
July 27, 2001

Understanding and
Analyzing
Java Performance

Tutorial - MASCOTS 2001
Varsha Mainkar

Network Design and Performance Analysis
Department, AT&T Labs, New Jersey

www.att.com/networkandperformance

July 27, 2001 2

Acknowledgements
• P. Reeser

• A. Karasaridis

• K. Futamura

• M. Hosseini-Nasab

• R. Farel

• K. Meier-Hellstern

• D. Lynch

• Tony Hansen

• D. Cura

• W. Ehrlich

• A. Avritzer

• A. Bondi

Presenters at the Java
Performance Seminar
Series - implicit
contributors to this
tutorial.

July 27, 2001 3

Outline

• Introduction to Java (10 mts)

• Motivation for studying Java
Performance (15 mts)

• Overview of Java Architecture (30 mts)

• Break (5 mts)

• Impact of Java Architecture on
Performance (45 mts)

• Analyzing Java Programs (15 mts)

July 27, 2001

Background

July 27, 2001 5

Java : A Brief History

• Appeared in 1993

• Initially developed for
– Networked, handheld devices

• Coincided with emergence of WWW
– Target market shifted to Internet

• First showcased in the form of
applets

July 27, 2001 6

…Java- A Brief History
• Server-side Java applets or Servlets

introduced as demand increased for
dynamic page generation

• Java Beans - for reusable software
components

• Java Server Pages - for decoupling
dynamic data from HTML
presentation

• “Java 2” - Java 1.3
– HotSpot Compiler, enhancements

July 27, 2001 7

Java - Features

• Platform - independence

• Security

• Robustness

• Network mobility

• Multi-threaded

• Built - in memory management

• Rich API for Internet and Web
Programming

July 27, 2001 8

Why Java ?

• Faster, less troublesome
development

• Easy porting to multiple platforms

• Easier software distribution

• Security features

• Rich APIs (Internet, Web,…)

API = Application Programmer’s Interface

July 27, 2001 9

Where’s the catch ?

• Performance !

• Generally true : rich programming
features come at the cost of
performance. Solutions:
– Do not use rich environments

– Understand the environment and do
“enlightened” development

×
√

July 27, 2001 10

Other Disadvantages

• Buggy Virtual Machines

• “Write once - Debug Everywhere”

• Platform Independence
“independence” from useful OS
features

Bottom Line: Java has become extremely popular,
equally among new programmers as well as
seasoned C++ gurus.

July 27, 2001

Motivation

July 27, 2001 12

Is Java “slow”?
• Simple Example: Java vs. C++

– Java with “Just-in-time” compilation and withoutclass Salutation {

 private static final String hello = "Hello, world!";
 private static final String greeting = "Greetings,
planet!";
 private static final String salutation = "Salutations,
orb!";

 private static int choice;

 public static void main(String[] args) {

 int i;

 for (i = 0; i <= 10000; i ++) {

 choice = (int) (Math.random() * 2.99);
 String s = hello;
 if (choice == 1) {
 s = greeting;
 }
 else if (choice == 2) {
 s = salutation;
 }
 System.out.println(s);
 }
 }

}

#include<stdio.h>
#include<iostream.h>
#include<stdlib.h>
#include<string.h>

void main () {

 char* hello = "Hello World!";
 char* greeting = "Greetings, Planet!";
 char* salutation = "Salutation, Orb!";
 char* s;

 int choice;

 int i;

 for (i =0; i <= 10000; i ++) {
 choice = ((int) rand()) % 3;
 s = hello;
 if (choice == 1) {
 s = greeting;
 }
 else if (choice == 2) {
 s = salutation;
 }
 cout << s << endl;
 }

} Java C++

July 27, 2001 13

Java vs C++
Simple Example

Java vs C++

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 100000
0

1E+07

of iterations

tim
e

in
 s

ec
on

d
s

Java -no JIT
Java-JIT
C++

July 27, 2001 14

Is Java Slow ?
Realistic Example : A messaging application
implemented in Java (servlets and JSP) and C++
(CGI and FastCGI) [5]

R e s p o n s e T im e v s . T h ro u g h p u t

0 .0

1 0 .0

2 0 .0

3 0 .0

4 0 .0

5 0 .0

6 0 .0

0 .0 0 0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0

s e s s io n s /s e c o n d

s
e

c
o

n
d

s

Ja v a s e r v le t

Ja v a S e rv e r Pa g e s

CG I

Fas t CG I

July 27, 2001 15

Does Java have
scalability problems?

M e a s u re d P e r-P ro ce s s o r C P U U tiliza tio n

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

N u m b e r o f S im u lta n e o u s S im u la te d U s e rs

M
e

a
s

u
re

d
 C

P
U

 U
ti

li
z

a
ti

o
n

J S P /J a va B e an - 2 C P U
J S P /J a va B e an - 4 C P U

• Bottleneck prevents use of multiple CPUs efficiently
•Thorough analysis pointed to inherent Java bottleneck

Figure from “Implications of Servlet/Javabean technology on Web server scaling”: Cura,
Ehrlich, Gotberg, Reeser

July 27, 2001 16

Java scalability

• Some history of poor scalability: e.g.
Java 1.1.7
– Article in JavaWorld, August 2000 -

“Java Threads may not use all your
CPUs”, P. Killelea.

• Two programs:one in C, that does an empty
loop, same in Java.

• Run the program as multiple processes on
12-CPU machine scalabilityof C++ process

• Run the Java program as multiple threads

July 27, 2001 17

Java Scalability
The C program:
main() {

 unsigned long i

 for (i = 0; i < 1000000000; i ++);

}

The Java program:

class Loop implements Runnable {

public static void main (String[] args) {

 for (int t = 0; t < Integer.parseInt(args[0]); t++)

new Thread(new Loop()).start();
}

public void run() {

 for (int i = 0; i < 1000000000; i ++);

}

Perl Wrapper
creates multiple
processes

July 27, 2001 18

CPU Scalability -
C processes

Figure 3 from
article by
P.Killelea,
JavaWorld,
August 2000.

July 27, 2001 19

CPU scalability-
Java Threads

Figure 5 from
article by
P.Killelea,
JavaWorld,
August 2000.

July 27, 2001 20

Initial Conclusion
• Java has performance problems

– Root cause often hard to understand

• But Java has immense technical and
business advantages
– Use of Java for server programs will

continue increasing

• Developers and analysts need to
educate themselves on Java
architecture and performance

July 27, 2001 21

Tutorial Goal

• Basic understanding of how Java
works

• Identify elements of Java
architecture that impact performanc

• Intro to issues in performance
analysis of Java programs

• Guidelines to improving Java
performance (references, papers,
etc)

July 27, 2001

Java Architecture

July 27, 2001 23

How Java Works

1. Write code in Java : foo1.java, foo2.java

2. Compile:
– javac foo1.java foo2.java

(javac is the Java compiler)

– generates bytecodes in a class file:
• foo1.class, foo2.class

3. Run:
– java foo1.class

(“java” is the JVM: Java virtual machine)

Note: No
linked
executable

Each
application
runs inside its
own JVM

July 27, 2001 24

Java Platform Components

• Programming Language

• Class file format

• API

• JVM

• JVM+API = platform for which Java
programs are compiled

July 27, 2001 25

Programming Language
• Object Oriented

• Robustly checked (type checking,
array bounds, memory references…)

• No explicit memory management
functions (no free(), destroy())

• Syntactically like C++

• Has a rich class library - vectors,
hastables, Internet, Web, …

• Naturally multithreaded

July 27, 2001 26

Java Class File

• Binary file format of Java programs

• Completely describes a Java class

• Contains bytecodes - the “machine
language” for a Java virtual machine

• Designed to be compact
– minimizes network transfer time

• Dynamically Linked
– can start a Java program without having

all classes - good for applets

July 27, 2001 27

The Java Virtual Machine

Host Operating System

Application’s
class files

Class
loader

Execution
Engine

Java API
class files

*Figure 1-4, from Venners[1]

bytecodes

native method invocations

July 27, 2001 28

JVM (Java Virtual Machine)

• JVM Class loader loads classes from
the program and the Java API

• Bytecodes are executed in the
execution engine

• Interpreted or

• just-in-time complied : method
compiled to native instructions when
first compiled, then cached

July 27, 2001 29

The Java API

• Set of runtime libraries that provide a
standard way to access system
resources on a host machine

• JVM+Java API are required
components of the Java Platform

• The combination of loaded class files
from a program, the Java API and
any DLLs constitutes a full program
executed by the JVM

July 27, 2001

Java Under the Hood

July 27, 2001 31

Java VM architecture

Class
loader

class files

pc
registersheap

Java
stacks

native
method
stacks

method
area

Execution
Engine

native method
interface

native method
libraries

Figure 5-1, from Venners[1]

July 27, 2001 32

JVM: Run-Time Data Areas
Shared:

Exclusive for each thread:

Heap Area

object

object object

object

object

objectobject

pc registers Java stacks

thread2

thread3

thread1

thread1 thread2 thread3

stack stack stack
Native method

stack

stack

thread3

Figure 5-3, from Venners[1]

Figure 5-2,
from
Venners[1]

Method Area

class
data

class
data

class
data

class
data class

data

July 27, 2001 33

Method Area:

Method Area

class
data

class
data

class
data

class
data class

data

•Class loader loads class information in
this area

•All threads share the same method area
- must be thread-safe

–If one thread is loading a class, the
other must wait

•Method area could be allocated on the
heap also

•Can be garbage collected

–Collect unreferenced classes

•Type information:name, superclass
name,field info, method info, method
bytecodes, a reference to class
“Class”,...

July 27, 2001 34

The Heap

Heap Area

object

object object

object

object

objectobject

• Area where memory is allocated for
objects created during run-time

• Each object has instance data, and
pointer to class data in the method
area

• Not shared between two applications
(each runs inside its own JVM)

• Shared between multiple threads of the same application
– Access to heap must be thread-safe

– Access to objects must be thread-safe

• Is managed by JVM using automatic garbage collection (GC)
– Memory from unreferenced objects is reclaimed

• May have an associated handle pool that points to the actual
objects
– Object reference: Pointer into handle pool

– When objects are moved during GC - update only the handle pool

July 27, 2001 35

Stacks, PCs

pc registers Java stacks

thread2

thread3

thread1

thread1 thread2 thread3

stack stack stack Native method
stack

stack

thread3

• Each thread has separate stack -
– no danger of access by another thread

• Method calls generate stack frames -
containing parameters, local variables etc
– may also be allocated on the heap

July 27, 2001 36

Lifetime of a class

Load
Link

Initialize

Verify

Prepare

Resolve

•Reads,
parses
binary data
•Creates an
object of
type “Class”
on the heap

Verifies semantics
of class files,
symbolic
references, etc

Memory
allocation,
default
initial values

Replace
symbolic
references
with direct
ones

Actual initial
value

July 27, 2001 37

 Class Instantiation
Object Creation

Explicit Implicit

new

newInstance()

clone()

getObject()
(deserialization)

String objects for cmd-line args

Class object on loading

 String constants

String concatenation

Allocate
Memory
on heap

Initialize
Use in

 program

July 27, 2001 38

Discarding objects

Unrefenced
object

(optionally)
Run
finalize()

Reclaimed
during
garbage
 collection

Discarding classes

Unreachable
class

Reclaimed
during
garbage
 collection

July 27, 2001 39

Garbage Collection

• JVM recycles memory used by
objects that are no longer referenced

• GC needs to
– Determine which objects can be freed,

free them

– Take care of heap fragmentation

• Various algorithms for GC, JVM
specification doesn’t force any one.

July 27, 2001 40

Garbage Collection
Algorithms
• Tracing Collectors:

– Trace from roots (e.g. local variables,
operands) down the reference graph.
Collect unreachable objects

• Counting Collectors:
– Maintain reference count for objects.

– Collect when count goes down to zero.
• Cannot detect circular references

July 27, 2001 41

Garbage Collection
-Heap Compaction
• Compacting Collectors:

– Slide live objects over to occupy free
space

• Copying Collectors

unusedunused unused

unused unused unused
free

free

free free

free

unused

Figure 9-1- from Venners[1]

July 27, 2001 42

Garbage Collection
-Compaction
• Generational Collectors: Two

observations:
1. Most objects are short-lived

2. Some objects have long lives

– Group objects by age or “generations”

– GC younger generation more frequently

– Surviving objects move up generations

July 27, 2001 43

Synchronization
• Java has a multi-threaded architecture

– Easy to write code that will not work well with
multiple threads

• Use synchronization constructs for
– Mutual Exclusion: For coherent use of shared

data
• Synchronized statements

• Synchronized methods

– Co-operation
• Working together towards a common goal

• wait and notify commands

July 27, 2001 44

…Synchronization
• Implemented by acquiring locks on

objects
– Synch statements - lock any object
class someClass {
 int someVar;
 synchronized(anObject) {
 someVar++;}
 }
}

– Synch methods - lock the object on
which the method was called

class someClass {
 int someVar;
 synchronized void incr {
 someVar++;
 }
}

July 27, 2001 45

Exceptions

• Error handling mechanism
– programmer can “throw” exception

– Exception object is created with string
comment and stack trace

• Involves object creation, initialization

July 27, 2001 46

Security

• Security achieved by:
– Strict rules about class loading (will

prevent loading malicious classes)

– verification of class files

– run-time checking by JVM

– Security manager and the Java API
(manages access to resources outside
the JVM)

July 27, 2001

Performance Impact of
Java Architecture

July 27, 2001 48

Why is Java slow ?

“Obvious” contributors :
–Bytecode Interpretation (if not jit-ed)

• Server-side applications may spend only
10-20 % of time executing Jit-ed code
(IBM Systems Journal Paper[3].)

– If jit-ed, compilation cost (one-time),
footprint cost
• OS memory management overhead

(paging, scanning etc)

July 27, 2001 49

Example
•M/M/1 Queue Simulation: Factor of 10
difference in execution time

0

20

40

60

80

100

120

140

160

With JIT No JIT

se
co

nd
s

July 27, 2001 50

More Basic Features
Impacting Performance

• Dynamic Linking

• Checking of array bounds on each
access

• Checking for null references

• Primitive types are the same- not
adjusted to the most efficient type
for each platform

• ….

July 27, 2001 51

Why is Java slow? -
Major contributors
• Non-obvious, but deeply impacting

performance:
– Object creation

– Garbage collection

– Synchronization

– API classes too general
• General-purpose design always implies

performance penalty

• Improper use of Classes and APIs

July 27, 2001 52

Performance Impact
of Object Creation
Object Creation involves:

• Allocating memory
– including for superclasses

• Initializing instance variables to Java
defaults

• Calling Constructors
– including superclass constructors

• Initializing instance variables as
programmed

Can
be

expensive!

July 27, 2001 53

Performance Impact of
Object Creation

• Example 1: Code piece A is 95 % faster
than Code piece B

• Example 2: Code piece A is 60 % faster
than Code piece B

 A :

Vector v = new Vector();
 for (i=0; i<n; i++)
{ v.clear(); v.addElement… }

B:

 for (i=0; i<n; i++)

{Vector v = new Vector(); v.addElement..}

A :
boolean bool =
a.equalsIgnoreCase(b);

 B :
ucA = a.toUpperCase();
ucB = b.toUpperCase();
boolean bool = ucA.equals(ucB);

July 27, 2001 54

Object Creation

Two Overheads:
• Creating the object in the heap

(previous slide)

• Since the heap is shared by all
threads -
– overhead due to contention for the

heap

July 27, 2001 55

Object Creation…
Scalability
• Concurrency efficiency of object creation across

threads
– Program that creates 500,000 objects, on 6-cpu machine

public void run () {
int i;
 myObj obj;
 Thread ct = Thread.currentThread();
 String thrName = ct.getName()+ ":";
 obj = new myObj();
 for (i = 0; i < mt; i++) {
 if (c == 1) obj = new myObj();
 }
}

July 27, 2001 56

Object Creation…
Scalability

• Time program with varying number of
threads- but total # of objects created is
always 500,000.

threads execution time

1
2
3
4
5
6

15 s
10 s
8.5 s
7.6 s
8.5 s
8.3 s

 “ideal” time

15 s
7.5 s
5 s

3.75 s
3 s

2.5 s

>

July 27, 2001 57

Scalability :
Sanity check
Concurrency efficiency of cpu-bound

program
 for (i = 0; i < mt; i++) {
 for (j = 0; j< 100; j++)
 f = (i)/ (j+1);
 }

– Timings with varying # of threads (# of loop
iterations is constant)

threads execution time

1
2
3
4
5
6

18.9 s
9.9 s
6.9 s
5.6 s
4.6 s
4.1 s

 “ideal” time

18.9 s
9.4 s
6.3 s
4.7 s
3.8 s
3.1 s

≈

July 27, 2001 58

Object Creation
• Observations

– Has a basic overhead

– Programs doing lot of object creation
(explicit/implicit) will have unexpected
scalability problems

– Each created object adds to garbage
collection overhead

• must be traversed

• must be collected, when unreferenced.

• Having many short-lived objects can be a
performance bottleneck

July 27, 2001 59

Performance Impact
of Garbage Collection
• Garbage collection adds a run-time

overhead
– In older JVMs GC could stop all

processing
• GC could result in user perceivable delays

• Delays could be 5-10 seconds for large
heaps (100-500 MB)[3]

July 27, 2001 60

Performance Impact
of Garbage Collection
• Newer JDKs have improved algorithms

– Sun JDK 1.3 has
• Generational garbage collection

• Train algorithm for the old generation sub-
heap

– Overhead is now smaller
• e.g. Queue simulation example : 53 ms out of

13 s running time. Heap size b/w 160KB and
2MB

– Is larger if heap is large

July 27, 2001 61

Performance Impact
of Garbage Collection
• Garbage collection can be timed

(java -verbosegc)

• Test GC in a program in which
number of objects, and heap size
keep increasing

class create implements Runnable {
static int m, c, mt;
 public void run () {

 int i;
 myObj obj[]= new myObj[1000000];
 Thread ct = Thread.currentThread();
 String thrName = ct.getName()+ ":";

long st = System.currentTimeMillis();
 for (i = 0; i < mt; i++) {
 if (c == 1) obj[i] = new myObj();
 //System.out.println(thrName+obj);
 }
 long diff = System.currentTimeMillis() -st;
 System.out.println("Time: "+ diff);
 }

July 27, 2001 62

Performance Impact
of Garbage Collection

GC time vs # of objects

4

5

6

7

8

9

10

11

0 200000 400000 600000 800000 1000000

of objects

m
s

p
er

 G
C

 c
al

l

Time per GC call Time per GC call:J1.3

July 27, 2001 63

Performance Impact
of Garbage Collection

GC time vs size of heap

4

5

6

7

8

9

10

11

5 10 15 20

MBytes

m
s

p
er

 G
C

 c
al

l

Time per GC call GC time per call J1.3

July 27, 2001 64

Performance Impact
of Garbage Collection

 Test queue
simulation
program, after
allocating a
large array of
objects in the
beginning, and
then running
the simulation
as usual.0

20

40

60

80

100

120

140

0 20 40 60 80

GC iteration #

G
C

 ti
m

e
pe

r r
un

 in
 m

s

Large Heap Small Heap

•Looks like GC learns about the long-lived object and does not include
that in later GC?

July 27, 2001 65

Performance Impact
of Synchronization
• “Obvious” :

– In a multithreaded application, synchronized
pieces will be the bottlenecks (Java-
independent issue)

• Non-obvious (Java-isms):
– Big synchronization overhead

– Java API classes may have synchronized
methods - a big overhead in cases where
synchronization is not necessary (access only
by one thread)

– Implicitly shared objects internal to the JVM -
e.g. heap. Access will be synchronized

July 27, 2001 66

Performance Impact
of Synchronization
• Example: Vector vs ArrayList (example

creates vector/array list, adds elements, then accesses them)

0
1000
2000
3000
4000
5000
6000
7000

millis

Synchronization Overhead

Vector

ArrayList

Vector is a
synchronized

class

From Bulka[2]

July 27, 2001 67

Contention for synchronized code:

Performance Impact
of Synchronization

0

1000

2000

3000

4000

5000

0 2 4 6

threads

m
s

Example
Bulka[2]:
increase a
counter using
synchronized
method. Use
increasing # of
threads to do
the same
amount of
total work.
Results from
6-cpu
machine.

July 27, 2001 68

Implicitly synchronized code:

Performance Impact
of Synchronization

Object creation
example, with
printing inside
the loop
(System.out.
Println - not an
explicitly
synchronized
function in
Java. Access
possibly
serialized by
OS)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4 5 6

of Threads

se
co

n
d

s

Actual Ideal

July 27, 2001 69

class WorkerThread extends Thread {
 private int iter;
 private int tid;
 private static double num;
 public WorkerThread (int
iterationCount, int id) {
 this.iter = iterationCount;
 this.tid = id;
 }
 public void run() {
 for (int i = 0; i < iter; i++) {
 num += Math.random();
 }
 }
}

Performance Impact
of Synchronization

Example: Multiple
threads increment a
shared variable by
calling Math.random()

Run this program with
increasing number of
threads, keeping the
total number of
iterations the same - on
6-CPU machine

July 27, 2001 70

Performance Impact
of Synchronization

• Example of multiple threads calling Math.random() - a
synchronized method

0
500

1000
1500
2000
2500
3000

0 1 2 3 4 5 6
threads

m
s

Java 1.2 Java 1.3

July 27, 2001 71

• Object creation can be viewed as a
special case of access to
synchronized data structures and
methods

• We saw similar effects there

Performance Impact
of Synchronization

July 27, 2001 72

General-Purpose API
classes
• Generally true: When a class/API provides

maximum flexibility and features, there
will be an associated performance cost.
Examples:

– Vector Class
• Some applications may need their own

efficient vector implementation

– Date
• Using native Date functions thru JNI might

prove better performing

July 27, 2001 73

• Example 1: Vector class provides basic
access/update functions, growing
capacity if needed, range checking,
synchronization, iterator

General-Purpose API
classes

0

200

400

600

800

1000

1200

1400

add remove access update

m
s

Vector Efficient Vector

Example from Bulka[2]:

Speed up due to a
“light” implementation of
Vector class, offering few
 features.

July 27, 2001 74

Performance Impact of
“Heavy” API classes

0

5

10

15

20

25

Java Date JNI ctime
se

co
nd

s

Speed up due to a use of
native call instead of the
Java Date class

• Date is a
computationally
expensive class

Example from Bulka[2]:

July 27, 2001 75

Java Memory Issues
• Contributors to memory usage in Java:

– Objects

– Classes
• Bytecode

• JIT compiled code

• Constant pool entries

• Data structures representing methods and fields

– Threads

– Native data structures
• e.g. OS-specific structures

• Too much memory usage will result in OS
virtual memory overheads - and possible
slow down in garbage collection

July 27, 2001 76

Java Memory Issues
• No method for calculating object size

– Methods returning total memory and free
memory of heap

– Object size can be estimated indirectly using
garbage collection, and heap memory methods

• Class loading can be tracked with java
-verbose: lists all the classes being
loaded

July 27, 2001 77

Key
Recommendations
• Limit object creation (various

techniques…)

• Do not use synchronized API classes
if not needed

• Rewrite “heavy” API classes, if light
ones are needed

• Apply various optimizations (books,
papers).

July 27, 2001

Performance/Capacity
Analysis of Java

Applications

July 27, 2001 79

Two kinds of Java
apps

Internet

Applets
Server Side
Java
Applications
(servlets,
JSP,…)

July 27, 2001 80

Applet performance
Issues

• Download time
– downloads can be sped up using jar files instead of individual

class files

• Dynamically linked classes that are downloaded
when needed (will affect user response time on
first use)

• Needs to be fast (usually used as a GUI)

• Usually no thread contention issues

Internet

July 27, 2001 81

Capacity Analysis for
Server Applications
• Typical industry problem:

– Given a Java server application, size the
server center to support volume of N
requests per second.

– Available data: measurement data from
load testing at smaller volume and on
systems smaller than “production”
systems.

July 27, 2001 82

Issues in Java App
capacity analysis
• Bottleneck capacity may not be that

of a hardware resource

• Bottleneck may be
– a piece of synchronized code

– object creation, if a large number of
objects are being created.

– garbage collection, if large number of
short-lived objects.

– I/O (poorly coded)

July 27, 2001 83

Issues in Java App
capacity analysis
• Possibly no capacity increase with

additional processors (threads)
– CPU may not be the bottleneck

• Speed up due to more memory
– Configure larger heap size

• Speed up with more servers

• CPU time per transaction may increase
going from small to large number of users

July 27, 2001 84

Messaging Example
C P U U tiliz a tio n v s . T h ro u g h p u t

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

0 .0 0 0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0

se ss io n s /se c o n d

 c
p

u
 u

ti
l

:
u

s
r

+
 s

y
s

Ja v a s e rv le t

Ja v a S e r v e r Pa g e s

CG I

Fa s t CG I

From Hansen, Mainkar, Reeser, 2001 [6]

July 27, 2001 85

Messaging Example
C P U tim e p e r s e s s io n v s . T h ro u g h p u t

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0 .0 0 0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0

se ss io n s /se co n d

C
P

U
 m

il
li

s
e

c
s

 p
e

r
s

e
s

s
io

n

Ja v a s e r v le t

Ja v a S e rv e r Pa g e s

CG I

Fa s t CG I

From Hansen, Mainkar, Reeser, 2001 [6]

July 27, 2001 86

Messaging Example

P ag e F au lts /sec vs. T h ro u g h p u t

1. 00

1 0.0 0

1 0 0. 00

1 00 0. 0 0

1 0 0 0 0. 0 0

0 .0 0 0 .5 0 1 .00 1. 5 0 2. 0 0 2.5 0

s e ss ion s/s e co nd

P
a

g
e

 f
a

u
lt

s
 p

e
r

s
e

s
s

io
n

Jav a se rv le t

Jav a Se rv e r Pa g e s

CG I

Fas t CGI

From Hansen, Mainkar, Reeser, 2001 [6]

July 27, 2001 87

Delay Analysis
• Apart from hardware resources,

Java’s software resources should
also be analyzed as queues -
– should take into account synchronized

portion of code, and contention for it in
a delay model.

• Should take into account garbage
collection - service time in queues
may be load-dependent

July 27, 2001 88

Previous Work

• Reeser[5] modelled a Java
application with software “code
lock” as a separate queue
– “Abstract” bottleneck, - paper does not

say which particular Java resource was
the bottleneck

– Model fits well

July 27, 2001 89

Reeser model example

4
CPUs 1 server Infinite

server

Front-End Sub-
System

SW Bottleneck
(Code Lock)

Back-End Sub-
System

FIGURE 6: QUEUEING MODEL

Figure 6 from “Using Stress Test Results to Drive Performance Modeling: A Case
Study in “Gray-Box” Vendor Analysis”, ITC-16, Brazil, 2001.

July 27, 2001 90

Reeser model example

FIGURE 7: TEST RESULTS VS. MODEL

0

3

6

9

1 2

1 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

C O N C U R R E N T U S E R S

R
E

S
P

O
N

S
E

 T
IM

E
 (

s
e

c
)

R e s p o n s e t im e

M o d e l f it to d a ta

Figure 7 from “Using Stress Test Results to Drive Performance Modeling: A Case
Study in “Gray-Box” Vendor Analysis”, ITC-16, Brazil, 2001.

July 27, 2001 91

Profiling Tools
• Java VM comes with a profiler

– Can report times spent in method calls,
heap data etc.

– Hard to read and understand

• Commercial Profilers
– Jprobe, OptimizeIt

• Useful to developers to really tune
their code

• Useful to analysts for understanding
GC time and other bottlenecks

July 27, 2001 92

Future Directions

• Better models and techniques to
analyze and predict capacity and
performance of Java applications

July 27, 2001 93

References

1. B. Venners. Inside the Java 2 Virtual Machine. 2nd Ed.
McGraw Hill, 1999.

2. D. Bulka. Java Performance and Scalability, Vol. 1.
Addison-Wesley, 2000.

3. IBM Systems Journal Vol. 39, No.1, 2000. Special Issue on
Java Performance.

4. J. Shirazi. Java Performance Tuning. O’Reilly, 2000.

5. P. Reeser, “Using Stress-Test Results to Drive Performance
Modeling: A Case-Study in Vendor Gray-Box Modeling”.

6. T. Hansen,V.Mainkar,P.Reeser, “Performance Comparison
of Dynamic Web Platforms”, SPECTS 2001.

