample Code

// Agenda Initialization
function InitAgenda() {
IncludeFile ("wlUdp.js",WLExecuteScript)
// enable the UDP objects
}

function InitClient() {
udp=new WLUdp () ; // create a new UDP object
}

function TerminateClient() {
delete udp // delete the UDP object

}
//

//Body Of Agenda.

//Test Send: set the buffer sizes appropriately for the data
try

{

udp.OutBufferSize=10;

udp.InBufferSize=12;

udp.MaxDatagramSize=10;

udp.Timeout=10000; // 10 second timeout
udp.NumOfResponses=1; // return after one remote machine responds
udp.Outfile="c:\\serialize.txt"; // file to save responses to
udp.Bind () ;

udp.Send ("00.0.0.00", 7, "good morning");

// send a datagram to one machine on port 7
udp.Receive () ; // wait for a response
InfoMessage (udp.ReceiveMessageText) ; // This is what happened

// show the properties of the response
// note that the udp.document object is an array

InfoMessage (udp.document [0] .datagram) ; // get the response
InfoMessage (udp.document [0] .address) ; // which machine responded?
InfoMessage (udp.document [0] .port) ; // the port
// now broadcast to seven machines

udp.NumOfResponses=7; // we expect seven machines to respond
udp.Outfile="c:\\serialize.txt"; // send the responses

udp.Broadcast (7, "good morning");

// send the message (again on port 7)
udp.Receive () ; // wait for the responses
InfoMessage (udp.ReceiveMessageText); // print the return reason

// For each host that responded there will be an entry
// in the array. This loop examines each one
for (var 1 = 0; 1 < udp.document.length; i++)

{

468

RadView Software

wlUDP Object

InfoMessage ("datagram= "+udp.document[i].datagram) ;

InfoMessage ("address= "+udp.document[i].address);
InfoMessage ("port= "+udp.document[i] .port);

}

}

catch (e)

{

InfoMessage ("Error" + e)

}

// =
InfoMessage ("done") // end of the UDP sample script

WebLOAD JavaScript Reference Manual 469

WebLOAD Internet Protocols Reference

470 RadView Software

HTTP Protocol Status Messages

This appendix documents the HTTP protocol status messages that you may see over the course
of a typical test session. The status-code definitions provided in this appendix include a list of
method(s) that the status code may follow and any meta information required in the response.
The material included here is part of the HTTP protocol standard provided by the IETF.

The HTTP protocol status messages fall into the following categories:

4 Informational (/XX)
Success (2XX)
Redirection (3XX)
Client Error (4XX)
Server Error (5XX)

* & & o

WebLOAD JavaScript Reference Manual 471

sabessay\ snjels

[090301d d11H

HTTP Protocol Status Messages

D.1

Informational 1XX

The /XX class of status code indicates a provisional response, consisting only of the Status-
Line and optional headers, and is terminated by an empty line. There are no required headers
for this class of status code. Since HTTP/1.0 did not define any /XX status codes, servers must
not send a /XX response to an HTTP/1.0 client except under experimental conditions.

A client must be prepared to accept one or more /XX status responses prior to a regular
response, even if the client does not expect a 100 (Continue) status message. Unexpected
1XX status responses may be ignored by a user agent.

Proxies must forward /XX responses, unless the connection between the proxy and its client has
been closed, or unless the proxy itself requested the generation of the /XX response. (For
example, if a proxy adds an "Expect: 100-continue" field when it forwards a request,
then it need not forward the corresponding 100 (Continue) response(s).)

Table D-1: Informational 7XX message set

Message Description
100 The client should continue with request. This interim response is used to
Conti nue inform the client that the initial part of the request has been received and

has not yet been rejected by the server. The client should continue by
sending the remainder of the request or, if the request has already been
completed, ignore this response. The server must send a final response
after the request has been completed.

101 The client has requested, via the Upgrade message header field, a
Swi t chi ng change in the application protocol being used on this connection. This
Protocol s S .
response indicates that the server understands and is willing to comply
with the client's request. The server will switch protocols to those
defined by the response's Upgrade header field immediately after the
empty line which terminates this 101 response.

The protocol should be switched only when it is advantageous to do so.
For example, switching to a newer version of HTTP is advantageous
over older versions, and switching to a real-time, synchronous protocol
might be advantageous when delivering resources that use such features.

472

RadView Software

D.2 Success 2XX

D.2 Success 2XX

The 2XX class of status code indicates that the client's request was successfully received,

understood, and accepted.

Table D-2: Successful 2XX message set

Message

Description

200
oK

The request has succeeded. The information returned with a 200
response is dependent on the method used in the request. For example:

= GET—an entity corresponding to the requested resource is sent in
the response

= HEAD—the entity-header fields corresponding to the requested
resource are sent in the response without any message-body

= POST—an entity describing or containing the result of the action

= TRACE—an entity containing the request message as received by
the end server

201
_Created

The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(s)
returned in the entity of the response, with the most specific URI for the
resource identified by the Location header field.

A 201 response should include an entity containing a list of resource
characteristics and location(s) from which the user or user agent can
choose the one most appropriate. The entity format is specified by the
media type identified in the Content-Type header field. The origin
server must create the resource before returning a 201 status code. If the
action cannot be carried out immediately, the server should respond with
202 (Accepted) response instead.

A 201 response may contain an ETag response header field indicating
the current value of the entity tag for the requested variant just created.

202
Accept ed

The request has been accepted for processing, but the processing has not
been completed. The request may or may not eventually be acted upon,
depending on whether or not it is authorized or disallowed when
processing actually takes place. There is no facility for re-sending a
status code from an asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose is to allow
a server to accept a request for some other process (perhaps a batch-
oriented process that is only run once per day) without requiring that the
user agent's connection to the server persist until the process is
completed. The entity returned with this response should include an
indication of the request's current status and either a pointer to a status
monitor or some estimate of when the user can expect the request to be
fulfilled.

WebLOAD JavaScript Reference Manual 473

sabessa)\ snelg

[090}0id d11H

HTTP Protocol Status Messages

Message

Description

203

Non- Aut horitative

I nformati on

The metainformation being returned in the entity-header is not the
definitive set that is usually obtained from the origin server. This
information has been gathered from a local or a third-party copy. The set
presented may be a subset or superset of the original version. For
example, including local annotation information about the resource
might result in a superset of the metainformation known by the origin
server. Use of this response code is not required and is only appropriate
when the response would otherwise be a generic (perhaps non-
informative) 200 (OK).

204

No Cont ent

The server has fulfilled the request, does not need to return an entity-
body, and might want to return updated metainformation. The response
may include new or updated metainformation in the form of entity-
headers, which if present should be associated with the requested
variant.

If the client is a user agent, it should not change its document view from
that which caused the request to be sent. This response is primarily
intended to allow input for actions to take place without causing a
change to the user agent's active document view, although any new or
updated metainformation should be applied to the document currently in
the user agent's active view.

The 204 response must not include a message-body, and thus is always
terminated by the first empty line after the header fields.

205

Reset Cont ent

The server has fulfilled the request and the user agent should reset the
document view which caused the request to be sent. This response is
primarily intended to allow input for actions to take place via user input,
followed by a clearing of the form in which the input is entered so that
the user can easily initiate another input action. The response must not
include an entity.

206
Parti al

Cont ent

The server has fulfilled the partial GET request for the resource. The
request must have included a Range header field indicating the desired
range. The request may have also included an I f-Range header field
to make the request conditional.

The response must include the following header fields:

= Either a Content-Range header field indicating the range
included with this response,
or
a multipart/byteranges Content-Type field including
Content-Range fields for each part.
Ifa Content-Length header field is present in the response, its
value must match the actual number of OCTETS transmitted in the
message-body.

. Date

= ETag and/or Content-Location, if the header would have
been sent in a 200 response to the same request

474

RadView Software

D.2 Success 2XX

Message

Description

= Expires, Cache-Control, and/or Vary, if the field-value
might differ from that sent in any previous response for the same
variant.

If the 206 response is the result of an I f-Range request that used a
strong cache validator, the response should not include other entity-
headers. If the response is the result of an I £-Range request that used a
weak validator, the response must not include other entity-headers; this
prevents inconsistencies between cached entity-bodies and updated
headers. Otherwise, the response must include all of the entity-headers
that would have been returned with a 200 (OK) response to the same
request.

A cache must not combine a 206 response with other previously cached
content if the ETag or Last-Modified headers do not match exactly.

A cache that does not support Range and Content-Range headers
must not cache 206 (Partial) responses.

WebLOAD JavaScript Reference Manual 475

sobessa|\ sniels

[090}0id d11H

HTTP Protocol Status Messages

D.3

Redirection 3XX

The 3XX class of status code indicates that further action needs to be taken by the user agent in
order to fulfill the request. The action required may be carried out by the user agent without
interaction with the user if and only if the method used in the second request is GET or HEAD.
A client should detect infinite redirection loops, since such loops generate network traffic for

each redirection.

Note: Previous versions of this specification recommended a maximum of five redirections.
Content developers should be aware that there might be clients that implement such a

fixed limitation.

Table D-3: Redirectional 3XX message set

Message

Description

300
Mul ti pl e Choi ces

The requested resource corresponds to any one of a set of
representations, each with its own specific location. Agent-driven
negotiation information is being provided so that the user (or user agent)
can select a preferred representation and redirect its request to that
location.

Unless it was a HEAD request, the response should include an entity
containing a list of resource characteristics and location(s) from which
the user or user agent can choose the one most appropriate. The entity
format is specified by the media type identified in the Content—
Type header field. Depending upon the format and the capabilities of
the user agent, the most appropriate choice may be selected
automatically. However, this specification does not define any standard
for such automatic selection.

If the server has a preferred choice of representation, it should include
the specific URI for that representation in the Location field. User
agents may use the Location field value for automatic redirection.
This response is cacheable unless otherwise indicated.

301
Moved Pernmanently

The requested resource has been assigned a new permanent URI and any
future references to this resource should use one of the returned URIs.
Clients with link editing capabilities ought to automatically re-link
references to the Request—-URT to one or more of the new references
returned by the server, where possible. This response is cacheable unless
otherwise indicated.

The new permanent URI should be identified by the Location field in
the response. Unless the request method was HEAD, the entity of the
response should contain a short hypertext note with a hyperlink to the
new URI(s).

If the 301 status code is received in response to a request other than
GET or HEAD, the user agent must not automatically redirect the request
unless it can be confirmed by the user, since this might change the

476

RadView Software

D.3 Redirection 3XX

Message

Description

conditions under which the request was issued.

Note: When automatically redirecting a POST request after
receiving a 301 status code, some existing HTTP/1.0 user
agents will erroneously change it into a GET request.

302
Found

The requested resource temporarily resides under a different URI. Since
the redirection might be altered on occasion, the client should continue
to use the Request-URI for future requests. This response is only
cacheable if indicated by a Cache-Control or Expires header
field.

The temporary URI should be identified by the Location field in the
response. Unless the request method was HEAD, the entity of the
response should contain a short hypertext note with a hyperlink to the
new URI(s).

If the 302 status code is received in response to a request other than
GET or HEAD, the user agent must not automatically redirect the request
unless it can be confirmed by the user, since this might change the
conditions under which the request was issued.

Note: RFC 1945 and RFC 2068 specify that the client is not
allowed to change the method on the redirected request.
However, most existing user agent implementations treat
302 as if it were a 303 response, performing a GET on the
Location field-value regardless of the original request
method. The status codes 303 and 307 have been added
for servers that wish to make unambiguously clear which
kind of reaction is expected of the client.

303
See Ot her

The response to the request can be found under a different URI and
should be retrieved using a GET method on that resource. This method
exists primarily to allow the output of a POST-activated script to redirect
the user agent to a selected resource. The new URI is not a substitute
reference for the originally requested resource. The 303 response must
not be cached, but the response to the second (redirected) request might
be cacheable.

The different URI should be identified by the Location field in the
response. Unless the request method was HEAD, the entity of the
response should contain a short hypertext note with a hyperlink to the
new URI(s).

Note: Many pre-HTTP/1.1 user agents do not understand the
303 status. When interoperability with such clients is a
concern, the 302 status code may be used instead, since
most user agents react to a 302 response as described here
for 303.

WebLOAD JavaScript Reference Manual 477

sabessa)\ snelg

[090}0id d11H

HTTP Protocol Status Messages

Message Description

304 o If the client has performed a conditional GET request and access is

Not Modified allowed, but the document has not been modified, the server should
respond with this status code. The 304 response must not contain a
message-body, and thus is always terminated by the first empty line after
the header fields.

The response must include the following header fields:
= Date, unless its omission is required.

= [faclockless origin server obeys these rules, and proxies and clients
add their own Date to any response received without one, (as
already specified by [RFC 2068]), caches will operate correctly.

= ETag and/or Content-Location, if the header would have
been sent in a 200 response to the same request.

= Expires,Cache-Control, and/or Vary, if the field-value
might differ from that sent in any previous response for the same
variant.

If the conditional GET used a strong cache validator, the response should
not include other entity-headers. If the conditional GET used a weak
validator, the response must not include other entity-headers. This
prevents inconsistencies between cached entity-bodies and updated
headers.

If a 304 response indicates an entity not currently cached, then the
cache must disregard the response and repeat the request without the
conditional.

If a cache uses a received 304 response to update a cache entry, the
cache must update the entry to reflect any new field values given in the

response.
305 The requested resource must be accessed through the proxy identified by
Use Proxy the Location field. The Location field gives the URI of the proxy.

The recipient is expected to repeat this single request via the proxy.

305 responses must only be generated by origin servers.

Note: RFC 2068 did not clearly state that 305 was intended to
redirect a single request, and to be generated by origin
servers only. Nevertheless, not observing these limitations
has significant security consequences.

306 The 306 status code was used in a previous version of the specification.
(Unused) This code is currently not in use. However, the code is reserved for
future application.

478 RadView Software

D.3 Redirection 3XX

Message Description
307 The requested resource resides temporarily under a different URI. Since
Egg??;g{ y the redirection may be altered on occasion, the client should continue to

use the Request-URI for future requests. This response is only
cacheable if indicated by a Cache-Control or Expires header
field.

The temporary URI should be identified by the Location field in the
response. Unless the request method was HEAD, the entity of the
response should contain a short hypertext note with a hyperlink to the
new URI(s), since many pre-HTTP/1.1 user agents do not understand the
307 status. Therefore, the note should contain the information necessary
for a user to repeat the original request on the new URI.

If the 307 status code is received in response to a request other than
GET or HEAD, the user agent must not automatically redirect the request
unless it can be confirmed by the user, since this might change the
conditions under which the request was issued.

WebLOAD JavaScript Reference Manual 479

sobessa|\ sniels

[090j01d 1 LH

HTTP Protocol Status Messages

D.4

Client Error 4XX

The 4XX class of status code is intended for cases in which the client seems to have erred.
Except when responding to a HEAD request, the server should include an entity containing an
explanation of the error situation, and whether it is a temporary or permanent condition. These
status codes are applicable to any request method. User agents should display any included
entity to the user.

If the client is sending data, a server implementation using TCP should be careful to ensure that
the client acknowledges receipt of the packet(s) containing the response, before the server
closes the input connection. If the client continues sending data to the server after the close, the
server's TCP stack will send a reset packet to the client, which may erase the client's
unacknowledged input buffers before they can be read and interpreted by the HTTP
application.

Table D-4: Client Error 4XX message set

Message Description

400 The request could not be understood by the server due to malformed
Bad Request syntax. The client should not repeat the request without modifications.
401) The request requires user authentication. The response must include a
Unaut hori zed WWW-Authenticate header field containing a challenge

applicable to the requested resource. The client may repeat the request
with a suitable Authorization header field. If the request already
included Authorization credentials, then the 401 response indicates that
authorization has been refused for those credentials. If the 401 response
contains the same challenge as the prior response, and the user agent has
already attempted authentication at least once, then the user should be
presented the entity that was identified in the response, since that entity
might include relevant diagnostic information.

402 . This code is reserved for future use.

Payment Required

403 The server understood the request, but is refusing to fulfill it.

For bi dden Authorization will not help and the request should not be repeated. If the

request method was not HEAD and the server wishes to make public why
the request has not been fulfilled, it should describe the reason for the
refusal in the entity. If the server does not wish to make this information
available to the client, the status code 404 (Not Found) can be used
instead.

480

RadView Software

D.4 Client Error 4XX

Message Description

404 The server has not found anything matching the Request-URI. No

Not Found indication is given of whether the condition is temporary or permanent.
The 410 (Gone) status code should be used if the server knows, through
some internally configurable mechanism, that an old resource is
permanently unavailable and has no forwarding address. This status code
is essentially a generic, neutral response, commonly used when the
server does not wish to reveal exactly why the request has been refused,
or when no other response is applicable.

405 The method specified in the Request-Line is not allowed for the

NIE} hod d Not resource identified by the Request-URI. The response must include

Al T owe an Allow header containing a list of valid methods for the requested
resource.

406 The resource identified by the request is only capable of generating

Not Accept abl e

response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

Unless it was a HEAD request, the response should include an entity
containing a list of available entity characteristics and location(s) from
which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type identified in the Content—
Type header field. Depending upon the format and the capabilities of
the user agent, selection of the most appropriate choice may be
performed automatically. However, this specification does not define
any standard for such automatic selection.

Note: HTTP/1.1 servers are allowed to return responses which
are not acceptable according to the Accept Headers sent in
the request. In some cases, this may even be preferable to
sending a 406 response. User agents are encouraged to
inspect the headers of an incoming response to determine if
it is acceptable. If the response could be unacceptable, a
user agent should temporarily stop receipt of more data and
query the user for a decision on further actions.

407

Pr oxy

Aut henti cati on
Requi r ed

This code is similar to 401 (Unauthorized), but indicates that the
client must first authenticate itself with the proxy. The proxy must return
a Proxy-Authenticate header field containing a challenge
applicable to the proxy for the requested resource. The client may repeat
the request with a suitable Proxy-Authorization header field.

408
Request Ti meout

The client did not produce a request within the time that the server was
prepared to wait. The client may repeat the request without
modifications at any later time.

WebLOAD JavaScript Reference Manual

481

sabessa)\ snelg

[090}0id d11H

HTTP Protocol Status Messages

Message Description
409 The request could not be completed due to a conflict with the current
Conflict

state of the resource. This code is only allowed in situations where it is
expected that the user might be able to resolve the conflict and resubmit
the request. The response body should include enough information for
the user to recognize the source of the conflict. Ideally, the response
entity would include enough information for the user or user agent to fix
the problem; however, that might not be possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the entity being PUT
included changes to a resource which conflict with those made by an
earlier (third-party) request, the server might use the 409 response to
indicate that it can't complete the request. In this case, the response
entity would likely contain a list of the differences between the two
versions in a format defined by the response Content-Type.

410 The requested resource is no longer available at the server and no

Gone forwarding address is known. This condition should be considered
permanent. Clients with link editing capabilities should delete references
to the Request-URI after user approval. If the server does not know,
or has no facility to determine, whether or not the condition is
permanent, the status code 404 (Not Found) should be used instead.
This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web
maintenance by notifying the recipient that the resource is intentionally
unavailable and that the server owners desire that remote links to that
resource be removed. Such an event is common for limited-time,
promotional services and for resources belonging to individuals no
longer working at the server's site. It is not necessary to mark all
permanently unavailable resources as "gone" or to keep the mark for any
length of time—that is left to the discretion of the server owner.

411) The server refuses to accept the request without a defined Content -

Length Required Length. The client may repeat the request if it adds a valid Content-
Length header field containing the length of the message-body in the
request message.

412 o The precondition given in one or more of the request-header fields
Precondi tion evaluated to False when it was tested on the server. This response
Fai | ed . .

code allows the client to place preconditions on the current resource

metainformation (header field data) and thus prevent the requested

method from being applied to a resource other than the one intended.
413) The server is refusing to process a request because the request entity is
Request Entity larger than the server is willing or able to process. The server may close
Too Large

the connection to prevent the client from continuing the request.

If the condition is temporary, the server should include a Retry-
After header field to indicate that it is temporary and after what time
period has elapsed may the client try again.

482 RadView Software

D.4 Client Error 4XX

Message

Description

414
Request - URI Too
Long

The server is refusing to service the request because the Request-—
URT is longer than the server is willing to interpret. This rare condition
is only likely to occur when a client has improperly converted a

POST request to a GET request with long query information, when the
client has descended into a URI "black hole" of redirection (for example,
a redirected URI prefix that points to a suffix of itself), or when the
server is under attack by a client attempting to exploit security holes
present in some servers using fixed-length buffers for reading or
manipulating the Request-URI.

415
Unsupported Media

Type

The server is refusing to service the request because the entity of the
request is in a format not supported by the requested resource for the
requested method.

416
Request ed Range
Not Sati sfi able

A server should return a response with this status code if:
= A request included a Range request-header field, and

= None of the range-specifier values in this field overlap the current
extent of the selected resource, and

= The request did not include an I f-Range request-header field.

For byte-ranges, this means that the first-byte-pos of all of the
byte-range-spec values were greater than the current length of the
selected resource.

When this status code is returned for a byte-range request, the response
should include a Content-Range entity-header field specifying the
current length of the selected resource. This response must not use the
multipart/byteranges content-type.

417
Expect ati on
Fai |l ed

The expectation identified in an Expect request-header field could not
be met by this server, or, if the server is a proxy, the server has
unambiguous evidence that the request could not be met by the next-hop
server.

WebLOAD JavaScript Reference Manual 483

sobessa|\ sniels

[090}0id d11H

HTTP Protocol Status Messages

D.5

Server Error 5XX

The 5XX class of status code is intended for cases in which the server is aware that it has erred
or is incapable of performing the request. Except when responding to a HEAD request, the
server should include an entity containing an explanation of the error situation, and whether it
is a temporary or permanent condition. User agents should display any included entity to the
user. These response codes are applicable to any request method.

Table D-5: Severe Error 5XX message set

Message

Description

500
I nternal Server
Error

The server encountered an unexpected condition which prevented it from
fulfilling the request.

501
Not | npl enent ed

The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recognize the request method and is not capable of supporting it for any
resource.

502 The server, while acting as a gateway or proxy, received an invalid
Bad Gat eway response from the upstream server it accessed in attempting to fulfill the
request.
203] The server is currently unable to handle the request due to a temporary
ervice

Unavai | abl e

overloading or maintenance of the server. The implication is that this is a
temporary condition which will be alleviated after some delay. If known,
the length of the delay may be indicated in a Retry-After header. If
no Retry-After is given, the client should handle the response as it
would for a 500 response.

Note: The existence of the 503 status code does not imply that a

server must use it when becoming overloaded. Some
servers may wish to simply refuse the connection.

504
Gat eway Ti meout

The server, while acting as a gateway or proxy, did not receive a timely
response from the upstream server specified by the URI (e.g. HTTP,
FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed to
access in attempting to complete the request.

Note: Implementers should note that some deployed proxies are
known to return 400 or 500 when DNS lookups time out.

505
HTTP Ver si on Not
Support ed

The server does not support, or refuses to support, the HTTP protocol
version that was used in the request message. The server is indicating
that it is unable or unwilling to complete the request using the same
major version as the client. The response should contain an entity
describing why that version is not supported and what other protocols
are supported by that server.

484

RadView Software

7

7Bit flag - R-425, R-429, R-444, R-447

8

8Bit flag - R-425, R-429, R-444, R-447
8BitBinary flag - R-425, R-429, R-444, R-447

A

action - form property - R-19
ActiveX object - P-194
ActiveXObject() constructor - P-196
(for RDS) - P-203
automatic conversion to JavaScript data
types - P-199
casting functions - P-201
interfaces

Index

IDispatch - P-195
ITypelnfo - P-195
IUnknown - P-195
Remote Data Service (RDS) support - P-203
example - P-204
ActiveX objects - P-103
ActiveXObject object
ActiveXObject() constructor - P-196
ActiveXObject() constructor - P-196
(for RDS) - P-203
Add()
wlGeneratorGlobal method - R-21
wlSystemGlobal method - R-21
AddAttachment()
WINNTP method - R-429
wISMTP method - R-447
adding
comments to an Agenda - P-23
JavaScript object nodes, to Agenda Tree - P-
75
transactions - P-50
addProperty() - WSComplexObject method - R-
22

WebLOAD JavaScript Reference Manual

485

Xapu|

Index

AdjacentText - element property - R-23
Agenda Tree - P-64

navigation blocks - R-13

nodes - P-64

structure - P-64
Agendas

creating - P-6, R-4, P-63

examples

basic, recorded with AAT (protocol
mode) - P-240

cookies, setting - P-242

input/output files used in an Agenda
(protocol mode) - P-241

parsing dynamic HTML (protocol mode)
- P-242
parsing dynamic links (protocol mode) -
P-242
random number generator - P-242
testing a customer service site - P-11
timers - P-242
execution sequence
after a runtime error - P-111
mixed clients - P-70
normal - P-67
scheduled clients - P-69
initialization and termination functions - P-66
main script - P-66, P-68
navigation block - R-13, P-18, P-65
synchronization points - P-48
threads - P-68
what are Agendas - P-6, R-4, P-63
Alert - wiBrowser property (dialog box) - R-75
Alt
area property - R-24
element property - R-24
image property - R-24
Append() - wIFTP method - R-402
AppendFile() - wIFTP method - R-403
area object - R-24
properties
Alt - R-24

ContainingMap - R-56
Coords - R-57
id - R-144
Shape - R-246
URL - R-303
ArticleText - WINNTP property - R-425
ASCII files, reading input with GetLine()
function - R-125, P-86
ASYNCH_PLAY flag - R-201
Attachments
WINNTP property - R-425
wISMTP property - R-444
AttachmentsEncoding
WINNTP property - R-425
wISMTP property - R-444
AttachmentsTypes
WINNTP property - R-426
wISMTP property - R-445
authentication
certificates (protocol mode) - R-260

of users, with NT Challenge Response
protocol (protocol mode) - R-187

protocol options - R-66

AutoDelete - wIPOP property - R-436

Automatic State Management (ASM)
dynamic session IDs (protocol mode) - P-225
example

dynamic session ID in FormData
(protocol mode) - P-244
identifying dynamic session IDs
(protocol mode) - P-228
working with session ID (protocol mode)
- P-246
functions

GetCurrentValue() - wiHttp method
(protocol mode) - P-227

IdentifyObject() - wiHttp method
(protocol mode) - P-227

setting dynamic values (protocol mode) - P-
227

target frame (protocol mode) - P-225

486

RadView Software

visual set (protocol mode) - P-225
wlHttp properties
complete list (protocol mode) - P-225

ExpectedDocument (protocol mode) - R-
93

ExpectedDOMID (protocol mode) - R-
94

ExpectedID (protocol mode) - R-95

ExpectedLocation (protocol mode) - R-
95

ExpectedName (protocol mode) - R-96
ExpectedText (protocol mode) - R-97
wlTarget (protocol mode) - R-366
wlHttp properties - complete list (protocol
mode) - R-25
AutoNavigate() - wiBrowser method - R-26

B

Back() - wiBrowser method - R-27
Base64 flag - R-425, R-429, R-444, R-447
Bcec - wISMTP property - R-445
BeginTransaction() function - R-28, P-141

example - P-50
Bind() - wlUDP method - R-466
bitrate - wiMediaPlayer property - R-30
Broadcast() - wlUDP method - R-466
Browser configuration

executing commands * P-115

transaction-specific - P-115

wlGlobals, wiHttp, wlLocals property set -

R-31

BrowserCache - wiGlobals, willLocals, wiHttp

property (protocol mode) - R-33
Button

document property - R-34

object - R-34

properties
InnerImage - R-154
InnerText - R-156

Index

OnClick - R-190
title - R-296

C

cache, SSL, cleared at round’s end - P-69
CBool() function - P-201
CByte() function - P-201
Cc - wISMTP property - R-445
CDbl() function - P-201
cell object
(protocol mode) - R-35
properties
celllndex - R-37
InnerHTML - R-153
InnerText - R-156
tagName - R-289
celllndex - cell property - R-37
cells
row property - R-35
wlTable property - R-35
certificates, submitting (protocol mode) - R-260
CFlt() function - P-201
ChangeDir() - wIFTP method - R-403
Checkbox
document property - R-38
object - R-38
checked - element property - R-40
ChFileMod() - wlIFTP method - R-403

Child Transaction Instance Tree (fifth level) - P-
156

ChMod() - wlFTP method - R-404

ClInt() function - P-201

Cipher Command Suite - R-256

ClearAll() - wiCookie method - R-40

ClearDNSCache() - wlHttp method (protocol
mode) - R-41

ClearSSLCache() - wlHttp method (protocol
mode) - R-42

Client Types (Thick, Thin, Normal) - P-104

WebLOAD JavaScript Reference Manual

487

Xapu|

Index

ClientAuthentication - wiBrowser property
(dialog box) - R-75

ClientCertificate - wiBrowser property (dialog
box) R-75

ClientNum variable - P-57, R-43

clients
example, identifying clients - P-58, R-146
mixed - P-70
Probing and Virtual - P-9
scheduled - P-69
Types (Thick, Thin, Normal) - P-104
unique number - P-57, R-43

virtual, VCUniquelD() identification
function + R-312

CLng() function - P-201
Close()
function - R-45
wlOutputFile method - R-45
CloseConnection() - wlHttp method (protocol
mode) - R-46
closing external files - R-45
collections - R-47
elements - R-83
forms - R-103
frames - R-107
images - R-148
length property - R-167
links - R-169
methods
wlGet() (data - protocol mode) - R-335
wlSet() (data - protocol mode) - R-359
options - R-195
scripts - R-229
wlHeaders - R-341
wlMetas - R-346
wlSearchPairs - R-357
wlTables - R-364
wlXmls - R-371
cols
element property - R-48
wlTable property - R-48

comments - adding to an Agenda - P-23
Compare() - TableCompare method - R-49

CompareColumns - TableCompare property - R-
51

CompareRows - TableCompare property - R-52
complex types P-207
Component Object Model (COM) - P-194
ActiveXObject() constructor - P-196
(for RDS) - P-203
automatic conversion to JavaScript data
types - P-199
casting functions - P-201
interfaces
IDispatch - P-195
ITypelnfo - P-195
IUnknown - P-195
Remote Data Service (RDS) support - P-203
example - P-204
configuration properties
search order precedence - P-127

setting with wlHttp, wlLocals, and wilGlobals
objects, example (protocol mode) - P-
253

Confirm - wiBrowser property (dialog box) - R-
75

Connect()
wIIMAP method - R-415
WINNTP method - R-429
wIPOP method - R-438
WISMTP method - R-447
wITCP method - R-453
wlTelnet method - R-459
connectionBandwidth - wiMediaPlayer property -
R-53
connections, closing - R-46, P-69
ConnectionSpeed - wlGlobals property (protocol
mode) - R-54
constructors
ActiveXObject() - P-196
ActiveXObject() (for RDS) - P-203
TableCompare() - R-287

488

RadView Software

wlException() - R-333

WLFtp() - R-409

WLImap() - R-420

wlMediaPlayer() - R-345

WLNntp() - R-433

wlOutputFile() - R-354

WLPop() - R-441

WLSmtp() - R-449

WLTcp() - R-455

WLTelnet() - R-460

WLUdp() - R-468

WLXmlDocument() - wiXmls object - R-369

WSComplexObject() - R-375

WSWebService() - R-379
ContainerTag - UlContainer property - R-55
ContainingMap - area property - R-56
content - wlMeta property - R-56
context

global - P-118

limited - P-115

local - P-116
Cookie - wiBrowser property (dialog box) - R-75
cookies

deleted at round’s end - P-69

example - R-331, P-239

example, setting a cookie - P-242

how WebLOAD works with - R-330, P-238
Coords - area property - R-57
CopyFile() function - R-57, P-81
copying files - R-57

search order precedence - P-82

counters, automatic, for Java class methods - P-
187

CreateDOM() function - R-59, P-150
CreateMailbox() - wIIMAP method - R-416
CreateTable() function - R-61
creating
a collection of expected tables - R-61
an Agenda - P-6, R-4, P-63
an expected DOM - R-59, P-150

Index

cryptography
cryptographic strength, defining (protocol
mode) - R-262

function list - R-256

SSLBitLimit - wlGlobals property (protocol
mode) - R-257

SSLCipherSuiteCommand() function - R-258

SSLClientCertificateFile - wlGlobals,
wlLocals, wiHttp property (protocol
mode) - R-260

SSLClientCertificatePassword - wlGlobals,
wlLocals, wlHttp property (protocol
mode) - R-260

SSLCryptoStrength - wlGlobals property
(protocol mode) - R-262

SSLDisableCipherID() function - R-263
SSLDisableCipherName() function - R-265
SSLEnableCipherID() function - R-266
SSLEnableCipherName() function - R-267
SSLGetCipherCount() function - R-268
SSLGetCipherID() function - R-269
SSLGetCipherInfo() function - R-270
SSLGetCipherName() function - R-271
SSLGetCipherStrength() function - R-272

SSLUseCache - wilGlobals, wlLocals, wiHttp
property (protocol mode) - R-274

SSLVersion - wlGlobals, wlLocals, wlHttp
property (protocol mode) - R-275

CurrentMessage - wlIMAP property - R-413

CurrentMessagelD - wlIMAP property - R-413

currentPosition - wiMediaPlayer property - R-62

currentStreamName - wiMediaPlayer property
R-63

customer service site, example - P-11

CVARIANT() function - P-201

D

data
files, reading - R-125
global, user-defined properties - R-305

WebLOAD JavaScript Reference Manual

489

Xapu|

Index

HTTP submission properties (protocol mode)
- P-229
input, from external files - R-125, P-86
Data
wlFTP property - R-400
wlHttp property (protocol mode) - R-63, P-
232
Data Drilling

Child Transaction Instance Tree (fifth level) -
P-156

Parent Transaction Instance Tree (fourth
level) - P-155

reports - P-151

TableCompare Results (WebLOAD Viewer)
- P-160

TableCompare Results Tree (three levels)
P-157

Transaction Failure Reason Grid (second
level) - P-153

Transaction Grid (first level) - P-152

Transaction Instance Grid (third level) - P-
154

Data Islands - P-163
DataFile
wIFTP property - R-400
wlHttp property (protocol mode) - R-65, P-
233
debugging transaction failures - P-151
DefaultAuthentication - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-66
defaultchecked - element property - R-68

defaults, for global and local browser actions - P-
127

defaultselected - option property - R-69
defaultvalue - element property - R-69
defining

cryptographic strength (protocol mode) - R-
262

transactions - P-50
Delete()

wlCookie method - R-70

wIFTP method - R-404

WIIMAP method - R-416
wIPOP method - R-439
delete() - wlOutputFile method - R-70
DeleteAttachment()
WINNTP method - R-430
WISMTP method - R-448
DeleteFile() - wlIFTP method - R-404
DeleteMailbox() - wIIMAP method - R-416
Details - TableCompare property - R-72
dialog boxes - R-73, P-77
wlBrowser properties, complete list - R-73
Dir() - wlIFTP method - R-405
DisableAll flag - R-258
DisableSleep - wiBrowser property + R-75
Disconnect()
WIIMAP method - R-416
WINNTP method - R-430
wIPOP method - R-439
WISMTP method - R-448
wITCP method - R-454
wlTelnet method - R-459
displaying
error messages * R-89
information messages * R-152
severe error messages - R-245
warning messages - R-323
Div
document property - R-77
object - R-77
properties
InnerText - R-156
OnClick - R-190
OnMouseOver - R-192
title - R-296
DNSUseCache - wiGlobals, wiLocals, wiHttp
property (protocol mode) - R-78
document
object - R-79
example (protocol mode) - P-222
methods

490

RadView Software

Index

wlGetAllForms() (protocol mode) - wiXmls - R-370
R-337 window property - R-79

wlGetAllFrames() (protocol mode) - wlFTP property - R-400
R-337 wIIMAP property - R-413

wlGetAllLinks() (protocol mode) - WINNTP property - R-426
R-338

wIPOP property - R-436

properties wITCP property - R-451
Button - R-34 wliTelnet property - R-457
Cl'leckbox -R-38 wlUDP property - R-463
D.IV “R-77 Document Object Model (DOM)
File - R-99 basic structure - R-9
forms - R-103

creating an expected DOM - P-150

frames - R-107 document object - R-9

images - R-148
InputButton - R-157
InputCheckbox - R-158
InputFile - R-159
Inputlmage - R-160
InputPassword - R-161
InputRadio - R-163
InputText - R-164
links - R-169

location - R-176
Radiobutton - R-210
Reset - R-218

scripts - R-229

Select - R-232

element object - R-10
form object - R-10
frame object - R-9
image object - R-10
input object - R-10
link object - R-10
location object - R-10
script object - R-10
title object - R-10
WebLOAD extensions
complete set - R-10, P-217
structure - P-217
window object - R-9
DOM, expected - R-59

Span ._ R-254 DOR - Dynamic Object Recognition - P-97
Submit - R-279

T R.201 Download() - wlFTP method - R-405
TeXtA o DownloadFile() - wIFTP method - R-405
.ext rea i DTD, in XML document, example - P-178
title - R-296

IHead: 1 mode) - R-340 duration - wiMediaPlayer property - R-80
wlHeaders (protocol mode) - R- dynamic HTML

wiMetas (protocol mode) - R-346 Automatic State Management (ASM)
wlSource (protocol mode) - R-361 (protocol mode) - P-225

wiStatusLine (protocol mode) - R- dynamic session ID in FormData, example

361 using Automatic State Management
wiStatusNumber (protocol mode) - (ASM) (protocol mode) - P-244
R-362

example, parsing (protocol mode) - P-242

wlTablc?s (protocol mode) - R-364 example, parsing and navigating nested
wlVersion (protocol mode) - R-368 frames (protocol mode) - P-222

WebLOAD JavaScript Reference Manual 491

Xapu|

Index

parsing - R-4
dynamic link example (protocol mode) - P-223
Dynamic Object Recognition (DOR) - P-97
wlBrowser properties - complete list - R-81
dynamic session IDs - R-4

E

element object - R-83
example (protocol mode) - P-236
properties
AdjacentText - R-23
Alt - R-24
checked - R-40
cols - R-48
defaultchecked - R-68
defaultvalue - R-69
id - R-144
InnerImage - R-154
InnerText - R-156
MaxLength - R-180
Name - R-184
options - R-195
rows - R-223
selectedindex - R-234
Size - R-247
title - R-296
type - R-300
URL - R-303
value - R-310
elements
collection - R-83
form property - R-83
EnableAll flag - R-258
ENC_7BIT flag - R-426, R-444
ENC _S8BIT flag - R-426, R-444
ENC S8BITBINARY flag - R-426, R-444
ENC BASE64 flag - R-426, R-444
ENC_QUOTED flag - R-426, R-444

encoding - form property - R-85
EndTransaction() function - R-85, P-141
example - P-51
Erase - wlHttp property (protocol mode) - R-87,
P-116, P-234
Erase()
wITCP method - R-454
wlTelnet method - R-459
wlUDP method - R-466
error
handling - P-110, P-111, P-214
messages, displaying - P-24, R-180
ErrorMessage() function - R-89
EvaluateScript() function - R-90
event
OnClick - R-190
OnMouseOver - R-192
script property - R-92
TableCell property - R-92
UlContainer property - R-92
Examples
Automatic State Management (ASM)

dynamic session ID in FormData
(protocol mode) - P-244
identifying dynamic session IDs
(protocol mode) - P-228
working with session ID (protocol mode)
- P-246
automatic timers and counters - P-187

building a complete database in XML - P-
176

calling a WebLOAD API - P-189

connecting to a secure internet server
(protocol mode) - P-254

connecting to server using SSL (protocol
mode) - P-253

cookies, setting - P-242

Data Islands used in an Agenda - P-167

DTD in XML document - P-178

dynamic HTML page, parsing, and
navigating nested frames (protocol
mode) - P-222

492

RadView Software

dynamic HTML parsing (protocol mode) - P-
242

generating a random number - R-355
identifying clients and rounds - P-58, R-146

input/output files used in an Agenda
(protocol mode) - P-241

parse tree illustration (protocol mode) - P-
221

parsing links in a dynamic HTML page
(protocol mode) - P-242

passing objects between Java and JavaScript
- P-186

passing simple variables between Java and
JavaScript - P-185

posting form data using elements (protocol
mode) - P-236

random number generator - P-242

reading data from a JDBC database - P-191

reading input files - P-89

remote ActiveX object access - P-204

searching with key-value pairs (HTTP header
parsing example) (protocol mode) - R-
341, P-255

searching with key-value pairs (link parsing)
-R-357

setting configuration properties in wlHttp,

wlLocals, and wlGlobals objects
(protocol mode) - P-253

testing a customer service site - P-11

timers - P-242

transaction verification using
TableCompare() constructor (protocol
mode) - P-249

transactions * P-50

travel agency (recorded Agenda) (protocol
mode) - P-240

using a cookie - R-331, P-239

using a timer to report statistics - R-295

using HTML properties of the XML DOM in
an Agenda - R-371

using synchronization points - R-282
using wiHtml to follow a dynamic link
(protocol mode) - P-223

Index

web page illustration (protocol mode) - P-220
working with location objects (protocol
mode) - P-251
working with messages - R-180
working with option objects (protocol mode)
- P-252

ExceptionEnabled - wiBrowser property - R-92

expected DOM - R-59, P-150

expected tables, collection - R-61

ExpectedDocument - wiHttp property (protocol
mode) - R-93

ExpectedDOMID - wlHttp property (protocol
mode) - R-94

ExpectedID - wlHttp property (protocol mode) -
R-95

ExpectedLocation - wlHttp property (protocol
mode) - R-95

ExpectedName - wlHttp property (protocol
mode) - R-96

ExpectedText - wiHttp property (protocol mode)
-R-97

ExpectNavigation()
with named transactions - R-97
wlBrowser method - R-97

F

File

document property - R-99

object - R-99
file management functions - R-100

Close() - R-45

CopyFile() - R-57, P-81

GetLine() - R-125, P-86

IncludeFile() - R-150, P-79

Open() - R-124, R-193, P-87

See wlOutputFile object - R-100
FileName - wlHttp.DataFile property - R-101
fileName - wiMediaPlayer property - R-101
files

WebLOAD JavaScript Reference Manual

493

Xapu|

Index

closing external - R-45
copying - P-81
functions
Close() - R-45
CopyFile() - P-81
EvaluateScript() - R-90
GetLine() - R-125, P-86
IncludeFile() - R-150, P-79
Open() - R-193, P-87
See wlOutputFile object - R-351
including - R-90, R-150, P-79
input - P-36, P-85
opening external - R-193
output - R-351, P-83
reading ASCII data - R-125, P-86
FindObject() - wiBrowser method - R-102
flags
7Bit - R-425, R-429, R-444, R-447
8Bit - R-425, R-429, R-444, R-447
8BitBinary - R-425, R-429, R-444, R-447
ASYNCH PLAY - R-201
Base64 - R-425, R-429, R-444, R-447
DisableAll - R-258
EnableAll - R-258
ENC 7BIT - R-426, R-444
ENC _8BIT - R-426, R-444
ENC_S8BITBINARY - R-426, R-444
ENC BASEG64 - R-426, R-444
ENC QUOTED - R-426, R-444
INFINITE _PLAY - R-201
Quoted - R-425, R-429, R-444, R-447
ShowAll - R-258
ShowEnabled - R-258
SSL_AlICrypto - R-262
SSL_ExportCryptoOnly - R-262
SSL_ServerGatedCrypto - R-262
SSL_StrongCryptoOnly - R-262
WLAfterInitAgenda - R-90
WLA(fterRound - R-90
WLAfterTerminateAgenda - R-90

WLA fterTerminateClient - R-90

WLAIllAgendas - R-21, R-110, R-237, P-123,
P-125

WLBeforelnitClient - R-90

WLBeforeRound - R-90

WLBeforeThreadActivation - R-90

WLCurrentAgenda - R-21, R-110, R-237, P-
123, P-125

WLError - P-49, P-52, R-86, R-133, R-281,
R-294, R-309, R-320, R-333, P-108

WLExecuteScript - R-150

WLLoadChanged - P-49, R-281

WLMinorError - P-52, R-86, R-294, R-309,
R-320, P-108

WLOnThreadActivation - R-90

WLRandom - R-124, R-193, P-86

WLSequential - R-124, R-193, P-86

WLSevereError - P-52, R-86, R-133, R-294,
R-309, R-320, R-333, P-108

WLSuccess - P-49, P-52, R-86, R-281, R-
294, R-309, R-320, P-108

WLTimeout - P-49, R-281

flash objects - P-103
Form Data Wizard - P-36
form object - R-103

methods
FindObject() - R-102
wlSubmit() - R-362
properties
action - R-19
elements - R-83
encoding - R-85
id - R-144
method - R-182
Name - R-184
target - R-290
URL - R-303

FormData - wlHttp property

missing fields (protocol mode) - P-230
using Get() (protocol mode) - R-105, P-229
using Post() (protocol mode) - R-105, P-230

494

RadView Software

working with data files (protocol mode) - P-
231

forms
collection - R-103
document property - R-103
Forward() - wiBrowser method - R-106
frames
collection - R-107
properties
length - R-167
window - R-324
document property - R-107
object
properties
id - R-144
index - R-151
Name - R-184
title - R-296
URL - R-303
window property - R-107
From
WINNTP property - R-427
wISMTP property - R-445
FTP
File Transfer Protocol - R-400
Sample Code - R-410
FtpAuthentication - wiBrowser property (dialog
box) - R-75
functional testing
BeginTransaction() function - R-28, P-141
complete function list - R-297
CreateDOM() function - R-59, P-150
CreateTable() function - R-61
creating an expected DOM - P-150
Data Drilling

Child Transaction Instance Tree (fifth
level) - P-156

Parent Transaction Instance Tree (fourth
level) - P-155

reports - P-151

Index

TableCompare Results (WebLOAD
Viewer) - P-160

TableCompare Results Tree (three
levels) - P-157

Transaction Failure Reason Grid (second
level) - P-153

Transaction Grid (first level) - P-152

Transaction Instance Grid (third level) -
P-154

EndTransaction() function - R-85, P-141

example using TableCompare() constructor
(protocol mode) - P-249

named HTTP transactions (protocol mode) -
R-112, R-203, P-139

named navigation activities - R-97

ReportEvent() function - R-214

SetFailureReason() function - R-240, P-142

TableCompare object - P-145

user-defined transaction name - R-28, R-85

VerificationFunction() (user-defined
function) - R-320, P-141

functions
ASM

GetCurrentValue() - wiHttp method
(protocol mode) - P-227

IdentifyObject() - wiHttp method
(protocol mode) - P-227

COM interface
CBool() - P-201
CByte() - P-201
CDbl() - P-201
CFIt() - P-201
Clnt() - P-201
CLng() - P-201
CVARIANT() - P-201

file management - R-100
Close() - R-45
CopyFile() - R-57, P-81
GetLine() - R-125, P-86
IncludeFile() - R-150, P-79
Open() - R-124, R-193, P-87
See wlOutputFile object - R-351

WebLOAD JavaScript Reference Manual

495

Xapu|

Index

identification - P-56, R-146
GeneratorName() - R-108
GetOperatingSystem() - R-130
VCUniquelD() - R-312

initialization and termination - P-66
EvaluateScript() - R-90
InitAgenda() - P-68
InitClient() - P-68
OnErrorTerminateAgenda() - P-111
OnErrorTerminateClient() - P-111
OnScriptAbort() - P-110, P-111
TerminateAgenda() - P-68
TerminateClient() - P-68

messages - P-24, R-180
ErrorMessage() - R-89
InfoMessage() - R-152
SevereErrorMessage() - R-245
WarningMessage() - R-323

security
complete list - R-256
SSLCipherSuiteCommand() - R-258
SSLDisableCipherID() - R-263
SSLDisableCipherName() - R-265
SSLEnableCipherID() - R-266
SSLEnableCipherName() - R-267
SSLGetCipherCount() - R-268
SSLGetCipherID() - R-269
SSLGetCipherInfo() - R-270
SSLGetCipherName() - R-271
SSLGetCipherStrength() - R-272

sleeping - P-29

SynchronizationPoint() - P-48, R-281

timers - P-27, R-295
SendCounter() - R-234
SendMeasurement() - R-235
SendTimer() - R-236
SetTimer() - R-241
Sleep() - R-247

transaction verification
BeginTransaction() - R-28, P-141

complete list - R-297
CreateDOM() - R-59, P-150
CreateTable() - R-61
EndTransaction() - R-85, P-141
ReportEvent() - R-214
SetFailureReason() - R-240, P-142
VerificationFunction() (user-defined) -
R-320, P-141

WebServices

WSGetSimpleValue() - R-376

G

GeneratorName() function - R-108
Get()

with named transactions (protocol mode) - R-
112

wlGeneratorGlobal method - R-110
wlHttp method (protocol mode) - R-111
wlSystemGlobal method - R-110

GetArticle() - wINNTP method - R-430

GetArticleCount() - WINNTP method - R-431

GetCurrentMessagelD() - wIPOP method - R-439

GetCurrentPath() - wlIFTP method - R-406

GetCurrentValue() - wlHttp method (protocol
mode) - R-114, P-227

GetFieldValue() - wiHtml method (protocol
mode) - R-115

GetFieldValueInForm() - wiHtml method
(protocol mode) - R-116

GetFormAction() - wiHtml method (protocol
mode) - R-117

GetFrameByUrl() - wiHtml method (protocol
mode) - R-118

GetFrameUrl() - wlHtml method (protocol mode)
-R-119

GetHeaderValue() - wiHtml method (protocol
mode) - R-120

GetHost() - wiHtml method (protocol mode) - R-
121

496

RadView Software

GetHostName() - wiHtml method (protocol
mode) - R-122
GetIPAddress() - wiHttp method (protocol mode)
-R-123
GetLine() function - R-125, P-86
GetLinkByName() - wiHtml method (protocol
mode) - R-127
GetLinkByUrl() - wiHtml method (protocol
mode) - R-128
GetMailboxSize() - wIPOP method - R-439
GetMessage() - wlException method - R-129
GetMessageCount()
wIIMAP method - R-417
wIPOP method - R-440
GetOperatingSystem() function - R-130
GetPortNum() - wiHtml method (protocol mode)
-R-131
GetQSFieldValue() - wiHtml method (protocol
mode) - R-132
GetSeverity() - wlException method - R-133
GetStatusLine()
WIFTP method - R-406
wlHtml method (protocol mode) - R-134
wIIMAP method - R-417
WINNTP method - R-431
wIPOP method - R-440
GetStatusNumber() - wiHtml method (protocol
mode) - R-135
GetUri() - wiHtml method (protocol mode) - R-
136
global
browser configuration defaults - P-127
context - P-118
data, user defined - R-305
objects - P-118, P-119
variables, user-defined - P-118, P-121, P-
123, P-125
Group - wINNTP property - R-427
GroupOverview() - WINNTP method - R-431

Index

H

hash - link and location property - R-137
Head() - wlHttp method (protocol mode) - R-138
Header
object
properties
key - R-166
wlHttp property (protocol mode) - R-138, P-
233
Headers[] - wIPOP property - R-437
HistoryLimit - wlGlobals property - R-140
host - link and location property - R-141
hostname - link and location property - R-141
href - link and location property - R-142
HTTP

Automatic State Management (ASM)
properties (protocol mode) - P-225

configuration

properties, setting & erasing (protocol
mode) - P-116
data submission properties (protocol mode) -
P-229
error handling - P-110
header (protocol mode) - R-341, P-255
httpEquiv - wiMeta property - R-143
HTTPS protocol (protocol mode) - R-275

id
area property - R-144
element property - R-144
form property - R-144
frames property - R-144
image property - R-144
link property - R-144
location property - R-144
map property - R-144

WebLOAD JavaScript Reference Manual

497

Xapu|

Index

script property - R-144
table property - R-144
TableCell property - R-144
UlContainer property - R-144
wlTable property - R-144
wlXmls property - R-144
identification
functions - P-56, R-146
GeneratorName() - R-108
GetOperatingSystem() - R-130
VCUniquelD() - R-312
individual clients - P-57, R-43
number of current round - P-57, R-221
variables - P-56, R-146
ClientNum - P-57, R-43
RoundNum - P-57, R-221
IdentifyObject() - wlHttp method (protocol
mode) - R-147, P-227
IDispatch (COM interface) - P-195
image object - R-148
properties
Alt - R-24
id - R-144
InnerLink - R-155
Name - R-184
OuterLink - R-197
protocol - R-208
src - R-255
title - R-296
URL - R-303
images
collection - R-148
document property - R-148
IMAP
Internet Message Access Protocol - R-413
Sample Code - R-421
InBufferSize
wITCP property - R-451
wlUDP property - R-463
IncludeFile() function - R-150, P-79

including

files, search order precedence - P-80
functions, from external files - R-90, R-150

index - frames property - R-151
INFINITE PLAY flag - R-201
InfoMessage() function - R-152
InitAgenda() function - P-68
InitClient() function - P-68
initialization functions - P-66

EvaluateScript() function - R-90
InitAgenda() function - P-68
InitClient() function - P-68

initializing an Agenda - P-68
innerHTML

script property - R-153
wIXmls property - R-153

InnerHTML - cell property - R-153
Innerlmage

button property - R-154
element property - R-154

link property - R-154
location property - R-154
TableCell property - R-154
UlIContainer property - R-154

InnerLink - image property - R-155
InnerText

Button property - R-156

cell property - R-156

Div property - R-156

element property - R-156

link property - R-156
location property - R-156
Span property - R-156
TableCell property - R-156
UlContainer property - R-156

input files - P-36, P-85

example - P-89
functions
GetLine() - P-86
Open() - P-87

498

RadView Software

I/O files used in an Agenda, example
(protocol mode) - P-241

reading an ASCII file - P-86
requirements - P-86
input object
methods
wlClick() - R-326
wIMouseDown() - R-347
wlMouseOver() - R-348
wlMouseUp() - R-349
wiMultiSelect() - R-350
wlSelect() - R-358
wlTypeln() - R-367
InputButton
document property - R-157
object - R-157
properties
title - R-296
value - R-310
InputCheckbox
document property - R-158
object - R-158

properties
title - R-296
value - R-310
InputFile

document property - R-159
object - R-159
Inputlmage
document property - R-160
object - R-160
InputPassword
document property - R-161
object - R-161
InputRadio
document property - R-163
object - R-163
properties
value - R-310
InputText

Index

document property - R-164

object - R-164
IP - See MultilPSupport, wiGlobals property
IPP - See WebLOAD Internet Productivity Pack
ITypelnfo (COM interface) - P-195
[Unknown (COM interface) - P-195

J

Java
accessing Java objects from JavaScript
Agendas - P-183
automatic timers and counters, example - P-
187
calling a WebLOAD API, example - P-189
JavaScript interface - P-180
LiveConnect interface - P-257
passing objects between Java and JavaScript,
example - P-186
passing simple variables between Java and
JavaScript, example - P-185
reading data from a JDBC database, example
-P-191
requirements - P-181
Java Applet objects - P-103
JavaScript

adding object nodes to the Agenda Tree - P-
75

automatic conversion to COM (ActiveX)
data types - P-199

language - R-4, P-64
programming
advanced features - P-161

K

KeepAlive - wiGlobals, wlLocals, wiHttp
property (protocol mode) - R-165

key

WebLOAD JavaScript Reference Manual

499

Xapu|

Index

Header property - R-166
wlHeader property - R-166
wlSearchPair property - R-166

L

language - script property - R-167
length - collection property - R-167
limited
context - P-115
objects - P-115
variables, user-defined - P-115
LineArray object - R-125, P-86
link object - R-169
properties
hash - R-137
host - R-141
hostname - R-141
href - R-142
id - R-144
InnerImage - R-154
InnerText - R-156
Name - R-184
OnClick - R-190
OnMouseOver - R-192
pathname - R-199
port - R-202
protocol - R-208
search - R-230
target - R-290
title - R-296
URL - R-303
wlSearchPairs - R-357
links
collection - R-169
document property - R-169
example

parsing dynamic links (protocol mode) -

P-242

parsing key-value pairs - R-357
ListGroups() - WINNTP method - R-431
ListLocalFiles() - wIFTP method - R-406
ListMailboxes() - wIIMAP method - R-417
Load Generators - P-8

GeneratorName() function - R-108

GetOperatingSystem() function - R-130
load()

wIXmls method - R-171

XML DOM method - P-175

LoadGeneratorThreads - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-173

loadXML()
wlXmls method - R-175
XML DOM method - P-175
local
browser configuration defaults - P-127
context - P-116
HTTP transactions

configuration defaults (protocol mode) -
R-343

objects - P-116
variables, user-defined - P-116
LocalHost - wlUDP property - R-463
LocalPort
wITCP property - R-451
wIUDP property - R-464
location
document property - R-176
object
example (protocol mode) - P-251
properties - See link object property list
hash - R-137
host - R-141
hostname - R-141
href - R-142
id - R-144
InnerImage - R-154
InnerText - R-156
Name - R-184
pathname - R-199

500

RadView Software

port - R-202

protocol - R-208

search - R-230

selectedindex - R-234

title - R-296

URL - R-303

wlSearchPairs - R-357

window property - R-176

logical transactions - P-50
Logoff() - wIFTP method - R-407
Logon() - wIFTP method - R-407

M

Mailbox - wlIMAP property - R-414
main script
in Agendas - P-66
running repeatedly - P-68
MakeDir() - wlIFTP method - R-407
map object - R-178
properties
id - R-144
Name - R-184
MatchBy - TableCompare property - R-178
matching text key/value pairs
with wlHeader (protocol mode) - R-340
with wiSearchPair - R-356
MaxDatagramSize - wlUDP property - R-464
MaxHeadersLength - wINNTP property - R-427
MaxLength - element property - R-180
MaxLines
wIIMAP property - R-414
wIPOP property - R-437
measuring performance times - P-27, R-295
Message - wWISMTP property - R-446
messages
displaying
errors - R-89
information - R-152

Index

on Console - P-24, R-180
severe errors - R-245
warning messages * R-323
ErrorMessage() function - R-89
example - R-180
InfoMessage() function - R-152
SevereErrorMessage() function - R-245
WarningMessage() function - R-323
method - form property - R-182
methods
ActiveXObject() constructor - P-196
(for RDS) - P-203
Add()
wlGeneratorGlobal method - R-21
wlSystemGlobal method - R-21
AddAttachment()
WINNTP method - R-429
WISMTP method - R-447
addProperty() - WSComplexObject method -
R-22
Append() - wIFTP method - R-402
AppendFile() - wlIFTP method - R-403
AutoNavigate() - wiBrowser method - R-26
Back() - wiBrowser method - R-27
Bind() - wlUDP method - R-466
Broadcast() - wIUDP method - R-466
ChangeDir() - wlIFTP method - R-403
ChFileMod() - wIFTP method - R-403
ChMod() - wiFTP method - R-404
ClearAll() - wlCookie method - R-40
ClearDNSCache() - wiHttp method (protocol
mode) - R-41
ClearSSLCache() - wiHttp method (protocol
mode) - R-42
Close() - wlOutputFile method - R-45

CloseConnection() - wlHttp method
(protocol mode) - R-46

Compare() - TableCompare method - R-49,
P-149

Connect()
wIIMAP method - R-415

WebLOAD JavaScript Reference Manual

501

Xapu|

Index

WINNTP method - R-429

wIPOP method - R-438

wISMTP method - R-447

wITCP method - R-453

wlTelnet method - R-459
CreateMailbox() - wIIMAP method - R-416
Delete()

wlCookie method - R-70

wIFTP method - R-404

WIIMAP method - R-416

wIPOP method - R-439
delete() - wlOutputFile method - R-70
DeleteAttachment()

WINNTP method - R-430

wISMTP method - R-448
DeleteFile() - wIFTP method - R-404
DeleteMailbox() - wlIIMAP method - R-416
Dir() - wlIFTP method - R-405
Disconnect()

wIIMAP method - R-416

WINNTP method - R-430

wIPOP method - R-439

wISMTP method - R-448

wITCP method - R-454

wlTelnet method - R-459
Download() - wlFTP method - R-405
DownloadFile() - wIFTP method - R-405
Erase()

wITCP method - R-454

wlTelnet method - R-459

wlUDP method - R-466

ExpectNavigation() - wiBrowser method - R-
97

FindObject() - wiBrowser method - R-102
Forward() - wiBrowser method - R-106
Get()
wlGeneratorGlobal method - R-110
wlHttp method (protocol mode) - R-111
wlSystemGlobal method - R-110
GetArticle() - wINNTP method - R-430

GetArticleCount() - WINNTP method - R-
431

GetCurrentMessagelD() - wIPOP method -
R-439

GetCurrentPath() - wlIFTP method - R-406

GetCurrentValue() - wiHttp method
(protocol mode) - R-114

GetFieldValue() - wiHtml method (protocol
mode) - R-115

GetFieldValuelnForm() - wiHtml method
(protocol mode) - R-116

GetFormAction() - wlHtml method (protocol
mode) - R-117

GetFrameByUrl() - wiHtml method (protocol
mode) - R-118

GetFrameUrl() - wlHtml method (protocol
mode) - R-119

GetHeaderValue() - wiHtml method
(protocol mode) - R-120

GetHost() - wiHtml method (protocol mode)
-R-121

GetHostName() - wiHtml method (protocol
mode) - R-122

GetIPAddress() - wiHttp method (protocol
mode) - R-123

GetLinkByName() - wlHtml method
(protocol mode) - R-127

GetLinkByUrl() - wiHtml method (protocol
mode) - R-128

GetMailboxSize() - wIPOP method - R-439

GetMessage() - wlException method - R-129

GetMessageCount()
wIIMAP method - R-417
wIPOP method - R-440

GetPortNum() - wiHtml method (protocol
mode) - R-131

GetQSFieldValue() - wiHtml method
(protocol mode) - R-132

GetSeverity() - wlException method - R-133

GetStatusLine()
wIFTP method - R-406
wlHtml method (protocol mode) - R-134
wIIMAP method - R-417

RadView Software

wINNTP method - R-431
wIPOP method - R-440

GetStatusNumber() - wiHtml method
(protocol mode) - R-135

GetUri() - wiHtml method (protocol mode) -
R-136
GroupOverview() - WINNTP method - R-431

Head() - wlHttp method (protocol mode) - R-
138

IdentifyObject() - wiHttp method (protocol
mode) - R-147

ListGroups() - WINNTP method - R-431
ListLocalFiles() - wlIFTP method - R-406
ListMailboxes() - wIIMAP method - R-417
load()

wlXmls method - R-171

XML DOM method - P-175
loadXML()

wIXmls method - R-175

XML DOM method - P-175
Logoff() - wlFTP method - R-407
Logon() - wIFTP method - R-407
MakeDir() - wlIFTP method - R-407
Navigate() - wiBrowser method - R-186
Num() - wiRand method - R-188
Open() - wlOutputFile method - R-193

OpenStream() - wiMediaPlayer method - R-
194

Pause() - wiMediaPlayer method - R-200
Play() - wlMediaPlayer method - R-200

Post() - wiHttp method (protocol mode) - R-
202

PostArticle() - WINNTP method - R-432

Prepare() - TableCompare method - R-205,
P-149

Range() - wiRand method - R-211
Receive()
wITCP method - R-454
wlTelnet method - R-459
wIUDP method - R-467

Index

RecentMessageCount() - wiIIMAP method -
R-417

Refresh() - wiBrowser method - R-213
RemoveDir() - wIFTP method - R-407
Rename() - wIFTP method - R-408
RenameMailbox() - wIIMAP method - R-418
ReportLog() - wlException method - R-215
Reset()

wlOutputFile method - R-219

wIPOP method - R-440
Resume() - wiMediaPlayer method - R-220
Retrieve()

wIIMAP method - R-418

wIPOP method - R-440
Search() - wIIMAP method - R-418
Seed() - wiRand method - R-231
Select() - wiRand method - R-232
Send()

WISMTP method - R-448

wITCP method - R-455

wliTelnet method - R-460

wIUDP method - R-467
SendCommand()

wIFTP method - R-408

wIIMAP method - R-420

WINNTP method - R-432

wIPOP method - R-441

wISMTP method - R-448
Set()

wlCookie method - R-238

wlGeneratorGlobal method - R-237

wlSystemGlobal method - R-237

setType() - WSComplexObject method - R-
242

setValue() - WSComplexObject method - R-
243

SetWindow() - wiBrowser method - R-244
Stop() - wiMediaPlayer method - R-278

SubscribeMailbox() - wIIMAP method - R-
420

SyncDOM() - wiBrowser method - R-280

WebLOAD JavaScript Reference Manual

503

Xapu|

Index

TableCompare() constructor - R-287
UnBind() - wlUDP method - R-467
UnsubscribeMailbox() - wIIMAP method -
R-420
Upload() - wlFTP method - R-408
UploadFile() - wIFTP method - R-409
UploadUnique() - wlIFTP method - R-409
Validate() - wiBrowser method - R-309
Verify() - wISMTP method - R-449

wlClear() - wiHttp method (protocol mode) -

R-328
wlClick() - input object method - R-326
wlClose() - window method - R-329
wlException() constructor - R-333
WLFtp() constructor - R-409

wlGet() - data collections method (protocol
mode) - R-335

wlGetAllForms() - document method
(protocol mode) - R-337

wlGetAllFrames() - document method
(protocol mode) - R-337

wlGetAllLinks() - document method
(protocol mode) - R-338

WLImap() constructor - R-420
wlMediaPlayer() constructor - R-345

wlMouseDown() - input object method - R-
347

wlMouseOver() - input object method - R-
348

wlMouseUp() - input object method - R-349

wlMultiSelect() - input object method - R-
350

WLNntp() constructor - R-433

wlOutputFile() constructor - R-354

WLPop() constructor - R-441

wlSelect() - input object method - R-358

wlSet() - data collections method (protocol
mode) - R-359

WLSmtp() constructor - R-449

wlSubmit() - form method - R-362

WLTcp() constructor - R-455

WLTelnet() constructor - R-460

wlTypeln() - input object method - R-367
WLUdp() constructor - R-468
WLXmlIDocument() - wlXmls constructor
R-369, P-173, P-174
Write() - wlOutputFile method - R-372
Writeln() - wlOutputFile method - R-373
WSComplexObject() constructor - R-375
WSWebService() constructor - R-379
mixed clients - P-70

MultiIPSupport - wlGlobals, wlLocals, wlHttp
property (protocol mode) - R-183

Multiple IP Support - See MultilPSupport,
wlGlobals property

N

Name

element property - R-184

form property - R-184

frames property - R-184

image property - R-184

link property - R-184

location property - R-184

map property - R-184

window property - R-184

wlMeta property - R-184
named HTTP transactions

using ExpectNavigation() (protocol mode) -

P-139
using Get() and Post() (protocol mode) - R-
112, R-203, P-139

named navigation activities - using

ExpectNavigation() - R-97
Native Browsing (XML) - P-173
Navigate() - wiBrowser method - R-186
navigation blocks - R-13, P-18, P-65
NextPrompt

wITCP property - R-452

wlTelnet property - R-457
NextSize - wITCP property - R-452

504

RadView Software

NNTP
Network News Transfer Protocol - R-425
Sample Code - R-433

nodes - in an Agenda Tree - P-64

Normal Client Type - P-104

normal execution sequence - P-67

NT Challenge Response
authentication (protocol mode) - R-187

NTPassWord - wiGlobals, wlLocals, wiHttp
property (protocol mode) - R-187

NTUserName - wilGlobals, wlLocals, wlHttp
property (protocol mode) - R-187

Num() - wlRand method - R-188
NumOfResponses - wlUDP property - R-464

0
ObjectProperty - wiBrowser property - R-189
objects
area - R-24
Button - R-34

cell (protocol mode) - R-35
Checkbox - R-38

creating - R-353, R-354, P-85
Div - R-77

document - R-79

element - R-83

File - R-99

form - R-103

global - P-118, P-119
image - R-148

InputButton - R-157
InputCheckbox - R-158
InputFile - R-159
Inputlmage - R-160
InputPassword - R-161
InputRadio - R-163
InputText - R-164

limited - P-115

Index

LineArray - P-86

link - R-169

local - P-116

map - R-178

option - R-195

Radiobutton - R-210

Reset - R-218

row (protocol mode) - R-223
Select - R-232

Span - R-254

Submit - R-279

table (protocol mode) - R-284
TableCell (protocol mode) - R-285

TableCompare (protocol mode) - R-286, P-
145

Text - R-291

TextArea - R-292

title - R-296

UlContainer - R-301

window - R-324

wlBrowser - R-325

wlCookie - R-330, P-238

wlException - R-332, P-109

wIFTP - R-400

wlGeneratorGlobal - R-334, P-123
wlGlobals (protocol mode) - R-339, P-119
wlHeader (protocol mode) - R-340
wlHtml (protocol mode) - R-342
wlHttp (protocol mode) - R-343, P-115
wIIMAP - R-413

wlLocals (protocol mode) - R-343, P-117
wlMediaPlayer - R-344

wlMeta (protocol mode) - R-346
wINNTP - R-425

wlOutputFile - R-351, P-83

wlPOP - R-436

wlRand - R-355

wlSearchPair - R-356

wISMTP - R-444

wlSystemGlobal - R-363, P-125

WebLOAD JavaScript Reference Manual

505

Xapu|

Index

wlTable (protocol mode) - R-364
wlITCP - R-451
wlTelnet - R-457
wlUDP - R-463
wlXmls - R-370
WSComplexObject - R-374
WSWebService - R-378
Ok - wiBrowser property (dialog box) - R-75

OkCancel - wiBrowser property (dialog box) - R-
75

OnClick
Button property - R-190
Div property - R-190
link property - R-190
script property - R-190
Span property - R-190
TableCell property - R-190
UlContainer property - R-190
OnErrorTerminateAgenda() function - P-111
OnErrorTerminateClient() function - P-111
OnMouseOver
Div property - R-192
link property - R-192
Span property - R-192
TableCell property - R-192
UlContainer property - R-192
OnScriptAbort() function - P-110, P-111
Open()
function - R-124, R-193, P-87
wlOutputFile method - R-193
opening external files - R-193
OpenStream() - wiMediaPlayer method - R-194
option object - R-195
example (protocol mode) - P-252
properties
defaultselected - R-69
selected - R-233
Text - R-291
value - R-310
options

collection - R-195

element property - R-195
Organization - wINNTP property - R-427
OutBufferSize

wITCP property - R-452

wlUDP property - R-464
OuterLink - image property - R-197
Outfile

wlBrowser property - R-197

wIFTP property - R-401

wIIMAP property - R-414

WINNTP property - R-427

wlIPOP property - R-437

wITCP property - R-452

wlTelnet property - R-457

wIUDP property - R-464
output files - R-351, P-83

functions - R-100

Close() - R-45
Open() - R-193

overhead, effect on statistics - P-144

P

Page Verification Wizard - P-135

Parent Transaction Instance Tree (fourth level) -
P-155

parsing
example
HTML (protocol mode) - P-242
HTTP header (protocol mode) - R-341,
P-255
links - R-357
example (protocol mode) - P-220
files - R-125, P-86
tree illustration (protocol mode) - P-221
PassiveMode - wlFTP property - R-401
PassWord
wIFTP property - R-401

506

RadView Software

wlGlobals, wlLocals, wiHttp property
(protocol mode) - R-198

wIIMAP property - R-415

WINNTP property - R-427

wIPOP property - R-437
pathname - link and location property - R-199
pattern matching

with wlHeader (protocol mode) - R-340

with wiSearchPair - R-356
Pause() - wiMediaPlayer method - R-200
pause, inserting a programmed - R-247
pausing in mid-session - P-29
performance monitors - P-9
persistent connection (protocol mode) - R-165
Play() - wiMediaPlayer method - R-200
POP

Post Office Protocol - R-436

Sample Code - R-441
port - link and location property - R-202
Post()

with named transactions (protocol mode) - R-

203

wlHttp method (protocol mode) - R-202
PostArticle() - wINNTP method - R-432
Prepare() - TableCompare method - R-205
Probing Clients - P-9
ProbingClientThreads - wilGlobals, wllLocals,

wlHttp property (protocol mode) - R-207
programming Agendas

advanced features - P-161

Prompt - wiBrowser property (dialog box) - R-75

properties
action - form property - R-19
AdjacentText - element property - R-23

Alert - wiBrowser property (dialog box) - R-

75
Alt
area property - R-24
element property - R-24
image property - R-24
ArticleText - wINNTP property - R-425

Index

Attachments

WINNTP property - R-425

wISMTP property - R-444
AttachmentsEncoding

WINNTP property - R-425

wISMTP property - R-444
AttachmentsTypes

WINNTP property - R-426

wISMTP property - R-445
AutoDelete - wIPOP property - R-436
Bcec - wISMTP property - R-445
bitrate - wilMediaPlayer property - R-30
browser configuration

property set for wiGlobals, wiHttp,
wlLocals - R-31

search order precedence - P-127

BrowserCache - wiGlobals, wllLocals, wiHttp
property (protocol mode) - R-33

Button - document property - R-34

Cc - wISMTP property - R-445

celllndex - cell property - R-37

cells
row property - R-35
wlTable property - R-35

Checkbox - document property - R-38

checked - element property - R-40

ClientAuthentication - wiBrowser property
(dialog box) - R-75

ClientCertificate - wiBrowser property
(dialog box) - R-75

cols
element property - R-48
wlTable property - R-48

CompareColumns - TableCompare property -
R-51, P-148

CompareRows - TableCompare property - R-
52, P-147

Confirm - wiBrowser property (dialog box) -
R-75

connectionBandwidth - wiMediaPlayer
property - R-53

WebLOAD JavaScript Reference Manual

507

Xapu|

Index

ConnectionSpeed - wlGlobals property
(protocol mode) - R-54

ContainerTag - UlContainer property - R-55

ContainingMap - area property - R-56

content - wiMeta property - R-56

Cookie - wiBrowser property (dialog box) -
R-75

Coords - area property - R-57

CurrentMessage - wlIMAP property - R-413

CurrentMessagelD - wlIMAP property - R-
413

currentPosition - wiMediaPlayer property -
R-62

currentStreamName - wiMediaPlayer
property - R-63

Data
wlFTP property - R-400
wlHttp property (protocol mode) - R-63

Data - wlHttp property (protocol mode) - P-
232

DataFile
wlFTP property - R-400
wlHttp property (protocol mode) - R-65

DataFile - wlHttp property (protocol mode) -

P-233
DefaultAuthentication - wlGlobals,
wlLocals, wlHttp property (protocol
mode) - R-66
defaultchecked - element property - R-68
defaultselected - option property - R-69
defaultvalue - element property - R-69
Details - TableCompare property - R-72, P-
146

Dialog box property set for wiBrowser - R-
73

DisableSleep - wiBrowser property - R-75
Div - document property - R-77
DNSUseCache - wlGlobals, wlLocals,

wlHttp property (protocol mode) - R-78
document

window property - R-79

wlFTP property - R-400

wIIMAP property - R-413
WINNTP property - R-426
wIPOP property - R-436
wITCP property - R-451
wlTelnet property - R-457
wlUDP property - R-463
duration - wiMediaPlayer property - R-80
elements - form property - R-83
encoding - form property - R-85
Erase - wiHttp property (protocol mode) - R-
87, P-116, P-234
event
script property - R-92
TableCell property - R-92
UlContainer property - R-92

ExceptionEnabled - wiBrowser property - R-
92

ExpectedDocument - wiHttp property
(protocol mode) - R-93

ExpectedDOMID - wiHttp property
(protocol mode) - R-94
ExpectedID - wiHttp property (protocol
mode) - R-95
ExpectedLocation - wlHttp property
(protocol mode) - R-95
ExpectedName - wiHttp property (protocol
mode) - R-96
ExpectedText - wiHttp property (protocol
mode) - R-97
File - document property - R-99
FileName - wlHttp.DataFile property - R-101
fileName - wiMediaPlayer property - R-101
forms - document property - R-103
frames
document property - R-107
window property - R-107
From
WINNTP property - R-427
wISMTP property - R-445
FtpAuthentication - wiBrowser property
(dialog box) - R-75
Group - wINNTP property - R-427

RadView Software

hash - link and location property - R-137

Header - wlHttp property (protocol mode) -

R-138, P-233
Headers[] - wIPOP property - R-437

HistoryLimit - wlGlobals property - R-140

host - link and location property - R-141

hostname - link and location property - R-
141

href - link and location property - R-142
httpEquiv - wiMeta property - R-143
id

area property - R-144

element property - R-144

form property - R-144

frames property - R-144

image property - R-144

link property - R-144

location property - R-144

map property - R-144

script property - R-144

table property - R-144

TableCell property - R-144

UlContainer property - R-144

wlTable property - R-144

wlXmls property - R-144
images - document property - R-148
InBufferSize

wITCP property - R-451

wlUDP property - R-463
index - frames property - R-151
innerHTML

script property - R-153

wlXmls property - R-153
InnerHTML - cell property - R-153
InnerIlmage

button property - R-154

element property - R-154

link property - R-154

location property - R-154

TableCell property - R-154

UlContainer property - R-154

Index

InnerLink - image property - R-155
InnerText

Button property - R-156

cell property - R-156

Div property - R-156

element property - R-156

link property - R-156

location property - R-156

Span property - R-156

TableCell property - R-156

UlContainer property - R-156
InputButton - document property - R-157
InputCheckbox - document property - R-158
InputFile - document property - R-159
Inputlmage - document property - R-160
InputPassword - document property - R-161
InputRadio - document property - R-163
InputText - document property - R-164

KeepAlive - wiGlobals, wlLocals, wlHttp
property (protocol mode) - R-165

key
Header property - R-166
wlHeader property - R-166
wlSearchPair property - R-166
language - script property - R-167
length - collection property - R-167
links - document property - R-169
LoadGeneratorThreads - wiGlobals,
wlLocals, wlHttp property (protocol
mode) - R-173
LocalHost - wlIUDP property - R-463
LocalPort
wITCP property - R-451
wIUDP property - R-464
location
document property - R-176
window property - R-176
Mailbox - wlIIMAP property - R-414

MatchBy - TableCompare property - R-178,
P-147

MaxDatagramSize - wlUDP property - R-464

WebLOAD JavaScript Reference Manual

509

Xapu|

Index

MaxHeadersLength - wINNTP property - R-

427

MaxLength - element property - R-180

MaxLines

wIlIMAP property - R-414
wlIPOP property - R-437

Message - wISMTP property - R-446
method - form property - R-182
MultilPSupport - wiGlobals, wlLocals,

wlHttp property (protocol mode) - R-183

Name

element property - R-184
form property - R-184
frames property - R-184
image property - R-184
link property - R-184
location property - R-184
map property - R-184
window property - R-184
wlMeta property - R-184

NextPrompt

wITCP property - R-452
wlTelnet property - R-457

NextSize - wITCP property - R-452
NTPassWord - wiGlobals, wlLocals, wlHttp

property (protocol mode) - R-187

NTUserName - wiGlobals, wlLocals, wiHttp

property (protocol mode) - R-187

NumOfResponses - wlIUDP property - R-464
ObjectProperty - wiBrowser property - R-189
Ok - wiBrowser property (dialog box) - R-75
OkCancel - wiBrowser property (dialog box)

- R-75

OnClick

Button property - R-190

Div property - R-190

link property - R-190

script property - R-190

Span property - R-190
TableCell property - R-190
UlContainer property - R-190

OnMouseOver

Div property - R-192

link property - R-192

Span property - R-192

TableCell property - R-192

UlContainer property - R-192
options - element property - R-195
Organization - WINNTP property - R-427
OutBufferSize

wITCP property - R-452

wIUDP property - R-464
OuterLink - image property - R-197
Outfile

wlBrowser property - R-197

wIFTP property - R-401

wIIMAP property - R-414

WINNTP property - R-427

wIPOP property - R-437

wITCP property - R-452

wlTelnet property - R-457

wlUDP property - R-464
PassiveMode - wlFTP property - R-401
PassWord

wIFTP property - R-401

wlGlobals, wlLocals, wiHttp property

(protocol mode) - R-198

wIIMAP property - R-415
WINNTP property - R-427
wIPOP property - R-437
pathname - link and location property - R-
199
port - link and location property - R-202

ProbingClientThreads - wilGlobals, wlLocals,
wlHttp property (protocol mode) - R-207
Prompt - wiBrowser property (dialog box) -
R-75
Properties[] - wiBrowser property - R-316
protocol
image property - R-208
link and location property - R-208

510

RadView Software

Proxy - wiGlobals, wlLocals, wlHttp
property (protocol mode) - R-209

ProxyPassWord - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-209

ProxyUserName - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-209

Radiobutton - document property - R-210
ReceiveMessageText

wITCP property - R-452

wlTelnet property - R-458

wIUDP property - R-465
ReceiveTimeout - wiGlobals, wlLocals,

wlHttp property (protocol mode) - R-212

RedirectionLimit - wiBrowser property - R-
212

References - wWINNTP property - R-428
ReplyTo

WwINNTP property - R-428

wISMTP property - R-446
ReportUnexpectedRows - TableCompare

property - R-216, P-147
RequestedPackets - wlUDP property - R-465

RequestRetries - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-217

Reset - document property - R-218
rowIndex - row property - R-225
rows
elements property - R-223
wlTable property - R-223

SaveSource - wlGlobals, wlLocals, wiHttp
property (protocol mode) - R-226

SaveTransaction - wlGlobals property
(protocol mode) - R-227

SaveWSTransaction - wlGlobals property
(protocol mode) - R-228

scripts - document property - R-229
search - link and location property - R-230
Select - document property - R-232
selected - option property - R-233
selectedindex

element property - R-234

location property - R-234

Index

Shape - area property - R-246

Size
element property - R-247
wIFTP property - R-401
wIIMAP property - R-415
WINNTP property - R-428
wIPOP property - R-438
wISMTP property - R-446
wITCP property - R-453
wlTelnet property - R-458
wlUDP property - R-465

SleepDeviation - wiBrowser property - R-
250

SleepRandomMax - wiBrowser property - R-
251

SleepRandomMin - wiBrowser property - R-
253

Span - document property - R-254
src
image property - R-255
script property - R-255
wlXmls property - R-255
SSLBitLimit - wlGlobals property (protocol
mode) - R-257
SSLClientCertificateFile - wiGlobals,

wlLocals, wlHttp property (protocol
mode) - R-260
SSLClientCertificatePassword - wlGlobals,

wlLocals, wiHttp property (protocol
mode) - R-260

SSLCryptoStrength - wilGlobals property
(protocol mode) - R-262

SSLUseCache - wilGlobals, wlLocals, wiHttp
property (protocol mode) - R-274

SSLVersion - wlGlobals, wlLocals, wlHttp
property (protocol mode) - R-275

StartByte - wIFTP property - R-401
state - wiMediaPlayer property - R-277
string - title property - R-279
Subject
wINNTP property - R-428
WISMTP property - R-446

WebLOAD JavaScript Reference Manual

511

Xapu|

Index

Submit - document property - R-279
tagName - cell property - R-289
target
form property - R-290
link property - R-290
Text
document property - R-291
option property - R-291
TextArea - document property - R-292
Timeout
wITCP property - R-453
wlTelnet property - R-458
wlUDP property - R-465

TimeoutSeverity - wiBrowser property - R-
293

title
Button property - R-296
Div property - R-296
document property - R-296
element property - R-296
frames property - R-296
image property - R-296
InputButton property - R-296
InputCheckbox property - R-296
link property - R-296
location property - R-296
scripts property - R-296
Span property - R-296
TableCell property - R-296
UlContainer property - R-296
window property - R-296

To
WINNTP property - R-428
wISMTP property - R-446

TransactionTime - wiBrowser property - R-
298

TransferMode - wlFTP property - R-402
type
element property - R-300
wlMediaPlayer property - R-300
Type

wlBrowser property - R-300
wlHttp.Data property - R-300
wlHttp.DataFile property - R-300
wISMTP property - R-446
URL
area property - R-303
element property - R-303
form property - R-303
frames property - R-303
image property - R-303
link property - R-303
location property - R-303
window property - R-303
wlMeta property - R-303
Url - wiGlobals property (protocol mode) -
R-303
UseHistory - wiGlobals property - R-304

UserAgent - wlGlobals, wlLocals, wiHttp
property (protocol mode) - R-306

user-defined
wlBrowser properties - R-305
wlGlobals properties - R-305
UserName
wIFTP property - R-402
wlGlobals, wlLocals, wiHttp property
(protocol mode) - R-307

wIIMAP property - R-415
WINNTP property - R-429
wIPOP property - R-438

UsingTimer - wlHttp property (protocol
mode) - R-308

value
element property - R-310
InputButton property - R-310
InputCheckbox property - R-310
InputRadio property - R-310
option property - R-310
wlHeader property - R-310
wlSearchPair property - R-310

Value - wiHttp.Data property - R-311

RadView Software

Verification - wiBrowser property - R-313,
R-316

verification test property set for wiBrowser -
R-315

Version - wlGlobals, wlLocals, wiHttp
property (protocol mode) - R-322

window (frames collection) - R-324

wlHeaders - document property (protocol
mode) - R-340

wlMetas - document property (protocol
mode) - R-346

wlSearchPairs - link and location property -
R-357

wlSource

document property (protocol mode) - R-
361

wIPOP property - R-438

wlStatusLine - document property (protocol
mode) - R-361

wliStatusNumber - document property
(protocol mode) - R-362

wlTables - document property (protocol
mode) - R-364

wlTarget - wiHttp property (protocol mode)

R-366
wlVersion - document property (protocol
mode) - R-368
wlXmls - document property - R-370
XMLDocument - wlXmls property - R-380
YesNo - wiBrowser property (dialog box) -
R-75
YesNoCancel - wiBrowser property (dialog
box) - R-75
Properties[] - wiBrowser property - R-316
protocol
image property - R-208
link and location property - R-208
Proxy - wiGlobals, wlLocals, wiHttp property
(protocol mode) - R-209
ProxyPassWord - wilGlobals, wlLocals, wiHttp
property (protocol mode) - R-209

ProxyUserName - wlGlobals, wlLocals, wiHttp
property (protocol mode) - R-209

Index

Q

Quoted flag - R-425, R-429, R-444, R-447

R

Radiobutton
document property - R-210
object - R-210
random number generator - R-355
example - R-355, P-242
Range() - wiRand method - R-211
reading input files, example - P-89
Receive()
wITCP method - R-454
wlTelnet method - R-459
wIUDP method - R-467
ReceiveMessageText
wITCP property - R-452
wlTelnet property - R-458
wIUDP property - R-465
ReceiveTimeout - wliGlobals, wlLocals, wlHttp
property (protocol mode) - R-212

RecentMessageCount() - wWIIMAP method - R-
417

redirection - detecting (protocol mode) - P-251
RedirectionLimit - wiBrowser property - R-212
References - WINNTP property - R-428
Refresh() - wiBrowser method - R-213
remote ActiveX object access - P-203
Remote Data Service (RDS) support - P-203
RemoveDir() - wlIFTP method - R-407
Rename() - wlFTP method - R-408
RenameMailbox() - wlIIMAP method - R-418
ReplyTo

WINNTP property - R-428

WISMTP property - R-446
ReportEvent() function - R-214
reporting events - R-214

WebLOAD JavaScript Reference Manual

513

Xapu|

Index

ReportLog() - wlException method - R-215

reports, for functional testing and transaction
verification - P-151

ReportUnexpectedRows - TableCompare
property - R-216

RequestedPackets - wlUDP property - R-465

RequestRetries - wiGlobals, wlLocals, wiHttp
property (protocol mode) - R-217

Reset
document property - R-218
object - R-218
Reset()
wlOutputFile method - R-219
wIPOP method - R-440
Resume() - wiMediaPlayer method - R-220
Retrieve()
wIIMAP method - R-418
wIPOP method - R-440
return codes
synchronization points - P-49
transactions - P-52, P-108
RoundNum variable - P-57, R-221
rounds
aborting - P-110
cleanup at end - P-69
example, identifying - P-58, R-146
identification number of current round - P-
57,R-221
row object
(protocol mode) - R-223
properties
cells - R-35
rowIndex - R-225
rowIndex - row property - R-225
rows
elements property - R-223
wlTable property - R-223
rules of scope - P-114

Sample Code
FTP - R-410
IMAP - R-421
NNTP - R-433
POP - R-441
SMTP - R-449
TCP - R-456
Telnet - R-460
UDP - R-468

SaveSource - wiGlobals, wlLocals, wiHttp
property (protocol mode) - R-226

SaveTransaction - wlGlobals property (protocol
mode) - R-227

SaveWSTransaction - wlGlobals property
(protocol mode) - R-228

scheduled clients - P-69
scope rules - P-114
user-defined variables - P-114
script object
properties
event - R-92
id - R-144
innerHTML - R-153
language - R-167
OnClick - R-190
src - R-255
title - R-296
scripts
collection - R-229
document property - R-229
search - link and location property - R-230
search order precedence
browser configuration properties - P-127
copy file locations - P-82
include file locations - P-80
Search() - wIIMAP method - R-418
security
during Web access - R-4

514

RadView Software

example, connecting to a secure internet
server (protocol mode) - P-254

for data transmission - P-94

for Web applications - P-91

function list - R-256

Secure HTTP (protocol mode) - R-275

secure internet server, connection example
(protocol mode) - P-254

SSLCipherSuiteCommand() function - R-258
SSLDisableCipherID() function - R-263
SSLDisableCipherName() function - R-265
SSLEnableCipherID() function - R-266
SSLEnableCipherName() function - R-267
SSLGetCipherCount() function - R-268
SSLGetCipherID() function - R-269
SSLGetCipherInfo() function - R-270
SSLGetCipherName() function - R-271
SSLGetCipherStrength() function - R-272
Seed() - wiRand method - R-231
Select
document property - R-232
object - R-232
Select() - wlRand method - R-232
selected - option property - R-233
selectedindex
element property - R-234
location property - R-234
Send()
wISMTP method - R-448
wITCP method - R-455
wlTelnet method - R-460
wIUDP method - R-467
SendCommand()
WIFTP method - R-408
wIIMAP method - R-420
WINNTP method - R-432
wIPOP method - R-441
WISMTP method - R-448
SendCounter() function - R-234
SendMeasurement() function - R-235
SendTimer() function - R-236

Index

sequence of events in Agenda execution - P-67
session ID

example comparing ASM and MSM
(protocol mode) - P-246

example using Automatic State Management
(ASM) (protocol mode) - P-244

identifying with Automatic State
Management (ASM) (protocol mode) -
P-225

Set()
wlCookie method - R-238
wlGeneratorGlobal method - R-237
wlSystemGlobal method - R-237
SetFailureReason() function - R-240, P-142
SetTimer() function - R-241
setType() - WSComplexObject method - R-242
setValue() - WSComplexObject method - R-243
SetWindow() - wiBrowser method - R-244
SevereErrorMessage() function - R-245
Shape - area property - R-246
ShowAll flag - R-258
ShowEnabled flag - R-258
Size
element property - R-247
wIFTP property - R-401
wlIMAP property - R-415
wINNTP property - R-428
wIPOP property - R-438
wISMTP property - R-446
wITCP property - R-453
wlTelnet property - R-458
wIUDP property - R-465
sleep modes - setting through wiBrowser - R-75,
R-250, R-251, R-253
Sleep() function - P-29, R-247
SleepDeviation - wiBrowser property - R-250
SleepRandomMax - wiBrowser property - R-251
SleepRandomMin - wiBrowser property - R-253
SMTP
Mail Transfer Protocol - R-444
Sample Code - R-449

WebLOAD JavaScript Reference Manual

515

Xapu|

Index

snapshots - R-280
Span
document property - R-254
object - R-254
properties
InnerText - R-156
OnClick - R-190
OnMouseOver - R-192
title - R-296
src
image property - R-255
script property - R-255
wlXmls property - R-255
SSL

example, connecting to server using SSL
(protocol mode) - P-253

supported protocols - P-94

supported protocols (protocol mode) - R-275
SSL Cipher Command Suite - R-256
SSL_AllICrypto flag - R-262
SSL_ExportCryptoOnly flag - R-262
SSL_ServerGatedCrypto flag - R-262
SSL_StrongCryptoOnly flag - R-262
SSLBitLimit - wlGlobals property (protocol

mode) - R-257
SSLCipherSuiteCommand() function - R-258

SSLClientCertificateFile - wlGlobals, wlLocals,
wlHttp property (protocol mode) - R-260

SSLClientCertificatePassword - wlGlobals,
wlLocals, wilHttp property (protocol mode) -
R-260

SSLCryptoStrength - wlGlobals property
(protocol mode) - R-262

SSLDisableCipherID() function - R-263
SSLDisableCipherName() function - R-265
SSLEnableCipherID() function - R-266
SSLEnableCipherName() function - R-267
SSLGetCipherCount() function - R-268
SSLGetCipherID() function - R-269
SSLGetCipherInfo() function - R-270
SSLGetCipherName() function - R-271

SSLGetCipherStrength() function - R-272

SSLUseCache - wiGlobals, wlLocals, wlHttp
property (protocol mode) - R-274

SSLVersion - wiGlobals, wiLocals, wiHttp
property (protocol mode) - R-275

StartByte - wlFTP property - R-401
state - wiMediaPlayer property - R-277
statistics

effect of overhead - P-144

ensuring accuracy - P-144

timer functions - P-27, R-295

use of timers - P-144
Stop() - wiMediaPlayer method - R-278
string - title property - R-279
Subject

WINNTP property - R-428

wISMTP property - R-446
Submit

document property - R-279

object - R-279
SubscribeMailbox() - wIIMAP method - R-420
SyncDOM() - wiBrowser method - R-280
synchronization points

example - R-282

return codes - P-49

SynchronizationPoint() function - P-48, R-
281

SynchronizationPoint() function - P-48, R-281

T

Table Compare Definition Wizard - P-145
table object
(protocol mode) - R-284
properties
id - R-144
TableCell object
(protocol mode) - R-285
properties
event - R-92

516

RadView Software

id - R-144
InnerImage - R-154
InnerText - R-156
OnClick - R-190
OnMouseOver - R-192
title - R-296
TableCompare
object
(protocol mode) - R-286, P-145

example using TableCompare()
constructor (protocol mode) - P-249

methods
Compare() - R-49, P-149
Prepare() - R-205, P-149
TableCompare() constructor - R-287
properties
CompareColumns - R-51, P-148
CompareRows - R-52, P-147
Details - R-72, P-146
MatchBy - R-178, P-147
ReportUnexpectedRows - R-216, P-
147

Results (WebLOAD Viewer) - P-160

Results Tree (three levels) - P-157
TableCompare() constructor - R-287
tables

CreateTable() function - R-61

expected - R-61
tagName - cell property - R-289
target

form property - R-290

link property - R-290
target frame (ASM) (protocol mode) - P-225
TCP

Sample Code - R-456

Transfer Control Protocol - R-451
Telnet - R-457

Sample Code - R-460
TerminateAgenda() function - P-68
TerminateClient() function - P-68
termination functions - P-66

Index

Text
document property - R-291
object - R-291
option property - R-291
text files - R-125, P-86
TextArea
document property - R-292
object - R-292
Thick Client Type - P-104
Thin Client Type - P-104
ThreadNum variable - P-57, R-43
threads - P-68
example, identifying clients - P-58, R-146
extra, for nested downloads (protocol mode)
-R-173, R-207
unique client number - P-57, R-43
Timeout
wITCP property - R-453
wlTelnet property - R-458
wlUDP property - R-465
TimeoutSeverity - wiBrowser property - R-293
timers - P-144
automatic, for Java class methods - P-187
complete function list - R-295
example - R-295, P-242
SendCounter() function - R-234
SendMeasurement() function - R-235
SendTimer() function - R-236
SetTimer() function - R-241
Sleep() function - R-247
zeroing - R-241
title
Button property - R-296
Div property - R-296
document property - R-296
element property - R-296
frames property - R-296
image property - R-296
InputButton property - R-296
InputCheckbox property - R-296

WebLOAD JavaScript Reference Manual

517

Xapu|

Index

link property - R-296
location property - R-296
object - R-296
properties
string - R-279
scripts property - R-296
Span property - R-296
TableCell property - R-296
UlContainer property - R-296
window property - R-296
TLS 1.0 protocol - P-94
To
WINNTP property - R-428
wISMTP property - R-446
tracking reasons for transaction failure - R-240

Transaction Failure Reason Grid (second level) -

P-153
Transaction Grid (first level) - P-152
Transaction Instance Grid (third level) - P-154
transaction verification
BeginTransaction() function - R-28, P-141
complete function list - R-297
CreateDOM() function - R-59, P-150
CreateTable() function - R-61
creating an expected DOM - P-150
Data Drilling reports - P-151
EndTransaction() function - R-85, P-141

example using TableCompare() constructor
(protocol mode) - P-249

named HTTP transactions (protocol mode) -

R-112, R-203, P-139
named navigation activities - R-97
ReportEvent() function - R-214
SetFailureReason() function - R-240, P-142
TableCompare object - P-145
VerificationFunction() (user-defined
function) - R-320, P-141
transactions
adding or defining - P-50

HTTP configuration, setting & erasing
(protocol mode) - P-116

return codes - P-52, P-108

TransactionTime - wiBrowser property - R-298
TransferMode - wlFTP property - R-402
travel agency example (protocol mode) - P-240

type
element property - R-300

wlMediaPlayer property - R-300

Type

wlBrowser property - R-300
wlHttp.Data property - R-300
wlHttp.DataFile property - R-300

wISMTP property - R-446

UDP
Sample Code - R-468

U

User Datagram Protocol - R-463

UlContainer object - R-301
properties

ContainerTag - R-55
event - R-92
id - R-144
InnerImage - R-154
InnerText - R-156
OnClick - R-190
OnMouseOver - R-192
title - R-296

UnBind() - wlUDP method - R-

467

UnsubscribeMailbox() - wlIIMAP method - R-420
Upload() - wlFTP method - R-408

UploadFile() - wIFTP method -

R-409

UploadUnique() - wIFTP method - R-409

URL
area property - R-303
element property - R-303
form property - R-303
frames property - R-303
image property - R-303

518

RadView Software

link property - R-303

location property - R-303

window property -+ R-303

wlMeta property - R-303
Url - wiGlobals property (protocol mode) - R-303
UseHistory - wiGlobals property - R-304

UserAgent - wliGlobals, wlLocals, wiHttp
property (protocol mode) - R-306

user-defined
global properties
wlBrowser properties - R-305
wlGlobals properties - R-305
global variables - P-118
limited variables - P-115
local variables - P-116
user-defined variables
global - P-121, P-123, P-125
rules of scope - P-114
UserName
wIFTP property - R-402
wlGlobals, wlLocals, wlHttp property
(protocol mode) - R-307
wIIMAP property - R-415
WINNTP property - R-429
wIPOP property - R-438
UsingTimer - wiHttp property (protocol mode) -
R-308

"4

Validate() - wiBrowser method - R-309
value
element property - R-310
InputButton property - R-310
InputCheckbox property - R-310
InputRadio property - R-310
option property - R-310
wlHeader property - R-310
wlSearchPair property - R-310
Value - wiHttp.Data property - R-311

Index

variables
ClientNum
example - P-58, R-146
identification - P-56, R-146
ClientNum - P-57, R-43
RoundNum - P-57, R-221
RoundNum
example - P-58, R-146
user-defined
global - P-118, P-121, P-123, P-125
limited - P-115
local - P-116
rules of scope - P-114
VCUniquelD() function - R-312

Verification - wiBrowser property - R-313, R-
316

verification of transactions
CreateDOM() function - R-59
CreateTable() function - R-61
named HTTP transactions (protocol mode) -
R-112, R-203, P-139
named navigation activities - R-97
ReportEvent() function - R-214
SetFailureReason() function - R-240
VerificationFunction() (user-defined
function) - R-320, P-141
verification tests - R-315, R-316
wlBrowser property set - R-315
VerificationFunction() (user-defined function) -
R-320, P-141
Verify() - wISMTP method - R-449

Version - wlGlobals, wlLocals, wlHttp property
(protocol mode) - R-322

Virtual Clients - P-9
VCUniquelD() function - R-312
visual set (ASM) (protocol mode) - P-225

w

WarningMessage() function - R-323

WebLOAD JavaScript Reference Manual

519

Xapu|

Index

web page illustration (protocol mode) - P-220
Web Services - P-31, R-374, R-378, P-207
WebLOAD Internet Productivity Pack - P-214
error handling - P-214
WebServices
functions
WSGetSimpleValue() - R-376
WebServices Wizard - P-31
window
frames property - R-324
object - R-324
methods
wlClose() - R-329
properties
document - R-79
frames - R-107
location - R-176
Name - R-184
title - R-296
URL - R-303
Windows NT Challenge Response protocol
authentication (protocol mode) - R-187
wizards
Form Data Wizard - P-36
Page Verification Wizard - P-135
Table Compare Definition Wizard - P-145
WebServices Wizard - P-31
WLAfterInitAgenda flag - R-90
WLAfterRound flag - R-90
WLA(fterTerminateAgenda flag - R-90
WLA fterTerminateClient flag - R-90
WLAIIAgendas flag - R-21, R-110, R-237, P-
123, P-125
WLBeforelnitClient flag - R-90
WLBeforeRound flag - R-90
WLBeforeThreadActivation flag - R-90
wlBrowser object - R-325
dialog box
properties, complete list - R-73
Dynamic Object Recognition (DOR)
properties - R-81

methods
AutoNavigate() - R-26
Back() - R-27
ExpectNavigation() - R-97
FindObject() - R-102
Forward() - R-106
Navigate() - R-186
Refresh() - R-213
SetWindow() - R-244
SyncDOM() - R-280
Validate() - R-309
properties
Alert (dialog box) - R-75
ClientAuthentication (dialog box) - R-75
ClientCertificate (dialog box) - R-75
Confirm (dialog box) - R-75
Cookie (dialog box) - R-75
Dialog box property set - R-73
DisableSleep - R-75
ExceptionEnabled - R-92
FtpAuthentication (dialog box) - R-75
ObjectProperty - R-189
Ok (dialog box) - R-75
OkCancel (dialog box) - R-75
Outfile - R-197
Prompt (dialog box) - R-75
Properties[] - R-316
RedirectionLimit - R-212
SleepDeviation - R-250
SleepRandomMax - R-251
SleepRandomMin - R-253
TimeoutSeverity - R-293
TransactionTime - R-298
Type - R-300
user-defined - R-305
Verification - R-313, R-316
verification test property set - R-315
YesNo (dialog box) - R-75
YesNoCancel (dialog box) - R-75
verification test properties - R-315

520

RadView Software

wlClear() - wiHttp method (protocol mode) - R-
328

wIClick() - input object method - R-326
wlClose() - window method - R-329

wlContent-Type - wiHttp.FormData property
(protocol mode) - P-231

wlCookie object - R-330, P-238
example - R-331, P-239
methods
ClearAll() - R-40
Delete() - R-70
Set() - R-238
WLCurrentAgenda flag - R-21, R-110, R-237, P-
123, P-125
WLETrror flag - P-49, P-52, R-86, R-133, R-281,
R-294, R-309, R-320, R-333, P-108
wlException object - R-332, P-109
methods
GetMessage() - R-129
GetSeverity() - R-133
ReportLog() - R-215
wlException() constructor - R-333
wlException() constructor - R-333
WLExecuteScript flag - R-150

wlFile-Name - wlHttp.FormData property
(protocol mode) - P-231

wIFTP object - R-400
methods

Append() - R-402
AppendFile() - R-403
ChangeDir() - R-403
ChFileMod() - R-403
ChMod() - R-404
Delete() - R-404
DeleteFile() - R-404
Dir() - R-405
Download() - R-405
DownloadFile() - R-405
GetCurrentPath() - R-406
GetStatusLine() - R-406
ListLocalFiles() - R-406

Index

Logoff() - R-407

Logon() - R-407

MakeDir() - R-407

RemoveDir() - R-407

Rename() - R-408

SendCommand() - R-408

Upload() - R-408

UploadFile() - R-409

UploadUnique() - R-409

WLFtp() constructor - R-409

properties

Data - R-400

DataFile - R-400

document - R-400

Outfile - R-401

PassiveMode - R-401

PassWord - R-401

Size - R-401

StartByte - R-401

TransferMode - R-402

UserName - R-402
WLFtp() constructor - R-409
wlGeneratorGlobal object - R-334, P-123

methods

Add() - R-21

Get() - R-110

Set() - R-237

wlGet() - data collections method (protocol
mode) - R-335

wlGetAllForms() - document method (protocol
mode) - R-337

wlGetAllFrames() - document method (protocol
mode) - R-337

wlGetAllLinks() - document method (protocol
mode) - R-338

wlGlobals object - P-119
(protocol mode) - R-339
Browser configuration

property set - R-31
example

WebLOAD JavaScript Reference Manual

521

Xapu|

Index

connecting to secure server (protocol
mode) - P-254

setting configuration properties (protocol
mode) - P-253

properties

Browser configuration property set - R-
31

BrowserCache (protocol mode) - R-33

ConnectionSpeed (protocol mode) - R-54

DefaultAuthentication (protocol mode) -
R-66

DNSUseCache (protocol mode) - R-78

HistoryLimit - R-140

KeepAlive (protocol mode) - R-165

LoadGeneratorThreads (protocol mode) -
R-173

MultilPSupport (protocol mode) - R-183
NTPassWord (protocol mode) - R-187
NTUserName (protocol mode) - R-187
PassWord (protocol mode) - R-198

ProbingClientThreads (protocol mode) -
R-207

Proxy (protocol mode) - R-209
ProxyPassWord (protocol mode) - R-209

ProxyUserName (protocol mode) - R-
209

ReceiveTimeout (protocol mode) - R-212
RequestRetries (protocol mode) - R-217
SaveSource (protocol mode) - R-226

SaveTransaction (protocol mode) - R-
227

SaveWSTransaction (protocol mode) -
R-228

SSLBitLimit (protocol mode) - R-257

SSLClientCertificateFile (protocol
mode) - R-260

SSLClientCertificatePassword (protocol
mode) - R-260

SSLCryptoStrength (protocol mode) - R-
262

SSLUseCache (protocol mode) - R-274
SSLVersion (protocol mode) - R-275

Url (protocol mode) - R-303
UseHistory - R-304

UserAgent (protocol mode) - R-306
user-defined - R-305

UserName (protocol mode) - R-307
Version (protocol mode) - R-322

wlHeader object

(protocol mode) - R-340
example (protocol mode) - R-341, P-255
properties

key - R-166

value - R-310

wlHeaders

collection - R-341

document property (protocol mode) - R-340
wlHtml object

(protocol mode) - R-342

example (protocol mode) - P-223

methods
GetFieldValue() - R-115
GetFieldValuelnForm() - R-116
GetFormAction() - R-117
GetFrameByUrl() - R-118
GetFrameUrl() - R-119
GetHeaderValue() - R-120
GetHost() - R-121
GetHostName() - R-122
GetLinkByName() - R-127
GetLinkByUrl() - R-128
GetPortNum() - R-131
GetQSFieldValue() - R-132
GetStatusLine() - R-134
GetStatusNumber() - R-135
GetUri() - R-136

wlHttp object - P-115

(protocol mode) - R-343
Automatic State Management (ASM)

properties (protocol mode) - R-25, P-225

Browser configuration
property set - R-31

522

RadView Software

data submission properties (protocol mode) -

P-229

example

connecting with SSL (protocol mode) -
P-253

setting configuration properties (protocol
mode) - P-253

methods

ClearDNSCache() - R-41
ClearSSLCache() - R-42
CloseConnection() - R-46
Get() - R-111
GetCurrentValue() - R-114
GetIPAddress() - R-123
Head() - R-138
IdentifyObject(- R-147
Post() - R-202

wliClear() - R-328

properties

Browser configuration property set - R-
31

BrowserCache (protocol mode) - R-33

Data (protocol mode) - R-63, P-232

DataFile (protocol mode) - R-65, P-233

DefaultAuthentication (protocol mode) -
R-66

DNSUseCache (protocol mode) - R-78

Erase (protocol mode) - R-87, P-234

ExpectedDocument (protocol mode) - R-
93

ExpectedDOMID (protocol mode) - R-
94

ExpectedID (protocol mode) - R-95

ExpectedLocation (protocol mode) - R-
95

ExpectedName (protocol mode) - R-96
ExpectedText (protocol mode) - R-97
FormData

missing fields (protocol mode) - P-
230

using Get() (protocol mode) - R-105,
P-229

Index

using Post() (protocol mode) - R-
105, P-230

working with data files (protocol
mode) - P-231
Header (protocol mode) - R-138, P-233
KeepAlive (protocol mode) - R-165
LoadGeneratorThreads (protocol mode) -
R-173
MultilPSupport (protocol mode) - R-183
NTPassWord (protocol mode) - R-187
NTUserName (protocol mode) - R-187
PassWord (protocol mode) - R-198
ProbingClientThreads (protocol mode) -
R-207
Proxy (protocol mode) - R-209
ProxyPassWord (protocol mode) - R-209

ProxyUserName (protocol mode) - R-
209

ReceiveTimeout (protocol mode) - R-212
RequestRetries (protocol mode) - R-217
SaveSource (protocol mode) - R-226

SSLClientCertificateFile (protocol
mode) - R-260

SSLClientCertificatePassword (protocol
mode) - R-260

SSLUseCache (protocol mode) - R-274
SSLVersion (protocol mode) - R-275
UserAgent (protocol mode) - R-306
UserName (protocol mode) - R-307
UsingTimer (protocol mode) - R-308
Version (protocol mode) - R-322
wlTarget (protocol mode) - R-366

wlHttp.Data object
properties

Type - R-300
Value - R-311

wlHttp.DataFile object
properties

FileName - R-101
Type - R-300

wlIMAP object - R-413

WebLOAD JavaScript Reference Manual

523

Xapu|

methods

Connect() - R-415
CreateMailbox() - R-416
Delete() - R-416
DeleteMailbox() - R-416
Disconnect() - R-416
GetMessageCount() - R-417
GetStatusLine() - R-417
ListMailboxes() - R-417
RecentMessageCount() - R-417
RenameMailbox() - R-418
Retrieve() - R-418

Search() - R-418
SendCommand() - R-420
SubscribeMailbox() - R-420
UnsubscribeMailbox() - R-420
WLImap() constructor - R-420

properties

CurrentMessage - R-413
CurrentMessagelD - R-413
document - R-413
Mailbox - R-414
MaxLines - R-414

Outfile - R-414

PassWord - R-415

DNSUseCache (protocol mode) - R-78
KeepAlive (protocol mode) - R-165
LoadGeneratorThreads (protocol mode) -
R-173
MultilPSupport (protocol mode) - R-183
NTPassWord (protocol mode) - R-187
NTUserName (protocol mode) - R-187
PassWord (protocol mode) - R-198
ProbingClientThreads (protocol mode) -
R-207
Proxy (protocol mode) - R-209
ProxyPassWord (protocol mode) - R-209

ProxyUserName (protocol mode) - R-
209

ReceiveTimeout (protocol mode) - R-212
RequestRetries (protocol mode) - R-217
SaveSource (protocol mode) - R-226
SSLClientCertificateFile (protocol
mode) - R-260
SSLClientCertificatePassword (protocol
mode) - R-260
SSLUseCache (protocol mode) - R-274
SSLVersion (protocol mode) - R-275
UserAgent (protocol mode) - R-306
UserName (protocol mode) - R-307
Version (protocol mode) - R-322

Size - R-415 wlMediaPlayer object - R-344
UserName - R-415

WLImap() constructor - R-420

methods
OpenStream() - R-194

WLLoadChanged flag - P-49, R-281 Pause() - R-200
wlLocals object - P-117 Play() - R-200
(protocol mode) - R-343 Resume() - R-220
Browser configuration Stop() - R-278
property set - R-31 wlMediaPlayer() constructor - R-345

example, setting configuration properties

properties
(pr9tocol mode) - P-253 bitrate - R-30
properties _ connectionBandwidth - R-53
Bm\;}?er configuration property set - R- currentPosition - R-62

currentStreamName - R-63

DefaultAuthentication (protocol mode) - duration - R-80
R-66 fileName - R-101

BrowserCache (protocol mode) - R-33

524 RadView Software

state - R-277
type - R-300
wlMediaPlayer() constructor - R-345
wlMeta object
(protocol mode) - R-346
properties
content - R-56
httpEquiv - R-143
Name - R-184
URL - R-303
wlMetas
collection - R-346

document property (protocol mode) - R-346
WLMinorError flag - P-52, R-86, R-294, R-309,

R-320, P-108

wlMouseDown() - input object method - R-347
wIMouseOver() - input object method - R-348
wlMouseUp() - input object method - R-349
wlMultiSelect() - input object method - R-350

WwINNTP object - R-425

methods
AddAttachment() - R-429
Connect() - R-429
DeleteAttachment() - R-430
Disconnect() - R-430
GetArticle() - R-430
GetArticleCount() - R-431
GetStatusLine() - R-431
GroupOverview() - R-431
ListGroups() - R-431
PostArticle() - R-432
SendCommand() - R-432
WLNntp() constructor - R-433

properties
ArticleText - R-425
Attachments - R-425
AttachmentsEncoding - R-425
AttachmentsTypes - R-426
document - R-426
From - R-427

Group - R-427

MaxHeadersLength - R-427

Organization - R-427

Outfile - R-427

PassWord - R-427

References - R-428

ReplyTo - R-428

Size - R-428

Subject - R-428

To - R-428

UserName - R-429
WLNntp() constructor - R-433
WLOnThreadActivation flag - R-90
wlOutputFile object - R-351, P-83

methods

Close() - R-45

delete() - R-70

Open() - R-193

Reset() - R-219

wlOutputFile() constructor - R-354

Write() - R-372
Writeln() - R-373
wlOutputFile() constructor - R-354
wIPOP object - R-436
methods
Connect() - R-438
Delete() - R-439
Disconnect() - R-439

GetCurrentMessagelD() - R-439

GetMailboxSize() - R-439

GetMessageCount() - R-440

GetStatusLine() - R-440
Reset() - R-440
Retrieve() - R-440
SendCommand() - R-441

WLPop() constructor - R-441

properties
AutoDelete - R-436
document - R-436
Headers[] - R-437

Index

WebLOAD JavaScript Reference Manual

525

Xapu|

Index

MaxLines - R-437
Outfile - R-437
PassWord - R-437
Size - R-438
UserName - R-438
wlSource - R-438
WLPop() constructor - R-441
wlRand object - R-355
example - R-355
methods
Num() - R-188
Range() - R-211
Seed() - R-231
Select() - R-232
WLRandom flag - R-124, R-193, P-86
wlSearchPair object - R-356
example - R-357
properties
key - R-166
value - R-310
wlSearchPairs
collection - R-357
link and location property - R-357
wlSelect() - input object method - R-358
WLSequential flag - R-124, R-193, P-86
wlSet() - data collections method (protocol
mode) - R-359
WLSevereError flag - P-52, R-86, R-133, R-294,
R-309, R-320, R-333, P-108
wISMTP object - R-444
methods
AddAttachment() - R-447
Connect() - R-447
DeleteAttachment() - R-448
Disconnect() - R-448
Send() - R-448
SendCommand() - R-448
Verify() - R-449
WLSmtp() constructor - R-449
properties
Attachments - R-444

AttachmentsEncoding - R-444
AttachmentsTypes - R-445
Bcc - R-445
Cc - R-445
From - R-445
Message - R-446
ReplyTo - R-446
Size - R-446
Subject - R-446
To - R-446
Type - R-446
WLSmtp() constructor - R-449
wlSource
document property (protocol mode) - R-361
wIPOP property - R-438
wlStatusLine - document property (protocol
mode) - R-361
wlStatusNumber - document property (protocol
mode) - R-362
wliSubmit() - form method - R-362
WLSuccess flag - P-49, P-52, R-86, R-281, R-
294, R-309, R-320, P-108
wlSystemGlobal object - R-363, P-125
methods
Add() - R-21
Get() - R-110
Set() - R-237
wlTable object
(protocol mode) - R-364
properties
cells - R-35
cols - R-48
id - R-144
rows - R-223
wlTables
collection - R-364
document property (protocol mode) - R-364

wlTarget - wiHttp property (protocol mode) - R-
366

wITCP object - R-451
methods

526

RadView Software

Connect() - R-453
Disconnect() - R-454
Erase() - R-454
Receive() - R-454
Send() - R-455
WLTcp() constructor - R-455
properties
document - R-451
InBufferSize - R-451
LocalPort - R-451
NextPrompt - R-452
NextSize - R-452
OutBufferSize - R-452
Outfile - R-452
ReceiveMessageText - R-452
Size - R-453
Timeout - R-453
WLTcp() constructor + R-455
wlTelnet object - R-457
methods
Connect() - R-459
Disconnect() - R-459
Erase() - R-459
Receive() - R-459
Send() - R-460
WLTelnet() constructor - R-460
properties
document - R-457
NextPrompt - R-457
Outfile - R-457
ReceiveMessageText - R-458
Size - R-458
Timeout - R-458
WLTelnet() constructor - R-460
WLTimeout flag - P-49, R-281
wlTypeln() - input object method - R-367
wlUDP object - R-463
methods
Bind() - R-466
Broadcast() - R-466

Index

Erase() - R-466
Receive() - R-467
Send() - R-467
UnBind() - R-467
WLUdp() constructor - R-468
properties
document - R-463
InBufferSize - R-463
LocalHost - R-463
LocalPort - R-464
MaxDatagramSize - R-464
NumOfResponses - R-464
OutBufferSize - R-464
Outfile - R-464
ReceiveMessageText - R-465
RequestedPackets - R-465
Size - R-465
Timeout - R-465
WLUdp() constructor - R-468
wlVersion - document property (protocol mode) -
R-368
WLXmIDocument() - wiXmls constructor - R-
369, P-173, P-174
wlXmls
collection - R-371
document property - R-370
object - R-370
methods
load() - R-171
loadXML() - R-175

WLXmlIDocument() constructor - R-
369

properties
id - R-144
innerHTML - R-153
src - R-255
XMLDocument - R-380

working with session IDs, example using
Automatic State Management (ASM)
(protocol mode) - P-246

Write() - wlOutputFile method - R-372

WebLOAD JavaScript Reference Manual

527

Xapu|

Index

Writeln() - wlOutputFile method - R-373
WSComplexObject object - R-374
methods
addProperty() - R-22
setType() - R-242
setValue() - R-243
WSComplexObject() constructor - R-375
WSComplexObject() constructor - R-375
WSDL file - R-374, R-378
WSGetSimpleValue()
function - R-376
WSWebService object - R-378
methods
WSWebService() constructor - R-379
WSWebService() constructor - R-379

X

XML DOM
Data Islands - P-163
DTD in an XML document - P-178

example
building a complete database - P-176
Data Island use - P-167
HTML property use - R-371
Native Browsing - P-173
object - P-163
methods
load() - P-175
loadXML() - P-175

WLXmIDocument() constructor - P-
173, P-174

object construction - P-173
working with - P-162
XMLDocument - wlXmls property - R-380

Y

YesNo - wiBrowser property (dialog box) - R-75

YesNoCancel - wiBrowser property (dialog box)
-R-75

528

RadView Software

WebLOAD JavaScript Reference Manual 529

	WebLOAD JavaScript Reference Manual
	Table of Contents
	Object Model Table List
	How to use this book
	Before you begin
	About this guide
	WebLOAD documentation

	Where to Get More Information
	On-line Help
	Technical Support
	Technical Support Web Site

	Chapter 1 - Introduction to JavaScript Agendas
	1.1What are Agendas?
	1.2WebLOAD Agendas work with an extended version of the standard DOM
	1.2.1What is the Document Object Model?
	1.2.2Understanding the DOM structure
	1.2.3DOM objects commonly used in an Agenda
	1.2.4WebLOAD extension set

	1.3When would I edit the JavaScript in my Agendas?
	1.4Accessing Agenda components
	1.5Editing the JavaScript code in an Agenda
	1.5.1Accessing the JavaScript code within the Agenda Tree
	1.5.2Using the IntelliSense JavaScript Editor

	Chapter 2 - WebLOAD Actions, Objects, and Functions
	action (property)
	Actions
	Add() (method)
	addProperty() (method)
	AdjacentText (property)
	Alt (property)
	area (object)

	Automatic State Management for HTTP Protocol Mode
	AutoNavigate() (action)
	Back() (action)
	BeginTransaction() (function)
	bitrate (property)

	Browser configuration components
	BrowserCache (property)
	Button (object)
	cell (object)
	cellIndex (property)
	Checkbox (object)
	checked (property)
	ClearAll() (method)
	ClearDNSCache() (method)
	ClearSSLCache() (method)
	ClientNum (variable)
	Close() (function)
	CloseConnection() (method)

	Collections
	cols (property)
	Compare() (method)
	CompareColumns (property)
	CompareRows (property)
	connectionBandwidth (property)
	ConnectionSpeed (property)
	ContainerTag (property)
	ContainingMap (property)
	content (property)
	Coords (property)
	CopyFile() (function)
	CreateDOM() (function)
	CreateTable() (function)
	currentPosition (property)
	currentStreamName (property)
	Data (property)
	DataFile (property)
	DefaultAuthentication (property)
	defaultchecked (property)
	defaultselected (property)
	defaultvalue (property)
	delete() (method)
	Details (property)

	Dialog box properties
	DisableSleep (property)
	Div (object)
	DNSUseCache (property)
	document (object)
	duration (property)

	Dynamic Object Recognition (DOR) components
	element (object)
	encoding (property)
	EndTransaction() (function)
	Erase (property)
	ErrorMessage() (function)
	EvaluateScript() (function)
	event (property)
	ExceptionEnabled (property)
	ExpectedDocument (property)
	ExpectedDOMID (property)
	ExpectedID (property)
	ExpectedLocation (property)
	ExpectedName (property)
	ExpectedText (property)
	ExpectNavigation() (method)
	File (object)

	File management functions
	fileName (property)
	FindObject() (method)
	form (object)
	FormData (property)
	Forward() (action)
	frames (object)
	GeneratorName() (function)
	Get() (method)
	Get() (addition method)
	Get() (transaction method)

	GetCurrentValue() (method)
	GetFieldValue() (method)
	GetFieldValueInForm() (method)
	GetFormAction() (method)
	GetFrameByUrl() (method)
	GetFrameUrl() (method)
	GetHeaderValue() (method)
	GetHost() (method)
	GetHostName() (method)
	GetIPAddress() (method)
	GetLine() (function)
	GetLinkByName() (method)
	GetLinkByUrl() (method)
	GetMessage() (method)
	GetOperatingSystem() (function)
	GetPortNum() (method)
	GetQSFieldValue() (method)
	GetSeverity() (method)
	GetStatusLine() (method)
	GetStatusNumber() (method)
	GetUri() (method)
	hash (property)
	Head() (method)
	Header (property)
	HistoryLimit (property)
	host (property)
	hostname (property)
	href (property)
	httpEquiv (property)
	id (property)

	Identification variables and functions
	IdentifyObject() (method)
	Image (object)
	IncludeFile() (function)
	Index (property)
	InfoMessage() (function)
	InnerHTML (property)
	InnerImage (property)
	InnerLink (property)
	InnerText (property)
	InputButton (object)
	InputCheckbox (object)
	InputFile (object)
	InputImage (object)
	InputPassword (object)
	InputRadio (object)
	InputText (object)
	KeepAlive (property)
	key (property)
	language (property)
	length (property)
	link (object)
	load() (method)
	load() and loadXML() method comparison
	LoadGeneratorThreads (property)
	loadXML() (method)
	location (object)
	map (object)
	MatchBy (property)
	MaxLength (property)

	Message functions
	method (property)
	MultiIPSupport (property)
	Name (property)
	Navigate() (action)
	NTUserName, NTPassWord (properties)
	Num() (method)
	ObjectProperty[] (property)

	Objects
	OnClick (property)
	OnMouseOver (property)
	Open() (function)
	OpenStream() (method)
	option (object)
	OuterLink (property)
	Outfile (property)
	PassWord (property)
	pathname (property)
	Pause() (method)
	Play() (method)
	port (property)
	Post() (method)
	Prepare() (method)
	ProbingClientThreads (property)
	protocol (property)
	Proxy, ProxyUserName, ProxyPassWord (properties)
	Radiobutton (object)
	Range() (method)
	ReceiveTimeout (property)
	RedirectionLimit (property)
	Refresh() (action)
	ReportEvent() (function)
	ReportLog() (method)
	ReportUnexpectedRows (property)
	RequestRetries (property)
	Reset
	Reset (object)
	Reset() (method)

	Resume() (method)
	RoundNum (variable)
	row (object)
	rowIndex (property)
	SaveSource (property)
	SaveTransaction (property)
	SaveWSTransaction (property)
	script (object)
	search (property)
	Seed() (method)
	Select
	Select (object)
	Select() (method)

	selected (property)
	selectedindex (property)
	SendCounter() (function)
	SendMeasurement() (function)
	SendTimer() (function)
	Set() (method)
	Set() (addition method)
	Set() (cookie method)

	SetFailureReason() (function)
	SetTimer() (function)
	setType() (method)
	setValue() (method)
	SetWindow() (action)
	SevereErrorMessage() (function)
	Shape (property)
	Size (property)
	Sleep() (function)
	SleepDeviation (property)
	SleepRandomMax (property)
	SleepRandomMin (property)
	Span (object)
	src (property)

	SSL Cipher Command Suite
	SSLBitLimit (property)
	SSLCipherSuiteCommand() (function)
	SSLClientCertificateFile, SSLClientCertificatePassword (properties)
	SSLCryptoStrength (property)
	SSLDisableCipherID() (function)
	SSLDisableCipherName() (function)
	SSLEnableCipherID() (function)
	SSLEnableCipherName() (function)
	SSLGetCipherCount() (function)
	SSLGetCipherID() (function)
	SSLGetCipherInfo() (function)
	SSLGetCipherName() (function)
	SSLGetCipherStrength() (function)
	SSLUseCache (property)
	SSLVersion (property)
	state (property)
	Stop() (method)
	string (property)
	Submit (object)
	SyncDOM() (method)
	SynchronizationPoint() (function)
	table (object)
	TableCell (object)
	TableCompare (object)
	TableCompare() (constructor)
	tagName (property)
	target (property)
	text (property)
	TextArea (object)
	TimeoutSeverity (property)

	Timing functions
	title (property)

	Transaction verification components
	TransactionTime (property)
	type (property)
	UIContainer (object)
	Url (property)
	UseHistory (property)
	User-defined global properties
	UserAgent (property)
	UserName (property)
	UsingTimer (property)
	Validate() (method)
	value (property)
	VCUniqueID() (function)
	Verification (property)

	Verification Test Components
	Verification Test Property List: Global and Page Level
	VerificationFunction() (user-defined) (function)
	Version (property)
	WarningMessage() (function)
	window (object)
	wlBrowser (object)
	wlClick() (action)
	wlClear() (method)
	wlClose() (action)
	wlCookie (object)
	wlException (object)
	wlException() (constructor)
	wlGeneratorGlobal (object)
	wlGet() (method)
	wlGetAllForms() (method)
	wlGetAllFrames() (method)
	wlGetAllLinks() (method)
	wlGlobals (object)
	wlHeader (object)
	wlHtml (object)
	wlHttp (object)
	wlLocals (object)
	wlMediaPlayer (object)
	wlMediaPlayer() (constructor)
	wlMeta (object)
	wlMouseDown() (action)
	wlMouseOver() (action)
	wlMouseUp() (action)
	wlMultiSelect() (action)
	wlOutputFile (object)
	wlOutputFile() (constructor)
	wlRand (object)
	wlSearchPair (object)
	wlSelect() (action)
	wlSet() (method)
	wlSource (property)
	wlStatusLine (property)
	wlStatusNumber (property)
	wlSubmit() (action)
	wlSystemGlobal (object)
	wlTable (object)
	wlTarget (property)
	wlTypeIn() (action)
	wlVersion (property)
	WLXmlDocument() (constructor)
	wlXmls (object)
	Write() (method)
	Writeln() (method)
	WSComplexObject (object)
	WSComplexObject() (constructor)
	WSGetSimpleValue() (function)
	WSWebService (object)
	WSWebService() (constructor)
	XMLDocument (property)

	Appendix A - WebLOAD-supported SSL Protocol Versions
	SSL handshake combinations
	SSL protocols—complete list
	128-bit encryption
	56-bit encryption
	40-bit encryption
	0-bit encryption

	Appendix B - WebLOAD-supported XML DOM Interfaces
	Table B-1: XML Document Interface Properties
	Table B-2: XML Document Interface Methods
	Table B-3: Node Interface Properties
	Table B-4: Node Interface Methods
	Table B-5: Node List Interface
	Table B-6: NamedNodeMap Interface
	Table B-7: ParseError Interface
	Table B-8: Implementation Interface

	Appendix C - WebLOAD Internet Protocols Reference
	wlFTP Object
	wlFTP Properties
	Data
	DataFile
	document
	Outfile
	PassiveMode
	PassWord
	Size
	StartByte
	TransferMode
	UserName

	wlFTP Methods
	Append()
	AppendFile()
	ChangeDir()
	ChFileMod()
	ChMod()
	Delete()
	DeleteFile()
	Dir()
	Download()
	DownloadFile()
	GetCurrentPath()
	GetStatusLine()
	ListLocalFiles()
	Logoff()
	Logon()
	MakeDir()
	RemoveDir()
	Rename()
	SendCommand()
	Upload()
	UploadFile()
	UploadUnique()
	WLFtp()

	FTP Sample Code

	wlIMAP Object
	wlIMAP Properties
	CurrentMessage
	CurrentMessageID
	document
	Mailbox
	MaxLines
	Outfile
	PassWord
	Size
	UserName

	wlIMAP Methods
	Connect()
	CreateMailbox()
	Delete()
	DeleteMailbox()
	Disconnect()
	GetMessageCount()
	GetStatusLine()
	ListMailboxes()
	RecentMessageCount()
	RenameMailbox()
	Retrieve()
	Search()
	SendCommand()
	SubscribeMailbox()
	UnsubscribeMailbox()
	WLImap()

	IMAP Sample Code

	wlNNTP Object
	wlNNTP Properties
	ArticleText
	Attachments
	AttachmentsEncoding
	AttachmentsTypes
	document
	From
	Group
	MaxHeadersLength
	Organization
	Outfile
	PassWord
	References
	ReplyTo
	Size
	Subject
	To
	UserName

	wlNNTP Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	GetArticle()
	GetArticleCount()
	GetStatusLine()
	GroupOverview()
	ListGroups()
	PostArticle()
	SendCommand()
	WLNntp()

	NNTP Sample Code

	wlPOP Object
	wlPOP Properties
	AutoDelete
	document
	Headers[]
	MaxLines
	Outfile
	PassWord
	Size
	UserName
	wlSource

	wlPOP Methods
	Connect()
	Delete()
	Disconnect()
	GetCurrentMessageID()
	GetMailboxSize()
	GetMessageCount()
	GetStatusLine()
	Reset()
	Retrieve()
	SendCommand()
	WLPop()

	POP Sample Code

	wlSMTP Object
	wlSMTP Properties
	Attachments
	AttachmentsEncoding
	AttachmentsTypes
	Bcc
	Cc
	From
	Message
	ReplyTo
	Size
	Subject
	To
	Type

	wlSMTP Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	Send()
	SendCommand()
	Verify()
	WLSmtp()

	SMTP Sample Code

	wlTCP Object
	wlTCP Properties
	document
	InBufferSize
	LocalPort
	NextPrompt
	NextSize
	OutBufferSize
	Outfile
	ReceiveMessageText
	Size
	Timeout

	wlTCP Methods
	Connect()
	Disconnect()
	Erase()
	Receive()
	Send()
	WLTcp()

	TCP Sample Code

	wlTelnet Object
	wlTelnet Properties
	document
	NextPrompt
	Outfile
	ReceiveMessageText
	Size
	Timeout

	wlTelnet Methods
	Connect()
	Disconnect()
	Erase()
	Receive()
	Send()
	WLTelnet()

	Telnet Sample Code

	wlUDP Object
	wlUDP Properties
	document
	InBufferSize
	LocalHost
	LocalPort
	MaxDatagramSize
	NumOfResponses
	OutBufferSize
	Outfile
	ReceiveMessageText
	RequestedPackets
	Size
	Timeout

	wlUDP Methods
	Bind()
	Broadcast()
	Erase()
	Receive()
	Send()
	UnBind()
	WLUdp()

	UDP Sample Code

	Appendix D - HTTP Protocol Status Messages
	D.1Informational 1XX
	D.2Success 2XX
	D.3Redirection 3XX
	D.4Client Error 4XX
	D.5Server Error 5XX

	Index

