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Outline

• Introduction to Java (10 mts)

• Motivation for studying Java 
Performance (15 mts)

• Overview of Java Architecture (30 mts)

• Break (5 mts)

• Impact of Java Architecture on 
Performance (45 mts)

• Analyzing Java Programs (15 mts)
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Background
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Java : A Brief History

• Appeared in 1993

• Initially developed for 
– Networked, handheld devices

• Coincided with emergence of WWW
– Target market shifted to Internet

• First showcased in the form of 
applets
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…Java- A Brief History
• Server-side Java applets or Servlets 

introduced as  demand increased for 
dynamic page generation

• Java Beans - for reusable software 
components

• Java Server Pages - for decoupling 
dynamic data from HTML 
presentation

• “Java 2” -  Java 1.3
– HotSpot Compiler, enhancements
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Java - Features

• Platform - independence

• Security

• Robustness

• Network mobility

• Multi-threaded 

• Built - in memory management

• Rich API for Internet and Web 
Programming
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Why Java ?

• Faster, less troublesome 
development

• Easy porting to multiple platforms

• Easier software distribution 

• Security features

• Rich APIs (Internet, Web,…)

API = Application Programmer’s Interface
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Where’s the catch ?

• Performance !

• Generally true : rich programming 
features come at the cost of 
performance. Solutions:
– Do not use rich environments  

– Understand the environment and do  
“enlightened” development

×
√
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Other Disadvantages

• Buggy Virtual Machines

• “Write once - Debug Everywhere”

• Platform Independence 
“independence” from useful OS 
features

Bottom Line: Java has become extremely popular, 
equally among new programmers as well as 
seasoned C++ gurus.
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Motivation
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Is Java “slow”?
• Simple Example: Java vs. C++

– Java with “Just-in-time” compilation and withoutclass Salutation {

    private static final String hello = "Hello, world!";
    private static final String greeting = "Greetings, 
planet!";
    private static final String salutation = "Salutations, 
orb!";

    private static int choice;

    public static void main(String[] args) {

        int i;

        for (i = 0; i <= 10000; i ++) {

          choice = (int) (Math.random() * 2.99);
          String s = hello;
          if (choice == 1) {
              s = greeting;
          }
          else if (choice == 2) {
              s = salutation;
          }
          System.out.println(s);
        }
   }

} 

#include<stdio.h>
#include<iostream.h>
#include<stdlib.h>
#include<string.h>

void main () {

  char* hello = "Hello World!";
  char* greeting = "Greetings, Planet!";
  char* salutation = "Salutation, Orb!";
  char* s;

  int choice;

  int i;

  for (i =0; i <= 10000; i ++) {
    choice = ((int) rand()) % 3;
    s = hello;
    if (choice == 1) {
      s = greeting;
    }
    else if (choice == 2) {
      s = salutation;
    }
    cout << s << endl;
  }

} Java C++
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Java vs C++  
Simple Example

Java vs C++
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Is Java Slow ? 
Realistic Example : A messaging application 
implemented in Java (servlets and JSP) and C++ 
(CGI and FastCGI) [5]
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Does Java have 
scalability problems?

M e a s u re d  P e r-P ro ce s s o r C P U  U tiliza tio n
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• Bottleneck prevents use of multiple CPUs efficiently
•Thorough analysis pointed to inherent Java bottleneck

Figure from “Implications of Servlet/Javabean technology on Web server scaling”: Cura, 
Ehrlich, Gotberg, Reeser
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Java scalability

• Some history of poor scalability: e.g. 
Java 1.1.7
– Article in JavaWorld, August 2000 - 

“Java Threads may not use all your 
CPUs”, P. Killelea.

• Two programs:one in C, that does an empty 
loop, same in Java.

• Run the program as multiple processes on 
12-CPU machine  scalabilityof C++ process

• Run the Java program as multiple threads
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Java Scalability
The C program: 
main() { 

  unsigned long i

   for (i = 0; i < 1000000000; i ++);

}

The Java program: 

class Loop implements Runnable {

public static void main (String[] args) {

     for (int t = 0; t < Integer.parseInt(args[0]); t++) 

new Thread(new Loop()).start();
}

public void run() {

    for (int i = 0; i < 1000000000; i ++);

}

Perl Wrapper 
creates multiple 
processes



July 27, 2001 18

CPU Scalability - 
C processes

Figure 3 from 
article by 
P.Killelea, 
JavaWorld, 
August 2000.
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CPU scalability- 
Java Threads

Figure 5 from 
article by 
P.Killelea, 
JavaWorld, 
August 2000.
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Initial Conclusion
• Java has performance problems

– Root cause often hard to understand

• But Java has immense technical and 
business advantages
– Use of Java for server programs will 

continue increasing

• Developers and analysts need to 
educate themselves on Java 
architecture and performance 
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Tutorial Goal

• Basic understanding of how Java 
works

• Identify elements of Java 
architecture that impact performanc

• Intro to issues in performance 
analysis of Java programs

• Guidelines to improving Java 
performance (references, papers, 
etc)
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Java Architecture
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How Java Works

1. Write code in Java : foo1.java, foo2.java

2. Compile: 
– javac foo1.java  foo2.java

(javac is the Java compiler)

– generates bytecodes in a class file:
• foo1.class, foo2.class

3. Run:
– java foo1.class

(“java” is the JVM: Java virtual machine)

Note: No 
linked 
executable

Each 
application 
runs inside its 
own JVM
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Java Platform Components

• Programming Language

• Class file format

• API

• JVM

• JVM+API = platform for which Java 
programs are compiled
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Programming Language
• Object Oriented

• Robustly checked (type checking, 
array bounds, memory references…)

• No explicit memory management 
functions (no free(), destroy())

• Syntactically like C++

• Has a rich class library - vectors, 
hastables, Internet, Web, …

• Naturally multithreaded
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Java Class File

• Binary file format of Java programs

• Completely describes a Java class

• Contains  bytecodes - the “machine 
language” for a Java virtual machine

• Designed to be compact
– minimizes network transfer time

• Dynamically Linked
– can start a Java program without having 

all classes - good for applets
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The Java Virtual Machine

Host Operating System

Application’s
class files

Class
loader

Execution
Engine

Java API 
class files

*Figure 1-4, from Venners[1]

bytecodes

native method invocations
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JVM (Java Virtual Machine)

• JVM Class loader loads classes from 
the program and the Java API 

• Bytecodes are executed in the 
execution engine

• Interpreted or

•  just-in-time complied : method 
compiled to native instructions when 
first compiled, then cached
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The Java API

• Set of runtime libraries that provide a 
standard way to access system 
resources on a host machine

• JVM+Java API are required 
components of the Java Platform

• The combination of loaded class files 
from a program, the Java API and 
any DLLs constitutes a full program 
executed by the JVM
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Java Under the Hood 
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Java VM architecture

Class
loader

class files

pc 
registersheap

Java 
stacks

native
method
stacks

method 
area

Execution
Engine

native method
interface

native method
libraries

Figure 5-1, from Venners[1]
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JVM: Run-Time Data Areas
Shared:

Exclusive for each thread:

Heap Area

object

object object

object

object

objectobject

pc registers Java stacks

thread2

thread3

thread1

thread1 thread2 thread3

stack stack stack
Native method

stack

stack

thread3

Figure 5-3, from Venners[1]

Figure 5-2, 
from 
Venners[1]

Method Area
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class
data

class
data

class
data class

data
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Method Area:

Method Area

class
data

class
data

class
data

class
data class

data

•Class loader loads class information in 
this area

•All threads share the same method area 
- must be thread-safe

–If one thread is loading a class, the 
other must wait

•Method area could be allocated on the 
heap also

•Can be garbage collected

–Collect unreferenced classes

•Type information:name, superclass 
name,field info, method info, method 
bytecodes, a reference to class 
“Class”,...
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The Heap

Heap Area

object

object object

object

object

objectobject

• Area where memory is allocated for 
objects created during run-time

• Each object has instance data, and 
pointer to class data in the method 
area

• Not shared between two applications 
(each runs inside its own JVM)

• Shared between multiple threads of the same application
– Access to heap must be thread-safe

– Access to objects must be thread-safe

• Is managed by JVM using automatic garbage collection (GC)
– Memory from unreferenced objects is reclaimed

• May have an associated handle pool that points to the actual 
objects
– Object reference: Pointer into handle pool

– When objects are moved during GC - update only the handle pool
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Stacks, PCs

pc registers Java stacks

thread2

thread3

thread1

thread1 thread2 thread3

stack stack stack Native method
stack

stack

thread3

• Each thread has separate stack -
–  no danger of access by another thread

•  Method calls generate stack frames - 
containing parameters, local variables etc
– may also be allocated on the heap
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Lifetime of a class

Load
Link

Initialize

Verify

Prepare

Resolve

•Reads, 
parses 
binary data
•Creates an 
object of 
type “Class” 
on the heap

Verifies semantics 
of class files, 
symbolic 
references, etc

Memory 
allocation, 
default 
initial values

Replace 
symbolic 
references 
with direct 
ones

Actual initial 
value
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   Class Instantiation
Object Creation

Explicit Implicit

new

newInstance()

clone()

getObject() 
(deserialization)

String objects for cmd-line args

Class object on loading

 String constants

String concatenation

Allocate 
Memory 
on heap

Initialize
Use in

 program
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Discarding objects

Unrefenced
object

(optionally)
Run 
finalize() 

Reclaimed
during 
garbage
 collection

Discarding classes

Unreachable
class

Reclaimed
during 
garbage
 collection



July 27, 2001 39

Garbage Collection

• JVM recycles memory used by 
objects that are no longer referenced

• GC needs to 
– Determine which objects can be freed, 

free them

– Take care of heap fragmentation

• Various algorithms for GC, JVM 
specification doesn’t force any one.
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Garbage Collection 
Algorithms
• Tracing Collectors:

– Trace from roots (e.g. local variables, 
operands) down the reference graph. 
Collect unreachable objects

• Counting Collectors:
– Maintain reference count for objects.

– Collect when count goes down to zero. 
• Cannot detect circular references
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Garbage Collection 
-Heap Compaction
• Compacting Collectors:

– Slide live objects over to occupy free 
space

• Copying Collectors

unusedunused unused

unused unused unused
free

free

free free

free

unused

Figure 9-1- from Venners[1]
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Garbage Collection 
-Compaction
• Generational Collectors: Two 

observations:
1. Most objects are short-lived

2. Some objects have long lives

– Group objects by age or “generations”

– GC younger generation more frequently

– Surviving objects move up generations
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Synchronization
• Java has a multi-threaded architecture 

– Easy to write code that will not work well with 
multiple threads

• Use synchronization constructs for
– Mutual Exclusion: For coherent use of shared 

data
• Synchronized statements

• Synchronized methods

– Co-operation
• Working together towards a common goal

• wait and notify commands
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…Synchronization
• Implemented by acquiring locks on 

objects
– Synch statements - lock any object
class someClass {
     int someVar;
     synchronized(anObject) {
         someVar++;}
     }
}

– Synch methods - lock the object on 
which the method was called

class someClass {
     int someVar;
     synchronized void incr {
         someVar++;
     }
}
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Exceptions

• Error handling mechanism
– programmer can “throw” exception

– Exception object is created with string 
comment and stack trace

• Involves object creation, initialization
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Security

• Security achieved by:
– Strict rules about class loading (will 

prevent loading malicious classes)

– verification of class files

– run-time checking by JVM

– Security manager and the Java API 
(manages access to resources outside 
the JVM)
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Performance Impact of 
Java Architecture
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Why is Java slow ?

“Obvious” contributors : 
–Bytecode Interpretation (if not jit-ed)

• Server-side applications may spend only 
10-20 % of time executing Jit-ed code 
(IBM Systems Journal Paper[3].)

– If jit-ed, compilation cost (one-time), 
footprint cost
• OS memory management overhead 

(paging, scanning etc)
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Example 
•M/M/1 Queue Simulation: Factor of 10 
difference in execution time
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More Basic Features 
Impacting Performance

• Dynamic Linking

• Checking of array bounds on each 
access

• Checking for null references

• Primitive types are the same- not 
adjusted to the most efficient type 
for each platform

• ….
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Why is Java slow? - 
Major contributors
• Non-obvious, but deeply impacting 

performance:
– Object creation 

– Garbage collection

– Synchronization

– API classes too general
• General-purpose design always implies 

performance penalty

• Improper use of Classes and APIs
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Performance Impact 
of Object Creation
Object Creation involves:

• Allocating memory
– including for superclasses

• Initializing instance variables to Java 
defaults

• Calling Constructors
– including superclass constructors

• Initializing instance variables as 
programmed

Can
be 

expensive!
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Performance Impact of 
Object Creation

• Example 1: Code piece A is 95 % faster 
than Code piece B

• Example 2: Code piece A is 60 % faster 
than Code piece B

                        A :

Vector  v = new Vector();  
  for (i=0; i<n; i++) 
{     v.clear(); v.addElement… }

B:

  for (i=0; i<n; i++) 

{Vector v = new Vector(); v.addElement..}

A :
boolean  bool = 
a.equalsIgnoreCase(b);

              B :
ucA = a.toUpperCase();  
ucB = b.toUpperCase(); 
boolean bool = ucA.equals(ucB);
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Object Creation

Two Overheads:
• Creating the object in the heap 

(previous slide)

• Since the heap is shared by all 
threads -
– overhead  due to contention for the 

heap 
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Object Creation… 
Scalability
• Concurrency efficiency of object creation across 

threads
– Program that creates 500,000 objects, on 6-cpu machine

public void run () {
int i;
   myObj obj;
   Thread ct = Thread.currentThread();
   String thrName = ct.getName()+ ":";
  obj = new myObj(); 
  for (i = 0; i < mt; i++) {
      if (c == 1) obj = new myObj();   
  }
}
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Object Creation… 
Scalability

• Time program with varying number of 
threads- but total # of objects created is 
always 500,000.

# threads  execution time 

1
2
3
4
5
6

15 s
10 s
8.5 s
7.6 s
8.5 s
8.3 s

 “ideal” time 

15 s
7.5 s
5 s

3.75 s
3 s

2.5 s

>
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Scalability : 
Sanity check
Concurrency efficiency of cpu-bound 

program 
 for (i = 0; i < mt; i++) {
     for (j = 0; j< 100; j++) 
       f =  (i)/ (j+1);
   }

– Timings with varying # of threads (# of loop 
iterations is constant)

# threads  execution time 

1
2
3
4
5
6

18.9 s
9.9 s
6.9 s
5.6 s
4.6 s
4.1 s

 “ideal” time 

18.9 s
9.4 s
6.3 s
4.7 s
3.8 s
3.1 s

≈



July 27, 2001 58

Object Creation
• Observations

– Has a basic overhead

– Programs doing lot of object creation 
(explicit/implicit) will have unexpected 
scalability problems

– Each created object adds to garbage 
collection overhead

• must be traversed

• must be collected, when unreferenced.

• Having many short-lived objects can be a 
performance bottleneck
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Performance Impact 
of Garbage Collection
• Garbage collection adds a run-time 

overhead
– In older JVMs GC could stop all 

processing
• GC could result in user perceivable delays 

• Delays could be 5-10 seconds for large 
heaps (100-500 MB)[3]
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Performance Impact 
of Garbage Collection
• Newer JDKs have improved algorithms

– Sun JDK 1.3 has 
• Generational garbage collection

• Train algorithm for the old generation sub-
heap

– Overhead is now smaller 
• e.g. Queue simulation example : 53 ms out of 

13 s running time. Heap size b/w 160KB and 
2MB

– Is larger if heap is large
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Performance Impact 
of Garbage Collection
• Garbage collection can be timed 

(java -verbosegc) 

• Test GC in a program in which 
number of objects, and heap size 
keep increasing

class create implements Runnable {
static int m, c, mt;
 public void run () {
   
   int i;
   myObj obj[]= new myObj[1000000];
   Thread ct = Thread.currentThread();
   String thrName = ct.getName()+ ":";

long st = System.currentTimeMillis();
   for (i = 0; i < mt; i++) {
     if (c == 1) obj[i] = new myObj();
     //System.out.println(thrName+obj);
   }
   long diff = System.currentTimeMillis() -st;
   System.out.println("Time: "+ diff);
 }
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Performance Impact 
of Garbage Collection

GC time vs # of objects
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Performance Impact 
of Garbage Collection

GC time vs size of heap
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Performance Impact 
of Garbage Collection

 Test queue 
simulation 
program, after 
allocating a 
large array of 
objects in the 
beginning, and 
then running 
the simulation 
as usual.0
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•Looks like GC learns about the long-lived object and does not include 
that in later GC?
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Performance Impact 
of Synchronization
• “Obvious” : 

– In a multithreaded application, synchronized 
pieces will be the bottlenecks (Java-
independent issue)

• Non-obvious (Java-isms ):
– Big synchronization overhead 

– Java API classes may have synchronized 
methods  - a big overhead in cases where 
synchronization is not necessary (access only 
by one thread)

– Implicitly shared objects internal to  the JVM - 
e.g. heap. Access will be synchronized
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Performance Impact 
of Synchronization
• Example: Vector vs ArrayList (example 

creates vector/array list, adds elements, then accesses them)

0
1000
2000
3000
4000
5000
6000
7000
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Synchronization Overhead 

Vector

ArrayList

Vector is a 
synchronized 

class

From Bulka[2]
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Contention for synchronized code:

Performance Impact 
of Synchronization
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Example 
Bulka[2]: 
increase a 
counter using 
synchronized 
method. Use 
increasing # of 
threads to do 
the same 
amount of 
total work. 
Results from 
6-cpu 
machine.
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Implicitly synchronized code:

Performance Impact 
of Synchronization

Object creation 
example, with 
printing inside 
the loop 
(System.out. 
Println - not an 
explicitly 
synchronized 
function in 
Java. Access 
possibly 
serialized by 
OS) 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4 5 6

# of Threads

se
co

n
d

s

Actual Ideal



July 27, 2001 69

class WorkerThread extends Thread {
   private int iter;
   private int tid;
   private static double num;
   public WorkerThread (int 
iterationCount, int id) {
     this.iter = iterationCount;
     this.tid = id;
   }
   public void run() {
      for (int i = 0; i < iter; i++) {
         num += Math.random(); 
   }
  }
}

Performance Impact 
of Synchronization

Example: Multiple 
threads increment a 
shared variable  by 
calling Math.random() 

Run this program with 
increasing number of 
threads, keeping the 
total number of 
iterations the same - on 
6-CPU machine
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Performance Impact 
of Synchronization

• Example of multiple threads calling Math.random() - a 
synchronized method
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• Object creation can be viewed as a 
special case of access to 
synchronized data structures and 
methods

• We saw similar effects there

Performance Impact 
of Synchronization
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General-Purpose API 
classes
• Generally true: When a class/API provides 

maximum flexibility and features, there 
will be an associated performance cost. 
Examples:

– Vector Class
• Some applications may need their own 

efficient vector implementation

– Date
• Using native Date functions thru JNI might 

prove better performing
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• Example 1: Vector class provides basic 
access/update functions, growing 
capacity if needed, range checking, 
synchronization, iterator 

General-Purpose API 
classes
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Example from Bulka[2]:

Speed up due  to a 
“light” implementation of 
Vector class, offering few 
 features.
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Performance Impact of 
“Heavy” API classes

0
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Java Date JNI ctime
se

co
nd

s

Speed up due  to a use of 
native call instead of the 
Java Date class

• Date is a 
computationally 
expensive class

Example from Bulka[2]:
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Java Memory Issues
• Contributors to memory usage in Java:

– Objects

– Classes
• Bytecode

• JIT compiled code

• Constant pool entries

• Data structures representing methods and fields

– Threads

– Native data structures 
• e.g. OS-specific structures

• Too much memory usage will result in OS 
virtual memory overheads - and possible 
slow down in garbage collection
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Java Memory Issues
• No method for calculating object size

– Methods returning total memory and free 
memory of heap

– Object size can be estimated indirectly using 
garbage collection, and heap memory methods

• Class loading can be tracked with java 
-verbose:  lists all the classes being 
loaded
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Key 
Recommendations
• Limit object creation (various 

techniques…)

• Do not use synchronized API classes 
if not needed 

• Rewrite “heavy” API classes, if light 
ones are needed

• Apply various optimizations (books, 
papers).
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Performance/Capacity 
Analysis of Java 

Applications
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Two kinds of Java 
apps

Internet

Applets
Server Side 
Java 
Applications 
(servlets, 
JSP,…)
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Applet performance 
Issues

• Download time
– downloads can be sped up using jar files instead of individual 

class files

• Dynamically linked classes that are downloaded 
when needed (will affect user response time on 
first use)

• Needs to be fast (usually used as a GUI)

• Usually no thread contention issues

Internet
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Capacity Analysis for 
Server Applications
• Typical industry problem: 

– Given a Java server application, size the 
server center to support volume of N 
requests per second.

– Available data: measurement data from 
load testing at smaller volume and on 
systems smaller than “production” 
systems.
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Issues in Java App 
capacity analysis
• Bottleneck capacity may not be that 

of a hardware resource

• Bottleneck may be 
– a piece of synchronized code

– object creation, if a large number of 
objects are being created.

– garbage collection, if large number of 
short-lived objects.

– I/O (poorly coded)
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Issues in Java App 
capacity analysis
• Possibly no capacity increase with 

additional processors (threads)
– CPU may not be the bottleneck

• Speed up due to more memory
– Configure larger  heap size

• Speed up with more servers

• CPU time per transaction may increase 
going from small to large number of users
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Messaging Example
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From Hansen, Mainkar, Reeser, 2001 [6]
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Messaging Example
C P U  tim e  p e r s e s s io n  v s . T h ro u g h p u t  
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Messaging Example

P ag e F au lts /sec  vs. T h ro u g h p u t  
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Delay Analysis
• Apart from hardware resources, 

Java’s software resources should 
also be analyzed as queues -
– should take into account synchronized 

portion of code, and contention for it in 
a delay model.

• Should take into account garbage 
collection - service time in queues 
may be load-dependent
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Previous Work

• Reeser[5] modelled a Java 
application with software “code 
lock”  as a separate queue
– “Abstract”  bottleneck, - paper does not 

say which particular Java resource was 
the bottleneck

– Model  fits well
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Reeser model example

4
CPUs 1 server Infinite

server

Front-End Sub-
System

SW Bottleneck
(Code Lock)

Back-End Sub-
System

FIGURE 6:  QUEUEING MODEL

Figure 6 from “Using Stress Test Results to Drive Performance Modeling: A Case 
Study in “Gray-Box” Vendor Analysis”, ITC-16, Brazil, 2001.
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Reeser model example

FIGURE 7: TEST RESULTS VS. MODEL
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Figure 7 from “Using Stress Test Results to Drive Performance Modeling: A Case 
Study in “Gray-Box” Vendor Analysis”, ITC-16, Brazil, 2001.
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Profiling Tools
• Java VM comes with a profiler

– Can report times spent in method calls, 
heap data etc.

– Hard to read and understand

• Commercial Profilers
– Jprobe, OptimizeIt

• Useful to developers to really tune 
their code

• Useful to analysts for understanding 
GC time and other bottlenecks
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Future Directions

• Better models and techniques to 
analyze and predict capacity and 
performance of Java applications
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