WebLogictt:gg: HEAL—D])

BRI IR LR R, 2 T i A AU AR A S e O 2 T8 I—— H O A g 148 A0
AN TP ELUG R A XE T AR ZAOUE, BT R P AR RESR AR TCVE S AT
(KR o AR 2 N HUE 58 U SR BT it) I T —— X RS S U T 20 b st it 2 ik 7 L

500 He8s, MEL”

XFHSRARGOR UL, ARG A I 530 38 B L — R SR I 2 g B SR 5| N ORI AU
AT = 55 5 T RS T st o0 2006 A2 SE R B TR) o A Pk i A et R A0 s 38 o 2 I) H BR IR IS 00
AU TAR R 2R T, RGUH L2 10%) i SR F 552 7B 2 TARRIE sl o Ak o)
TR FE NI TR S R AN AT (AR gy R AR i,
FAWUAT AT GEAE I A] PRIE, (FESYEIIRIB ST) ARG I KA i RSl 22 A
2 Al LASEAN TP AT AR SR H 55, PR 2 D55 CLEII 90%) (14 i SV I [24 55 75 225K 1 i
PR o F XA SR LU, AR T A B0 DL AL BT 3 (K 95 7K1 T DA il 55 4 B U R A P I
HHSMARASH (PATERE. B AERE. PLasiEsss) ANl @ g .

FS b, R R R S5 s AR BE, ASS HAMARTE IR IN TR0 P BEBCA KN 2
LA ABEEZ R T o ARWISE, DU R T5 ORI AT RE A R 25 i A2 8) i P A'F P FRD s i 2 (1)
AR B A 11 %)™ S 1 i 2 W) P 17 P I 95 8 Rtk R v ER kG & J2 AR AR T A A A e A2
B, EARER M i, X R A R g R SR IR S5 A i DR (B R £k
FEAFESE) T SEHLA o R] o b ok A A A QR AR B i R RE B AR S Bl H M 554 1
PR B R T ST — 0 — G 3R 0 — BT A AR5 s B 17, s AR PR e,
it B AICERE DA RHRT], BRARAT DU B2 (BT A R o W HTIR 5 & (K CIE A A2
M AR 7 P i 2 TR) SRS R L i 55 s A P R B8R AU & AR IR AR A2, I 7R A
S B HIE KSR () , A s RG] Rt i IXTT IR U, “FeAVE
M55, BN R o AT TE R .

FIHATh I, BRNCEER], R WMIRS &P Fa T/ B2 1K H2EA 3
JITA I L SR A5 B TE A) 25 R —— B2 B, AR B BT SR S5 RN 4 e 5 HAbVE 2
TR ERAT I A B4 R 2 (B UG, RN AR B, SR T, BRI (isolation) s
& ACID Higer”, Tt ACID JEPERI 2 9145) o BRI, AT XA F 45 AU @Mt — sl a5t 1t
fE, M e AR EMK G545 A AR EARR N IRATAE] XA, IR A Gl Lt e 7, By
T, MRS SE RO S B A T AT IR 7 vh 3R AN 2 H i !

XGRS R AR AR R ——XA S AR KT HAR 55 0. A5 SR R B 74
el HEIFESEM: BRSERTA BB RRILIR . A2 R 7 AR R 8, 355t

MM) www.51testing.com

http://blog.csdn.net/ccsdba/archive/2006/06/22/822205.aspx

GBI) FE—— e T 55— A BIUE S A O SR 2 Ah, St SR AR B IE sl s, ANt)™ 3
ST AR, DU IR TAEA S SERL A RIFIH SR

SR, K e s A R 2555 RGP ME U B, FROATHE T IR S5 45 4 BHL
SRR ——AE A THEE T el g DI, WERZANERIEIN V), WS HT IR S5 a8 A 5 i
SR E N AF TR OB S5 40 LUGE S ™ AR TR A, i X B A . AR T BRHTIRSS A5 Z S
F A MHAT P E—— D IR 5 S5 Th, 4 WeblLogic BLE 1) 60 MM ATE R AT RE R 241
JLAS CPU HAT——2 % CPU I, TBEEAEIZ (R AL AL NS 445, EHLEIHEAS CPU
B A At At

B2, BT EBPTHR S (A2 K) B ——EREA A T A SE T AL e 12 4T
T AL T SR IR 55 4 DRSO I, X At A AN IR A0 1 1 PR P AR AT 5545 PR B R AR 1 e 52 i
17, PR E R AURZAHEA T TR SR 38 IX AR e, 2 B — N RE 2

i AR 1 3 2 0

HE Y R 2 e VE R BB i B AP ik DR AR s IR RN R E LM T Azul Systems, %24
F A RO E IR) B R AR T S Java i 2 RRRR, BRI DRI 24 CPU HAEAS CPU
WHAZA WL ARG 128 Java ZRESEhr Bl T 9T JOR, eRefixt [Java X4 1)
SRWBIE ISR, LU Java BPFZ T4 il 0k, e BT DLAE 2 A W TR e Z TR K2
TFit. RIE2Z, Azul Appliance $24t 7 —Ff Java W4T 514, gl id 4 Ao R 4R 4 B 1)
CPU MAAE BRI, IR B G2 A% S8 REAUB LA T P el - CPU s A7 AN ™ AL KT, A B IR
T ARG RS

SHIGIEAT S35 M, BIVEAE— @R bt T2 TR N R AT AL 7 2, X
DN B AR BRI BRI R 2, DA T AT LURRA AR 22 A R 2 IR 5 T LR, NN
PR i A B CR IR SS d b0 T SR TR — s M8) IXA LS vl DASEIURG, DR R e
RIS PR (RO AR 2 AN G K B IR P () I ok B 7RI (RS DUA KT R A 5 DL,
SR AT DU A0 0 B U AL, T AE S IR AN HEL O IR P R/ (LU IR IAS) 5
AR AR Y IR Py Rt _E A REF L BN o IX PR AN DR AR AV PR B 46 RIB AT
PERE Java NI FE P HOBT I AUK IR 1

X Id 5 7] www.51testing.com

WebLogic Performance: Pursuit of
Speed Isn’t Everything

“High pertformance” is what everybody strives for when putting together
a new system. Technical folk often spend hours hung up on the raw speed
of their code, and a certain machismo can be derived from shaving
milliseconds off that pesky transaction that is the latest pride and joy.
Often, this time iIs not very well spent.

In the pursuit of raw speed, not only does readable code often get
substituted for the obscure (usually to no avail — optimizing compilers
are pretty good these days), thus causing a maintenance headache in the
future, but in many cases the performance metric being optimized is a
pretty uninteresting one in the overall scheme of things. Many people
develop a blinkered focus on the amount of time it takes for one request
to do a round-trip — “That debit transaction just took 20ms to debit £500
from a savings account, whoopee!!”

For a transactional system, the throughput of the system is generally far
more interesting than the absolute speed of a request (although, that said,
there is mostly some constraint that must be met around the time it takes
to execute transactions). Throughput is a measure of the amount of work
that can be driven through the system while achieving the targets for

response time. More work, of course, is partly driven by more clients

requesting transactions in the system. The bonus amusement factor here
is that the response time and the number of clients are not independent
variables — the more clients throwing work at the system, the more likely
it becomes that the individual transactions will take longer. Thus, the
maximum throughput of a system governs (for a given deployment environment)
how many clients can throw transactions into the system at some desired
rate, keeping the response time of some fraction of the transactions (say,

90 percent) within the required 1imit. Having arrived at this conclusion,

hours of fun ensue changing various system parameters (number of execute
threads, number of database connections, number of machines, etc.) in

attempting to predict what the production setup needs to look 1ike to meet
the required service levels and to optimize use of server resources.

In fact, it should not be at all surprising to anyone who is using an
application server that the individual round-trip time of a single

transaction is of little interest. Clearly, the way to optimize that is
to have as short a code path as possible between the client and the back
end it affects — sticking layers of application server infrastructure

X 1] www.51testing.com

between the client and the back end is clearly not going to shorten the
codepath. It does, however, improve the throughput. It does this mainly
by sharing scarce server—side resources (database connections, threads,
etc.) among the population of clients. With the simple—minded short
codepath route to performance, you will end up with a one—to—one
relationship between the number of clients and the resources consumed on
the server, and once all the server’ s resources are consumed, you have
reached a performance bottleneck and the throughput can be increased no
further until you can scrape together some more resources to share out.
What the application server is doing in effect is economizing the number
of resources consumed on the server side by sharing them out among a
population of clients (at the expense of a longer codepath, implying
marginally increased transaction round-trip time), thereby increasing
the maximum possible throughput of the system. At this point, everyone’ s
favorite knee—jerk reaction: I don’ t use transactions, they slow things
down” can be usefully reviewed.

By now we have seen a system rushing as many requests as possible through
a limited set of server resources. It goes without saying that all of these
requests must achieve the correct results — that is, the result of any
one of the requests executing on its own should be the same if the request
is executed in parallel with lots of other requests (or the requests should
be isolated, to use the parlance and yes, isolation is the “I” in ACID,
and transactions are what give you ACID properties). So the cost of using
XA transactions is a little absolute performance, but the benefit is that
the results of your transactions are correct. You can rest easy at night
knowing that withdrawals from your bank account aren’ t going to go screwy
under some obscure loading conditions IF your bank is using XA!

This discussion takes place completely at the data level — XA is all about
database transactions. Each transaction locks the data in the database
until the transaction is complete, whereupon the results become visible
to the waiting world. Transactions cause bottlenecks when multiple
requests are trying to access the same data — all but the first locker
of the contended data get blocked or thrown out, which clearly hurts
throughput since work is being done that will not result in a successful
transaction flowing through the system.

However data in the database is not the only shared resource in a
transaction system. I already talked about application servers being
resource sharing mechanisms — any of these resources could be contended
for, so the application server itself needs to lock in—memory data
structures to avoid problems if they are accessed on behalf of multiple
requests in parallel, and contention can result here too. Of course,
layers other than the app. Server are resource sharing too — on a typical

KIS 7] www. 51testing. com

server, those 60 execute threads you configured for WebLogic are probably
being executed across a handful of CPUs at the most — when contention for
CPUs occurs, the unlucky threads must wait in line until a CPU is free
and so on with memory, disk, etc.

Ovrall, everything I have thus far mentioned represents a massive headache
— the development of the performance tests, the running of the tests while
all the tuning is done, the allocation of server resources to meet the
predicted demands, and all of this is repeated with changing application
releases and server environment releases and the resulting sized systems
then have to stand up to unpredictable real-life loading. Not only is this
a headache, it is a major lifetime cost of every application.

The astute among you will have noticed that my e-mail address has changed;
that’ s because I have joined Azul Systems, who have a unique solution to
these issues. Java is highly multithreaded, so it provides systems that
contain many CPUs, each with many cores so those Java threads really result
in parallelization. Then it provides support for optimistic locking on
synchronized Java objects, to reduce contention within the Java software
layer, then it provides pools of memory that can be shared betweenmultiple
applications. In short, the Azul Appliance provides a Java execution
engine that dwarfs your systems capacity to consume resources by
overwhelming your individual applications with CPU and memory resources
in order to try and alleviate any bottlenecks caused by the shortage of
either in the traditional VM environment.

This tactic has the additional benefit that it more or less removes the
need to do tuning on a per—application basis, since the set of resources
provided by the appliance is so big that it can be readily shared among
multiple applications that previously each required headroom on their own
servers for peaks in demand. This sharing is possible because on aggregate
the demand peaks will be smoothed (since it is improbable that many
unrelated applications will all hit a demand peak at once), so demand can
be met from the pooled resources, which leaves you free not only from
application—level sizing (and the associated costs), but also from
large—scale overprovisioning of hardware on a per—application basis too.
All this heralds a new era of cheaply procured and managed appliances to
run highly performant Java applications. For more details, visit

www. azulsystems. com. That’s all for this month; watch out for a repeat
performance next month.

X Id i 1) www.51testing.com

http://www.azulsystems.com/

	WebLogic Performance: Pursuit of Speed Isn't Everything

