操作系统学习—— 操作系统结构

发表于:2017-9-18 10:14

字体: | 上一篇 | 下一篇 | 我要投稿

 作者:曲谐_    来源:51Testing软件测试网采编

  第一部分 操作系统结构
  俯视OS
  操作系统做什么的
  硬件系统的组成
  计算机系统的体系结构
  现代操作系统的特征
  操作系统的服务类别
  系统调用
  操作系统结构
  操作系统做什么的
  定义:操作系统是一个程序,起到了连接计算机用户和计算机硬件的中介。
  使用户方便地使用计算机
  使计算机硬件高效率运行
  硬件系统的组成
  如图所示的硬件设施
  一个或数个CPUs,加上一些设备控制器,通过内部总线连接在一起。它们共享内存。
  这些CPUs和设备并行执行,并且竞争使用内存的访问周期。
  操作系统结构.png
  上图是普通PC机的体系结构。CPU是机器的核心,与下面的memory由总线连接。总线连接有三类:
  地址总线。
  数据总线。
  控制信号。
  计算机系统的体系结构
  计算机系统从下层到上层共有4层
  硬件 —— 提供基本的计算资源
  CPU,内存,I/O设备等
  操作系统
  应用程序
  用户
  计算机系统的4个层次
  计算机系统的4个层次.png
  由图我们可见:
  硬件是最底层。完全被操作系统所包裹,上层的系统软件,应用软件无法直接和硬件直接打交道。用户无法直接操纵硬件。提供基本资源。
  上面一层就是操作系统。必须通过操作系统调用硬件,提供对硬件的管理。
  再往上为系统软件和应用软件。
  顶层为用户。上面两层的划分并没有那么严格。
  ★★重点:现代操作系统的特征
  多程序,Multiprogramming
  任何一个用户程序的操作,都必须由CPU执行指令,I/O作输入输出。两者缺一不可。
  问题:
  对用户程序来讲,当CPU提供指令,I/O一般停止。而I/O作输入输出时,CPU需要等待I/O完成,后面指令无法执行。而操作系统追求设备高效率使用,如果两者必须有一方停止工作,则非常影响CPU的效率。
  想法:
  在计算机内存空间里装两道程序。当一个程序不用CPU只用I/O的时候,启动另一个程序,使其使用CPU,完成对CPU效率的提高。理想情况下,CPU一直在使用。
  引入多程序的概念:
  有两道以上程序可以驻留内存(给了CPU即可运行,即操作系统正在处理的程序),可以支持这种状态的可称之为——多程序(Multiprogramming)。
  这样使得我们可以使用作业调度器。每次选择一个作业,交于CPU执行。
  当这个作业被迫等待时(例如有I/O操作),CPU转向另一个作业。
  多程序系统内部布局
  多程序系统内部布局.png
  多任务(Multitasking),分时系统(Timesharing)
  概念:
  扩展了多程序思想。多程序强调多个程序驻留内存,当需要执行的时候,将程序交于CPU处理即可。而现在则要求CPU更快速地在作业之间切换。这样,作业总是能及时地得到CPU,响应用户的交互操作,这称之为交互式计算。
  响应时间(Response time)必须在1秒之内。
  每个用户至少有一道作业在内存中执行,由此产生了进程。
  如果存在两个以上的进程等待CPU执行,则需要CPU调度。
  如果内存空间装不下进程,则需要换入,换出从操作。
  虚拟内存管理技术,使得小内存也能运行大进程。
  操作系统若干操作特征
  中断驱动的硬件操作
  软件申请,软件操作错误等,将产生异常,或陷入
  面临
  “无限循环”问题
  进程干扰其他进城问题
  进程干扰OS问题
  等等
  (对于上面这些名词先熟悉了解,有个印象)
  CPU提供Dual-mode机制,实现OS自我保护
  CPU的Mode bit=1,变为内核态,用户程序无论如何无法访问CPU。
  操作系统的服务类别
  一类服务直接帮助用户
  用户界面(UI)—常见UI类别:
  1.Command-Line(CLI)
  2.Graphics User Interface(GUI)
  3.批处理(Batch)
  程序执行 — 使OS能够装入程序到内存,执行驻留内存的程序,结束程序的执行,以及出错时的异常处理。
  I/O操作
  文件系统相关操作
  进程间通信
  1.通过共享内存实现通信
  2.通过消息传递实现通信
  出错检测 - OS必须随时应对系统出错
  1.出错可能由硬件引起,如CPU,内存,I/O设备
  2.对于各种出错,OS必须有合适的处理程序
  3.OS应该提供调试,查错工具。
  另一类服务确保系统共享资源的高效运作
  资源分配
  记账 — 跟踪记录哪些用户使用了多少资源,使用了哪些资源
  保护和安全
  系统调用
  操作系统编程界面
  通常用高级语言(C/C++)实现
  程序通常以Application Program Interface(API)使用,而不是直接使用系统调用。
  3大流行API:WIN32 API,POSIX API,JAVA API。
  API-System Call-OS之间的关联
  API-System Call-OS之间的关联.png
  由图可见,用户使用Open()函数产生翻转,CPU Mode Bit=1,进入内核态,产生真正的系统调用。在系统内部再次使用Open()函数,产生真正的open动作。最后返回指令return跳回到用户态(即open()代码),再用一个return函数得到相应的结果。
  操作系统结构
  简单结构
  MS-DOS层次结构.png
  以MS-DOS为代表,占用极小的内存空间,提供大部分OS功能。
  不区分模块,有一些数据结构,但
是并没有很好地分离界面,层次化组织OS功能。
  层次化方法,以UNIX为例
  UNIX层次.png
  微内核结构
  将OS的功能模块转移至用户态空间
  剩下的,就是微内核
  这种做法容易升级,移植OS至不同类型CPU,体系结构。但是用户态空间与内核态空间之间的通信频繁,性能开销大。(即)
  模块
  现代操作系统要求我们必须可以动态地装入和卸载,即可以将一个程序块动态装入,拼接上去。
  总结:
  第一节课主要讲述了一些概念性的东西,很多东西只是提了一些名词,如进程等,需要在接下来的课程里详细的研究相关名词的含义。
《2023软件测试行业现状调查报告》独家发布~

关注51Testing

联系我们

快捷面板 站点地图 联系我们 广告服务 关于我们 站长统计 发展历程

法律顾问:上海兰迪律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2024
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪ICP备05003035号

沪公网安备 31010102002173号