Java线程堆栈分析

发表于:2017-12-13 10:03

字体: | 上一篇 | 下一篇 | 我要投稿

 作者:ccgogoing    来源:简书

  不知觉间工作已有一年了,闲下来的时候总会思考下,作为一名Java程序员,不能一直停留在开发业务使用框架上面。老话说得好,机会是留给有准备的人的,因此,开始计划看一些Java底层一点的东西,尝试开始在学习的过程中写博客,希望和大家一起交流学习。
  写在前面: 线程堆栈应该是多线程类应用程序非功能问题定位的最有效手段,可以说是杀手锏。线程堆栈最擅长与分析如下类型问题:
  · 系统无缘无故CPU过高。
  · 系统挂起,无响应。
  · 系统运行越来越慢。
  · 性能瓶颈(如无法充分利用CPU等)
  · 线程死锁、死循环,饿死等。
  · 由于线程数量太多导致系统失败(如无法创建线程等)。
  如何解读线程堆栈
  如下面一段Java源代码程序:
package org.ccgogoing.study.stacktrace;
/**
* @Author: LuoChong400
* @Description: 测试线程
* @Date: Create in 07:27 PM 2017/12/08
*/
public class MyTest {
Object obj1 = new Object();
Object obj2 = new Object();
public void fun1() {
synchronized (obj1) {
fun2();
}
}
public void fun2() {
synchronized (obj2) {
while (true) { //为了打印堆栈,该函数堆栈分析不退出
System.out.print("");
}
}
}
public static void main(String[] args) {
MyTest aa = new MyTest();
aa.fun1();
}
}
  在Idea 中运行该程序,然后按下CTRL+BREAK键,打印出线程堆栈信息如下:
Full thread dump Java HotSpot(TM) 64-Bit Server VM (24.79-b02 mixed mode):
"Service Thread" daemon prio=6 tid=0x000000000c53b000 nid=0xca58 runnable [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C2 CompilerThread1" daemon prio=10 tid=0x000000000c516000 nid=0xd390 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C2 CompilerThread0" daemon prio=10 tid=0x000000000c515000 nid=0xcbac waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Monitor Ctrl-Break" daemon prio=6 tid=0x000000000c514000 nid=0xd148 runnable [0x000000000caee000]
java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java:152)
at java.net.SocketInputStream.read(SocketInputStream.java:122)
at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:283)
at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:325)
at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:177)
- locked <0x00000000d7858b50> (a java.io.InputStreamReader)
at java.io.InputStreamReader.read(InputStreamReader.java:184)
at java.io.BufferedReader.fill(BufferedReader.java:154)
at java.io.BufferedReader.readLine(BufferedReader.java:317)
- locked <0x00000000d7858b50> (a java.io.InputStreamReader)
at java.io.BufferedReader.readLine(BufferedReader.java:382)
at com.intellij.rt.execution.application.AppMainV2$1.run(AppMainV2.java:64)
"Attach Listener" daemon prio=10 tid=0x000000000ad4a000 nid=0xd24c runnable [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Signal Dispatcher" daemon prio=10 tid=0x000000000c1a8800 nid=0xd200 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Finalizer" daemon prio=8 tid=0x000000000ace6000 nid=0xcd74 in Object.wait() [0x000000000c13f000]
java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x00000000d7284858> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:135)
- locked <0x00000000d7284858> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:151)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)
"Reference Handler" daemon prio=10 tid=0x000000000ace4800 nid=0xce34 in Object.wait() [0x000000000bf4f000]
java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x00000000d7284470> (a java.lang.ref.Reference$Lock)
at java.lang.Object.wait(Object.java:503)
at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:133)
- locked <0x00000000d7284470> (a java.lang.ref.Reference$Lock)
"main" prio=6 tid=0x000000000238e800 nid=0xc940 runnable [0x00000000027af000]
java.lang.Thread.State: RUNNABLE
at org.ccgogoing.study.stacktrace.MyTest.fun2(MyTest.java:22)
- locked <0x00000000d77d50c8> (a java.lang.Object)
at org.ccgogoing.study.stacktrace.MyTest.fun1(MyTest.java:15)
- locked <0x00000000d77d50b8> (a java.lang.Object)
at org.ccgogoing.study.stacktrace.MyTest.main(MyTest.java:29)
"VM Thread" prio=10 tid=0x000000000ace1000 nid=0xd0a8 runnable
"GC task thread#0 (ParallelGC)" prio=6 tid=0x00000000023a4000 nid=0xd398 runnable
"GC task thread#1 (ParallelGC)" prio=6 tid=0x00000000023a5800 nid=0xcc20 runnable
"GC task thread#2 (ParallelGC)" prio=6 tid=0x00000000023a7000 nid=0xb914 runnable
"GC task thread#3 (ParallelGC)" prio=6 tid=0x00000000023a9000 nid=0xd088 runnable
"VM Periodic Task Thread" prio=10 tid=0x000000000c53f000 nid=0xc1b4 waiting on condition
JNI global references: 138
Heap
PSYoungGen      total 36864K, used 6376K [0x00000000d7280000, 0x00000000d9b80000, 0x0000000100000000)
eden space 31744K, 20% used [0x00000000d7280000,0x00000000d78ba0d0,0x00000000d9180000)
from space 5120K, 0% used [0x00000000d9680000,0x00000000d9680000,0x00000000d9b80000)
to   space 5120K, 0% used [0x00000000d9180000,0x00000000d9180000,0x00000000d9680000)
ParOldGen       total 83456K, used 0K [0x0000000085800000, 0x000000008a980000, 0x00000000d7280000)
object space 83456K, 0% used [0x0000000085800000,0x0000000085800000,0x000000008a980000)
PSPermGen       total 21504K, used 3300K [0x0000000080600000, 0x0000000081b00000, 0x0000000085800000)
object space 21504K, 15% used [0x0000000080600000,0x0000000080939290,0x0000000081b00000)
  在上面这段堆栈输出中,可以看到有很多后台线程和main线程,其中只有main线程属于Java用户线程,其他几个都是虚拟机自动创建的,我们分析的过程中,只关心用户线程即可。
  从上面的main线程中可以很直观的看到当前线程的调用上下文,其中一个线程的某一层调用含义如下:
  at MyTest.fun1(MyTest.java:15)
  |     |     |              |
  |     |     |              +-----当前正在调用的函数所在的源代码文件的行号
  |     |     +------------当前正在调用的函数所在的源代码文件
  |     +---------------------当前正在调用的方法名
  +---------------------------当前正在调用的类名
  另外,堆栈中有:- locked <0x00000000d77d50b8> (a java.lang.Object)语句,表示该线程已经占有柯锁<0x00000000d77d50b8>,尖括号中表示锁ID,这个事系统自动产生的,我们只需要知道每次打印的堆栈,同一个ID表示是同一个锁即可。每一个线程堆栈的第一行含义如下:
  "main" prio=1 tid=0x000000000238e800 nid=0xc940 runnable [0x00000000027af000]
  |       |   |                       |           |           |
  |       |   |                       |           |           +--线程占用内存地址
  |       |   |                       |           +-----------线程的状态
  |       |   |                       +----线程对应的本地线程id号
  |       |   +-------------------线程id
  |       +--------------------------线程优先级
  +-------------------------------线程名称
  其中需要说明的是,线程对应的本地线程id号,是指Java线程所对应的虚拟机中的本地线程。由于Java是解析型语言,执行的实体是Java虚拟机,因此Java语言中的线程是依附于虚拟机中的本地线程来运行的,实际上是本地线程在执行Java线程代码。
  锁的解读
  从上面的线程堆栈看,线程堆栈中包含的直接信息为:线程的个数,每个线程调用的方法堆栈,当前锁的状态。线程的个数可以直接数出来;线程调用的方法堆栈,从下向上看,即表示当前的线程调用了哪个类上的哪个方法。而锁得状态看起来稍微有一点技巧。与锁相关的信息如下:
  · 当一个线程占有一个锁的时候,线程的堆栈中会打印--locked<0x00000000d77d50c8>
  · 当一个线程正在等待其它线程释放该锁,线程堆栈中会打印--waiting to lock<0x00000000d77d50c8>
  · 当一个线程占有一个锁,但又执行到该锁的wait()方法上,线程堆栈中首先打印locked,然后又会打印--waiting on <0x00000000d77d50c8>
  线程状态的解读
  借助线程堆栈,可以分析很多类型的问题,CPU的消耗分析即是线程堆栈分析的一个重要内容;
  处于TIMED_WAITING、WAITING状态的线程一定不消耗CPU。处于RUNNABLE的线程,要结合当前代码的性质判断,是否消耗CPU。
  · 如果是纯Java运算代码,则消耗CPU。
  · 如果是网络IO,很少消耗CPU。
  · 如果是本地代码,要结合本地代码的性质判断(可以通过pstack、gstack获取本地线程堆栈),如果是纯运算代码,则消耗CPU,如果被挂起,则不消耗CPU,如果是IO,则不怎么消耗CPU。
  如何借助线程堆栈分析问题
  线程堆栈在定位如下类型的问题上非常有帮助:
  · 线程死锁的分析
  · Java代码导致的CPU过高分析
  · 死循环分析
  · 资源不足分析
  · 性能瓶颈分析
  线程死锁分析
  死锁的概念就不做过多解释了,不明白的可以去网上查查;
  两个或超过两个线程因为环路的锁依赖关系而形成的锁环,就形成了真正的死锁,如下为死锁喉打印的堆栈:
Found one Java-level deadlock:
=============================
"org.ccgogoing.study.stacktrace.deadlock.TestThread2":
waiting to lock monitor 0x000000000a9ad118 (object 0x00000000d77363d0, a java.lang.Object),
which is held by "org.ccgogoing.study.stacktrace.deadlock.TestThread1"
"org.ccgogoing.study.stacktrace.deadlock.TestThread1":
waiting to lock monitor 0x000000000a9abc78 (object 0x00000000d77363e0, a java.lang.Object),
which is held by "org.ccgogoing.study.stacktrace.deadlock.TestThread2"
Java stack information for the threads listed above:
===================================================
"org.ccgogoing.study.stacktrace.deadlock.TestThread2":
at org.ccgogoing.study.stacktrace.deadlock.TestThread2.fun(TestThread2.java:35)
- waiting to lock <0x00000000d77363d0> (a java.lang.Object)
- locked <0x00000000d77363e0> (a java.lang.Object)
at org.ccgogoing.study.stacktrace.deadlock.TestThread2.run(TestThread2.java:22)
"org.ccgogoing.study.stacktrace.deadlock.TestThread1":
at org.ccgogoing.study.stacktrace.deadlock.TestThread1.fun(TestThread1.java:33)
- waiting to lock <0x00000000d77363e0> (a java.lang.Object)
- locked <0x00000000d77363d0> (a java.lang.Object)
at org.ccgogoing.study.stacktrace.deadlock.TestThread1.run(TestThread1.java:20)
Found 1 deadlock.
  从打印的堆栈中我们能看到"Found one Java-level deadlock:",即如果存在死锁情况,堆栈中会直接给出死锁的分析结果.
  当一组Java线程发生死锁的时候,那么意味着Game Over,这些线程永远得被挂在那里了,永远不可能继续运行下去。当发生死锁的线程在执行系统的关键功能时,那么这个死锁可能会导致整个系统瘫痪,要想恢复系统,临时也是唯一的规避方法是将系统重启。然后赶快去修改导致这个死锁的Bug
  注意:死锁的两个或多个线程是不消耗CPU的,有的人认为CPU100%的使用率是线程死锁导致的,这个说法是完全错误的。死循环,并且在循环中代码都是CPU密集型,才有可能导致CPU的100%使用率,像socket或者数据库等IO操作是不怎么消耗CPU的。

上文内容不用于商业目的,如涉及知识产权问题,请权利人联系博为峰小编(021-64471599-8017),我们将立即处理。
《2023软件测试行业现状调查报告》独家发布~

关注51Testing

联系我们

快捷面板 站点地图 联系我们 广告服务 关于我们 站长统计 发展历程

法律顾问:上海兰迪律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2024
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪ICP备05003035号

沪公网安备 31010102002173号