

Improving .NET Application
Performance and Scalability

Forwards by Rico Mariani, Brandon Bohling,
Connie U. Smith, and Scott Barber

Improving .NET Application
Performance and Scalability

patterns & practices

J.D. Meier, Microsoft Corporation

Srinath Vasireddy, Microsoft Corporation

Ashish Babbar, Infosys Technologies Ltd

Alex Mackman, Content Master Ltd

ISBN 0-7356-1851-8

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory, MSDN,
Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Letter to Our Customers
IT professionals are under increasing pressure not only to execute design and
development initiatives that meet functional specifications, but also to release fast,
responsive, and scaleable applications. In response to the needs of architects and
developers striving to meet these expectations as they build on the .NET platform,
we have developed the Improving .NET Application Performance and Scalability guide.

This guide reflects an evolutionary way of thinking about the software development
cycle. Fundamental to the guide's design is a fresh commitment to determining
performance objectives as part of the early stages in the design and architecture of the
application. Building these parameters into the design from the beginning prevents you
from having to spend unnecessary time and resources addressing performance and
scalability deficits later in the life cycle.

The design and process principles outlined in Improving .NET Application Performance and
Scalability offer architects an early opportunity to reduce total cost of ownership (TCO).
Costs are contained not only by planning carefully in the development phase, but also by
delivering robust and scalable applications that harness the power of .NET.

The guide promotes a holistic vantage point that encompasses the technological
considerations of a project, the roles and contributions of key people involved in the
development process, and the work processes through which key players meet their
project’s performance objectives.

The guidance draws upon Microsoft’s internal experience in developing on the .NET
platform, and also consolidates the contributions of external experts in performance
improvement, customers, and others in the IT community.

Organization of the guide enables you to focus on a specific process or technology, or to
use the guidance in top-level decision-making as you design high-performance
applications. The guide is designed to be used as a reference or to be read from beginning
to end. Guidance supports top-level decision making at the early stages of a new project
as well as topic-specific content to help IT professionals fine-tune and improve the
performance of existing.

We are confident that Improving .NET Application Performance and Scalability will help you
deliver software to your customer that is reliable, cost-effective, and attractive to end
users and administrators.

Sincerely,

S. Somasegar
Corporate Vice President, Developer Division
Microsoft Corporation

Contents

Forewords xxxix
Foreword by Scott Barber. xxxix
Foreword by Brandon Bohling . xli
Foreword by Rico Mariani . xliii
Foreword by Connie U. Smith . xlv

Introduction 1
Summary . 1
Overview. 1
Why We Wrote This Guide . 1
Scope of This Guide . 2

Technologies in Scope. 3
Features of This Guide . 4
Audience . 5
How to Use This Guide . 5

Ways to Use the Guide . 6
Applying the Guidance to Your Role . 6
Applying the Guidance to Your Life Cycle . 7

Organization of This Guide . 8
Performance Best Practices at a Glance. 8
Fast Track . 8
Parts . 8

Approach Used in This Guide . 11
Give Performance Due Consideration Up Front . 11
Set Objectives and Measure . 11
Know the Cost . 12

Framework for Performance . 12
Feedback and Support. 13

Feedback on the Guide . 13
Technical Support . 13
Community and Newsgroup Support. 14

The Team Who Brought You This Guide. 14
Contributors and Reviewers . 15
Tell Us About Your Success . 16
Summary . 16

Performance Best Practices at a Glance 17
Summary . 17
Architecture and Design Solutions . 17

vi Improving .NET Application Performance and Scalability

Development Solutions . 22
Improving Managed Code Performance. 22
Improving Data Access Performance . 28
Improving ASP.NET Performance . 31
Improving Web Services Performance. 34
Improving .NET Remoting Performance . 35
Improving Enterprise Services Performance . 36
Improving Interop Performance. 37

Testing Solutions. 37

Fast Track — A Guide for Getting Started and Applying the Guidance 39
Summary . 39
Goal and Scope. 39
The Approach . 41
Set Performance Objectives . 41

Performance Objectives . 42
Quality of Service Attributes. 42

Design for Performance . 43
Performance and Scalability Frame. 43
Performance Modeling. 44

Measuring Performance. 45
Know the Cost . 45
Validate . 45

Testing Performance . 46
Load Testing . 46
Stress Testing. 47

Tuning Performance . 49
Applying the Guidance to Your Application Life Cycle . 50

Functional Mapping . 50
Performance Throughout the Life Cycle. 51

Who Does What? . 52
RACI Chart . 52

Implementing the Guidance . 53
Summary . 54

Part I
Introduction to Engineering for Performance 55

Chapter 1
Fundamentals of Engineering for Performance 57

Overview. 57
Managing Performance . 58

Quality-of-Service Requirements. 58
Reactive vs. Proactive Approach. 58

Engineering for Performance . 59

 Contents vii

Set Objectives and Measure . 60
Set Performance Objectives. 61
Metrics. 62
Know Your Budgets . 62

Design for Performance . 63
Give Performance Due Consideration from the Start . 63
Performance and Scalability Frame. 64

Measure . 64
Know the Cost . 65
Validate Assumptions . 65
Scenarios . 65

Life Cycle . 65
Where to Go from Here . 67
Terms You Need to Know . 68
Summary . 69

Part II
Designing for Performance 71

Chapter 2
Performance Modeling 73

Objectives. 73
Overview. 73
How to Use This Chapter . 74
Why Model Performance? . 75
Risk Management . 76
Budget . 76
What You Must Know. 76

Best Practices . 77
Information in the Performance Model . 77
Inputs. 78
Outputs . 78

Performance Model Document . 78
Test Cases with Goals . 79

Process . 79
Step 1. Identify Key Scenarios . 80

Critical Scenarios . 80
Significant Scenarios. 81

Step 2. Identify Workload. 81
Step 3. Identify Performance Objectives . 82
Step 4. Identify Budget . 82

Execution Time . 82
Resource Utilization . 83
Additional Considerations . 83

Step 5. Identify Processing Steps . 84

viii Improving .NET Application Performance and Scalability

Step 6. Allocate Budget. 84
Assigning Execution Time to Steps. 84
Assigning Resource Utilization Requirements . 85

Step 7. Evaluate . 85
Step 8. Validate . 86

More Information . 86
Summary . 86
Additional Resources. 87

Chapter 3
Design Guidelines for Application Performance 89

Objectives. 89
Overview. 89
How to Use This Chapter . 90
Principles . 90

Design Process Principles . 91
Design Principles . 92

Deployment Considerations . 94
Consider Your Deployment Architecture . 94
Identify Constraints and Assumptions Early . 96
Evaluate Server Affinity . 96
Use a Layered Design . 97
Stay in the Same Process . 97
Do Not Remote Application Logic Unless You Need To. 98

Scale Up vs. Scale Out . 98
Scale Up: Get a Bigger Box . 99
Scale Out: Get More Boxes . 99
Guidelines . 99
Consider Whether You Need to Support Scale Out . 99
Consider Design Implications and Tradeoffs Up Front . 100
Consider Database Partitioning at Design Time . 102
More Information . 102

Architecture and Design Issues . 102
Coupling and Cohesion . 105

Design for Loose Coupling . 105
Design for High Cohesion . 106
Partition Application Functionality into Logical Layers . 106
Use Early Binding Where Possible . 106
Evaluate Resource Affinity . 106
More Information . 107

Communication . 107
Choose the Appropriate Remote Communication Mechanism 107
Design Chunky Interfaces . 108
Consider How to Pass Data Between Layers . 108
Minimize the Amount of Data Sent Across the Wire. 110
Batch Work to Reduce Calls Over the Network . 111

 Contents ix

Communication (continued)
Reduce Transitions Across Boundaries. 111
Consider Asynchronous Communication . 111
Consider Message Queuing . 112
Consider a “Fire and Forget” Invocation Model . 113
More Information . 113

Concurrency . 114
Reduce Contention by Minimizing Lock Times. 114
Balance Between Coarse- and Fine-Grained Locks . 114
Choose an Appropriate Transaction Isolation Level . 114
Avoid Long-Running Atomic Transactions . 116
More Information . 116

Resource Management . 116
Treat Threads As a Shared Resource . 117
Pool Shared or Scarce Resources . 117
Acquire Late, Release Early . 118
Consider Efficient Object Creation and Destruction . 118
Consider Resource Throttling . 118
More Information . 119

Caching . 119
Decide Where to Cache Data . 120
Decide What Data to Cache. 120
Decide the Expiration Policy and Scavenging Mechanism 121
Decide How to Load the Cache Data . 122
Avoid Distributed Coherent Caches . 122
More Information . 122

State Management . 123
Evaluate Stateful vs. Stateless Design. 123
Consider Your State Store Options . 124
Minimize Session Data . 124
Free Session Resources As Soon As Possible . 124
Avoid Accessing Session Variables from Business Logic . 125
More Information . 125

Data Structures and Algorithms . 125
Choose an Appropriate Data Structure . 125
Pre-Assign Size for Large Dynamic Growth Data Types. 126
Use Value and Reference Types Appropriately . 126
More Information . 126

Design Guidelines Summary . 127
Desktop Applications Considerations . 128
Browser Client Considerations . 129
Web Layer Considerations . 130
Business Layer Considerations . 131
Data Access Layer Considerations . 132
Summary . 133
Additional Resources. 133

x Improving .NET Application Performance and Scalability

Chapter 4
Architecture and Design Review of a .NET Application for

Performance and Scalability 135
Objectives. 135
Overview. 135
How to Use This Chapter . 136
Architecture and Design Review Process . 136
Deployment and Infrastructure . 138

Do You Need a Distributed Architecture? . 138
What Distributed Communication Should You Use?. 139
Do You Have Frequent Interaction Across Boundaries? . 140
What Restrictions Does Your Infrastructure Impose?. 140
Do You Consider Network Bandwidth Restrictions? . 141
Do You Share Resources with Other Applications? . 142
Does Your Design Support Scaling Up? . 142
Does Your Design Support Scaling Out? . 143

Coupling and Cohesion . 144
Is Your Design Loosely Coupled? . 145
How Cohesive Is Your Design? . 145
Do You Use Late Binding? . 146

Communication . 146
Do You Use Chatty Interfaces?. 147
Do You Make Remote Calls? . 147
How Do You Exchange Data with a Remote Server? . 148
Do You Have Secure Communication Requirements? . 150
Do You Use Message Queues? . 150
Do You Make Long-Running Calls? . 150
Could You Use Application Domains Instead of Processes?. 151

Concurrency . 152
Do You Need to Execute Tasks Concurrently? . 152
Do You Create Threads on a Per-Request Basis? . 153
Do You Design Thread Safe Types by Default? . 153
Do You Use Fine-Grained Locks? . 153
Do You Acquire Late and Release Early?. 153
Do You Use the Appropriate Synchronization Primitive? . 154
Do You Use an Appropriate Transaction Isolation Level? . 154
Does Your Design Consider Asynchronous Execution?. 154

Resource Management . 156
Does Your Design Accommodate Pooling? . 156
Do You Acquire Late and Release Early?. 157

Caching . 157
Do You Cache Data? . 158
Do You Know Which Data to Cache?. 158
Do You Cache Volatile Data? . 159

 Contents xi

Caching (continued)
Have You Chosen the Right Cache Location? . 159
What Is Your Expiration Policy?. 160

State Management . 161
Do You Use Stateless Components? . 162
Do You Use .NET Remoting? . 163
Do You Use Web Services? . 163
Do You Use Enterprise Services? . 164
Have You Ensured Objects to be Stored in Session Stores are Serializable? 164
Do You Depend On View State? . 164
Do You Know the Number of Concurrent Sessions

and Average Session Data per User? . 164
Data Structures and Algorithms . 165

Do You Use Appropriate Data Structures? . 165
Do You Need Custom Collections? . 166
Do You Need to Extend IEnumerable for Your Custom Collections? 166

Data Access . 166
How Do You Pass Data Between Layers? . 167
Do You Use Stored Procedures? . 168
Do You Process Only the Required Data? . 169
Do You Need to Page Through Data? . 169
Do Your Transactions Span Multiple Data Stores?. 169
Do You Manipulate BLOBs? . 170
Are You Consolidating Repeated Data Access Code? . 170

Exception Handling . 171
Do You Use Exceptions to Control Application Flow? . 171
Are Exception Handling Boundaries Well Defined?. 172
Do You Use Error Codes? . 172
Do You Catch Exceptions Only When Required? . 173
More Information . 173

Class Design Considerations . 173
Does Your Class Own the Data That It Acts Upon? . 173
Do Your Classes Expose Interfaces? . 174
Do Your Classes Contain Virtual Methods?. 174
Do Your Classes Contain Methods that Take Variable Parameters? 174

Summary . 175
Additional Resources. 175

Part III
Application Performance and Scalability 177

Chapter 5
Improving Managed Code Performance 179

Objectives. 179
Overview. 179

xii Improving .NET Application Performance and Scalability

How to Use This Chapter . 180
Architecture . 181
Performance and Scalability Issues . 183
Design Considerations. 183

Design for Efficient Resource Management . 184
Reduce Boundary Crossings . 184
Prefer Single Large Assemblies Rather Than Multiple Smaller Assemblies 185
Factor Code by Logical Layers . 185
Treat Threads as a Shared Resource . 186
Design for Efficient Exception Management . 186

Class Design Considerations . 186
Do Not Make Classes Thread Safe by Default. 186
Consider Using the sealed Keyword . 187
Consider the Tradeoffs of Virtual Members. 187
Consider Using Overloaded Methods . 188
Consider Overriding the Equals Method for Value Types. 188
Know the Cost of Accessing a Property . 189
Consider Private vs. Public Member Variables. 189
Limit the Use of Volatile Fields. 189

Implementation Considerations . 190
Garbage Collection Explained. 190

Allocation . 191
Collection . 191
Generations . 191
Key GC Methods Explained . 192
Server GC vs. Workstation GC . 192

Garbage Collection Guidelines . 193
Identify and Analyze Your Application’s Allocation Profile . 194
Avoid Calling GC.Collect. 194
Consider Using Weak References with Cached Data . 195
Prevent the Promotion of Short-Lived Objects . 196
Set Unneeded Member Variables to Null Before Making Long-Running Calls. 197
Minimize Hidden Allocations . 198
Avoid or Minimize Complex Object Graphs . 198
Avoid Preallocating and Chunking Memory . 198

Finalize and Dispose Explained . 199
Finalize. 199
Dispose . 200
Close . 201

Dispose Pattern . 201
C# Example of Dispose . 202
Visual Basic .NET Example of Dispose . 203

Finalize and Dispose Guidelines. 204
Call Close or Dispose on Classes that Support It . 204
Use the using Statement in C# and Try/Finally Blocks

in Visual Basic .NET to Ensure Dispose Is Called . 206

 Contents xiii

Finalize and Dispose Guidelines (continued)
Do Not Implement Finalize Unless Required . 207
Implement Finalize Only If You Hold Unmanaged Resources across Client Calls . . . 207
Move the Finalization Burden to the Leaves of Object Graphs 207
If You Implement Finalize, Implement IDisposable. 208
If You Implement Finalize and Dispose, Use the Dispose Pattern 208
Suppress Finalization in Your Dispose Method . 208
Allow Dispose to Be Called Multiple Times . 209
Call Dispose On Base Classes and On IDisposable Members 209
Keep Finalizer Code Simple to Prevent Blocking . 210
Provide Thread Safe Cleanup Code Only if Your Type Is Thread Safe. 210

Pinning . 211
If You Need to Pin Buffers, Allocate Them at Startup. 211

Threading Explained . 212
Managed Threads and Operating System Threads . 212

Threading Guidelines. 212
Minimize Thread Creation . 213
Use the Thread Pool When You Need Threads. 213
Use a Timer to Schedule Periodic Tasks . 213
Consider Parallel vs. Synchronous Tasks . 214
Do Not Use Thread.Abort to Terminate Other Threads . 214
Do Not Use Thread.Suspend and Thread.Resume to Pause Threads 214
More Information . 215

Asynchronous Calls Explained . 215
Asynchronous Guidelines. 216

Consider Client-Side Asynchronous Calls for UI Responsiveness 216
Use Asynchronous Methods on the Server for I/O Bound Operations. 216
Avoid Asynchronous Calls That Do Not Add Parallelism . 217

Locking and Synchronization Explained. 218
Determine That You Need Synchronization . 218
Determine the Approach . 218
Determine the Scope of Your Approach . 219

Locking and Synchronization Guidelines . 220
Acquire Locks Late and Release Them Early . 220
Avoid Locking and Synchronization Unless Required . 220
Use Granular Locks to Reduce Contention . 221
Avoid Excessive Fine-Grained Locks . 221
Avoid Making Thread Safety the Default for Your Type . 222
Use the Fine-Grained lock (C#) Statement Instead of Synchronized 222
Avoid Locking “this” . 223
Coordinate Multiple Readers and Single Writers By Using ReaderWriterLock

Instead of lock . 224
Do Not Lock the Type of the Objects to Provide Synchronized Access. 224

Value Types and Reference Types. 225
Value Types. 225
Reference Types . 225

xiv Improving .NET Application Performance and Scalability

Boxing and Unboxing Explained . 226
Boxing and Unboxing Guidelines . 226

Avoid Frequent Boxing and Unboxing Overhead . 226
Measure Boxing Overhead . 227
Use DirectCast In Your Visual Basic .NET Code. 228

Exception Management . 228
Do Not Use Exceptions to Control Application Flow . 228
Use Validation Code to Reduce Unnecessary Exceptions. 229
Use the finally Block to Ensure Resources Are Released . 230
Replace Visual Basic .NET On Error Goto Code with Exception Handling. 230
Do Not Catch Exceptions That You Cannot Handle . 231
Be Aware That Rethrowing Is Expensive . 231
Preserve as Much Diagnostic Information as Possible

in Your Exception Handlers . 232
Use Performance Monitor to Monitor CLR Exceptions . 232
More Information . 232

Iterating and Looping. 233
Avoid Repetitive Field or Property Access . 233
Optimize or Avoid Expensive Operations Within Loops . 234
Copy Frequently Called Code into the Loop . 235
Consider Replacing Recursion with Looping . 236
Use for Instead of foreach in Performance-Critical Code Paths. 236

String Operations . 236
Avoid Inefficient String Concatenation . 237
Use + When the Number of Appends Is Known . 237
Use StringBuilder When the Number of Appends Is Unknown. 238
Treat StringBuilder as an Accumulator . 239
More Information . 240

Arrays . 240
Prefer Arrays to Collections Unless You Need Functionality 241
Use Strongly Typed Arrays . 241
Use Jagged Arrays Instead of Multidimensional Arrays . 241
Additional Considerations . 243

Collections Explained . 244
Collection Issues . 244
Boxing Issues . 245
Thread Safety . 245
Enumeration Overhead . 246

Collection Guidelines. 246
Analyze Your Requirements Before Choosing the Collection Type 247
Initialize Collections to the Right Size When You Can . 248
Consider Enumerating Overhead . 248
Prefer to Implement IEnumerable with Optimistic Concurrency. 250
Consider Boxing Overhead . 250
Consider for Instead of foreach . 250

 Contents xv

Collection Guidelines (continued)
Implement Strongly Typed Collections to Prevent Casting Overhead 251
Be Efficient with Data in Collections. 251

Collection Types . 251
ArrayList . 252
Hashtable. 252
HybridDictionary . 252
ListDictionary . 253
NameValueCollection . 253
Queue . 253
SortedList. 254
Stack . 254
StringCollection. 255
StringDictionary . 255
More Information . 255

Reflection and Late Binding . 256
Prefer Early Binding and Explicit Types Rather Than Reflection. 256
Avoid Late Binding. 257
Avoid Using System.Object in Performance-Critical Code Paths 257
Enable Option Explicit and Option Strict in Visual Basic.NET 257

Code Access Security . 258
Consider SuppressUnmanagedCodeSecurity for Performance-Critical

Trusted Scenarios . 258
Prefer Declarative Demands Rather Than Imperative Demands 259
Consider Using Link Demands Rather Than Full Demands

for Performance-Critical, Trusted Scenarios. 259
Working Set Considerations. 260

More Information . 261
Ngen.exe Explained. 261

Startup Time. 261
Working Set . 262
Running Ngen.exe . 262

Ngen.exe Guidelines . 263
Scenarios Where Startup Time Is Paramount Should Consider

Ngen.exe for Their Startup Path . 263
Scenarios That Benefit from the Ability to Share Assemblies

Should Adopt Ngen.exe . 263
Scenarios with Limited or No Sharing Should Not Use Ngen.exe 264
Do Not Use Ngen.exe with ASP.NET Version 1.0 and 1.1 264
Consider Ngen.exe with ASP.NET Version 2.0 . 264
Measure Performance with and without Ngen.exe . 264
Regenerate Your Image When You Ship New Versions . 265
Choose an Appropriate Base Address . 265
More Information . 265

Summary . 265
Additional Resources. 266

xvi Improving .NET Application Performance and Scalability

Chapter 6
Improving ASP.NET Performance 267

Objectives. 267
Overview. 267
How to Use This Chapter . 268
Architecture . 269
Performance and Scalability Issues . 270
Design Considerations. 272

Consider Security and Performance . 272
Partition Your Application Logically . 273
Evaluate Affinity . 274
Reduce Round Trips . 275
Avoid Blocking on Long-Running Tasks . 276
Use Caching . 276
Avoid Unnecessary Exceptions. 278

Implementation Considerations . 279
Threading Explained . 279

Formula for Reducing Contention . 279
More Information . 281

Threading Guidelines. 281
Tune the Thread Pool by Using the Formula to Reduce Contention 282
Consider minIoThreads and minWorkerThreads for Burst Load. 282
Do Not Create Threads on a Per-Request Basis . 283
Avoid Blocking Threads . 283
Avoid Asynchronous Calls Unless You Have Additional Parallel Work 283
More Information . 284

Resource Management . 284
Pool Resources. 284
Explicitly Call Dispose or Close on Resources You Open . 285
Do Not Cache or Block on Pooled Resources . 285
Know Your Application Allocation Pattern . 286
Obtain Resources Late and Release Them Early . 286
Avoid Per-Request Impersonation . 286

Pages . 287
Trim Your Page Size . 287
Enable Buffering . 289
Use Page.IsPostBack to Minimize Redundant Processing 289
Partition Page Content to Improve Caching Efficiency and Reduce Rendering 290
Ensure Pages Are Batch Compiled . 290
Ensure Debug Is Set to False. 290
Optimize Expensive Loops . 291
Consider Using Server.Transfer Instead of Response.Redirect 291
Use Client-Side Validation . 292

 Contents xvii

Server Controls . 292
Identify the Use of View State in Your Server Controls. 292
Use Server Controls Where Appropriate . 293
Avoid Creating Deep Hierarchies of Controls. 294
More Information . 295

Data Binding . 295
Avoid Using Page.DataBind . 296
Minimize Calls to DataBinder.Eval . 296
More Information . 297

Caching Explained . 297
Cache API . 298
Output Caching . 299
Partial Page or Fragment Caching. 300

Caching Guidelines . 300
Separate Dynamic Data from Static Data in Your Pages . 301
Configure the Memory Limit. 302
Cache the Right Data . 302
Refresh Your Cache Appropriately . 303
Cache the Appropriate Form of the Data. 303
Use Output Caching to Cache Relatively Static Pages . 303
Choose the Right Cache Location . 304
Use VaryBy Attributes for Selective Caching . 305
Use Kernel Caching on Windows Server 2003 . 306
More Information . 306

State Management . 307
Store Simple State on the Client Where Possible . 307
Consider Serialization Costs . 308

Application State. 308
Use Static Properties Instead of the Application Object

to Store Application State . 309
Use Application State to Share Static, Read-Only Data . 309
Do Not Store STA COM Objects in Application State . 309
More Information . 310

Session State . 310
Choosing a State Store . 311
Prefer Basic Types to Reduce Serialization Costs . 312
Disable Session State If You Do Not Use It . 312
Avoid Storing STA COM Objects in Session State . 313
Use the ReadOnly Attribute When You Can . 313
More Information . 313

View State . 314
Disable View State If You Do Not Need It . 314
Minimize the Number of Objects You Store In View State 315
Determine the Size of Your View State . 316

xviii Improving .NET Application Performance and Scalability

HTTP Modules. 316
Avoid Long-Running and Blocking Calls in Pipeline Code . 316
Consider Asynchronous Events . 316
More Information . 317

String Management . 317
Use Response.Write for Formatting Output . 317
Use StringBuilder for Temporary Buffers . 318
Use HtmlTextWriter When Building Custom Controls . 318
More Information . 318

Exception Management . 318
Implement a Global.asax Error Handler . 319
Monitor Application Exceptions . 320
Use Try/Finally on Disposable Resources . 320
Write Code That Avoids Exceptions. 320
Set Timeouts Aggressively . 322
More Information . 323

COM Interop . 323
Use ASPCOMPAT to Call STA COM Objects . 323
Avoid Storing COM Objects in Session State or Application State 324
Avoid Storing STA Objects in Session State . 324
Do Not Create STA Objects in a Page Constructor . 324
Supplement Classic ASP Server.CreateObject with Early Binding 324
More Information . 325

Data Access . 325
Use Paging for Large Result Sets . 326
Use a DataReader for Fast and Efficient Data Binding . 327
Prevent Users from Requesting Too Much Data. 327
Consider Caching Data . 327
More Information . 327

Security Considerations. 328
Constrain Unwanted Web Server Traffic . 328
Turn Off Authentication for Anonymous Access . 328
Validate User Input on the Client . 329
Avoid Per-Request Impersonation . 329
Avoid Caching Sensitive Data. 329
Segregate Secure and Non-Secure Content . 329
Only Use SSL for Pages That Require It . 330
Use Absolute URLs for Navigation . 330
Consider Using SSL Hardware to Offload SSL Processing 330
Tune SSL Timeout to Avoid SSL Session Expiration. 331
More Information . 331

IIS 6.0 Considerations. 332
Process Model . 332
Kernel Mode Caching . 333
Web Gardens . 334
Garbage Collector Configuration Flag . 335

 Contents xix

Deployment Considerations . 336
Avoid Unnecessary Process Hops . 337
Understand the Performance Implications of a Remote Middle Tier 337
Short Circuit the HTTP Pipeline . 337
Configure the Memory Limit. 338
Disable Tracing and Debugging . 338
Ensure Content Updates Do Not Cause Additional Assemblies to Be Loaded 339
Avoid XCOPY Under Heavy Load . 340
Consider Precompiling Pages. 341
Consider Web Garden Configuration . 341
Consider Using HTTP Compression . 341
Consider Using Perimeter Caching . 341

Summary . 342
Additional Resources. 342

Chapter 7
Improving Interop Performance 343

Objectives. 343
Overview. 343
How to Use This Chapter . 344
Architecture . 345

Platform Invoke (P/Invoke). 345
IJW and Managed Extensions for C++ . 346
COM Interop . 347

Performance and Scalability Issues . 349
Design Considerations . 350

Design Chunky Interfaces to Avoid Round Trips . 350
Reduce Round Trips with a Facade . 351
Implement IDisposable if You Hold Unmanaged Resources Across Client Calls . . . 352
Reduce or Avoid the Use of Late Binding and Reflection . 352

Implementation Considerations . 353
Marshaling . 354

Explicitly Name the Target Method You Call. 354
Use Blittable Types Where Possible . 354
Avoid Unicode to ANSI Conversions Where Possible . 356
Use IntPtr for Manual Marshaling. 356
Use [in] and [out] to Avoid Unnecessary Marshaling . 356
Avoid Aggressive Pinning of Short-Lived Objects . 357

Marshal.ReleaseComObject. 357
Consider Calling ReleaseComObject in Server Applications 358
Do Not Force Garbage Collections with GC.Collect . 362

Code Access Security (CAS). 362
Consider Using SuppressUnmanagedCode for Performance-Critical

Trusted Scenarios . 363
Consider Using TLBIMP /unsafe for Performance-Critical Trusted Scenarios 363

xx Improving .NET Application Performance and Scalability

Threading . 364
Reduce or Avoid Cross-Apartment Calls . 364
Use ASPCOMPAT When You Call STA Objects from ASP.NET. 365
Use MTAThread When You Call Free-Threaded Objects. 366
Avoid Thread Switches by Using Neutral Apartment COM Components. 366

Monitoring Interop Performance . 366
Use Performance Counters for P/Invoke and COM Interop. 366
Use CLR Spy to Identify Interop Problems. 367

Summary . 367
Additional Resources. 367

Chapter 8
Improving Enterprise Services Performance 369

Objectives. 369
Overview. 369
How to Use This Chapter . 370
Component Services Provided By Enterprise Services . 371
Architecture . 372

Boundary Considerations. 373
Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting. . . . 375

Object Orientation and Service Orientation . 375
Application Boundaries . 376
Recommendations for Web Services, Enterprise Services, and .NET Remoting 376
Caveats . 376

Performance and Scalability Issues . 377
Design Considerations. 379

Use Enterprise Services Only if You Need To. 379
Use Library Applications if Possible . 379
Consider DLL and Class Relationships . 380
Use Distributed Transactions Only if You Need To . 380
Use Object Pooling to Reduce Object Creation Overhead . 380
Design Pooled Objects Based on Calling Patterns . 381
Use Explicit Interfaces. 381
Design Less Chatty Interfaces . 382
Design Stateless Components. 382

Object Pooling . 382
Object Pooling Explained . 383
Return Objects to the Pool Promptly . 386
Monitor and Tune Pool Size . 388
Preload Applications That Have Large Minimum Pool Sizes 388

State Management . 389
More Information . 390

Resource Management . 390
Optimize Idle Time Management for Server Applications . 390
Always Call Dispose . 391

 Contents xxi

Resource Management (continued)
DisableAsyncFinalization Registry Setting . 392
If You Call COM Components, Consider Calling ReleaseComObject 392
Summary of Dispose, ReleaseComObject, and Release Guidelines 393

Queued Components. 394
Use Queued Component to Decouple Client and Server Lifetimes 395
Do Not Wait for a Response from a Queued Component . 396

Loosely Coupled Events. 396
Consider the Fire in Parallel Option . 398
Avoid LCE for Multicast Scenarios . 398
Use Queued Components with LCE from ASP.NET. 399
Do Not Subscribe to LCE Events from ASP.NET. 399

Transactions . 399
Choose the Right Transaction Mechanism . 399
Choose the Right Isolation Level . 400
Use Compensating Transactions to Reduce Lock Times . 401
More Information . 402

Security . 402
Use a Trusted Server Model if Possible . 402
Avoid Impersonation in the Middle Tier. 403
Use Packet Privacy Authentication Only if You Need Encryption 403

Threading . 404
Avoid STA Components . 404

Synchronization Attribute . 404
Use Locks or Mutexes for Granular Synchronization . 405

Summary . 405
Additional Resources. 406

Chapter 9
Improving XML Performance 409

Objectives. 409
Overview. 409
How to Use This Chapter . 410
Architecture . 411
Performance and Scalability Issues . 413
Design Considerations . 414

Choose the Appropriate XML Class for the Job . 415
Consider Validating Large Documents . 415
Process Large Documents in Chunks If Possible. 416
Use Streaming Interfaces . 416
Consider Hard-Coded Transformations . 416
Consider Element and Attribute Name Lengths . 417
Consider Sharing the XmlNameTable . 417

Implementation Considerations . 418

xxii Improving .NET Application Performance and Scalability

Parsing XML . 418
Use XmlTextReader to Parse Large XML Documents . 419
Use XmlValidatingReader for Validation . 419
Consider Combining XmlReader and XmlDocument . 420
On the XmlReader, Use the MoveToContent and Skip Methods to Skip

Unwanted Items . 420
More Information . 421

Validating XML . 421
Use XmlValidatingReader. 422
Do Not Validate the Same Document More Than Once . 422
Consider Caching the Schema . 422
More Information . 422

Writing XML. 422
Use XmlTextWriter . 423

XPath Queries . 423
Use XPathDocument to Process XPath Statements . 424
Avoid the // Operator by Reducing the Search Scope . 424
Compile Both Dynamic and Static XPath Expressions . 425
More Information . 425

XSLT Processing . 425
Use XPathDocument for Faster XSLT Transformations . 426
Consider Caching Compiled Style Sheets . 426
Split Complex Transformations into Several Stages. 428
Minimize the Size of the Output Document . 428
Write Efficient XSLT . 428
More Information . 429

Summary . 429
Additional Resources. 430

Chapter 10
Improving Web Services Performance 431

Objectives. 431
Overview. 431
How to Use This Chapter . 432
Architecture . 433

Client-Side Proxy Classes . 434
Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting. . . . 434

Object Orientation and Service Orientation . 435
Application Boundaries . 435
Recommendations for Web Services, Enterprise Services, and .NET Remoting 436
Caveats . 436
More Information . 436

Performance and Scalability Issues . 437

 Contents xxiii

Design Considerations . 439
Design Chunky Interfaces to Reduce Round Trips . 439
Prefer Message-Based Programming Over RPC Style. 439
Use Literal Message Encoding for Parameter Formatting . 440
Prefer Primitive Types for Web Services Parameters . 440
Avoid Maintaining Server State Between Calls . 441
Consider Input Validation for Costly Web Methods . 441
Consider Your Approach to Caching . 442
Consider Approaches for Bulk Data Transfer and Attachments. 442
Avoid Calling Local Web Services . 443

Implementation Considerations . 444
Connections . 444

Configure The maxconnection Attribute . 445
Prioritize and Allocate Connections Across Discrete Web Services 446
Use a Single Identity for Outbound Calls. 446
Consider UnsafeAuthenticatedConnectionSharing with Windows Integrated

Authentication. 447
Use PreAuthenticate with Basic Authentication . 448

Threading . 449
Tune the Thread Pool by Using the Formula for Reducing Contention 449
Consider minIoThreads and minWorkerThreads for Intermittent Burst Load 451
More Information . 451

One-Way (Fire-and-Forget) Communication. 451
Asynchronous Web Methods . 452

Use Asynchronous Web Methods for I/O Operations . 453
Do Not Use Asynchronous Web Methods When You Depend on Worker Threads. . . 455

Asynchronous Invocation . 456
Consider Calling Web Services Asynchronously When You Have

Additional Parallel Work . 456
Use Asynchronous Invocation to Call Multiple Unrelated Web Services. 457
Call Web Services Asynchronously for UI Responsiveness. 457

Timeouts . 458
Set Your Proxy Timeout Appropriately . 458
Set Your ASP.NET Timeout Greater Than Your Web Service Timeout. 459
Abort Connections for ASP.NET Pages That Timeout Before a Web Services

Call Completes . 460
Consider the responseDeadlockInterval Attribute . 461

WebMethods. 461
Serialization . 462

Reduce Serialization with XmlIgnore . 462
Reduce Round Trips . 463
Consider XML Compression. 463
More Information . 464

xxiv Improving .NET Application Performance and Scalability

Caching . 464
Consider Output Caching for Less Volatile Data . 464
Consider Providing Cache-Related Information to Clients . 465
Consider Perimeter Caching. 465

State Management . 465
Use Session State Only Where It Is Needed . 466
Avoid Server Affinity. 466

Bulk Data Transfer. 466
Using a Byte Array Web Method Parameter . 467
Returning a URL from the Web Service . 468
Using Streaming . 468
More Information . 471

Attachments . 472
SOAP Messages with Attachments (SwA) . 472

COM Interop . 472
More Information . 473

Measuring and Analyzing Web Services Performance. 473
More Information . 473

Web Service Enhancements. 473
More Information . 474

Summary . 474
Additional Resources. 475

Chapter 11
Improving Remoting Performance 477

Objectives. 477
Overview. 477
How to Use This Chapter . 478
Architecture . 479

Activation . 480
Object Lifetime . 481

Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting. . . . 481
Object Orientation and Service Orientation . 481
Application Boundaries . 482
Recommendations for Web Services, Enterprise Services, and .NET Remoting 482
Caveats . 483

Performance and Scalability Issues . 484
Design Considerations. 485

Use .NET Remoting for Communicating between Application Domains
in the Same Process . 485

Choose the Right Host . 485
Choose the Right Activation Model. 486
Choose the Right Channel . 486
Choose the Right Formatter . 487
Choose Between Synchronous or Asynchronous Communication 488

 Contents xxv

Design Considerations (continued)
Minimize Round Trips and Avoid Chatty Interfaces. 489
Avoid Holding State in Memory . 490

Implementation Considerations . 491
Activation . 491

Client-Activated Objects (CAOs) . 491
Server-Activated Objects (SAOs). 492

Lifetime Considerations. 493
.NET Remoting Leases . 493
Object Release . 493
Tune Default Timeouts Based on Need. 494
Tuning the Lease Time. 494

Hosts . 495
Recommendations . 496
Use IIS to Authenticate Calls . 496
Turn Off HTTP Keep-Alives When Using IIS . 497
Host in IIS if You Need to Load Balance Using NLB . 497
Use a Custom Host Only in Trusted Server Scenarios . 497

Channels . 498
Formatters . 498
MarshalByRef vs. MarshalByValue . 499

Marshal-by-Reference . 499
Marshal-by-Value . 500

Serialization and Marshaling . 500
Consider Using a Data Facade . 500
Marshal Data Efficiently and Prefer Primitive Types . 501
Reduce Serialized Data by Using NonSerialized . 501
Prefer the BinaryFormatter. 501

DataSets and Remoting. 502
Summary . 502
Additional Resources. 503

Chapter 12
Improving ADO.NET Performance 505

Objectives. 505
Overview. 505
How to Use This Chapter . 506
Architecture . 507

Abstracting Data Access . 508
More Information . 509

Performance and Scalability Issues . 509
Design Considerations . 511

Design Your Data Access Layer Based on How the Data Is Used 511
Cache Data to Avoid Unnecessary Work . 511
Connect by Using Service Accounts . 512

xxvi Improving .NET Application Performance and Scalability

Design Considerations (continued)
Acquire Late, Release Early . 513
Close Disposable Resources . 513
Reduce Round Trips . 513
Return Only the Data You Need . 514
Use Windows Authentication . 514
Choose the Appropriate Transaction Type . 515
Use Stored Procedures . 515
Prioritize Performance, Maintainability, and Productivity when You Choose

How to Pass Data Across Layers . 517
Consider How to Handle Exceptions . 518
Use Appropriate Normalization. 519

Implementation Considerations . 519
.NET Framework Data Providers . 520

Use System.Data.SqlClient for SQL Server 7.0 and Later 520
Use System.Data.OleDb for SQL Server 6.5 or OLE DB Providers 520
Use System.Data.ODBC for ODBC Data Sources. 521
Use System.Data.OracleClient for Oracle . 521
Use SQLXML Managed Classes for XML Data and SQL Server 2000 521
More Information . 521

Connections . 522
Open and Close the Connection in the Method . 522
Explicitly Close Connections . 522
When Using DataReaders, Specify CommandBehavior.CloseConnection. 525
Do Not Explicitly Open a Connection if You Use Fill or Update

for a Single Operation . 526
Avoid Checking the State Property of OleDbConnection . 526
Pool Connections . 527
More Information . 530

Commands . 531
Validate SQL Input and Use Parameter Objects. 531
Retrieve Only the Columns and Rows You Need . 532
Support Paging Over Large Result Sets . 533
Batch SQL Statements to Reduce Round Trips . 533
Use ExecuteNonQuery for Commands That Do Not Return Data. 534
Use ExecuteScalar to Return Single Values . 534
Use CommandBehavior.SequentialAccess for Very Wide Rows

or for Rows with BLOBs . 536
Do Not Use CommandBuilder at Run Time . 536

Stored Procedures. 537
Use Stored Procedures . 537
Use CommandType.Text with OleDbCommand. 538
Use CommandType.StoredProcedure with SqlCommand . 539
Consider Using Command.Prepare . 539
Use Output Parameters Where Possible . 540
Consider SET NOCOUNT ON for SQL Server . 541

 Contents xxvii

Parameters . 541
Use the Parameters Collection When You Call a Stored Procedure. 541
Use the Parameters Collection When You Build SQL Statements 542
Explicitly Create Stored Procedure Parameters . 542
Specify Parameter Types . 543
Cache Stored Procedure SqlParameter Objects. 543

DataSet vs. DataReader . 545
DataReader . 546

Close DataReader Objects. 546
Consider Using CommandBehavior.CloseConnection to Close Connections 546
Cancel Pending Data . 547
Consider Using CommandBehavior.SequentialAccess with ExecuteReader 548
Use GetOrdinal When Using an Index-Based Lookup . 548

DataSet . 549
Reduce Serialization . 549
Use Primary Keys and Rows.Find for Indexed Searching . 549
Use a DataView for Repetitive Non-Primary Key Searches 549
Use the Optimistic Concurrency Model for Datasets . 550

XML and DataSet Objects . 550
Do Not Infer Schemas at Run Time . 551
Perform Bulk Updates and Inserts by Using OpenXML. 551

Typed DataSets. 552
More Information . 552

Types . 552
Avoid Unnecessary Type Conversions . 552

Exception Management . 553
Transactions . 554

Use SQL Transactions for Server-Controlled Transactions
on a Single Data Store . 555

Use ADO.NET Transactions for Client-Controlled Transactions
on a Single Data Store . 555

Use DTC for Transactions That Span Multiple Data Stores. 556
Keep Transactions as Short as Possible. 556
Use the Appropriate Isolation Level . 557
Avoid Code That Can Lead to Deadlock . 557
Set the Connection String Enlist Property to False . 558
More Information . 558

Binary Large Objects . 558
Use CommandBehavior.SequentialAccess and GetBytes to Read Data. 559
Use READTEXT to Read from SQL Server 2000. 560
Use OracleLob.Read to Read from Oracle Databases . 561
Use UpdateText to Write to SQL Server Databases . 562
Use OracleLob.Write to Write to Oracle Databases . 563
Avoid Moving Binary Large Objects Repeatedly . 563

Paging Records . 563

xxviii Improving .NET Application Performance and Scalability

Analyzing Performance and Scalability of Data Access. 564
Tool Support . 565

Summary . 566
Additional Resources. 566

Chapter 13
Code Review: .NET Application Performance 569

Objectives. 569
Overview. 569
How to Use This Chapter . 570
FxCop . 571

More Information . 571
Common Performance Issues . 571
Resource Cleanup . 572
Exceptions . 572
String Management . 572
Threading . 573
Boxing . 573
Managed Code and CLR Performance. 574

Memory Management . 574
Looping and Recursion . 578
String Operations . 580
Exception Handling . 581
Arrays. 583
Collections . 584
Locking and Synchronization . 587
Threading . 589
Asynchronous Processing . 590
Serialization . 591
Visual Basic Considerations . 592
Reflection and Late Binding . 594
Code Access Security . 595
Class Design Considerations . 596
Do You Use Properties?. 596
Do You Define Only the Required Variables As Public?. 596
Do You Seal Your Classes or Methods? . 596
Ngen.exe . 596

ASP.NET . 597
Do You Use Caching? . 598
Do You Use Session State? . 599
Do You Use Application State?. 600
Do You Use Threading and Synchronization Features?. 601
Do You Manage Resources Efficiently? . 602
Do You Manage Strings Efficiently? . 603
Do You Manage Exceptions Efficiently?. 603

 Contents xxix

ASP.NET (continued)
Have You Optimized Your Web Pages? . 604
Do You Use View State? . 607
Do You Use Server Controls?. 608
Do You Access Data From Your ASPX Pages? . 608
Do You Use Data Binding?. 609
Do You Call Unmanaged Code From ASPX Pages?. 610
Have You Reviewed the Settings in Machine.config? . 611
More Information . 611

Interop . 611
More Information . 614

Enterprise Services . 614
Do You Use Object Pooling?. 614
Do You Manage Resources Efficiently?. 615
Do You Use Queued Components?. 616
Do You Use Loosely Coupled Events?. 616
Do You Use COM+ Transactions? . 617
Do You Use the Synchronization Attribute? . 617
More Information . 618

Web Services . 618
Web Methods . 618
Web Service Clients . 619
More Information . 621

Remoting . 622
Do You Use MarshalByRef and MarshalByValue Appropriately? 622
Do You Use the HttpChannel? . 622
Do You Need to Transfer Large Amounts of Data over the HttpChannel?. 622
Which Formatter Do You Use To Serialize Data? . 623
Do You Send All The Data Across The Wire? . 623
Do You Serialize ADO.NET Objects using BinaryFormatter? 623
Have You Considered Asynchronous Calls to the Remote Component? 623
More Information . 624

Data Access . 624
Do You Use Connections Efficiently? . 624
Do You Use Commands Efficiently? . 626
Do You Use Stored Procedures? . 626
Do You Use Transact-SQL?. 627
Do You Use Parameters?. 628
Do you use DataReaders? . 629
Do You Use DataSets? . 629
Do You Use Transactions? . 630
Do You Use Binary Large Objects (BLOBS)? . 631
Do You Page Through Data?. 632
More Information . 632

Summary . 632
Additional Resources. 633

xxx Improving .NET Application Performance and Scalability

Part IV
Database Server Performance and Scalability 635

Chapter 14
Improving SQL Server Performance 637

Objectives. 637
Overview. 637
How to Use This Chapter . 638
SQL: Scale Up vs. Scale Out . 639

Optimize the Application Before Scaling Up or Scaling Out. 640
Address Historical and Reporting Data . 640
Scale Up for Most Applications . 641
Scale Out When Scaling Up Does Not Suffice or Is Cost-Prohibitive 641
More Information . 641

Performance and Scalability Issues . 642
Schema . 643

Devote the Appropriate Resources to Schema Design. 643
Separate OLAP and OLTP Workloads . 643
Normalize First, Denormalize for Performance Later . 644
Define All Primary Keys and Foreign Key Relationships . 644
Define All Unique Constraints and Check Constraints . 645
Choose the Most Appropriate Data Type. 646
Use Indexed Views for Denormalization . 647
Partition Tables Vertically and Horizontally . 647

Queries. 649
Know the Performance and Scalability Characteristics of Queries 650
Write Correctly Formed Queries . 650
Return Only the Rows and Columns Needed . 651
Avoid Expensive Operators Such as NOT LIKE. 652
Avoid Explicit or Implicit Functions in WHERE Clauses . 652
Use Locking and Isolation Level Hints to Minimize Locking 654
Use Stored Procedures or Parameterized Queries . 657
Minimize Cursor Use . 658
Avoid Long Actions in Triggers . 659
Use Temporary Tables and Table Variables Appropriately . 659
Limit Query and Index Hints Use . 660
Fully Qualify Database Objects . 660

Indexes. 660
Create Indexes Based on Use . 661
Keep Clustered Index Keys As Small As Possible . 661
Consider Range Data for Clustered Indexes . 662
Create an Index on All Foreign Keys . 662
Create Highly Selective Indexes . 662
Consider a Covering Index for Often-Used, High-Impact Queries 663

 Contents xxxi

Indexes (continued)
Use Multiple Narrow Indexes Rather than a Few Wide Indexes. 663
Create Composite Indexes with the Most Restrictive Column First 663
Consider Indexes on Columns Used in WHERE, ORDER BY, GROUP BY,

and DISTINCT Clauses . 664
Remove Unused Indexes . 664
Use the Index Tuning Wizard . 664

Transactions . 664
Avoid Long-Running Transactions . 665
Avoid Transactions that Require User Input to Commit . 665
Access Heavily Used Data at the End of the Transaction . 665
Try to Access Resources in the Same Order . 665
Use Isolation Level Hints to Minimize Locking. 665
Ensure That Explicit Transactions Commit or Roll Back . 665

Stored Procedures . 666
Use Set NOCOUNT ON in Stored Procedures . 666
Do Not Use the Sp_ Prefix for Custom Stored Procedures 666

Execution Plans . 666
Evaluate the Query Execution Plan . 667
Avoid Table and Index Scans . 667
Evaluate Hash Joins . 667
Evaluate Bookmarks . 667
Evaluate Sorts and Filters . 668
Compare Actual vs. Estimated Rows and Executions. 668
More Information . 668

Execution Plan Recompiles . 669
Use Stored Procedures or Parameterized Queries . 669
Use Sp_executesql for Dynamic Code . 669
Avoid Interleaving DDL and DML in Stored Procedures, Including

the Tempdb database DDL . 670
Avoid Cursors over Temporary Tables . 671
More Information . 671

SQL XML. 672
Avoid OPENXML over Large XML Documents. 672
Avoid Large Numbers of Concurrent OPENXML Statements

over XML Documents . 672
More Information . 672

Tuning. 672
Use SQL Profiler to Identify Long-Running Queries. 673
Take Note of Small Queries Called Often . 673
Use Sp_lock and Sp_who2 to Evaluate Locking and Blocking 674
Evaluate Waittype and Waittime in master..sysprocesses 674
Use DBCC OPENTRAN to Locate Long-Running Transactions 675

Testing . 675
More Information . 676

xxxii Improving .NET Application Performance and Scalability

Monitoring . 676
Keep Statistics Up to Date . 676
Use SQL Profiler to Tune Long-Running Queries. 677
Use SQL Profiler to Monitor Table and Index Scans . 677
Use Performance Monitor to Monitor High Resource Usage 677
Set Up an Operations and Development Feedback Loop . 677
More Information . 677

Deployment Considerations . 678
Use Default Server Configuration Settings for Most Applications 678
Locate Logs and the Tempdb Database on Separate Devices from the Data 679
Provide Separate Devices for Heavily Accessed Tables and Indexes 679
Use the Appropriate RAID Configuration . 679
Use Multiple Disk Controllers. 679
Pre-Grow Databases and Logs to Avoid Automatic Growth and Fragmentation

Performance Impact . 680
Maximize Available Memory . 680
Manage Index Fragmentation . 681
Keep Database Administrator Tasks in Mind. 681

Summary . 682
Additional Resources. 682

Part V
Measuring, Testing, and Tuning 683

Chapter 15
Measuring .NET Application Performance 685

Objectives. 685
Overview. 685
How to Use This Chapter . 686
Goals of Measuring . 687

Response Time or Latency. 687
Throughput . 687
Resource Utilization . 688

Metrics . 688
How Measuring Applies to Life Cycle . 689
Tools and Techniques . 690

System and Platform Metrics . 690
Network Monitoring Tools. 690
Profiling Tools . 691
Tools for Analyzing Log Files. 691
Application Instrumentation . 691

Instrumentation. 692
What Options Are Available? . 692
When Do You Use Each Option?. 692

 Contents xxxiii

System Resources . 695
Processor . 696
Memory . 697
Disk I/O . 699
Network I/O . 700

.NET Framework Technologies . 701
CLR and Managed Code . 701

What to Measure . 702
How to Measure . 702
Memory . 703
Working Set . 705
Exceptions . 705
Contention . 705
Threading . 706
Code Access Security . 707
Timing Your Code Path. 707

ASP.NET . 708
What to Measure . 708
How to Measure . 709
Throughput . 710
Requests . 711
Queues. 712
Response Time and Latency . 713
Cache Utilization . 714
Errors and Exceptions . 715
Sessions . 716
Loading . 718
ViewState Size . 719
Page Size . 719
Page Cost. 720
Worker Process Restarts . 722

Web Services . 722
What to Measure . 722
How to Measure . 723
Serialization Cost . 723

Enterprise Services . 725
What to Measure . 725
How to Measure . 725
Components Services Administration Tool . 725
Optimum Size for the Object Pool. 726
Third-Party Tools . 727

Remoting . 727
What to Measure . 728
How to Measure . 728
Throughput . 728

xxxiv Improving .NET Application Performance and Scalability

Remoting (continued)
Serialization Cost and Amount of Data . 729
Number of TCP Connections . 730

Interop . 731
What to Measure . 731
How to Measure . 731
Chattiness of Marshaled Interfaces . 732

ADO.NET/Data Access. 732
What to Measure . 732
How to Measure . 733
Connection Pooling — SqlConnection. 734
Connection Pooling — OleDbConnection. 734
Indexes . 735
Cache. 735
Transactions . 736
Locks . 736

Summary . 737
Additional Resources. 737

Chapter 16
Testing .NET Application Performance 739

Objectives. 739
Overview. 739
How to Use This Chapter . 740
Performance Testing . 741
Goals of Performance Testing. 741
Performance Objectives . 742

Response Time or Latency. 742
Throughput . 743
Resource Utilization . 743
Workload . 743

Tools . 744
Load Testing Process. 744

Input . 744
Steps . 745
Step 1. Identify Key Scenarios . 746
Step 2. Identify Workload. 746
Step 3. Identify Metrics . 747
Step 4. Create Test Cases. 748
Step 5. Simulate Load. 749
Step 6. Analyze the Results. 750
Output . 751

Stress-Testing Process . 751
Input . 751
Steps . 752

 Contents xxxv

Stress-Testing Process (continued)
Step 1. Identify Key Scenarios . 753
Step 2. Identify Workload . 753
Step 3. Identify Metrics . 754
Step 4. Create Test Cases. 755
Step 5. Simulate Load. 756
Step 6. Analyze the Results. 756

Workload Modeling . 757
Testing Considerations . 760

Do Not Place Too Much Stress on the Client. 760
Create Baselines for Your Test Setup . 760
Allow for Think Time in Your Test Script. 760
Consider Test Duration . 761
Minimize Redundant Requests During Testing. 762
Consider Simultaneous vs. Concurrent Users . 762
Set an Appropriate Warm-up Time . 762

Best Practices for Performance Testing . 763
Do . 763
Do Not . 764

Metrics . 764
Metrics for All Servers. 764
Web Server-Specific Metrics . 765
SQL Server-Specific Metrics. 767

Reporting . 768
Workload Profile . 770
Performance Objectives. 770
Web Server Metrics. 771
SQL Server Metrics . 773

Analysis of Performance Data . 774
Throughput vs. User Load . 774
Response Time vs. User Load . 775
Processor vs. User Load . 775
Potential Bottlenecks . 776

Summary . 776
Additional Resources. 776

Chapter 17
Tuning .NET Application Performance 779

Objectives. 779
Overview. 779
How to Use This Chapter . 780
Categories for Tuning. 780
Performance Tuning Process . 781

1. Establish a Baseline . 783
2. Collect Data . 783

xxxvi Improving .NET Application Performance and Scalability

Performance Tuning Process (continued)
3. Analyze Results. 784
4. Configure . 785
5. Test and Measure . 785

Bottleneck Identification . 786
What Are Bottlenecks? . 786
How to Identify Bottlenecks . 786
Measure Response Time, Throughput, and Resource Utilization

Across User Loads . 786
Measure Metrics that Help You Capture a More Granular View

of Your Application . 788
More Information . 788

System Tuning. 789
CPU . 789

Metrics . 789
Bottlenecks . 790
Tuning Options . 791

Memory . 792
Configuration Overview . 792
Metrics . 792
Bottlenecks . 793
Tuning Options . 794

Disk I/O . 796
Configuration Overview . 796
Metrics . 796
Tuning Options . 797

Network I/O . 799
Configuration Overview . 799
Metrics . 800
Bottleneck Identification . 800
Tuning Options . 800

.NET Framework Tuning . 801
CLR Tuning . 801

Metrics . 802
Bottlenecks . 803

ASP.NET Tuning. 804
Configuration Overview . 804
Thread Pool Attributes . 806
Metrics . 809
Bottlenecks . 810
Tuning Options . 811
Tune the Thread Pool Using the Formula for Reducing Contention 812
Configure the Memory Limit . 815
Configure Timeouts Aggressively . 817
Evaluate Configuring RequestQueueLimit . 818
Disable Tracing and Debugging . 819

 Contents xxxvii

ASP.NET Tuning (continued)
Disable Session State If You Do Not Use It . 820
If You Use Session State, Then Reduce Timeouts . 820
Disable View State If You Do Not Need It . 821
If You Upload Large Files, Consider maxRequestLength. 821
Consider Web Gardens for Scenarios that Benefit from Processor Affinity 822
Additional Considerations . 823

Enterprise Services Tuning. 824
Configuration Overview . 824
Metrics. 824
Tuning Options . 825
Tune the Application Pool Size . 825
Tune Object Pool Size to Preallocate and Set Thresholds. 826
Optimize Idle Time Management for Server Applications . 827
Use Packet Privacy Only if You Need Encryption . 827
Set DisableAsyncFinalization Only When Clients Do Not Call Dispose 829

Web Services Tuning . 829
Tuning Options . 829
Tune the Thread Pool Using the Formula for Reducing Contention 829
Configure maxconnections. 830
Prioritize and Allocate Connections Across Discrete Web Services 831
Consider the responseDeadlockInterval Attribute . 831
If You Upload Large Files, Configure maxRequestLength . 831

Remoting Tuning . 832
Tuning Options . 832
Consider Using a Longer Lease Time for Objects that Are

Expensive to Create . 832
Consider Shorter Lease Times for Objects that Consume Lots of Shared

or Important Resources. 832
Tuning the Lease Time. 833

ADO.NET Tuning. 833
Configuration Overview . 833
Metrics. 833
Bottlenecks . 834
Tuning Options . 834
Consider Tuning Your Pool Size If Needed . 834

SQL Server Tuning. 835
Metrics. 835
Bottlenecks . 836
Tuning Options . 836
If There Are Other Applications on the System, Set SQL Server Memory

to a Fixed Amount . 836
Update Statistics . 836
Choose Hardware-Level RAID Rather Than Software RAID When You Can 837
Choose RAID 0+1 (Striped Mirror) Where You Can . 837

xxxviii Improving .NET Application Performance and Scalability

Internet Information Services (IIS) Tuning . 837
More Information . 838

Summary . 839
Additional Resources. 839

Checklists 841
Checklist: ADO.NET Performance . 843
Checklist: Architecture and Design Review for Performance and Scalability 847
Checklist: ASP.NET Performance . 851
Checklist: Enterprise Services Performance . 857
Checklist: Interop Performance . 861
Checklist: Managed Code Performance . 863
Checklist: Remoting Performance. 871
Checklist: SQL Server Performance . 875
Checklist: Web Services Performance. 881
Checklist: XML Performance . 885

How Tos 887
How To: Improve Serialization Performance. 889
How To: Monitor the ASP.NET Thread Pool Using Custom Counters 899
How To: Optimize SQL Indexes . 909
How To: Optimize SQL Queries . 917
How To: Page Records in .NET Applications. 921
How To: Perform Capacity Planning for .NET Applications. 939
How To: Scale .NET Applications . 951
How To: Submit and Poll for Long-Running Tasks. 963
How To: Time Managed Code Using QueryPerformanceCounter

and QueryPerformanceFrequency . 977
How To: Use ACT to Test Performance and Scalability . 987
How To: Use ACT to Test Web Services Performance . 1001
How To: Use CLR Profiler . 1009
How To: Use Custom Performance Counters from ASP.NET 1023
How To: Use EIF . 1031
How To: Use SQL Profiler . 1043

Index 1057

Additional Resources 1098

Forewords

Foreword by Scott Barber
With so many professionals online and relying on the Internet to perform daily
operations, application performance has become vital to the success of eBusiness
solutions. In an effort to ensure success, many companies have developed tools and
methodologies to test and tune applications for performance. Many of these tools
and methodologies have focused on optimizing system metrics, such as throughput,
rather than optimizing the user experience. But face it, users don’t care what your
throughput, bandwidth, or hits-per-second metrics are — they just want a positive
user experience.

How many times have you surfed to a Web site to accomplish a task only to give up
and go to a different Web site because the home page took too long to download?
According to Juniper Communications, “46 percent of consumers will leave a
preferred site if they experience technical or performance problems.” In other words,
if your Web site is slow, your customers will go! This is a simple concept that all Internet
users are familiar with. When a site fails to load quickly, your first thought will not
be, “Gee, I wonder what the throughput of the Web server is?” Instead, you think
“Man, this is SLOW! I don’t have time for this. I’ll just find it somewhere else.” Now
consider this, what if it was YOUR Web site that people were leaving because of poor
performance?

Fortunately, there is a laundry list of performance-testing tools and services available
to tell you what your site’s end-user response time is. Unfortunately, not a single one
of them has the ability to tell you WHY the performance is what it is, or even more
importantly, how to make it better! So, where do you go for help?

There are a variety of books on the market that discuss how to design and architect
for maximum code-level or hardware-level performance. There are even more books
that focus on making a Web site intuitive, graphically pleasing, and easy to navigate.
These books discuss the benefits of speed, but how do you predict and tune an
application for optimized user experience? You must test, firsthand, the user
experience! There are two ways to accomplish this. You can design for performance,
then release a Web site straight into production, where data can be collected and the
system can be tuned, with the great hope that the site doesn’t crash or isn’t painfully
slow. However, the wise choice is to model, design, and develop the system, then
simulate actual multiuser activity, tune the application, and repeat (until the system
is tuned appropriately), before placing your site into production. Sounds like a
simple choice, but how do you do all of that?

xl Improving .NET Application Performance and Scalability

Improving .NET Application Performance and Scalability details the most complete,
effective, and efficient application life cycle approach to meeting performance and
scalability goals that I have found in print. If you are about to embark on a new
development project using the .NET Framework and are concerned about
performance and scalability, this is a must-read. Even if you aren’t using .NET, or
are already involved in a project, this guide will provide you with valuable insights
and ideas that are widely applicable across platforms, processes, and phases of
development. The guide walks you through key considerations and activities for
achieving your performance and scalability goals throughout the software
development life cycle. If you follow the recommendations from beginning to end,
you will learn how to design for performance by understanding what’s important
to you, your users, and your stakeholders — while identifying risks, issues, and
tradeoffs at the earliest possible opportunity. The guide provides frameworks,
checklists, expert tips, design and architecture reviews, and implementation reviews
to help you avoid common mistakes. It then delves into the performance and
scalability aspects of .NET technologies in painstaking detail, leading you through
options, choices, tradeoffs, things you should be aware of, and issues that you simply
cannot ignore.

Finally, we have information for both developers and testers about developing for
performance, testing performance, and tuning performance under one cover. Ever
since I entered the performance testing/engineering/analyzing world, I have been
a champion of these three activities coming together in a collaborative presentation.
While you may not be able to apply everything in this guide to your own
environment, just thinking through the activities in the guide, particularly their flow
and relationships, will give you keen insight to improve your approach to building
well-performing, highly scalable applications.

Scott Barber
System Test Engineer / Quality Assurance Manager
AuthenTec, Inc.
March, 2004

Scott Barber is a system test engineer and quality assurance manager for AuthenTec, Inc.,
and a member of the Technical Advisory Board for Stanley Reid Consulting, Inc. With a
background in network architecture, systems design, and database design as well as
administration, programming, and management, Scott has become a recognized thought
leader in the context-driven school of the software-testing industry. Before joining AuthenTec,
he was a consultant specializing in performance testing/analysis, a company commander in
the United States Army, a database administrator, and a government contractor in the
transportation industry.

Scott is a discussion facilitator in the Rational Developer Network public forums and a
moderator for the performance testing–related forums on QAForums.com. You can see
samples of Scott’s work in the area of performance testing on his Web site,
www.perftestplus.com. You can address questions or comments to him on either forum or
by contacting him directly at his e-mail address: mailto:sbarber@perftestplus.com

mailto:sbarber@perftestplus.com

 Forewords xli

Foreword by Brandon Bohling
The Microsoft® .NET Framework has been a big win for the development community.
Developers can now build business solutions in less time and with more functionality
and robustness than ever before. However, architecting and designing these solutions
is not necessarily straightforward, and with more features and functionality,
developers have an increased opportunity to build poor solutions. Features without
appropriate guidance can be the seeds of chaos. Unfortunately, few resources have
been available to assist .NET developers in this area. However, Microsoft patterns &
practices are designed to fill this gap.

All of the patterns & practices are thorough enough to be used as-is, yet flexible
enough to be enhanced and modified to meet particular needs, or even simply used
as a baseline to create your own guides and frameworks. Plus, they provide
architectural and operational frameworks that business solutions can be built upon,
and they provide a common vocabulary to facilitate efficient discussions between
architects, developers, and other IT professionals. It is these frameworks that are the
key to harvesting the power of .NET and to developing robust yet resilient
architectures. Once you have the frameworks in place, you can build solid, reusable
code — the patterns & practices guides prepare you to build the frameworks.

Improving .NET Application Performance and Scalability is yet another example of how
Microsoft has listened to the needs of the development community and has provided
comprehensive guidance for developing robust, high-performing .NET solutions.
Microsoft has made this guide (as well as other patterns & practices guides) very easy
to consume by providing high-level views of the information, checklists, and of
course chapters covering specific topics in great detail. This guide provides architects,
developers, and administrators with the necessary information to design, develop,
review, and evaluate .NET solutions.

Improving .NET Application Performance and Scalability goes far beyond simply
providing the reader with tips and tricks for improving performance. It provides
information on how to begin designing for performance early, as well as for
reviewing it throughout the application life cycle. The chapter on performance
modeling is absolutely fantastic as it provides the recipe for creating a performance
model that is well structured and reusable. Performance modeling is the key for your
team to determine whether your architecture and design decisions are inline with
your performance objectives.

At Intel we have found this to be an extremely useful reference for all stages of our
development life cycle, not only because of the wealth of content, but also because of
how it is organized. Whether you are looking for some quick performance tips or you
wish to gain a greater depth of knowledge on performance, Improving .NET
Application Performance and Scalability is a guide that delivers — it is the tool for
creating high-performing, scalable solutions.

xlii Improving .NET Application Performance and Scalability

Brandon Bohling
Application Architect
Intel Corporation
March, 2004

Brandon Bohling is an Application Architect at Intel Corporation. He has been working
with .NET since the early beta days, working with a group of evangelists at Intel to drive
the consistent and (re)use of Microsoft .NET by providing standards, guidelines, and reusable
assets. Once upon a time, he also coauthored a Wrox book, “Professional ASP.NET Web
Services.”

 Forewords xliii

Foreword by Rico Mariani
I’m giving up my official job title because it’s clear to me now that, despite the
incidental bits of code that I write, what I actually do is better described by the
words “Performance Preacher,” and I may as well embrace reality.

It’s not so bad really.

Now the thing about being a preacher is that you have to be able to regularly come
up with simple yet clever rules to get the attention of your flock. And of course you
don’t want to turn your flock into a mindless cult of zombies, even if it seems like
that might be convenient on certain days. No, the truth is that a good preacher will
be providing resources, guidance, a good example or two, and most important of all,
a framework of values.

And here we come to the topic at hand. What are good values for performance work?
Well, to start with you need to know a basic truth. Software is in many ways like
other complex systems: There’s a tendency toward increasing entropy. It isn’t
anyone’s fault; it’s just the statistical reality. There are just so many more messed-up
states that the system could be in than there are good states that you’re bound to head
for one of the messed-up ones. Making sure that doesn’t happen is what great
engineering is all about.

Now, it’s time for the simple yet clever rule: Never give up your performance
accidentally.

That sums it up for me, really. I have used other axioms in the past — rules such as
making sure you measure, making sure you understand your application and how it
interacts with your system, and making sure you’re giving your customers a “good
deal.” Those are all still good notions, but it all comes down to this: Most factors will
tend to inexorably erode your performance, and only the greatest vigilance will keep
those forces under control.

If you fail to be diligent, you can expect all manner of accidents to reduce your
system’s performance to mediocre at best, and more likely to something downright
unusable. If you fail to use discipline, you can expect to spend hours or days tuning
aspects of your system that don’t really need tuning, and you will finally conclude
that all such efforts are “premature optimizations” and are indeed “the root of all
evil.”1 You must avoid both of these extremes, and instead walk the straight and
narrow between them.

1 Hoare, Tony. “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” Quoted in Donald E. Knuth, Literate
Programming (Stanford, California: Center for the Study of Language and Information,
1992), 276.

xliv Improving .NET Application Performance and Scalability

I suppose, after all, that the final function of a preacher is to remind his flock that
the straight and narrow path is not an easy one to walk. Performance work has never
been easy. And so, I’m happy to tell you that in the coming pages you will find some
of the best advice there is to be had on the subject — resources, guidance, examples,
and a framework of values. And, after reading this guide, I hope you will want to
work with us for what’s right for your customer — not only the most reliable and
secure software that can be made, but also the most pleasant to use and reuse.

Rico Mariani
Performance Architect
Microsoft Corporation
March, 2004

Rico Mariani is a Performance Architect in the Developer Division at Microsoft. Rico began
his career at Microsoft in 1988, working on language products beginning with Microsoft® C
version 6.0, and contributed there until the release of the Microsoft Visual C++® version 5.0
development system. In 1995, Rico became development manager for what was to become the
“Sidewalk” project, which started his 7 years of platform work on various MSN technologies.
In the summer of 2002, Rico returned to the Developer Division to take his present position as
Performance Architect on the CLR team. Rico’s interests include compilers and language
theory, databases, 3-D art, and good fiction.

 Forewords xlv

Foreword by Connie U. Smith
Performance is an essential quality attribute of software systems. Failure to meet
performance requirements has many negative consequences, such as:
● Damaged customer relations
● Negative press coverage
● Falling stock prices
● Business failures
● Lost income
● Reduced competitiveness
● Increased hardware costs
● Additional project resources
● Project failure

Managing performance throughout the development process can reduce the risk
of performance failure and lead to performance successes.

Prudent project managers, architects, designers, and programmers know that they
should apply software performance engineering (SPE) methods from the outset of
their projects. They define performance requirements, conduct quantitative
performance analyses starting with the architecture and design, and continuing
throughout development. They apply best practices to implement code that meets
performance requirements as well as functionality, security, reliability,
maintainability, and other quality concerns. They conduct performance
measurements and stress tests to confirm that the system meets its performance
requirements before deployment.

But with today's complex technology choices, complex software, extremely high
demand, distributed hardware and software systems, and millions of implementation
choices, how can we make sure that we have not overlooked some crucial aspect of
the software that could have disastrous performance consequences?

This book is a comprehensive, thorough guide to performance issues that need
attention when constructing software. The implementation guidance is extensive, and
even an expert will benefit from it. It would take years of experience to learn all of
this material, much of the experience would be “lessons learned the hard way.”
Today, few developers learn all these topics in universities, so it will help many
improve their skills.

It is specific to .NET; however, it contains some information that is applicable to all
software systems. It serves as a good reference to look up specific questions. It is also
a good handbook for reviewing the subjects before beginning a new project.

Everyone who develops software should read this book. It will guide you to the
pertinent chapters for your interests and responsibilities.

xlvi Improving .NET Application Performance and Scalability

Connie U. Smith, Ph.D.
Principal Consultant
L&S Computer Technology, Inc.
March, 2004

Coauthor, Performance Solutions: A Practical Guide to Creating Responsive, Scalable
Software

Recipient of the Computer Measurement Group’s A.A. Michelson Lifetime
Achievement Award for her Software Performance Engineering contributions

Creator, SPE·ED™, The Software Performance Engineering Tool

Dr. Connie U. Smith, a principal consultant of the Performance Engineering Services
Division of L&S Computer Technology, Inc., is known for her pioneering work in defining the
field of Software Performance Engineering (SPE) and integrating SPE into the development
of new software systems. Dr. Smith received the Computer Measurement Group’s prestigious
A.A. Michelson Lifetime Achievement Award for technical excellence and professional
contributions for her SPE work. She is the author of the original SPE book, "Performance
Engineering of Software Systems," published in 1990 by Addison-Wesley, the more recent
book, "Performance Solutions: A Practical Guide to Building Responsive, Scalable Software,"
also published by Addison-Wesley, and approximately 100 scientific papers. She is the creator
of the SPE·ED™ performance engineering tool. She has over 25 years of experience in the
practice, research, and development of the SPE performance engineering techniques.

Introduction

Summary
Improving .NET Application Performance and Scalability provides an approach to
engineering applications for performance and scalability. This chapter introduces the
guide, outlines its structure, and shows you how to apply the guidance to your
specific scenario.

Overview
This guide provides a principle-based approach for engineering performance and
scalability throughout your application life cycle.

The guidance is task-based and presented in parts that correspond to life cycles,
tasks, and roles. It is designed to be used as a reference or be read from beginning to
end, and is divided into five parts:
● Part I, “Introduction to Engineering for Performance,” outlines how to apply

performance considerations throughout your application life cycle.
● Part II, “Designing for Performance,” gives you an approach for architecting and

designing for performance, using performance modeling. The design guidelines in
this part include a set of guiding principles and technology-agnostic practices.

● Part III, “Application Performance and Scalability,” provides deep platform
knowledge across the Microsoft® .NET Framework technologies.

● Part IV, “Database Server Performance and Scalability,” presents a consolidation
of the most important techniques for improving database performance.

● Part V, “Measuring, Testing, and Tuning,” provides a process, tools, and
techniques for evaluating performance and scalability.

Why We Wrote This Guide
We wrote this guide to accomplish the following:
● To provide guidance on how to approach performance
● To help integrate performance engineering throughout your application life cycle
● To explain performance considerations and tradeoffs
● To provide deep performance-related technical guidance on the .NET Framework

2 Improving .NET Application Performance and Scalability

Scope of This Guide
This guide covers recommendations from Microsoft on how to build .NET
applications that meet your performance needs. It promotes a life cycle-based
approach to performance and provides guidance that applies to all roles involved in
the life cycle, including architects, designers, developers, testers, and administrators.
The overall scope of the guide is shown in Figure 1.

Engineering for Performance

Performance Objectives
(Response Time, Throughput, Resource Utilization, Workload)

Performance Modeling
(Scenarios, Objectives, Workloads, Requirements, Budgets, Metrics)

Architecture and Design Guidelines
(Principles, Practices and Patterns)

Performance and Scalability Frame
Coupling and Cohesion
Communication
Concurrency

Resource Management
Caching, State Management
Data Structures / Algorithms

Measuring, Testing, Tuning
Measuring
Response Time
Throughput
Resource Utilization
Workload

Testing
Load Testing
Stress Testing
Capacity Testing

Tuning
Network
System
Platform
Application

R
o

le
s

(A
rc

hi
te

ct
s,

 D
ev

el
op

er
s,

 T
es

te
rs

, A
dm

in
is

tr
at

or
s)

L
if

e
C

yc
le

(R
eq

ui
re

m
en

ts
, D

es
ig

n,
 D

ev
el

op
, T

es
t,

D
ep

lo
y,

 M
ai

nt
ai

n)

Figure 1
The scope of the guide

 Introduction 3

The guidance is organized by categories, principles, roles, and stages of the life cycle:
● The goal of the guide is to help you build applications that meet their performance

objectives; that is, to build applications that are fast and responsive enough, and
are able to accommodate specific workloads. The main performance objectives are
response time, throughput, resource utilization (CPU, memory, disk I/O, and
network I/O), and workload.

● Measuring lets you see whether your application is trending toward or away from
the performance objectives. The measuring, testing, and tuning chapters show you
how to monitor performance by capturing metrics, and how to tune performance
through appropriate configuration and setup.

● Performance modeling provides a structured and repeatable approach to meeting
your performance objectives.

● The guide provides a set of architecture and design guidelines, including a series
of proven principles, practices, and patterns that can help improve performance.

● The guide also promotes a performance and scalability frame that enables you to
organize and prioritize performance issues.

Technologies in Scope
While many of the principles and design guidelines provided in this guide are
technology-agnostic, the guide focuses on applications built with the .NET
Framework and deployed on the Microsoft Windows® 2000 Server family of
operating systems. Where appropriate, new features provided by Windows Server™
2003 are highlighted. Table 1 shows the products and technologies that this guidance
is based on.

Table 1: Primary Technologies Addressed by This Guide

Area Product/Technology

Platforms .NET Framework 1.1

Windows 2000 Server family

Windows Server 2003 features are also highlighted.

Web Servers Microsoft Internet Information Services (IIS) 5.0 (included with
Windows 2000 Server)

IIS 6.0 (where relevant)

Database Servers Microsoft SQL Server ™2000

.NET Framework
Technologies

Common language runtime (CLR), ASP.NET, Enterprise Services,
Extensible Markup Language (XML) Web Services, Remoting, ADO.NET

4 Improving .NET Application Performance and Scalability

Features of This Guide
A great deal of work has gone into maximizing the value of this guidance. It provides
the following features:
● Framework for performance. The guide provides a schema that organizes

performance into logical units to help integrate performance throughout your
application life cycle.

● Life cycle approach. The guide provides end-to-end guidance on managing
performance, throughout your application life cycle, to reduce risk and lower total
cost of ownership. It also provides information for designing, building, and
maintaining applications.

● Roles. Information is segmented by roles, including architects, developers, testers,
and administrators, to make it more relevant and actionable.

● Performance and scalability frame. The guide uses a frame to organize
performance into a handful of prioritized categories, where your choices heavily
affect performance and scalability success. The frame is based on reviewing
hundreds of applications.

● Principles and practices. These serve as the foundation for the guide and provide
a stable basis for recommendations. They also reflect successful approaches used
in the field.

● Processes and methodologies. These provide steps for performance modeling,
testing, and tuning. For simplification and tangible results, the life cycle is
decomposed into activities with inputs, outputs, and steps. You can use the steps
as a baseline or to help you evolve your own process.

● Modular. Each chapter within the guide is designed to be read independently. You
do not need to read the guide from beginning to end to get the benefits. Use the
parts you need.

● Holistic. The guide is designed with the end in mind. If you do read the guide
from beginning to end, it is organized to fit together. The guide, in its entirety, is
better than the sum of its parts.

● Job aids. The guide provides an architecture and design review to help you
evaluate the performance implications of your architecture and design choices
early in the life cycle. A code review helps you spot implementation issues.
Checklists that capture the key review elements are provided.

● How Tos. The guide provides a set of step-by-step procedures to help you
implement key solutions from the guide.

● Subject matter expertise. The guide exposes insight from various experts
throughout Microsoft and from customers in the field.

 Introduction 5

● Validation. The guidance is validated internally through testing. Also, extensive
reviews have been performed by product, field, and product support teams.
Externally, the guidance is validated through community participation and
extensive customer feedback cycles.

● What to do, why, how. Each section in the guide presents a set of
recommendations. At the start of each section, the guidelines are summarized
using bold, bulleted lists. This gives you a snapshot view of the recommendations.
Then, each recommendation is expanded upon telling you what to do, why, and
how:
● What to do. This gives you the recommendation.
● Why. This gives you the rationale for the recommendation, helps you

understand the issues, and explains any trade-offs you may need to consider.
● How. This gives you the implementation details to make the recommendation

actionable.
● Performance Best Practices at a Glance. Provides fast answers to common

questions and problems.
● Fast Track. Takes a fast path through the essentials of the framework used by the

guide to help you quickly implement the guidance in your organization.

Audience
This guide is valuable for anyone who cares about application performance
objectives. It is designed to be used by technologists from many different disciplines,
including architects, developers, testers, performance analysts, and administrators.
The guidance is task-based, and is presented in parts that correspond to the various
stages of the application life cycle and to the people and roles involved during the
life cycle.

How to Use This Guide
You can read this guide from beginning to end, or you can read only the relevant
parts or chapters. You can adopt the guide in its entirety for your organization or you
can use critical components to address your highest-priority needs. If you need to
move quickly, use the fast track. If you have more time and want to deliberately
introduce a performance culture, you can work the guidance into your application
development life cycle and processes and use it as a training tool.

6 Improving .NET Application Performance and Scalability

Ways to Use the Guide
There are many ways to use this comprehensive guidance. The following are some
ideas:
● Use it as a reference. Use the guide as a reference and learn the performance dos

and don’ts of the .NET Framework.
● Use it as a mentor. Use the guide as your mentor for learning how to build

software that meets its performance objectives. The guide encapsulates the lessons
learned and experience from many subject matter experts.

● Incorporate performance into your application life cycle. Adopt the approach
and practices that work for you and incorporate them into your application
life cycle.

● Use it when you design applications. Design applications using principles and
best practices. Benefit from lessons learned.

● Perform architecture and design reviews. Use the question-driven approach to
evaluate architecture and design choices from a performance and scalability
perspective. Use the questions as a starting point, modify them to suit your needs,
and expand them as you learn more.

● Perform code reviews. Use the code review chapter as a starting point to improve
your development practices.

● Establish and evaluate your coding guidelines. Many of the technical dos and
don’ts depend on context. Evolve your own guidelines using the technical
guidance as input but mold it to suit your needs.

● Create training. Create training from the concepts and techniques used
throughout the guide, as well as technical insight across the .NET Framework
technologies.

Applying the Guidance to Your Role
This guide applies to the following roles:
● Architects and lead developers can use the principles and best-practice design

guidelines in Part II, “Designing for Performance,” to help architect and design
systems capable of meeting performance objectives. They can also use the
performance modeling process to help assess design choices before committing to
a solution.

● Developers can use the in-depth technical guidance in Part III, “Application
Performance and Scalability,” to help design and implement efficient code.

● Testers can use the processes described in Part V, “Measuring, Testing, and
Tuning,” to load, stress, and capacity test applications.

 Introduction 7

● Administrators can use the tuning process and techniques described in Part V,
“Measuring, Testing, and Tuning,” to tune performance with the appropriate
application, platform, and system configuration.

● Performance analysts can use the deep technical information on the .NET
Framework technologies to understand performance characteristics and to
determine the cost of various technologies. This helps them analyze how
applications that fail to meet their performance objectives can be improved.

Applying the Guidance to Your Life Cycle
Regardless of your chosen development process or methodology, Figure 2 shows how
the guidance applies to the broad categories associated with an application life cycle.

Requirements
Analysis

Design

Development

Testing

Deployment

Maintenance

Code Review

Performance Modeling
Design Guidelines

Architecture and
Design Review

Part III, Application
Performance and
Scalability and
Part IV, Database
Server
Performance and
Scalability

P
art V, M

easuring, Testing, and Tuning

Part II, Designing
for Performance

Figure 2
Life cycle mapping

Note that development methodologies tend to be characterized as either linear
(“waterfall” approaches) or iterative (“spiral” approaches). Figure 2 does not signify
one or the other but simply shows the typical functions that are performed and how
the guidance maps to those functions.

8 Improving .NET Application Performance and Scalability

Organization of This Guide
The guide is arranged in parts, chapters, and sections, as shown in Figure 3. Parts
map to the application life cycle (plan, build, deploy, and maintain). Chapters are
task-based. Guidelines and lessons learned are aggregated, summarized using
bulleted lists, and presented using a “what to do,” “why,” and “how” formula for fast
comprehension. Special features such as Performance Best Practices at a Glance, Fast
Track, Checklists, and How Tos help you comprehend and apply the guidance faster
and easier.

Part I

• CH01: Fundamentals of
Engineering for
Performance

Part II

• CH02: Performance
Modeling

• CH03: Design Guidelines
for Application
Performance

• CH04: Architecture and
Design Review of a
.NET Application for
Performance and
Scalability

Part III

• CH05: Improving Managed
Code Performance

• CH06: Improving
ASP.NET Performance

• CH07: Improving Interop
Performance

• CH08: Improving
Enterprise Services
Performance

• CH09: Improving XML
Performance

• CH10: Improving Web
Services Performance

• CH11: Improving
Remoting Performance

• CH12: Improving
ADO.NET Performance

• CH13: Code Review: .NET
Application Performance

Part IV

• CH14: Improving SQL
Server Performance

Part V

• CH15: Measuring .NET
Application Performance

• CH16: Testing .NET
Application Performance

• CH17: Tuning .NET
Application Performance

• Checklists
• How Tos

• Introduction
• Performance Best

Practices at a Glance
• Fast Track

Figure 3
Parts of the guide

Performance Best Practices at a Glance
The “Performance Best Practices at a Glance” section provides a problem index for
the guide, highlighting key areas of concern and where to go for more detail.

Fast Track
The “Fast Track” section in the front of the guide helps you implement the
recommendations and guidance quickly and easily.

Parts
This guide is divided into five parts:
● Part I, “Introduction to Engineering for Performance”
● Part II, “Designing for Performance”
● Part III, “Application Performance and Scalability”
● Part IV, “Database Server Performance and Scalability”
● Part V, “Measuring, Testing, and Tuning”

 Introduction 9

Part I, “Introduction to Engineering for Performance”
This part shows you how to apply performance considerations throughout your
application life cycle and introduces fundamental performance and scalability
concepts and terminology. Part I includes one chapter:
● Chapter 1, “Fundamentals of Engineering for Performance”

Part II, “Designing for Performance”
Performance modeling helps you assess your design choices before committing to a
solution. By upfront consideration of your performance objectives, workload, and
metrics for your scenarios, you reduce risk. Use the design guidelines chapter to learn
practices, principles, patterns, and anti-patterns so as to make informed choices. Part
II includes three chapters:
● Chapter 2, “Performance Modeling”
● Chapter 3, “Design Guidelines for Application Performance”
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”

Part III, “Application Performance and Scalability”
This part provides a series of chapters that provide deep platform knowledge across
the .NET Framework technologies. Use these chapters to learn about the key
performance and scalability considerations for the various .NET technologies, and to
improve the efficiency of your code in these areas. Part III includes nine chapters:
● Chapter 5, “Improving Managed Code Performance”
● Chapter 6, “Improving ASP.NET Performance”
● Chapter 7, “Improving Interop Performance”
● Chapter 8, “Improving Enterprise Services Performance”
● Chapter 9, “Improving XML Performance”
● Chapter 10, “Improving Web Services Performance”
● Chapter 11, “Improving Remoting Performance”
● Chapter 12, “Improving ADO.NET Performance”
● Chapter 13, “Code Review: .NET Application Performance”

Part IV, “Database Server Performance and Scalability”
This part shows you how to improve SQL Server performance. Part IV includes one
chapter:
● Chapter 14, “Improving SQL Server Performance”

10 Improving .NET Application Performance and Scalability

Part V, “Measuring, Testing, and Tuning”
This part shows you which metrics to capture so as to monitor specific performance
aspects. It also explains how to load, stress, and capacity test your applications, and
how you can tune performance with appropriate application, platform, and system
configuration. Part V includes three chapters:
● Chapter 15, “Measuring .NET Application Performance”
● Chapter 16, “Testing .NET Application Performance”
● Chapter 17, “Tuning .NET Application Performance”

Checklists
The Checklists section of the guide contains printable, task-based checklists. They are
quick reference sheets to help you turn information into action. This section includes
the following checklists:
● “Checklist: ADO.NET Performance”
● “Checklist: Architecture and Design Review for Performance and Scalability”
● “Checklist: ASP.NET Performance”
● “Checklist: Enterprise Services Performance”
● “Checklist: Interop Performance”
● “Checklist: Managed Code Performance”
● “Checklist: Remoting Performance”
● “Checklist: SQL Server Performance”
● “Checklist: Web Services Performance”
● “Checklist: XML Performance”

How Tos
This section contains How To content that provides step-by-step procedures for key
tasks. This section includes the following How To procedures:
● “How To: Improve Serialization Performance”
● “How To: Monitor the ASP.NET Thread Pool Using Custom Counters”
● “How To: Optimize SQL Indexes”
● “How To: Optimize SQL Queries”
● “How To: Page Records in .NET Applications”
● “How To: Perform Capacity Planning for .NET Applications”
● “How To: Scale .NET Applications”
● “How To: Submit and Poll for Long-Running Tasks”
● “How To: Time Managed Code Using QueryPerformanceCounter and

QueryPerformanceFrequency”

 Introduction 11

● “How To: Use ACT to Test Performance and Scalability”
● “How To: Use ACT to Test Web Services Performance”
● “How To: Use Custom Performance Counters from ASP.NET”
● “How To: Use CLR Profiler”
● “How To: Use EIF”
● “How To: Use SQL Profiler”

Approach Used in This Guide
How do you produce software that consistently meets its performance objectives?
The approach used in this guide is as follows:
● Give performance due consideration up front.
● Set objectives and measure.
● Know the cost.

Give Performance Due Consideration Up Front
Identify if and where performance matters and consider what your application’s
performance objective are. Plan and act accordingly. The simple act of considering
performance up front will help you make more thoughtful decisions when designing
your application.

Set Objectives and Measure
Performance objectives usually include response time, throughput, resource
utilization, and workload. If the software you produce does not meet all of its goals,
including performance, you failed.

Without objectives, you do not know what good performance looks like. You could
easily spend far too much or too little effort improving performance. You could make
poor design trade-offs by adding unnecessary complexity or you could oversimplify
where a more complex approach was warranted. You could attempt to handle exotic
security or reliability issues, which create an unsupportable performance burden, or
you might decline to handle issues that properly belong in your system. In short, you
will find yourself in a poor position to make good engineering decisions.

With well-defined performance objectives for your key scenarios, you know where to
focus and you know when you are finished. Rather than reacting to performance
issues, you drive performance throughout your application life cycle. Metrics are the
tools used to measure your scenarios and match them against your objectives.
Example metrics include response time, resource cost, latency, and throughput. The
objective is the value that is acceptable. You match the value of the metrics to your
objectives to see if your application is meeting, exceeding, or not meeting its
performance goals.

12 Improving .NET Application Performance and Scalability

Know the Cost
When you engineer solutions, you need to know the cost of your materials. You know
the cost by measuring under the appropriate workload. If the technology, API, or
library will not meet your performance objectives, do not use it. Getting the best
performance from your platform is often intrinsically tied to your knowledge of the
platform. While this guide provides a great deal of platform knowledge, it is no
replacement for measuring and determining the actual cost for your specific
scenarios.

Framework for Performance
This guide brings together people, process, and technology to create a framework for
repeatedly achieving performance and scalability objectives throughout your
software life cycle. This framework is shown in Figure 4.

Framework: A Principle-Based Approach

M
ea

su
ri

n
g

Categories Principles Roles Life Cycle

Coupling and
Cohesion

Communication

Concurrency

Resource
Management

Caching, State
Management

Data Structures /
Algorithms

Set Objective
Goals

Validate Design
Early

Measure
Throughout the

Lifecycle

Acquire Late and
Release Early

Minimize
Roundtrips

Pool Shared
Resources

Architect Requirements
Gathering

Design

Development

Testing

Deployment

Maintenance
P

er
fo

rm
an

ce
 O

b
je

ct
iv

es

Developer

Tester

Administrator

Figure 4
The principle-based framework for the guide

 Introduction 13

The main elements of the framework are the following:
● Categories. Performance recommendations and guidelines have been organized

and prioritized into categories for ease of consumption.
● Principles. Performance, like many other aspects of software engineering, lends

itself to a principle-based approach, where core principles are applied, regardless
of the implementation technology or application scenario. The recommendations
throughout the guide are founded on solid principles that have been proved
over time.

● Roles. The guide is designed to provide advice and recommendations applicable
to the various roles associated with a product development life cycle, including
architects and lead developers, developers, testers, and performance analysts.

● Life cycle. Different parts of the guide map to the various stages of the product
development life cycle.

● Performance modeling. Performance modeling provides a structured and
repeatable approach to modeling the performance of your software. Performance
cannot be added to an application as an afterthought, and performance should be
given its due consideration early in the development life cycle. Performance
modeling and measuring should continue throughout the life cycle.

Feedback and Support
We have made every effort to ensure the accuracy of this guide.

Feedback on the Guide
If you have comments on this guide, send an e-mail message to scalex@microsoft.com.
We are particularly interested in feedback regarding the following:
● Technical issues specific to recommendations
● Usefulness and usability issues
● Writing and editing issues

Technical Support
Technical support for the Microsoft products and technologies referenced in this
guidance is provided by Microsoft Product Support Services (PSS). For product
support information, please visit the Microsoft Product Support Web site at:
http://support.microsoft.com.

mailto:scalex@microsoft.com
http://support.microsoft.com/

14 Improving .NET Application Performance and Scalability

Community and Newsgroup Support
MSDN Newsgroups: http://msdn.microsoft.com/newsgroups/default.asp

Table 2: Newsgroups

Newsgroup Address

.NET Newsgroups TOC http://msdn.microsoft.com/newsgroups/topic.aspx?url=/MSDN-FILES
/028/201/317/topic.xml

.NET Performance http://msdn.microsoft.com/newsgroups/default.aspx?dg
=microsoft.public.dotnet.framework.performance&lang=en&cr=US

CLR http://msdn.microsoft.com/newsgroups/default.aspx?dg
=microsoft.public.dotnet.framework.clr&lang=en&cr=US

Caching http://msdn.microsoft.com/newsgroups/default.aspx?dg
=microsoft.public.dotnet.framework.aspnet.caching&lang=en&cr=US

ASP.NET Forums http://www.asp.net/Forums/default.aspx?tabindex=1&tabid=39

ASP.NET Performance http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=20

ASP.NET State
management

http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=22

ASP.NET Caching http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=21

The Team Who Brought You This Guide
This guide was produced by the following .NET development specialists:
● J.D. Meier, Microsoft, Program Manager, patterns & practices
● Srinath Vasireddy, Microsoft, Program Manager, patterns & practices
● Ashish Babbar, Infosys Technologies Ltd.
● Alex Mackman, Content Master Ltd., Founding member and Principal

Technologist

http://msdn.microsoft.com/newsgroups/default.asp
http://msdn.microsoft.com/newsgroups/topic.aspx?url=/MSDN-FILES/028/201/317/topic.xml
http://msdn.microsoft.com/newsgroups/topic.aspx?url=/MSDN-FILES/028/201/317/topic.xml
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.performance&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.performance&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.clr&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.clr&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.aspnet.caching&lang=en&cr=US
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.dotnet.framework.aspnet.caching&lang=en&cr=US
http://www.asp.net/Forums/default.aspx?tabindex=1&tabid=39
http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=20
http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=22
http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=21

 Introduction 15

Contributors and Reviewers
Many thanks to the following contributors and reviewers:
● Special thanks to key contributors: Anandha Murukan; Andy Eunson;

Balan Jayaraman, Infosys Technologies Ltd; Christopher Brumme (CLR and COM
interop); Connie U. Smith, Ph.D.; Curtis Krumel (SQL Server); David G. Brown
(SQL Server); Denny Dayton; Don Willits (“Uber man”); Edward Jezierski;
Ilia Fortunov; Jim O’Brien, Content Master Ltd; John Allen (ASP.NET);
Matt Odhner (ACT); Prabhaker Potharaju (SQL Server); Rico Mariani
(Performance Modeling, CLR, Code Review, Measuring); Ray Escamilla (Tuning);
Scott Barber (Performance Modeling and Testing); Sharon Bjeletich (SQL Server)

● Special thanks to key reviewers: Adam Nathan (Interop); Brad Abrams;
Brandon Bohling, Intel Corporation; Carlos Farre, Solutions IQ; Chuck Delouis,
Veritas Software (SQL Server); Cosmin Radu (Interop); Eddie Lau (ACE);
Eric Morris (ACE); Erik Olsen (ASP.NET); Gerardo Bermudez (CLR, Performance
Modeling); Gregor Noriskin; Ken Perilman; Jan Gray; John Hopkins (ACE);
Joshua Lee; K.M. Lee (ACE TEAM); Mark Fussell (XML); Matt Tavis (Remoting);
Nico Jansen (ACE Team); Pablo Castro (ADO.NET and SQL); Patrick Dussud
(CLR); Riyaz Pishori (Enterprise Services); Richard Turner (Enterprise Services);
Sonja Keserovic (Interop); Thomas Marquardt (ASP.NET); Tim Walton;
Tom McDonald; Wade Mascia (ASP.NET threading, Web services, and
Enterprise Services); Yasser Shohoud (Web services)

● Thanks to external reviewers: Ajay Mungara, Intel Corporation; Bill Draven,
Intel Corporation; Emil Lerch, Intel Corporation; Carlos Santos (Managed Code);
Christopher Bowen, Monster.com; Chuck Cooper; Dan Sullivan; Dave Levine,
Rockwell Software; Daniel Cazzulino, Lagash Systems SA; Diego Gonzalez,
Lagash Systems SA (XML); Franco Ceruti; Fredrik Normén “N2”, Barium AB
(extensive review); Grant Fritchey; Greg Buskirk; Ingo Rammer, IngoRammer.com;
James Duff, Vertigo Software; Jason Masterman, Barracuda .NET (Remoting); Jeff
Fiegel, Acres Gaming; Jeff Sukow, Rockwell Software; John Lam; John Vliet, Intel
Corporation; Juval Lowy (COM interop); Kelly Summerlin, TetraData; Mats
Lannér, Open Text Corporation; Matt Davey; Matthew Brealey; Mitch Denny,
Monash.NET; Morten Abrahamsen (Performance and Transactions); Nick
Wienholt, dotnetperformance.com; Norm Smith (Data Access and Performance
Modeling); Pascal Tellier, prairieFyre Software Inc.; Paul Ballard, Rochester
Consulting Partnership, Inc.; Per Larsen (Managed Code Performance); Scott Allen
(Design Guidelines); Philippe Harry Leopold Frederix (Belgium); Scott Stanfield,
Vertigo Software; Ted Pattison, Barracuda .NET (COM Interop); Thiru
Thangarathinam; Tim Weaver, Monster.com; Vivek Chauhan (NIIT); Thiru
Thangarathinam; Wat Hughes, Creative Data (SQL Server)

16 Improving .NET Application Performance and Scalability

● Microsoft Consulting Services and Product Support Services (PSS):
Dan Grady; David Madrian; Eddie Clodfelter; Hugh Wade; Jackie Richards;
Jacquelyn Schmidt; Jaime Rodriguez; James Dosch; Jeff Pflum; Jim Scurlock;
Julian Gonzalez (Web services); Kenny Jones; Linnea Bennett; Matt Neerincx;
Michael Parkes; Michael Royster; Michael Stuart; Nam Su Kang; Neil Leslie;
Nobuyuki Akama; Pat Altimore; Paul Fallon; Scott Slater; Tom Sears; Tony Bray

● Microsoft Product Group: Alexei Vopilov (Web services); Amrish Kumar;
Arvindra Sehmi; Bill Evans; Brian Spanton; Keith Ballinger (WSE); Scot Gellock
(Web services); Brian Grunkemeyer (CLR); Chris Eck; David Fields (NT);
David Guimbellot; David Mortenson (CLR); Dax Hawkins; Dhananjay Mahajan
(Enterprise Services); Dino Chiesa; Dmitry Robsman; Doug Rothaus (ADO.NET);
Eddie Liu; Elena Kharitidi (Web services); Fabio Yeon; Harris Syed (Enterprise
Services); Jason Zander; Jeffrey Cooperstein; Jim Radigan; Joe Long (Web services
vs. ES vs. Remoting); Joshua Allen; Larry Buerk; Lubor Kollar (SQL Server);
Maoni Stephens; Michael Coulson; Michael Fanning; Michael Murray (FxCop);
Omri Gazitt; Patrick Ng (FX DEV); Peter Carlin (SQL Server); Rebecca Dias (WSE);
Rick Vicik; Robin Maffeo (CLR Thread pool); Vance Morrison; Walter Stiers;
Yann Christensen

● Thanks to our patterns & practices members for technical feedback and input:
Jason Hogg (ADO.NET and XML); Naveen Yajaman; Sandy Khaund;
Scott Densmore; Tom Hollander; Wojtek Kozaczynski

● Thanks to our test team: (Infosys Technologies Ltd): Austin Ajit Samuel Angel;
Dhanyah T.S.K; Lakshmi; Prashant Bansode; Ramesh Revenipati; Ramprasad
Gopalakrishnan; Ramprasad Ramamurthy; Terrence J. Cyril

● Thanks to our editors for helping to ensure a quality experience for the reader:
Sharon Smith; Tina Burden McGrayne, Entirenet; Susan Filkins, Entirenet;
Tyson Nevil, Entirenet

● Thanks to our product manager: Ron Jacobs
● Finally, thanks to: Alex Lowe; Chris Sells; Jay Nanduri; Nitin Agrawal;

Pat Filoteo; Patrick Conlan (SQL Server); Rajasi Saha; Sanjeev Garg (Satyam
Computer Services); Todd Kutzke

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary of
the problems you faced and how this guide helped you out. Submit your summary to
MyStory@Microsoft.com.

Summary
In this introduction, you were shown the structure of the guide and the basic
approach used by it to engineer for performance and scalability. You were also shown
how to apply the guidance to your role or to specific phases of your product
development life cycle.

mailto:MyStory@Microsoft.com

Performance Best Practices
at a Glance

Summary
This document summarizes the solutions presented in Improving .NET Application
Performance and Scalability. It provides links to the detailed material in the guide so
that you can easily locate the information you need to implement the solutions that
are listed.

Architecture and Design Solutions
If you are an architect, this guide provides the following solutions to help you
design Microsoft® .NET applications to meet your performance objectives:
● How to balance performance with quality-of-service (QoS) requirements

Do not consider performance in isolation. Balance your performance requirements
with other QoS attributes such as security and maintainability.
For more information, see Chapter 3, “Design Guidelines for Application
Performance.”

● How to identify and evaluate performance issues
Use performance modeling early in the design process to help evaluate your
design decisions against your objectives before you commit time and resources.
Identify your performance objectives, your workload, and your budgets. Budgets
are your constraints. These include maximum execution time and resource
utilization such as CPU, memory, disk I/O, and network I/O.
For more information about how to identify key performance scenarios and about
how to create a performance model for your application, see Chapter 2,
“Performance Modeling” and Chapter 3, “Design Guidelines for Application
Performance.”

18 Improving .NET Application Performance and Scalability

● How to perform architecture and design reviews
Review the design of your application in relation to your target deployment
environment, any constraints that might be imposed, and your defined
performance goals. Use the categories that are defined by the performance and
scalability frame promoted by this guide to help partition the analysis of your
application and to analyze the approach taken for each area. The categories
represent key areas that frequently affect application performance and scalability.
Use the categories to organize and prioritize areas for review.
For more information, see Chapter 4, “Architecture and Design Review of a .NET
Application for Performance and Scalability.”

● How to choose a deployment topology
When you design your application architecture, you must take into account
corporate policies and procedures together with the infrastructure that you plan to
deploy your application on. If the target environment is rigid, your application
design must reflect the restrictions that exist in that rigid environment. Your
application design must also take into account QoS attributes such as security and
maintainability. Sometimes you must make design tradeoffs because of protocol
restrictions, and network topologies.
Identify the requirements and constraints that exist between application
architecture and infrastructure architecture early in the development process.
This helps you choose appropriate architectures and helps you resolve conflicts
between application and infrastructure architecture early in the process.
Use a layered design that includes presentation, business, and data access logic.
A well-layered design generally makes it easier to scale your application and
improves maintainability. A well-layered design also creates predictable points in
your application where it makes sense (or not) to make remote calls.
To avoid remote calls and additional network latency, stay in the same process
where possible and adopt a non-distributed architecture, where layers are located
inside your Web application process on the Web server.
If you do need a distributed architecture, consider the implications of remote
communication when you design your interfaces. For example, you might need
a distributed architecture because security policy prevents you from running
business logic on your Web server, or you might need a distributed architecture
because you need to share business logic with other applications, Try to reduce
round trips and the amount of traffic that you send over the network.
For more information, see “Deployment Considerations” in Chapter 3, “Design
Guidelines for Application Performance.”

 Performance Best Practices at a Glance 19

● How to design for required performance and scalability
Use tried and tested design principles. Focus on the critical areas where the correct
approach is essential and where mistakes are often made. Use the categories
described by the performance frame that is defined in this guide to help organize
and prioritize performance issues. Categories include data structures and
algorithms, communication, concurrency, resource management, coupling and
cohesion, and caching and state management.

● How to pass data across the tiers
Prioritize performance, maintenance, and ease of development when you select
an approach. Custom classes allow you to implement efficient serialization. Use
structures if you can to avoid implementing your own serialization. You can use
XML for interoperability and flexibility. However, XML is verbose and can require
considerable parsing effort. Applications that use XML may pass large amounts of
data over the network. Use a DataReader object to render data as quickly as
possible, but do not pass DataReader objects between layers because they require
an open connection. The DataSet option provides great flexibility; you can use it
to cache data across requests. DataSet objects are expensive to create and serialize.
Typed DataSet objects permit clients to access fields by name and to avoid the
collection lookup overhead.
For more information, see “Design Considerations” in Chapter 12, “Improving
ADO.NET Performance.”

● How to choose between Web services, remoting, and Enterprise Services
Web services are the preferred communication mechanism for crossing application
boundaries, including platform, deployment, and trust boundaries. The Microsoft
product team recommendations for working with ASP.NET Web services,
Enterprise Services, and .NET remoting are summarized in the following list:
● Build services by using ASP.NET Web services.
● Enhance your ASP.NET Web services with Web Services Enhancements (WSE)

if you need the WSE feature set and if you can accept the support policy.
● Use object technology, such as Enterprise Services or .NET remoting, within the

implementation of a service.
● Use Enterprise Services inside your service boundaries when the following

conditions are true:
● You need the Enterprise Services feature set. This feature set includes object

pooling, declarative transactions, distributed transactions, role-based
security, and queued components.

● You are communicating between components on a local server, and you
have performance issues with ASP.NET Web services or WSE.

20 Improving .NET Application Performance and Scalability

● Use .NET remoting inside your service boundaries when the following
conditions are true:
● You need in-process, cross-application domain communication. Remoting

has been optimized to pass calls between application domains extremely
efficiently.

● You need to support custom wire protocols. Understand, however, that this
customization will not port cleanly to future Microsoft implementations.

When you work with ASP.NET Web services, Enterprise Services, or .NET
remoting, you should consider the following caveats:
● If you use ASP.NET Web services, avoid using low-level extensibility features

such as the HTTP Context object. If you do use the HttpContext object, abstract
your access to it.

● If you use .NET remoting, avoid or abstract using low-level extensibility such
as .NET remoting sinks and custom channels.

● If you use Enterprise Services, avoid passing object references inside Enterprise
Services. Also, do not use COM+ APIs. Instead, use types from the
System.EnterpriseServices namespace.

For more information, see “Prescriptive Guidance for Choosing Web Services,
Enterprise Services, and .NET Remoting” in Chapter 11, “Improving Remoting
Performance.”

● How to design remote interfaces
When you create interfaces that are designed for remote access, consider the level
of chatty communication, the intended unit of work, and the need to maintain
state on either side of the conversation.
As a general rule, you should avoid property-based interfaces. You should also
avoid any chatty interface that requires the client to call multiple methods to
perform a single logical unit of work. Provide sufficiently granular methods. To
reduce network round trips, pass data through parameters as described by the
data transfer object pattern instead of forcing property access. Also try to reduce
the amount of data that is sent over the remote method calls to reduce serialization
overhead and network latency.
If you have existing objects that expose chatty interfaces, you can use a data facade
pattern to provide a coarse-grained wrapper. The wrapper object would have a
coarse-grained interface that encapsulates and coordinates the functionality of one
or more objects that have not been designed for efficient remote access.
Alternatively, consider the remote transfer object pattern where you wrap and
return the data you need. Instead of making a remote call to fetch individual data
items, you fetch a data object by value in a single remote call. You then operate
locally against the locally cached data. In some scenarios where you may need to
ultimately update the data on the server, the wrapper object exposes a single
method that you call to send the data back to the server.

 Performance Best Practices at a Glance 21

For more information, see “Minimize the Amount of Data Sent Across the Wire” in
the “Communication” section of Chapter 3, “Design Guidelines for Application
Performance.”

● How to choose between service orientation and object orientation
When you are designing distributed applications, services are the preferred
approach. While object-orientation provides a pure view of what a system should
look like and is good for producing logical models, a pure object-based approach
often does not take into account real-world aspects such as physical distribution,
trust boundaries, and network communication. A pure object-based approach also
does not take into account nonfunctional requirements such as performance and
security.
Table 1 summarizes some key differences between object orientation and service
orientation.

Table 1: Object Orientation vs. Service Orientation

Object orientation Service orientation

Assumes homogeneous platform and
execution environment.

Assumes heterogeneous platform and
execution environment.

Share types, not schemas. Share schemas, not types.

Assumes cheap, transparent communication. Assumes variable cost, explicit
communication.

Objects are linked: Object identity and lifetime
are maintained by the infrastructure.

Services are autonomous: security and failure
isolation are a must.

Typically requires synchronized deployment of
both client and server.

Allows continuous separate deployment of
client and server.

Is easy to conceptualize and thus provides a
natural path to follow.

Builds on ideas from component software and
distributed objects. Dominant theme is to
manage/reduce sharing between services.

Provides no explicit guidelines for state
management and ownership.

Owns and maintains state or uses reference
state.

Assumes a predictable sequence, timeframe,
and outcome of invocations.

Assumes message-oriented, potentially
asynchronous and long-running
communications.

Goal is to transparently use functions and
types remotely.

Goal is to provide inter-service isolation and
wire interoperability based on standards.

22 Improving .NET Application Performance and Scalability

Common application boundaries include platform, deployment, trust,
and evolution. Evolution refers to whether or not you develop and upgrade
applications together. When you evaluate architecture and design decisions
around your application boundaries, consider the following:
● Objects and remote procedure calls (RPC) are appropriate within boundaries.
● Services are appropriate across and within boundaries.
For more information about when to choose Web services, .NET remoting,
or Enterprise Services for distributed communication in .NET applications,
see “Prescriptive Guidance for Choosing Web Services, Enterprise Services,
and .NET Remoting” in Chapter 11, “Improving Remoting Performance.”

Development Solutions
If you are a developer, this guide provides the following solutions:

Improving Managed Code Performance
● How to conduct performance reviews of managed code

Use analysis tools such as FxCop.exe to analyze binary assemblies and to
ensure that they conform to the Microsoft .NET Framework design guidelines.
Use Chapter 13, “Code Review: .NET Application Performance” to evaluate
specific features including garbage collection overheads, threading, and
asynchronous processing. You can also use Chapter 13 to identify and prevent
common performance mistakes.
Use the CLR Profiler tool to look inside the managed heap to analyze problems
that include excessive garbage collection activity and memory leaks. For more
information, see “How To: Use CLR Profiler” in the “How To” section of this
guide.

● How to design efficient types
Should your classes be thread safe? What performance issues are associated
with using properties? What are the performance implications of supporting
inheritance? For answers to these and other class design-related questions, see
“Class Design Considerations” in Chapter 5, “Improving Managed Code
Performance.”

 Performance Best Practices at a Glance 23

● How to manage memory efficiently
Write code to help the garbage collector do its job efficiently. Minimize hidden
allocations, and avoid promoting short-lived objects, preallocating memory,
chunking memory, and forcing garbage collections. Understand how pinning
memory can fragment the managed heap.
Identify and analyze the allocation profile of your application by using CLR
Profiler.
For more information, see “Garbage Collection Guidelines” in Chapter 5,
“Improving Managed Code Performance.”

● How to use multithreading in .NET applications
Minimize thread creation, and use the self-tuning thread pool for multithreaded
work. Avoid creating threads on a per-request basis. Also avoid using
Thread.Abort or Thread.Suspend. For information about how to use threads most
efficiently, see “Threading Guidelines” in Chapter 5, “Improving Managed Code
Performance.” For information about how to efficiently synchronize
multithreaded activity, see “Locking and Synchronization Guidelines,” also in
Chapter 5.
Make sure that you appropriately tune the thread pool for ASP.NET applications
and for Web services. For more information, see “How to tune the ASP.NET thread
pool” later in this document.

● How to use asynchronous calls
Asynchronous calls may benefit client-side applications where you need to
maintain user interface responsiveness. Asynchronous calls may also be
appropriate on the server, particularly for I/O bound operations. However, you
should avoid asynchronous calls that do not add parallelism and that block the
calling thread immediately after initiating the asynchronous call. In these
situations, there is no benefit to making asynchronous calls.
For more information about making asynchronous calls, see “Asynchronous
Guidelines” in Chapter 5, “Improving Managed Code Performance.”

● How to clean up resources
Release resources as soon as you have finished with them. Use finally blocks
or the C# using statement to make sure that resources are released even if an
exception occurs. Make sure that you call Dispose (or Close) on any disposable
object that implements the IDisposable interface. Use finalizers on classes that
hold on to unmanaged resources across client calls. Use the Dispose pattern to
help ensure that you implement Dispose functionality and finalizers (if they are
required) correctly and efficiently.
For more information, see “Finalize and Dispose Guidelines” and “Dispose
Pattern” in Chapter 5, “Improving Managed Code Performance.”

24 Improving .NET Application Performance and Scalability

● How to avoid unnecessary boxing
Excessive boxing can lead to garbage collection and performance issues. Avoid
treating value types as reference types where possible. Consider using arrays or
custom collection classes to hold value types. To identify boxing, examine your
Microsoft intermediate language (MSIL) code and search for the box and unbox
instructions.
For more information, see “Boxing and Unboxing Guidelines” in Chapter 5,
“Improving Managed Code Performance.”

● How to handle exceptions
Exceptions can be expensive. You should not use exceptions for regular
application logic. However, use structured exception handling to build robust
code, and use exceptions instead of error codes where possible. While exceptions
do carry a performance penalty, they are more expressive and less error prone
than error codes.
Write code that avoids unnecessary exceptions. Use finally blocks to guarantee
resources are cleaned up when exceptions occur. For example, close your database
connections in a finally block. You do not need a catch block with a finally block.
Finally blocks that are not related to exceptions are inexpensive.
For more information, see “Exception Management” in Chapter 5, “Improving
Managed Code Performance.”

● How to work with strings efficiently
Excessive string concatenation results in many unnecessary allocations that create
extra work for the garbage collector. Use StringBuilder when you need to create
complex string manipulations and when you need to concatenate strings multiple
times. If you know the number of appends and concatenate strings in a single
statement or operation, prefer the + operator. Use Response.Write in ASP.NET
applications to benefit from string buffering when a concatenated string is to be
displayed on a Web page.
For more information, see “String Operations” in Chapter 5, “Improving Managed
Code Performance.”

● How to choose between arrays and collections
Arrays are the fastest of all collection types, so unless you need special
functionalities like dynamic extension of the collection, sorting, and searching, you
should use arrays. If you need a collection type, choose the most appropriate type
based on your functionality requirements to avoid performance penalties.
● Use ArrayList to store custom object types and particularly when the data

changes frequently and you perform frequent insert and delete operations.
Avoid using ArrayList for storing strings.

● Use a StringCollection to store strings.

 Performance Best Practices at a Glance 25

● Use a Hashtable to store a large number of records and to store data that may
or may not change frequently. Use Hashtable for frequently queried data such
as product catalogs where a product ID is the key.

● Use a HybridDictionary to store frequently queried data when you expect the
number of records to be low most of the time with occasional increases in size.

● Use a ListDictionary to store small amounts of data (fewer than 10 items).
● Use a NameValueCollection to store strings of key-value pairs in a presorted

order. Use this type for data that changes frequently where you need to insert
and delete items regularly and where you need to cache items for fast retrieval.

● Use a Queue when you need to access data sequentially (first in is first out)
based on priority.

● Use a Stack in scenarios where you need to process items in a last–in, first-out
manner.

● Use a SortedList for fast object retrieval using an index or key. However, avoid
using a SortedList for large data changes because the cost of inserting the large
amount of data is high. For large data changes, use an ArrayList and then sort
it by calling the Sort method.

For more information, see “Arrays” and “Collection Guidelines” in Chapter 5,
“Improving Managed Code Performance.”

● How to improve serialization performance
Reduce the amount of data that is serialized by using the XmlIgnore or
NonSerialized attributes. XmlIgnore applies to XML serialization that is
performed by the XmlSerializer. The XmlSerializer is used by Web services.
The NonSerialized applies to .NET Framework serialization used in conjunction
with the BinaryFormatter and SoapFormatter. The BinaryFormatter produces the
most compact data stream, although for interoperability reasons you often need
to use XML or SOAP serialization.
You can also implement ISerializable to explicitly control serialization and
to determine the exact fields to be serialized from a type. However, using
ISerializable to explicitly control serialization is not recommended because it
prevents you from using new and enhanced formatters provided by future
versions of the .NET Framework.
If versioning is a key consideration for you, consider using a
SerializationInfoEnumerator to enumerate through the set of serialized fields
before you try to deserialize them.
To improve DataSet serialization, you can use column name aliasing, you can
avoid serializing both the original and the updated data values, and you can
reduce the number of DataTable instances that you serialize.
For more information, see “How To: Improve Serialization Performance” in the
“How To” section of this guide.

26 Improving .NET Application Performance and Scalability

● How to improve code access security performance
Code access security ensures that your code and the code that calls your code
are authorized to perform specific privileged operations and to access privileged
resources like the file system, the registry, the network, databases, and other
resources. The permission asserts and permission demands in the code you write
and call directly affects the number and the cost of the security stack walks that
you need.
For more information, see “Code Access Security” in Chapter 5, “Improving
Managed Code Performance.”

● How to reduce working set size
A smaller working set produces better system performance. Fewer larger
assemblies rather than many smaller assemblies help reduce working set size.
Using the Native Image Generator (Ngen.exe) to precompile code may also help.
For more information, see “Working Set Considerations” in Chapter 5, “Improving
Managed Code Performance.”

● How to develop SMP friendly code
To write managed code that works well with symmetric multiprocessor (SMP)
servers, avoid contentious locks and do not create lots of threads. Instead, favor
the ASP.NET thread pool and allow it to decide the number of threads to release.
If you run your application on a multiprocessor computer, use the server GC)
instead of the workstation GC. The server GC is optimized for throughput,
memory consumption, and multiprocessor scalability. ASP.NET automatically
loads the server GC. If you do not use ASP.NET, you have to load the server GC
programmatically. The next version of the .NET Framework provides a
configurable switch.
For more information, see “Server GC vs. Workstation GC” in Chapter 5,
“Improving Managed Code Performance.”

● How to time managed code in nanoseconds
Use the Microsoft Win32® functions QueryPerformanceCounter and
QueryPerformanceFrequency to measure performance. To create a managed
wrapper for these functions, see “How To: Time Managed Code Using
QueryPerformanceCounter and QueryPerformanceFrequency” in the “How To”
section of this guide.

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) provides a
wrapper to simplify using QueryPerformanceCounter and QueryPerformanceFrequency.

 Performance Best Practices at a Glance 27

● How to instrument managed code
Instrument your application to measure your processing steps for your key
performance scenarios. You may need to measure resource utilization, latency,
and throughput. Instrumentation helps you identify where bottlenecks exist in
your application. Make your instrumentation configurable; be able to control
event types and to switch your instrumentation off completely. Options for
instrumentation include the following:
● Event Tracing for Windows (ETW). Event Tracing for Windows is the

recommended approach because it is the least expensive to use in terms of
execution time and resource utilization.

● Trace and Debug classes. The Trace class lets you instrument your release and
debug code. You can use the Debug class to output debug information and to
check logic for assertions in code. These classes are in the System.Diagnostics
namespace.

● Custom performance counters. You can use custom counters to time key
scenarios within your application. For example, you might use a custom
counter to time how long it takes to place an order. For implementation details,
see “How To: Use Custom Performance Counters from ASP.NET” in the “How
To” section of this guide.

● Windows Management Instrumentation (WMI). WMI is the core
instrumentation technology built into the Microsoft Windows® operating
system. Logging to a WMI sink is more expensive compared to other sinks.

● Enterprise Instrumentation Framework (EIF). EIF provides a framework for
instrumentation. It provides a unified API. You can configure the events that
you generate, and you can configure the way the events are logged. For
example, you can configure the events to be logged in the Windows event log
or in Microsoft SQL Server™. The levels of granularity of tracing are also
configurable. EIF is available as a free download at http://www.microsoft.com
/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368
&displaylang=en.
For more information, see “How To: Use EIF” In the “How To” section of this
guide.

For more information about instrumentation, see Chapter 15, “Measuring
.NET Application Performance.”

http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en

28 Improving .NET Application Performance and Scalability

● How to decide when to use the Native Image Generator (Ngen.exe)
The Native Image Generator (Ngen.exe) allows you to run the just-in-time (JIT)
compiler on your assembly's MSIL to generate native machine code that is cached
to disk. Ngen.exe for the .NET Framework version 1.0 and version 1.1 was
primarily designed for the common language runtime (CLR), where it has
produced significant performance improvements. To identify whether or not
Ngen.exe provides any benefit for your particular application, you need to
measure performance with and without using Ngen.exe. Before you use Ngen.exe,
consider the following:
● Ngen.exe is most appropriate for any scenario that benefits from better page

sharing and working set reduction. For example, it is most appropriate for
client scenarios that require fast startup to be responsive, for shared libraries,
and for multiple-instance applications.

● Ngen.exe is not recommended for ASP.NET version 1.0 and 1.1 because the
assemblies that Ngen.exe produces cannot be shared between application
domains. At the time of this writing, the .NET Framework 2.0 (code-named
“Whidbey”) includes a version of Ngen.exe that produces images that can be
shared between application domains.

If you do decide to use Ngen.exe:
● Measure your performance with and without Ngen.exe.
● Make sure that you regenerate your native image when you ship new versions

of your assemblies for bug fixes or for updates, or when something your
assembly depends on changes.

For more information, see “Ngen.exe Explained” and “Ngen.exe Guidelines” in
Chapter 5, “Improving Managed Code Performance.”

Improving Data Access Performance
The solutions in this section show how to improve ADO.NET data access
performance. The majority of the solutions are detailed in Chapter 12, “Improving
ADO.NET Performance.”
● How to improve data access performance

Your goal is to minimize processing on the server and at the client and to
minimize the amount of data passed over the network. Use database connection
pooling to share connections across requests. Keep transactions as short as
possible to minimize lock durations and to improve concurrency. However, do
not make transactions so short that access to the database becomes too chatty.
For more information, see Chapter 12, “Improving ADO.NET Performance,”
and Chapter 14, “Improving SQL Server Performance.”

 Performance Best Practices at a Glance 29

● How to page records
You should allow the user to page through large result sets when you deliver large
result sets to the user one page at a time. When you choose a paging solution,
considerations include server-side processing, data volumes and network
bandwidth restrictions, and client-side processing.
The built-in paging solutions provided by the ADO.NET DataAdapter and
DataGrid are only appropriate for small amounts of data. For larger result sets,
you can use the SQL Server SELECT TOP statement to restrict the size of the result
set. For tables that do not have a strictly-increasing key column, you can use a
nested SELECT TOP query. You can also use temporary tables when data is
retrieved from complex queries and is prohibitively large to be transmitted and
stored on the Web layer and when the data is application wide and applicable to
all users.
For general data paging design considerations, see “Paging Records”
in Chapter 12, “Improving ADO.NET Performance.” For paging solution
implementation details, see “How To: Page Records in .NET Applications”
in the “How To” section of this guide.

● How to serialize DataSets efficiency
Default DataSet serialization is not the most efficient. For information about how
to improve this, see “How To: Improve Serialization Performance” in the “How
To” section of this guide. For alternative approaches to passing data across
application tiers, see Chapter 12, “Improving ADO.NET Performance.”

● How to manipulate BLOBs
Avoid moving binary large object (BLOB) data repeatedly, and consider storing
pointers in the database to BLOB files that are maintained on the file system. Use
chunking to reduce the load on the server, and use chunking particularly where
network bandwidth is limited. Use the CommandBehavior.SequentialAccess
enumerator to stream BLOB data. For Microsoft SQL Server 2000, use READTEXT
and UpdateText function to read and write BLOBs. For Oracle, use the OracleLob
class.
For more information, see “Binary Large Objects” in Chapter 12, “Improving
ADO.NET Performance.”

● How to choose between dynamic SQL and stored procedures
Stored procedures generally provide improved performance in comparison to
dynamic SQL statements. From a security standpoint, you need to consider the
potential for SQL injection and authorization. Both approaches are susceptible to
SQL injection if they are poorly written. Database authorization is often easier to
manage when you use stored procedures because you can restrict your
application's service accounts to only run specific stored procedures and to
prevent them from accessing tables directly.

30 Improving .NET Application Performance and Scalability

If you use stored procedures, follow these guidelines:
● Try to avoid recompiles.
● Use the Parameters collection to help prevent SQL injection.
● Avoid building dynamic SQL within the stored procedure.
● Avoid mixing business logic in your stored procedures.
If you use dynamic SQL, follow these guidelines:
● Use the Parameters collection to help prevent SQL injection.
● Batch statements if possible.
● Consider maintainability. For example, you have to decide if it is easier for you

to update resource files or to update compiled statements in code.
For more information, see Chapter 12, “Improving ADO.NET Performance.”

● How to choose between a DataSet and a DataReader
Do not use a DataSet object for scenarios where you can use a DataReader object.
Use a DataReader if you need forward-only, read-only access to data and if you do
not need to cache the data. Do not pass DataReader objects across physical server
boundaries because they require open connections. Use the DataSet when you
need the added flexibility or when you need to cache data between requests.
For more information, see “DataSet vs. DataReader” in Chapter 12, “Improving
ADO.NET Performance.”

● How to perform transactions in .NET
You can perform transactions using T-SQL commands, ADO.NET, or Enterprise
Services. T-SQL transactions are most efficient for server-controlled transactions
on a single data store. If you need to have multiple calls to a single data store
participate in a transaction, use ADO.NET manual transactions. Use Enterprise
Services declarative transactions for transactions that span multiple data stores.
When you choose a transaction approach, you also have to consider ease of
development. Although Enterprise Services transactions are not as quick as
manual transactions, they are easier to develop and lead to middle tier solutions
that are flexible and easy to maintain.
Regardless of your choice of transaction type, keep transactions as short as
possible, consider your isolation level, and keep read operations to a minimum
inside a transaction.
For more information, see “Transactions” in Chapter 12, “Improving ADO.NET
Performance.”

 Performance Best Practices at a Glance 31

● How to optimize queries
Start by isolating long-running queries by using SQL Profiler. Next, identify the
root cause of the long-running query by using SQL Analyzer. By using SQL
Analyzer, you may identify missing or inefficient indexes. Use the Index Tuning
Wizard for help selecting the correct indexes to build. For large databases,
defragment your indexes at regular intervals.
For more information, see “How To: Optimize SQL Queries” and “How To:
Optimize Indexes” in the “How To” section of this guide.

Improving ASP.NET Performance
The solutions in this section show how to improve ASP.NET performance.
The majority of the solutions are detailed in Chapter 6, “Improving ASP.NET
Performance.”
● How to build efficient Web pages

Start by trimming your page size and by minimizing the number and the size of
graphics, particularly in low network bandwidth scenarios. Partition your pages
to benefit from improved caching efficiency. Disable view state for pages that do
not need it. For example, you should disable view state for pages that do not post
back to the server or for pages that use server controls. Ensure pages are batch-
compiled. Enable buffering so that ASP.NET batches work on the server and
avoids chatty communication with the client. You should also know the cost of
using server controls.
For more information, see “Pages” in Chapter 6, “Improving ASP.NET
Performance.”

● How to tune the ASP.NET thread pool
If your application queues requests with idle CPU, you should tune the
thread pool.
● For applications that serve requests quickly, consider the following settings

in the Machine.config file:
Set maxconnection to 12 times the number of CPUs.
Set maxIoThreads and maxWorkerThreads to 100.
Set minFreeThreads to 88 times the number of CPUs.
Set minLocalRequestFreeThreads to 76 times the number of CPUs.

● For applications that experience burst loads (unusually high loads) between
lengthy periods of idle time, consider testing your application by increasing the
minWorkerThreads and minIOThreads settings.

32 Improving .NET Application Performance and Scalability

● For applications that make long-running calls, consider the following settings
in the Machine.config file:
Set maxconnection to 12 times the number of CPUs.
Set maxIoThreads and maxWorkerThreads to 100.
Now test the application without changing the default setting for
minFreeThreads. If you see high CPU utilization and context switching, test by
reducing maxWorkerThreads or increasing minFreeThreads.

● For ASP.NET applications that use the ASPCOMPAT flag, you should ensure
that the total thread count for the worker process does not exceed the following
value:

 75 + ((maxWorkerThread + maxIoThreads) * #CPUs * 2)

For more information and implementation details, see “Formula for Reducing
Contention” in Chapter 6, “Improving ASP.NET Performance.” Also see “Tuning
Options” in the “ASP.NET Tuning” section in Chapter 17, “Tuning .NET
Application Performance.”

● How to handle long-running calls
Long-running calls from ASP.NET applications block the calling thread. Under
load, this may quickly cause thread starvation, where your application uses all
available threads and stops responding because there are not enough threads
available. It may also quickly cause queuing and rejected requests. An ASP.NET
application that calls a long-running Web service is an application that blocks the
calling thread. In this common scenario, you can call the Web service
asynchronously and then display a busy page or a progress page on the client. By
retaining the Web service proxy in server-side state by polling from the browser by
using the <meta> refresh tag, you can detect when the Web service call completes
and then return the data to the client.
For implementation details, see “How To: Submit and Poll for Long-Running
Tasks” in the “How To” section of this guide. Also see “Formula for Reducing
Contention” in Chapter 6, “Improving ASP.NET Performance.”
If design changes are not an alternative, consider tuning the thread pool as
described earlier.

 Performance Best Practices at a Glance 33

● How to cache data
ASP.NET can cache data by using the Cache API, by using output caching, or by
using partial page fragment caching. Regardless of the implementation approach,
you need to consider an appropriate caching policy that identifies the data you
want to cache, the place you want to cache the data in, and how frequently you
want to update the cache. For more information, see “Caching Guidelines” in
Chapter 6, “Improving ASP.NET Performance.”
To use effective fragment caching, separate the static and the dynamic areas of
your page, and use user controls.
You must tune the memory limit for optimum cache performance. For more
information, see “Configure the Memory Limit” in the “ASP.NET Tuning” section
of Chapter 17, “Tuning ASP.NET Application Performance.”

● How to call STA components from ASP.NET
STA components must be called by the thread that creates them. This thread
affinity can create a significant bottleneck. Rewrite the STA component by using
managed code if you can. Otherwise, make sure you use the ASPCOMPAT
attribute on the pages that call the component to avoid thread switching overhead.
Do not put STA components in session state to avoid limiting access to a single
thread. Avoid STA components entirely if you can.
For more information, see “COM Interop” in Chapter 7, “Improving ASP.NET
Performance.”

● How to handle session state
If you do not need session state, disable it. If you do need session state, you have
three options:
● The in-process state store
● The out-of-process state service
● SQL Server
The in-process state store offers the best performance, but it introduces process
affinity, which prevents you from scaling out your solution in a Web farm. For
Web farm scenarios, you need one of the out-of-process stores. However, the out-
of-process stores incur the overhead of serialization and network latency. Be aware
that any object that you want to store in out-of-process session state must be
serializable.
Other optimizations include using primitive types where you can to minimize
serialization overhead and using the ReadOnly attribute on pages that only read
session state.
For more information, see “Session State” in Chapter 6, “Improving ASP.NET
Performance.”

34 Improving .NET Application Performance and Scalability

Improving Web Services Performance
The solutions in this section show how to improve Web service performance. The
majority of the solutions are detailed in Chapter 10, “Improving Web Services
Performance.”
● How to improve Web service performance

Start by tuning the thread pool. If you have sufficient CPU and if you have queued
work, apply the tuning formula specified in Chapter 10. Make sure that you pool
Web service connections. Make sure that you send only the data you need to send,
and ensure that you design for chunky interfaces. Also consider using
asynchronous server-side processing if your Web service performs extensive I/O
operations. Consider caching for reference data and for any internal data that your
Web service relies upon.
For more information, see Chapter 10, “Improving Web Services Performance.”

● How to handle large data transfer
To perform large data transfers, start by checking that the maxRequestLength
parameter in the <httpRuntime> element of your configuration file is large
enough. This parameter limits the maximum SOAP message size for a Web
service. Next, check your timeout settings. Set an appropriate timeout on the Web
service proxy, and make sure that your ASP.NET timeout is larger than your Web
service timeout.
You can handle large data transfer in a number of ways:
● Use a byte array parameter. Using a byte array parameter is a simple approach,

but if a failure occurs midway through the transfer, the failure forces you to
start again from the beginning. When you are uploading data, this approach
can also make your Web service subject to denial-of-service attacks.

● Return a URL. Return a URL to a file, and then use HTTP to download the file.
● Use streaming. If you need to transfer large amounts of data (such as several

megabytes) from a Web method, consider streaming to avoid having to buffer
large amounts of data in memory at the server and client. You can stream data
from a Web service either by implementing IList or by implementing
IXmlSerializable.

For more information, see “Bulk Data Transfer” in Chapter 10, “Improving Web
Services Performance.”

 Performance Best Practices at a Glance 35

● How to handle attachments
You have various options when you are handling attachments by using Web
services. When you are choosing an option, consider the following:
● WS-Attachments. Web Services Enhancements (WSE) version 1.0 and 2.0

support Web services attachments (WS-Attachments). WS-Attachments use
Direct Internet Message Encapsulation (DIME) as an encoding format. While
DIME is a supported part of WSE, Microsoft is not investing in this approach
long term. DIME is limited because the attachments are outside the SOAP
envelope.

● Base64 encoding. For today, you should use Base64 encoding in place of WS-
Attachments when you have advanced Web services requirements such as
security. Base64 encoding creates a larger message payload that may be up to
two times the original size. For messages that have large attachments, you can
implement a WSE filter to compress the message by using tools like GZIP
before you send the message over the network. If you cannot afford the
message size that Base64 introduces and if you can rely on the transport for
security (for example, Secure Sockets Layer [SSL] or Internet Protocol Security
[IPSec]), consider the WS-Attachments implementation in WSE. Securing the
message is preferred to securing the transport so that messages can be routed
securely. Transport security only addresses point-to-point communication.

● SOAP Message Transmission Optimization Mechanism (MTOM). MTOM,
which is a derivative work of SOAP Messages with Attachments (SwA), is the
likely future interop technology. MTOM is being standardized by the World
Wide Web Consortium (W3C) and is easier to compose than SwA.
SwA, also known as WS-I Attachments Profile 1.0, is not supported by
Microsoft.

For more information, see “Attachments” in Chapter 10, “Improving Web Services
Performance.”

Improving .NET Remoting Performance
The solutions in this section show how to improve .NET remoting performance. The
majority of the solutions are detailed in Chapter 11, “Improving Remoting
Performance.”
● How to improve .NET remoting performance

Remoting is for local, in-process, cross-application domain communication or for
integration with legacy systems. If you use remoting, reduce round trips by using
chunky interfaces. Improve serialization performance by serializing only the data
you need. Use the NonSerialized attribute to prevent unnecessary fields from
being serialized.

36 Improving .NET Application Performance and Scalability

● How to serialize DataSet instances efficiently over remoting
Try to improve serialization efficiency in the following ways:
● Use column name aliasing to reduce the size of column names.
● Avoid serializing the original and new values for DataSet fields if you do not

need to.
● Serialize only those DataTable instances in the DataSet that you require.

DataSet instances serialize as XML.
To implement binary serialization, see Knowledge Base article 829740,
“Improving DataSet Serialization and Remoting Performance,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;829740.

Improving Enterprise Services Performance
The solutions in this section show how to improve the performance of your
Enterprise Services applications and serviced components. The majority of the
solutions are detailed in Chapter 8, “Improving Enterprise Services Performance.”
● How to improve Enterprise Services performance

Only use Enterprise Services if you need a service. If you need a service, prefer
library applications for in-process performance. Use Enterprise Services
transactions if you need distributed transactions, but be aware that manual
transactions that use ADO.NET or T-SQL offer superior performance for
transactions against a single resource manager. Remember to balance performance
with ease of development. Declarative Enterprise Services transactions offer the
easiest programming model. Also consider your transaction isolation level.
Use object pooling for objects that take a long time to initialize. Make sure that you
release objects back to the pool promptly. A good way to do this is to annotate
your method with the AutoComplete attribute. Also, clients should call Dispose
promptly on the service component. Avoid using packet privacy authentication if
you call your serviced components over an IPSec encrypted link. Avoid
impersonation, and use a single service identity to access your downstream
database to benefit from connection pooling,
For more information, see Chapter 8, “Improving Enterprise Services
Performance.”

http://support.microsoft.com/default.aspx?scid=kb;en-us;829740

 Performance Best Practices at a Glance 37

● When to call Marshal.ReleaseComObject
Consider calling Marshal.ReleaseComObject if you call COM components. You
might want to call Marshal.ReleaseComObject if you create and destroy COM
objects under load from managed code. Marshal.ReleaseComObject helps release
the COM object as soon as possible. Under load, garbage collection and
finalization might not occur soon enough, and performance might suffer.
For more information about ReleaseComObject and how it works, see
“Marshal.ReleaseComObject” in Chapter 7, “Improving Interop Performance.”
Also see “Resource Management” in Chapter 8, “Improving Enterprise Services
Performance.”

Improving Interop Performance
● How to improve interop performance

Carefully consider the amount and the type of data you pass to and from
unmanaged code to reduce marshaling costs. Prefer blittable types where possible.
Blittable types do not require conversion and avoid ANSI to UNICODE
conversions for string data. Avoid unnecessary marshaling by using explicit in
and out attributes.
To help minimize managed heap fragmentation, avoid pinning objects for longer
than the duration of a P/Invoke call. In heavily loaded server applications,
consider calling Marshal.ReleaseComObject to ensure that COM objects are
released promptly.
For more information, see Chapter 7, “Improving Interop Performance.”

Testing Solutions
If you are an administrator, this guide provides the following solutions:
● How to measure performance

Start to measure performance as soon as you have a defined set of performance
objectives for your application. Measure performance early in the application
design phase. Use tools such as System Monitor, network monitoring tools such as
Netmon, profiling tools such as CLR Profiler, SQL Profiler, SQL Query Analyzer,
and application instrumentation to collect metrics for measuring,
For more information, see Chapter 15, “Measuring .NET Application
Performance.”

38 Improving .NET Application Performance and Scalability

● How to test performance
Use a combination of load testing, stress testing, and capacity testing to verify that
your application performs under expected conditions and peak load conditions
and to verify that it scales sufficiently to handle increased capacity. Before starting,
identify a stress test tool, such as Microsoft Application Center Test (ACT), to run
performance tests and to identify your performance-critical scenarios. Next,
identify the performance characteristics or the workload that is associated with
each scenario. The performance scenario should include the number of users, and
the rate and pattern of requests. You also have to identify the relevant metrics to
capture. Next, use a set of test cases that are based on your workload to begin to
test the application by using a stress test tool. Finally, analyze the results.
For more information about how to determine the appropriate metrics to capture
during testing, see Chapter 15, “Measuring .NET Application Performance.” For
more information about testing and processes for load testing and stress testing,
see Chapter 16, “Testing .NET Application Performance.”

● How to tune performance
You tune to eliminate bottlenecks and improve performance. You can tune
application, platform, system, and network configuration settings. Use an iterative
and repeatable process. Start by establishing a baseline, and ensure you have a
well-defined set of performance objectives, test plans, and baseline metrics. Next,
simulate load to capture metrics, and then analyze the results to identify
performance issues and bottlenecks. After you identify the performance issues and
bottlenecks in your application, tune your application setup by applying new
system, platform, or application configuration settings. Finally, test and measure
to verify the impact of your changes and to see whether your changes have moved
your application closer to its performance objectives. Continue the process until
your application meets its performance objectives or until you decide on an
alternate course of action, such as code optimization or design changes.
For more information, see Chapter 17, “Tuning .NET Application Performance.”

Fast Track — A Guide for Getting
Started and Applying the Guidance

Summary
The fast track shows you how to prepare to apply the guidance in your organization.
This chapter is particularly relevant for managers who are planning to introduce and
implement the guidelines.

Goal and Scope
The goal of this guide is to provide guidance for designing, implementing, and
tuning Microsoft .NET applications to meet your performance objectives. The guide
provides a principle-based approach for addressing performance and scalability
throughout your application life cycle.

40 Improving .NET Application Performance and Scalability

The scope of the guide is shown in Figure 1.

Engineering for Performance

Performance Objectives
(Response Time, Throughput, Resource Utilization, Workload)

Performance Modeling
(Scenarios, Objectives, Workloads, Requirements, Budgets, Metrics)

Architecture and Design Guidelines
(Principles, Practices and Patterns)

Performance and Scalability Frame
Coupling and Cohesion
Communication
Concurrency

Resource Management
Caching, State Management
Data Structures / Algorithms

Measuring, Testing, Tuning
Measuring
Response Time
Throughput
Resource Utilization
Workload

Testing
Load Testing
Stress Testing
Capacity Testing

Tuning
Network
System
Platform
Application

R
o

le
s

(A
rc

hi
te

ct
s,

 D
ev

el
op

er
s,

 T
es

te
rs

, A
dm

in
is

tr
at

or
s)

L
if

e
C

yc
le

(R
eq

ui
re

m
en

ts
, D

es
ig

n,
 D

ev
el

op
, T

es
t,

D
ep

lo
y,

 M
ai

nt
ai

n)

Figure 1
The scope of the guide

The guidance is organized by categories, principles, roles, and stages of the life cycle:
● Performance objectives enable you to know when your application meets your

performance goals.
● Performance modeling provides a structured and repeatable approach to meeting

your performance objectives.
● Architecture and design guidelines enable you to engineer for performance from

an early stage.
● A performance and scalability frame enables you to organize and prioritize

performance issues.
● Measuring lets you see whether your application is trending toward or away from

the performance objectives.

 Fast Track — A Guide for Getting Started and Applying the Guidance 41

The Approach
Performance must be given due consideration up front and throughout the life cycle.
The guide promotes a structured and repeatable approach to performance that you
can embed into your application life cycle. This enables you to mitigate performance
risk from the onset of your project. You work toward defined performance objectives,
design for performance, and test, measure, and tune throughout the life cycle. This
approach is summarized in Figure 2.

Figure 2
A life cycle-based approach to security: set performance objectives and measure

The performance and scalability frame promoted in this guide provides you with a
logical structure to help organize and prioritize performance issues.

Set Performance Objectives
Think carefully about the performance objectives for your application early during
requirements analysis. Include performance objectives with your functional
requirements and other nonfunctional requirements, such as security and
maintainability.

42 Improving .NET Application Performance and Scalability

Performance Objectives
Performance objectives should include the following:
● Response time. This is the time it takes your system to complete a particular

operation, such as a user transaction.
● Throughput. This is the amount of work your system can support. Throughput

can be measured in terms of requests per second, transactions per second, or bytes
per second.

● Resource utilization. This is the percentage of system resources that are used by
particular operations and how long they are used. This is the cost of server and
network resources, including CPU, memory, disk I/O, and network I/O.

● Workload. This is usually derived from marketing data and includes total
numbers of users, concurrently active users, data volumes, transaction volumes,
and transaction mix.

Quality of Service Attributes
Performance and scalability are quality of service attributes. You need to balance
performance with other quality of service attributes, including security,
maintainability, and interoperability. The various factors to consider are shown
in Figure 3.

Business Requirements

Quality of Service

Performance Objectives

M
et

ri
cs

Figure 3
Balancing performance objectives with other quality of service attributes

Your performance objectives and other quality of service attributes are derived from
your business requirements. Metrics (captured by measuring) tell you whether you
are trending toward or away from your performance objectives.

 Fast Track — A Guide for Getting Started and Applying the Guidance 43

Design for Performance
Give performance due consideration up front. Performance modeling is a structured
approach that supports performance engineering, in contrast to the haphazard
approaches that characterize many projects. The performance and scalability frame
promoted by this guide also enables you to apply structure and organization to the
performance problem domain.

Performance and Scalability Frame
The guide uses a performance and scalability frame to help you organize and
prioritize performance and scalability issues. The performance categories used in this
guide are shown in Table 1.

Table 1: Performance Categories

Category Key Considerations

Coupling and Cohesion Loose coupling, high cohesion among components and
layers

Communication Transport mechanism, boundaries, remote interface
design, round trips, serialization, bandwidth

Concurrency Transactions, locks, threading, queuing

Resource Management Allocating, creating, destroying, pooling

Caching Per user, application-wide, data volatility

State Management Per user, application-wide, persistence, location

Data Structures and Algorithms Choice of algorithm Arrays vs. collections

The categories in the frame are a prioritized set of technology-agnostic, common
denominators that are pervasive across applications. You can use these categories to
build evaluation criteria where performance and scalability decisions can have a large
impact.

44 Improving .NET Application Performance and Scalability

Performance Modeling
Performance modeling helps you evaluate your design decisions against your
objectives early on, before committing time and resources. Invalid design
assumptions and poor design practices may mean that your application can never
achieve its performance objectives. The performance modeling process model
presented in this guide is summarized in Figure 4.

Performance Modeling Process

1. Identify Key Scenarios

2. Identify Workloads

3. Identify Performance Objectives

4. Identify Budget

5. Identify Processing Steps

6. Allocate Budget

7. Evaluate

8. Validate

Iterate

Figure 4
Eight-step performance modeling process

The performance modeling process consists of the following steps:
1. Identify key scenarios. Identify those scenarios in which performance is

important and the ones that pose the most risk to your performance objectives.
2. Identify workloads. Identify how many users, and how many concurrent users,

your system needs to support.
3. Identify performance objectives. Define performance objectives for each of your

key scenarios. Performance objectives reflect business requirements.

 Fast Track — A Guide for Getting Started and Applying the Guidance 45

4. Identify budget. Identify your budget or constraints. This includes the maximum
execution time in which an operation must be completed and resource utilization
such as CPU, memory, disk I/O, and network I/O constraints.

5. Identify processing steps. Break your scenarios down into component
processing steps.

6. Allocate budget. Spread your budget determined in Step 4 across your
processing steps determined in Step 5 to meet the performance objectives you
defined in Step 3.

7. Evaluate. Evaluate your design against objectives and budget. You may need to
modify design or spread your response time and resource utilization budget
differently to meet your performance objectives.

8. Validate. Validate your model and estimates. This is an ongoing activity and
includes prototyping, testing, and measuring.

Measuring Performance
You need to measure to know whether your application operates within its budget
allocation and to know whether your application is trending toward or away from its
performance objectives.

Know the Cost
You need to measure to know the cost of your tools. For example, how much does a
certain application programming interface (API), library, or choice of technology cost
you? If necessary, use prototypes to obtain metrics. As soon as development begins
and you have real code to use, start measuring it and refine your performance
models.

Validate
Validate your model and estimates. Continue to create prototypes and measure the
performance of your application scenarios by capturing metrics. This is an ongoing
activity and includes prototyping and measuring. Continue validating until your
performance goals are met.

The further on you are in the application life cycle, the more accurate the validation
will be. Early on, validation is based on available benchmarks and prototype code, or
even proof-of-concept code. Later, you can measure your actual code as your
application develops.

46 Improving .NET Application Performance and Scalability

Testing Performance
Performance testing is used to verify that an application is able to perform under
expected and peak load conditions, and that it can scale sufficiently to handle
increased capacity.

Load Testing
Use load testing to verify application behavior under normal and peak load
conditions. This allows you to capture metrics and verify that your application can
meet its performance objectives. Load testing is a six-step process, as shown in
Figure 5.

2. Identify Workload

Load Testing Process

1. Identify Key Scenarios

3. Identify Metrics

4. Create Test Cases

6. Analyze Results

5. Simulate Load

Iterate

Figure 5
The load testing process

 Fast Track — A Guide for Getting Started and Applying the Guidance 47

The load testing process involves the following steps:
1. Identify key scenarios. Identify application scenarios that are critical for

performance.
2. Identify workload. Distribute the total application load among the key scenarios

identified in Step 1.
3. Identify metrics. Identify the metrics you want to collect about the application

when running the test.
4. Create test cases. Create the test cases, in which you define steps for conducting a

single test along with the expected results.
5. Simulate load. Use test tools to simulate load in accordance with the test cases.

Capture the resulting metric data.
6. Analyze results. Analyze the metric data captured during the test.

You begin load testing with a total number of users distributed against your user
profile, and then you start to incrementally increase the load for each test cycle,
analyzing the results each time.

Stress Testing
Use stress testing to evaluate your application's behavior when it is pushed beyond
its breaking point, and to unearth application bugs that surface only under high load
conditions.

48 Improving .NET Application Performance and Scalability

The stress testing is a six-step process, as shown in Figure 6.

2. Identify Workload

Stress Testing Process

1. Identify Key Scenarios

3. Identify Metrics

4. Create Test Cases

6. Analyze Results

5. Simulate Load

Iterate

Figure 6
The stress testing process

The stress testing process involves the following steps:
1. Identify key scenarios. Identify the application scenarios that need to be stress

tested to identify potential problems.
2. Identify workload. Identify the workload that you want to apply to the scenarios

identified in Step 1. This is based on the workload and peak load capacity inputs.
3. Identify metrics. Identify the metrics that you want to collect about the

application when you run the test, based on the potential problems identified for
your scenarios.

4. Create test cases. Create the test cases, in which you define steps for conducting a
single test along with the expected results.

5. Simulate load. Use test tools to simulate the required load for each test case.
Capture the resulting metric data.

6. Analyze results. Analyze the metric data captured during the test.

The load you apply to a particular scenario should stress the system sufficiently
beyond its threshold limits. You can incrementally increase the load and observe the
application behavior over various load conditions.

 Fast Track — A Guide for Getting Started and Applying the Guidance 49

Tuning Performance
Performance tuning is an iterative process that you use to identify and eliminate
bottlenecks until your application meets its performance objectives. You establish a
baseline and then collect data, analyze the results, identify bottlenecks, make
configuration changes, and measure again. Figure 7 shows the basic performance
tuning process.

Te
st

 a
n

d
 M

ea
su

re

Collect Data
A

n
alyze R

esu
lts

Configure

Baseline

Figure 7
The performance tuning process

Performance tuning consists of the following set of activities:
1. Establish a baseline. Ensure that you have a well-defined set of performance

objectives, test plans, and baseline metrics.
2. Collect data. Simulate load and capture metrics.
3. Analyze results. Identify performance issues and bottlenecks.
4. Configure. Tune your application setup by applying new system, platform or

application configuration settings.
5. Test and measure. Test and measure to verify that your configuration changes

have been beneficial.

50 Improving .NET Application Performance and Scalability

Applying the Guidance to Your Application Life Cycle
Performance should be pervasive throughout your application life cycle. This section
explains how the component parts of the guide relate to the various functions
associated with a typical application life cycle.

Functional Mapping
Different parts of the guide apply to different functional areas. The sequence of the
chapters corresponds to typical functional areas in an application life cycle. This
relationship is shown in Figure 8.

Requirements
Analysis

Design

Development

Testing

Deployment

Maintenance

Code Review

Performance Modeling
Design Guidelines

Architecture and
Design Review

Part III, Application
Performance and
Scalability and
Part IV, Database
Server
Performance and
Scalability

P
art V, M

easuring, Testing, and Tuning

Part II, Designing
for Performance

Figure 8
Relationship of chapters to application life cycle

Note that development methodologies tend to be characterized as either linear
(“waterfall” approaches) or iterative (“spiral” approaches). Figure 8 does not signify
one approach or the other, but simply shows the typical functions that are performed
and how the guidance relates to those functions.

 Fast Track — A Guide for Getting Started and Applying the Guidance 51

Performance Throughout the Life Cycle
Performance begins during requirements gathering and continues throughout the
application life cycle. The parallel activities are shown in Figure 9.

Requirements
Gathering

Design Development Testing Deployment Maintenance

Performance
Modeling

Prototyping

Arch/Design
Review

Code Review

Measuring

Load Testing

Stress Testing

Capacity
Testing

Tuning

Figure 9
Performance tasks performed throughout the life cycle

The following list summarizes how performance is integrated throughout the entire
life cycle:
● Requirements gathering. You start to define performance objectives, workflow,

and key scenarios, and begin to consider workloads and estimated volumes for
each scenario. You begin the performance modeling process at this stage, using
early prototyping if necessary.

● Design. Working within your architectural constraints, you start to generate
specifications for the construction of code. Design decisions should be based on
proven principles and patterns, and your design should be reviewed from a
performance perspective. Measuring should continue throughout the life cycle,
starting from the design phase.

● Development. You start reviewing your code early during the implementation
phase to identify inefficient coding practices that could lead to potential
performance bottlenecks. You can start to capture “real” metrics to validate the
assumptions made in the design phase.

52 Improving .NET Application Performance and Scalability

● Testing. You conduct load and stress testing to generate metrics and to verify
application behavior and performance under normal and peak load conditions.

● Deployment. During the deployment phase, you validate your model using
production metrics. You can validate workload estimates and also resource
utilization levels, response time and throughput.

● Maintenance. You should continue to measure and monitor when your
application is deployed in the production environment. Changes that can impact
system performance include increased user loads, deployment of new applications
on shared infrastructure, system software revisions, and updates to your
application to provide enhanced or new functionality.

Who Does What?
Performance is a collaborative effort involving multiple roles.

RACI Chart
RACI stands for the following:
● Responsible (the role responsible for performing the task)
● Accountable (the role with overall responsibility for the task)
● Consulted (people who provide input to help perform the task)
● Keep Informed (people with a vested interest who should be kept informed)

Table 2 illustrates a simple RACI chart for this guide. The RACI chart helps illustrate
who does what by showing who owns, contributes to, and reviews each performance
task.

Table 2: RACI Chart

Tasks Architect Administrator Developer Tester

Performance Goals A R C I

Performance Modeling A I I I

Performance Design
Principles

A I I

Performance Architecture A C I

Architecture and Design
Review

R I I

Code Development A

Technology-Specific
Performance Issues

 A

(continued)

 Fast Track — A Guide for Getting Started and Applying the Guidance 53

Table 2: RACI Chart (continued)

Tasks Architect Administrator Developer Tester

Code Review R I

Performance Testing C C I A

Tuning C R

Troubleshooting C A I

Deployment Review C R I I

You can use a RACI chart at the beginning of your project to identify the key
performance-related tasks together with the roles that should perform each task.

Implementing the Guidance
The guidance throughout the guide is task-based and modular, and each chapter
relates to the various stages of the product development life cycle and the various
roles involved. These roles include architect, developer, administrator, and
performance analyst. You can pick a specific chapter to perform a particular task or
use a series of chapters for a phase of the product development life cycle.

The checklist shown in Table 3 highlights the areas covered by this guide that are
required to improve your application's performance and scalability.

Table 3: Implementation Checklist

 Area Description

 Performance Modeling Create performance models for your application. For more
information, see Chapter 2, “Performance Modeling.”

 Prototyping Prototype early to validate your design assumptions. Measure
prototype performance to determine whether or not your design
approach enables you to meet your designed performance
objectives.

 Architecture and
Design Review

Review the designs of new and existing applications for performance
and scalability problems. For more information, see Chapter 4,
“Architecture and Design Review of a .NET Application for
Performance and Scalability.”

 Code Review Educate developers about how to conduct performance-based code
reviews. Perform code reviews for applications in development. For
more information, see Chapter 13, “Code Review: .NET Application
Performance.”

(continued)

54 Improving .NET Application Performance and Scalability

Table 3: Implementation Checklist (continued)

 Area Description

 Measuring Know the cost of design decisions, technology choices, and
implementation techniques. For more information, see Chapter 15,
“Measuring .NET Application Performance.”

 Load Testing Perform load testing to verify application behavior under normal and
peak load conditions. For more information, see Chapter 16, “Testing
.NET Application Performance.”

 Stress Testing Perform stress testing to evaluate your application's behavior when
it is pushed beyond its breaking point. For more information, see
Chapter 16, “Testing .NET Application Performance.”

 Capacity Testing Perform capacity testing to plan for future growth, such as an
increased user base or increased volume of data. For more
information, see Chapter 16, “Testing .NET Application Performance.”

 Tuning Tune your application to eliminate performance bottlenecks. For
more information, see Chapter 17, “Tuning .NET Application
Performance.”

Summary
This fast track has highlighted the basic approach taken by the guide to help you
design and develop .NET applications that meet your performance objectives. It has
shown how to prepare to apply the guidance in your organization by explaining how
to apply the guidance depending on your specific role in your application life cycle.

Part I
Introduction to Engineering
for Performance

In This Part:
● Fundamentals of Engineering for Performance

1
Fundamentals of Engineering
for Performance

Overview
Whether you design, build, test, maintain, or manage applications, you need to
consider performance. If your software does not meet its performance objectives,
your application is unlikely to be a success. If you do not know your performance
objectives, it is unlikely that you will meet them.

Performance affects different roles in different ways:
● As an architect, you need to balance performance and scalability with other

quality-of-service (QoS) attributes such as manageability, interoperability, security,
and maintainability.

● As a developer, you need to know where to start, how to proceed, and when you
have optimized your software enough.

● As a tester, you need to validate whether the application supports expected
workloads.

● As an administrator, you need to know when an application no longer meets its
service level agreements, and you need to be able to create effective growth plans.

● As an organization, you need to know how to manage performance throughout
the software life cycle, as well as lower total cost of ownership of the software that
your organization creates.

58 Improving .NET Application Performance and Scalability

Managing Performance
Performance is about risk management. You need to decide just how important
performance is to the success of your project. The more important you consider
performance to be, the greater the need to reduce the risk of failure and the more
time you should spend addressing performance.

Quality-of-Service Requirements
Performance and scalability are two QoS requirements. Other QoS requirements
include availability, manageability, and security. The trick is to be able to balance your
performance objectives with these other QoS requirements and be prepared to make
tradeoffs. Responsiveness is not necessarily the only measure of success, particularly
if it means sacrificing manageability or security.

Reactive vs. Proactive Approach
Performance is frequently neglected until a customer reports a problem. In other
cases, performance is not evaluated until system test or initial deployment. In either
case, you may not be able to fix the issue by throwing more hardware at the problem.

There are several problems with a reactive approach to performance. Performance
problems are frequently introduced early in the design and design issues cannot
always be fixed through tuning or more efficient coding. Also, fixing architectural
or design issues later in the cycle is not always possible. At best, it is inefficient, and
it is usually very expensive. Table 1.1 summarizes the characteristics of a reactive
approach versus a proactive approach.

Table 1.1: Reactive vs. Proactive Approach

Approach Characteristics

Reactive performance You generally cannot tune a poorly designed system to perform as well
as a system that was well designed from the start.

You experience increased hardware expense.

You experience an increased total cost of ownership.

Proactive performance You know where to focus your optimization efforts

You decrease the need to tune and redesign; therefore, you save money.

You can save money with less expensive hardware or less frequent
hardware upgrades.

You have reduced operational costs.

 Chapter 1: Fundamentals of Engineering for Performance 59

Engineering for Performance
To engineer for performance, you need to embed a performance culture in your
development life cycle, and you need a process to follow. When you have a process
to follow, you know exactly where to start and how to proceed, and you know when
you are finished. Performance modeling helps you apply engineering discipline to
the performance process. The fundamental approach is to set objectives and to
measure your progress toward those objectives. Performance modeling helps you set
objectives for your application scenarios. Measuring continues throughout the life
cycle and helps you determine whether you are moving towards your performance
objectives or away from them.

Figure 1.1 shows the main elements required for performance engineering, which
reflect the scope of this guide.

Engineering for Performance

Performance Objectives
(Response Time, Throughput, Resource Utilization, Workload)

Performance Modeling
(Scenarios, Objectives, Workloads, Requirements, Budgets, Metrics)

Architecture and Design Guidelines
(Principles, Practices and Patterns)

Performance and Scalability Frame
Coupling and Cohesion
Communication
Concurrency

Resource Management
Caching, State Management
Data Structures / Algorithms

Measuring, Testing, Tuning
Measuring
Response Time
Throughput
Resource Utilization
Workload

Testing
Load Testing
Stress Testing
Capacity Testing

Tuning
Network
System
Platform
Application

R
o

le
s

(A
rc

hi
te

ct
s,

 D
ev

el
op

er
s,

 T
es

te
rs

, A
dm

in
is

tr
at

or
s)

L
if

e
C

yc
le

(R
eq

ui
re

m
en

ts
, D

es
ig

n,
 D

ev
el

op
, T

es
t,

D
ep

lo
y,

 M
ai

nt
ai

n)

Figure 1.1
Engineering for performance

60 Improving .NET Application Performance and Scalability

Engineering for performance is broken down into the following actionable categories
and areas of responsibility:
● Performance objectives enable you to know when your application meets your

performance goals.
● Performance modeling provides a structured and repeatable approach to meeting

your performance objectives.
● Architecture and design guidelines enable you to engineer for performance from

an early stage.
● A performance and scalability frame enables you to organize and prioritize

performance issues.
● Measuring lets you see whether your application is trending toward or away from

the performance objectives.
● Providing clear role segmentation helps architects, developers, testers, and

administrators understand their responsibilities within the application life cycle.
Different parts of this guide map to the various stages of the product development
life cycle and to the various roles.

Set Objectives and Measure
Performance must be given due consideration from the beginning. If you determine
performance is important, then you must consider it throughout the life cycle. This
guide promotes a structured and repeatable approach to performance that you can
embed into your application life cycle. This enables you to mitigate performance risk
at the start of your project. You work toward defined performance objectives, design
for performance, and test, measure and tune performance throughout the life cycle.
This approach is summarized in Figure 1.2.

 Chapter 1: Fundamentals of Engineering for Performance 61

Figure 1.2
Performance approach

Set Performance Objectives
Your project goals must include measurable performance objectives. From the very
beginning, design so that you are likely to meet those objectives. Do not over-research
your design. Use the planning phase to manage project risk to the right level for your
project. To accomplish this, you might ask the following questions: How fast does
your application need to run? At what point does the performance of your
application become unacceptable? How much CPU or memory can your application
consume? Your answers to these questions are your performance objectives. They
help you create a baseline for your application’s performance. These questions help
you determine if the application is quick enough.

62 Improving .NET Application Performance and Scalability

Performance objectives are usually specified in terms of the following:
● Response time. Response time is the amount of time that it takes for a server to

respond to a request.
● Throughput. Throughput is the number of requests that can be served by your

application per unit time. Throughput is frequently measured as requests or
logical transactions per second.

● Resource utilization. Resource utilization is the measure of how much server
and network resources are consumed by your application. Resources include CPU,
memory, disk I/O, and network I/O.

● Workload. Workload includes the total number of users and concurrent active
users, data volumes, and transaction volumes.

You can identify resource costs on a per-scenario basis. Scenarios might include
browsing a product catalog, adding items to a shopping cart, or placing an order. You
can measure resource costs for a certain user load, or you can average resource costs
when you test the application by using a certain workload profile. A workload profile
consists of a representative mix of clients performing various operations.

Metrics
Metrics are the criteria you use to measure your scenarios against your performance
objectives. For example, you might use response time, throughput, and resource
utilization as your metrics. The performance objective for each metric is the value
that is acceptable. You match the actual value of the metrics to your objectives to
verify that you are meeting, exceeding, or failing to meet your performance
objectives.

Know Your Budgets
Your budgets represent a statement of the maximum cost that a particular feature
or unit in your project can afford to pay against each of your key performance
objectives. Do not confuse budgets with performance objectives. For example, you
might have a budget of 10-second response time. If you go past your defined budget,
your software has failed. However, you should set a performance objective of three to
five seconds to leave room for increased load from other sources. Also, you need to
spread your budget among the different functions involved with processing a
request. For example, to achieve your 10-second response time, how much time can
you afford for accessing the database, rendering results, or accessing a downstream
Web service?

 Chapter 1: Fundamentals of Engineering for Performance 63

Budgets are specified in terms of execution time and resource utilization, but they
also include less tangible factors such as project resource costs. A budget is likely to
include the following:
● Network. Network considerations include bandwidth.
● Hardware. Hardware considerations include items, such as servers, memory,

and CPUs.
● Resource dependencies. Resource dependency considerations include items, such

as the number of available database connections and Web service connections.
● Shared resources. Shared resource considerations include items, such as the

amount of bandwidth you have, the amount of CPU you get if you share a server
with other applications, and the amount of memory you get.

● Project resources. From a project perspective, budget is also a constraint, such as
time and cost.

You need to measure to find out if your application operates within its budget
allocation. The budgeting exercise actually helps you determine if you can
realistically meet your performance objectives.

Design for Performance
Many, if not most, performance problems are introduced by specific architecture,
design, and technology choices that you make very early in the development cycle,
often in the design stage.

Give Performance Due Consideration from the Start
“If you’re very lucky, performance problems can be fixed after the fact. But, as often as
not, it will take a great deal of effort to get your code to where it needs to be for acceptable
performance. This is a very bad trap to fall into. At its worst, you’ll be faced with a
memorable and sometimes job-ending quote: 'This will never work. You’re going to
have to start all over.'“

— Rico Mariani, Architect, Microsoft

64 Improving .NET Application Performance and Scalability

Performance and Scalability Frame
This guide uses a performance and scalability frame to help you organize and
prioritize performance and scalability issues. Table 1.2 shows the categories used
in this guide.

Table 1.2: Performance Categories

Category Key Considerations

Coupling and cohesion Loose coupling and high cohesion

Communication Transport mechanism, boundaries, remote interface design,
round trips, serialization, bandwidth

Concurrency Transactions, locks, threading, queuing

Resource management Allocating, creating, destroying, pooling

Caching Per user, application-wide, data volatility

State management Per user, application-wide, persistence, location

Data structures and algorithms Choice of algorithm

Arrays versus collections

The categories in the frame are a prioritized set of technology-agnostic common
denominators that are pervasive across applications. You can use the categories to
build evaluation criteria where performance and scalability decisions can have a
large impact.

Measure
Good engineering requires you to understand your raw materials. You must
understand the key properties of your framework, your processor, and your target
system. Perform early research to identify the cost of particular services and features.
If it is necessary, build prototypes to verify the cost of specific features.

Your project schedules should allow for contingencies and include time, in case you
need to change your approach. Do not be afraid to cancel features or things that are
clearly not going to work within your specified objectives.

 Chapter 1: Fundamentals of Engineering for Performance 65

Know the Cost
When you engineer solutions, you need to know the cost of your materials. You know
the cost by measuring under the appropriate workload. If the technology, application
programming interface (API), or library does not meet your performance objectives,
do not use it. Getting the best performance from your platform is often intrinsically
tied to your knowledge of the platform. While this guide provides a great deal of
platform knowledge, it is no replacement for measuring and determining the actual
cost for your scenarios.

Validate Assumptions
You need to validate your assumptions. The further you are in your project's life
cycle, the greater the accuracy of the validation. Early on, validation is based on
available benchmarks and prototype code, or on just proof-of-concept code. Later,
you can measure the actual code as your application develops.

Scenarios
Scenarios are important from a performance perspective because they help you to
identify priorities and to define and apply your workloads. If you have documented
use cases or user stories, use them to help you define your scenarios. Critical
scenarios may have specific performance objectives, or they might affect other
critical scenarios.

For more information about scenarios, see “Step 1 — Identify Key Scenarios”
in Chapter 2, “Performance Modeling.”

Life Cycle
This guide uses a life cycle-based approach to performance and provides guidance
that applies to all of the roles involved in the life cycle, including architects,
designers, developers, testers, and administrators. Regardless of your chosen
development process or methodology, Figure 1.3 shows how the guidance applies
to the broad categories associated with an application life cycle.

66 Improving .NET Application Performance and Scalability

Requirements
Analysis

Design

Development

Testing

Deployment

Maintenance

Code Review

Performance Modeling
Design Guidelines

Architecture and
Design Review

Part III, Application
Performance and
Scalability and
Part IV, Database
Server
Performance and
Scalability

P
art V, M

easuring, Testing, and Tuning
Part II, Designing
for Performance

Figure 1.3
Life cycle mapping

Regardless of the methodology that you use to develop applications, the main stages
or functions shown in Figure 1.3 can generally be applied. Performance is integrated
into these stages as follows:
● Gathering requirements. You start to define performance objectives, workflow,

and key scenarios. You begin to consider workloads and estimated volumes for
each scenario. You begin the performance modeling process at this stage by using
early prototyping, if necessary.

● Design. Working within your architectural constraints, you start to generate
specifications for the construction of code. Design decisions should be based
on proven principles and patterns. Your design should be reviewed from a
performance perspective. Measuring should continue throughout the life cycle,
starting with the design phase.

● Development. Start reviewing your code early in the implementation phase to
identify inefficient coding practices that could lead to performance bottlenecks.
You can start to capture real metrics to validate the assumptions made in the
design phase. Be careful to maintain a balanced approach during development;
micro-optimization at an early stage is not likely to be helpful.

 Chapter 1: Fundamentals of Engineering for Performance 67

● Testing. Load and stress testing is used to generate metrics and to verify
application behavior and performance under normal and peak load conditions.

● Deployment. During the deployment phase, you validate your model by using
production metrics. You can validate workload estimates, resource utilization
levels, response time, and throughput.

● Maintenance. You should continue to measure and monitor when your
application is deployed in the production environment. Changes that may affect
system performance include increased user loads, deployment of new applications
on shared infrastructure, system software revisions, and updates to your
application to provide enhanced or new functionality. Use your performance
metrics to guide your capacity and scaling plans.

For more information about ownership of the tasks by architect, administrator,
developer and tester, see “Who Does What?” in “Fast Track — Guide for Getting
Started and Applying the Guidance.”

Where to Go from Here
This section outlines the parts of this guide that are directly relevant to specific roles:
● Architects and lead developers. Architects and lead developers should start by

reading Part II, “Designing for Performance,” to learn about principles and best
practice design guidelines. They should also read Chapter 2, “Performance
Modeling,” and they should use the prescribed performance modeling process
to help assess design choices before committing to a solution.

● Developers. Developers should read the in-depth technical guidance in Part III,
“Application Performance and Scalability,” to help design and implement efficient
code.

● Testers. Testers should read the chapters in Part V, “Measuring, Testing, and
Tuning,” for guidance on how to load, stress, and capacity test applications.

● Administrators. Administrators should use the tuning process and techniques
described in Part V, “Measuring, Testing, and Tuning,” to tune performance with
appropriate application, platform, and system configuration.

● Performance analysts. Performance analysts should use the whole guide, and
specifically the deep technical information on the Microsoft® .NET Framework
technologies, to understand performance characteristics and to determine the cost
of various technologies. This helps them analyze how applications that fail to meet
their performance objectives can be improved.

68 Improving .NET Application Performance and Scalability

Terms You Need to Know
Table 1.3 explains the main terms and concepts used throughout this guide.

Table 1.3: Terms and Concepts

Term/Concept Description

Performance Performance is concerned with achieving response times, throughput, and
resource utilization levels that meet your performance objectives.

Scalability Scalability refers to the ability to handle additional workload, without adversely
affecting performance, by adding resources such as CPU, memory, and storage
capacity.

Throughput Throughput is the number of requests that can be served by your application per
unit time. Throughput varies depending on the load. Throughput is typically
measured in terms of requests per second.

Resource
utilization

Resource utilization is the cost in terms of system resources. The primary
resources are CPU, memory, disk I/O, and network I/O.

Latency Server latency is the time the server takes to complete the execution of a
request. Server latency does not include network latency. Network latency is the
additional time that it takes for a request and a response to cross a network.

Client latency is the time that it takes for a request to reach a server and for the
response to travel back.

Performance
objectives

Performance objectives are usually specified in terms of response times,
throughput (transactions per second), and resource utilization levels. Resource
utilization levels include the amount of CPU capacity, memory, disk I/O, and
network I/O that your application consumes.

Metrics Metrics are the actual measurements obtained by running performance tests.
These performance tests include system-related metrics such as CPU, memory,
disk I/O, network I/O, and resource utilization levels. The performance tests also
include application-specific metrics such as performance counters and timing
data.

Performance
budgets

Performance budgets are your constraints. Performance budgets specify the
amount of resources that you can use for specific scenarios and operations and
still be successful.

Scenarios Scenarios are a sequence of steps in your application. They can represent a use
case or a business function such as searching a product catalog, adding an item
to a shopping cart, or placing an order.

Workload Workload is typically derived from marketing data. The workload includes total
numbers of users, concurrent active users, data volumes, and transaction
volumes, along with the transaction mix. For performance modeling, you
associate a workload with an individual scenario.

 Chapter 1: Fundamentals of Engineering for Performance 69

Summary
Performance and scalability mean different things to different people, but
performance and scalability are fundamentally about meeting your objectives. Your
objectives state how long particular operations must take and how many resources
it is acceptable for those operations to consume under varying load levels.

The conventional approach to performance is to ignore it until deployment time.
However, many, if not most, performance problems are introduced by specific
architecture, design, and technology choices that you make very early in the
development cycle. After the choices are made and the application is built, these
problems are very difficult and expensive to fix. This guide promotes a holistic, life
cycle-based approach to performance where you engineer for performance from the
early stages of the design phase throughout development, testing, and deployment.

The engineering approach revolves around the principle of setting objectives and
measuring. When you measure performance throughout the life cycle, you know
whether you are trending toward your target objectives or away from them. A key
tool to help you with the performance process is performance modeling. Performance
modeling provides a structured and repeatable discipline for modeling the
performance characteristics of your software. Throughout your planning, a balanced
approach is necessary. It is unwise to spend your time optimizing tiny details until
you have a clear understanding of the bigger picture. A risk management-based
approach helps you decide how deep to go into any given area and helps you decide
the point at which further analysis is premature.

Part II
Designing for Performance

In This Part:
● Performance Modeling
● Design Guidelines for Application Performance
● Architecture and Design Review of a .NET Application for Performance and Scalability

2
Performance Modeling

Objectives
● Engineer for performance up front.
● Manage performance risks.
● Map business requirements to performance objectives.
● Balance performance against other quality-of-service requirements.
● Identify and analyze key performance scenarios.
● Identify and allocate budgets.
● Evaluate your model to ensure you meet your performance objectives.
● Identify metrics and test cases.

Overview
This chapter presents performance modeling based on approaches used by Microsoft
teams. Similar approaches are recommended elsewhere, including in the book
Performance Solutions by Connie U. Smith and Lloyd G. Williams. You and your
organization will need to adapt the process for your environment.

Performance modeling is a structured and repeatable approach to modeling the
performance of your software. It begins during the early phases of your application
design and continues throughout the application life cycle.

Performance is generally ignored until there is a problem. There are several problems
with this reactive approach:
● Performance problems are frequently introduced early in the design.
● Design issues cannot always be fixed through tuning or more efficient coding.
● Fixing architectural or design issues later in the cycle is not always possible.

At best, it is inefficient, and is usually very expensive.

74 Improving .NET Application Performance and Scalability

When you create performance models, you identify application scenarios and your
performance objectives. Your performance objectives are your measurable criteria,
such as response time, throughput (how much work in how much time), and
resource utilization (CPU, memory, disk I/O, and network I/O). You break down
your performance scenarios into steps and assign performance budgets. Your budget
defines the resources and constraints across your performance objectives.

Performance modeling provides several important benefits:
● Performance becomes part of your design.
● Modeling helps answer the question “Will your design support your performance

objectives?” By building and analyzing models, you can evaluate tradeoffs before
you actually build the solution.

● You know explicitly what design decisions are influenced by performance and
the constraints performance puts on future design decisions. Frequently, these
decisions are not captured and can lead to maintenance efforts that work against
your original goals.

● You avoid surprises in terms of performance when your application is released
into production.

● You end up with a document of itemized scenarios that help you quickly see what
is important. That translates to where to instrument, what to test for, and how to
know whether you are on or off track for meeting your performance goals.

Upfront performance modeling is not a replacement for scenario-based load testing
or prototyping to validate your design. In fact, you have to prototype and test to
determine what things cost and to see if your plan makes sense. Data from your
prototypes can help you evaluate early design decisions before implementing a
design that will not allow you to meet your performance goals.

How to Use This Chapter
The performance model presented in this chapter has two parts:
● An information structure to help you capture performance-related information.

This information can be filled out partially with assumptions and requirements,
and it can get more comprehensively filled out according to your needs.

● A process that helps you incrementally define and capture the information that
helps the teams working on your solution to focus on using, capturing, and
sharing the appropriate information.

 Chapter 2: Performance Modeling 75

To use this performance model, do the following:
● Set goals. Capture whatever partial performance-related information you have,

including your application prototype’s metrics, important scenarios, workloads,
goals, or budgets. The performance model presented in this chapter is designed
to use the partial information you might have in these areas as input. You do not
have to completely fill out the data or have a complete understanding of your own
requirements and solutions.

● Measure. Execute the suggested tasks in the process to iteratively set goals and
measure the result of your action, by using the partially completed model as a
guide of what to focus on. This allows you add and refine the information in your
model. The new data will inform the next round of goal setting and measurement.

Why Model Performance?
A performance model provides a path to discover what you do not know.
The benefits of performance modeling include the following:
● Performance becomes a feature of your development process and not an

afterthought.
● You evaluate your tradeoffs earlier in the life cycle based on measurements.
● Test cases show you whether you are trending toward or away from the

performance objectives throughout your application life cycle.

Modeling allows you to evaluate your design before investing time and resources
to implement a flawed design. Having the processing steps for your performance
scenarios laid out enables you to understand the nature of your application’s work.
By knowing the nature of this work and the constraints affecting that work, you can
make more informed decisions.

Your model can reveal the following about your application:
● What are the relevant code paths and how do they affect performance?
● Where do the use of resources or computations affect performance?
● Which are the most frequently executed code paths? This helps you identify where

to spend time tuning.
● What are the key steps that access resources and lead to contention?
● Where is your code in relation to resources (local, remote)?
● What tradeoffs have you made for performance?
● Which components have relationships to other components or resources?
● Where are your synchronous and asynchronous calls?
● What is your I/O-bound work and what is your CPU-bound work?

76 Improving .NET Application Performance and Scalability

And the model can reveal the following about your goals:
● What is the priority and achievability of different performance goals?
● Where have your performance goals affected design?

Risk Management
The time, effort, and money you invest up front in performance modeling should be
proportional to project risk. For a project with significant risk, where performance is
critical, you may spend more time and energy up front developing your model. For a
project where performance is less of a concern, your modeling approach might be as
simple as white-boarding your performance scenarios.

Budget
Performance modeling is essentially a “budgeting” exercise. Budget represents your
constraints and enables you to specify how much you can spend (resource-wise) and
how you plan to spend it. Constraints govern your total spending, and then you can
decide where to spend to get to the total. You assign budget in terms of response
time, throughput, latency, and resource utilization.

Performance modeling does not need to involve a lot of up-front work. In fact,
it should be part of the work you already do. To get started, you can even use
a whiteboard to quickly capture the key scenarios and break them down into
component steps.

If you know your goals, you can quickly assess if your scenarios and steps are within
range, or if you need to change your design to accommodate the budget. If you do
not know your goals (particularly resource utilization), you need to define your
baselines. Either way, it is not long before you can start prototyping and measuring
to get some data to work with.

What You Must Know
Performance models are created in document form by using the tool of your choice
(a simple Word document works well). The document becomes a communication
point for other team members. The performance model contains a lot of key
information, including goals, budgets (time and resource utilization), scenarios,
and workloads. Use the performance model to play out possibilities and evaluate
alternatives, before committing to a design or implementation decision. You need to
measure to know the cost of your tools. For example, how much does a certain API
cost you?

 Chapter 2: Performance Modeling 77

Best Practices
Consider the following best practices when creating performance models:
● Determine response time and resource utilization budgets for your design.
● Identify your target deployment environment.
● Do not replace scenario-based load testing with performance modeling, for the

following reasons:
● Performance modeling suggests which areas should be worked on but cannot

predict the improvement caused by a change.
● Performance modeling informs the scenario-based load testing by providing

goals and useful measurements.
● Modeled performance may ignore many scenario-based load conditions that

can have an enormous impact on overall performance.

Information in the Performance Model
The information in the performance model is divided into different areas. Each area
focuses on capturing one perspective. Each area has important attributes that help
you execute the process. Table 2.1 shows the key information in the performance
model.

Table 2.1: Information in the Performance Model

Category Description

Application Description The design of the application in terms of its layers and its target
infrastructure.

Scenarios Critical and significant use cases, sequence diagrams, and user stories
relevant to performance.

Performance Objectives Response time, throughput, resource utilization.

Budgets Constraints you set on the execution of use cases, such as maximum
execution time and resource utilization levels, including CPU, memory,
disk I/O, and network I/O.

Measurements Actual performance metrics from running tests, in terms of resource
costs and performance issues.

Workload Goals Goals for the number of users, concurrent users, data volumes, and
information about the desired use of the application.

Baseline Hardware Description of the hardware on which tests will be run — in terms of
network topology, bandwidth, CPU, memory, disk, and so on.

78 Improving .NET Application Performance and Scalability

Other elements of information you might need include those shown in Table 2.2.

Table 2.2: Additional Information You Might Need

Category Description

Quality-of-Service (QoS)
Requirements

QoS requirements, such as security, maintainability, and interoperability,
may impact your performance. You should have an agreement across
software and infrastructure teams about QoS restrictions and
requirements.

Workload Requirements Total number of users, concurrent users, data volumes, and information
about the expected use of the application.

Inputs
A number of inputs are required for the performance modeling process. These
include initial (maybe even tentative) information about the following:
● Scenarios and design documentation about critical and significant use cases.
● Application design and target infrastructure and any constraints imposed by the

infrastructure.
● QoS requirements and infrastructure constraints, including service level

agreements (SLAs).
● Workload requirements derived from marketing data on prospective customers.

Outputs
The output from performance modeling is the following:
● A performance model document.
● Test cases with goals.

Performance Model Document
The performance model document may contain the following:
● Performance objectives.
● Budgets.
● Workloads.
● Itemized scenarios with goals.
● Test cases with goals.

 Chapter 2: Performance Modeling 79

An itemized scenario is a scenario that you have broken down into processing steps.
For example, an order scenario might include authentication, order input validation,
business rules validation, and orders being committed to the database. The itemized
scenarios include assigned budgets and performance objectives for each step in the
scenario.

Test Cases with Goals
You use test cases to generate performance metrics. They validate your application
against performance objectives. Test cases help you determine whether you are
trending toward or away from your performance objectives.

Process
The performance modeling process model is summarized in Figure 2.1.

Performance Modeling Process

1. Identify Key Scenarios

2. Identify Workloads

3. Identify Performance Objectives

4. Identify Budget

5. Identify Processing Steps

6. Allocate Budget

7. Evaluate

8. Validate

Iterate

Figure 2.1
Eight step performance model

80 Improving .NET Application Performance and Scalability

The performance modeling process involves the following steps:
1. Identify key scenarios. Identify scenarios where performance is important and

scenarios that pose the most risk to your performance objectives.
2. Identify workload. Identify how many users and concurrent users your system

needs to support.
3. Identify performance objectives. Define performance objectives for each of your

key scenarios. Performance objectives reflect business requirements.
4. Identify budget. Identity your budget or constraints. This includes the maximum

execution time in which an operation must be completed and resource utilization
constraints, such as CPU, memory, disk I/O, and network I/O.

5. Identify processing steps. Break down your key scenarios into component
processing steps.

6. Allocate budget. Spread your budget (determined in Step 4) across your
processing steps (determined in Step 5) to meet your performance objectives
(defined in Step 3).

7. Evaluate. Evaluate your design against objectives and budget. You may need to
modify your design or spread your response time and resource utilization budget
differently to meet your performance objectives.

8. Validate. Validate your model and estimates. This is an ongoing activity and
includes prototyping, assessing, and measuring.

The next sections describe each of the preceding steps.

Step 1. Identify Key Scenarios
Identify your application scenarios that are important from a performance
perspective. If you have documented use cases or user stories, use them to help you
define your scenarios. Key scenarios include the following:
● Critical scenarios.
● Significant scenarios.

Critical Scenarios
These are the scenarios that have specific performance expectations or requirements.
Examples include scenarios covered by SLAs or those that have specific performance
objectives.

 Chapter 2: Performance Modeling 81

Significant Scenarios
Significant scenarios do not have specific performance objectives such as a response
time goal, but they may impact other critical scenarios.

To help identify significant scenarios, identify scenarios with the following
characteristics:
● Scenarios that run in parallel to a performance-critical scenario.
● Scenarios that are frequently executed.
● Scenarios that account for a high percentage of system use.
● Scenarios that consume significant system resources.

Do not ignore your significant scenarios. Your significant scenarios can influence
whether your critical scenarios meet their performance objectives. Also, do not forget
to consider how your system will behave if different significant or critical scenarios
are being run concurrently by different users. This “parallel integration” often drives
key decisions about your application’s units of work. For example, to keep search
response brisk, you might need to commit orders one line item at a time.

Step 2. Identify Workload
Workload is usually derived from marketing data. It includes the following:
● Total users.
● Concurrently active users.
● Data volumes.
● Transaction volumes and transaction mix.

For performance modeling, you need to identify how this workload applies to an
individual scenario. The following are example requirements:
● You might need to support 100 concurrent users browsing.
● You might need to support 10 concurrent users placing orders.

Note: Concurrent users are those users that hit a Web site at exactly the same moment.
Simultaneous users who are those users who have active connections to the same site.

82 Improving .NET Application Performance and Scalability

Step 3. Identify Performance Objectives
For each scenario identified in Step 1, write down the performance objectives.
The performance objectives are determined by your business requirements.

Performance objectives usually include the following:
● Response time. For example, the product catalog must be displayed in less than

3 seconds.
● Throughput. For example, the system must support 100 transactions per second.
● Resource utilization. A frequently overlooked aspect is how much resource your

application is consuming, in terms of CPU, memory, disk I/O, and network I/O.

Consider the following when establishing your performance objectives:
● Workload requirements.
● Service level agreements.
● Response times.
● Projected growth.
● Lifetime of your application.

For projected growth, you need to consider whether your design will meet your
needs in six months time, or one year from now. If the application has a lifetime of
only six months, are you prepared to trade some extensibility for performance? If
your application is likely to have a long lifetime, what performance are you willing
to trade for maintainability?

Step 4. Identify Budget
Budgets are your constraints. For example, what is the longest acceptable amount of
time that an operation should take to complete, beyond which your application fails
to meet its performance objectives.

Your budget is usually specified in terms of the following:
● Execution time.
● Resource utilization.

Execution Time
Your execution time constraints determine the maximum amount of time that
particular operations can take.

 Chapter 2: Performance Modeling 83

Resource Utilization
Resource utilization requirements define the threshold utilization levels for
available resources. For example, you might have a peak processor utilization limit
of 75 percent and your memory consumption must not exceed 50 MB.

Common resources to consider include the following:
● CPU.
● Memory.
● Network I/O.
● Disk I/O.

More Information

For more information, see “System Resources” in Chapter 15, “Measuring
.NET Application Performance.”

Additional Considerations
Execution time and resource utilization are helpful in the context of your
performance objectives. However, budget has several other dimensions you may
be subject to. Other considerations for budget might include the following:
● Network. Network considerations include bandwidth.
● Hardware. Hardware considerations include items, such as servers, memory,

and CPUs.
● Resource dependencies. Resource dependency considerations include items, such

as the number of available database connections and Web service connections.
● Shared resources. Shared resource considerations include items, such as the

amount of bandwidth you have, the amount of CPU you get if you share a server
with other applications, and the amount of memory you get.

● Project resources. From a project perspective, budget is also a constraint, such as
time and cost.

84 Improving .NET Application Performance and Scalability

Step 5. Identify Processing Steps
Itemize your scenarios and divide them into separate processing steps, such as those
shown in Table 2.3. If you are familiar with UML, use cases and sequence diagrams
can be used as input. Similarly, Extreme Programming user stories can provide useful
input to this step.

Table 2.3: Processing Steps

Processing Steps

1. An order is submitted by client.

2. The client authentication token is validated.

3. Order input is validated.

4. Business rules validate the order.

5. The order is sent to a database server.

6. The order is processed.

7. A response is sent to the client.

An added benefit of identifying processing steps is that they help you identify
those points within your application where you should consider adding custom
instrumentation. Instrumentation helps you to provide actual costs and timings when
you begin testing your application.

Step 6. Allocate Budget
Spread your budget (determined in Step 4, “Identify Budget”) across your processing
steps (determined in Step 5, “Identify Processing Steps”) to meet your performance
objectives. You need to consider execution time and resource utilization. Some of the
budget may apply to only one processing step. Some of the budget may apply to the
scenario and some of it may apply across scenarios.

Assigning Execution Time to Steps
When assigning time to processing steps, if you do not know how much time to
assign, simply divide the total time equally between the steps. At this point, it is not
important for the values to be precise because the budget will be reassessed after
measuring actual time, but it is important to have an idea of the values. Do not insist
on perfection, but aim for a reasonable degree of confidence that you are on track.

 Chapter 2: Performance Modeling 85

You do not want to get stuck, but, at the same time, you do not want to wait until
your application is built and instrumented to get real numbers. Where you do not
know execution times, you need to try spreading the time evenly, see where there
might be problems or where there is tension.

If dividing the budget shows that each step has ample time, there is no need
to examine these further. However, for the ones that look risky, conduct some
experiments (for example, with prototypes) to verify that what you will need to
do is possible, and then proceed.

Note that one or more of your steps may have a fixed time. For example, you may
make a database call that you know will not complete in less than 3 seconds. Other
times are variable. The fixed and variable costs must be less than or equal to the
allocated budget for the scenario.

Assigning Resource Utilization Requirements
When assigning resources to processing steps, consider the following:
● Know the cost of your materials. For example, what does technology x cost in

comparison to technology y.
● Know the budget allocated for hardware. This defines the total resources available

at your disposal.
● Know the hardware systems already in place.
● Know your application functionality. For example, heavy XML document

processing may require more CPU, chatty database access or Web service
communication may require more network bandwidth, or large file uploads
may require more disk I/O.

Step 7. Evaluate
Evaluate the feasibility and effectiveness of the budget before time and effort is spent
on prototyping and testing. Review the performance objectives and consider the
following questions:
● Does the budget meet the objectives?
● Is the budget realistic? It is during the first evaluation that you identify new

experiments you should do to get more accurate budget numbers.
● Does the model identify a resource hot spot?
● Are there more efficient alternatives?
● Can the design or features be reduced or modified to meet the objectives?
● Can you improve efficiency in terms of resource consumption or time?
● Would an alternative pattern, design, or deployment topology provide a better

solution?

86 Improving .NET Application Performance and Scalability

● What are you trading off? Are you trading productivity, scalability,
maintainability, or security for performance?

● Consider the following actions:
● Modify your design.
● Reevaluate requirements.
● Change the way you allocate budget.

Step 8. Validate
Validate your model and estimates. Continue to create prototypes and measure the
performance of the use cases by capturing metrics. This is an ongoing activity that
includes prototyping and measuring. Continue to perform validation checks until
your performance goals are met.

The further you are in your project’s life cycle, the greater the accuracy of the
validation. Early on, validation is based on available benchmarks and prototype
code, or just proof-of-concept code. Later, you can measure the actual code as your
application develops.

More Information
For more information, see the following resources:
● For more information about validating Microsoft .NET code for performance,

see “Managed Code and CLR Performance” in Chapter 13, “Code Review: .NET
Application Performance.”

● For more information about validating both prototypes and production code,
see “How Measuring Applies to Life Cycle” in Chapter 15, “Measuring .NET
Application Performance.”

● For more information about the validation process, see “Performance Tuning
Process” in Chapter 17, “Tuning .NET Application Performance.”

Summary
Beginning performance modeling early helps you expose key issues and allows you
to quickly see places to make tradeoffs in design or help you identify where to spend
your efforts. A practical step in the right direction is simply capturing your key
scenarios and breaking them down into logical operations or steps. Most importantly,
you identify your performance goals such as response time, throughput, and resource
utilization with each scenario.

Know your budgets in terms of how much CPU, memory, disk I/O, and network I/O
your application is allowed to consume. Be prepared to make tradeoffs at design
time, such as using an alternative technology or remote communication mechanism.

 Chapter 2: Performance Modeling 87

By adopting a proactive approach to performance management and adopting a
performance modeling process, you address the following:
● Performance becomes a feature of your development process and not an

afterthought.
● You evaluate your tradeoffs earlier in the life cycle based on measurements.
● Test cases show whether you are trending toward or away from the performance

objectives, throughout your application life cycle.

Additional Resources
For more information and related reading, see the following resources:
● For related reading about performance engineering, see Performance Solutions:

A Practical Guide to Creating Responsive, Scalable Software by Connie U. Smith and
Lloyd Williams.

● For information about software performance engineering, see the “Software
Performance Engineering Papers” site at http://www.perfeng.com/paperndx.htm.

● For an introduction to the use of business case analysis to justify investing in
software performance engineering, see “Making the Business Case for Software
Performance Engineering” by Lloyd G. Williams, Ph.D. and Connie U. Smith,
Ph.D., at http://www.perfeng.com/papers/buscase.pdf.

● For information about how to assess whether your software architecture will
meet its performance objectives, see “PASA: An Architectural Approach to Fixing
Software Performance Problems” by Lloyd G. Williams and Connie U. Smith,
at http://www.perfeng.com/papers/pasafix.pdf.

● For examples of breaking down application functionality and business functions
for performance analysis, see “How do you eat an elephant? or How to digest
application performance in bite-size chunks” at http://www.whitespacesolutions.com
/whitepapers/How_do_you_eat_an_elephant.pdf.

● For concepts and insight behind the performance modeling methodology,
see “Performance Modeling Methodology” at http://www.hyperformix.com/FileLib
/PerfModMeth.pdf.

● For a walkthrough of breaking down a Web application for analysis, see
“Stepwise Refinement: A Pragmatic Approach for Modeling Web Applications” at
http://www.whitespacesolutions.com/whitepapers/HyPerformix_Stepwise_Refinement.pdf.

● For information about incorporating performance modeling into the system life
cycle, see “eBusiness Performance: Risk Mitigation in Zero Time (Do It Right
the First Time)” at http://www.whitespacesolutions.com/whitepapers/HyPerformix
-Risk.Mitigation.in.Zero.pdf, and “Performance Engineering throughout the System
Life Cycle” at http://www.whitespacesolutions.com/whitepapers/PE_LifeCycle.pdf.

http://www.perfeng.com/paperndx.htm
http://www.perfeng.com/papers/buscase.pdf
http://www.perfeng.com/papers/pasafix.pdf
http://www.whitespacesolutions.com/whitepapers/How_do_you_eat_an_elephant.pdf
http://www.whitespacesolutions.com/whitepapers/How_do_you_eat_an_elephant.pdf
http://www.hyperformix.com/FileLib/PerfModMeth.pdf
http://www.hyperformix.com/FileLib/PerfModMeth.pdf
http://www.whitespacesolutions.com/whitepapers/HyPerformix_Stepwise_Refinement.pdf
http://www.whitespacesolutions.com/whitepapers/HyPerformix-Risk.Mitigation.in.Zero.pdf
http://www.whitespacesolutions.com/whitepapers/HyPerformix-Risk.Mitigation.in.Zero.pdf
http://www.whitespacesolutions.com/whitepapers/PE_LifeCycle.pdf

88 Improving .NET Application Performance and Scalability

● For information about workload characterization, see “Falling from a Log —
Techniques for Workload Characterisation” at http://www.whitespacesolutions.com
/whitepapers/Falling_from_a_log.pdf.

● For a walkthrough of applying performance modeling to your software life cycle,
see “Wells Fargo Performance Modeling — Techniques for Integrating into
Development Life-Cycle Processes” at http://www.cmg.org/conference/refs99/papers
/99p2119.doc.

● For more information about performance engineering, see “An Enterprise
Level Approach to Proactive Performance Engineering” at
http://www.whitespacesolutions.com/whitepapers/Cook--EnterprisePPE.pdf.

http://www.whitespacesolutions.com/whitepapers/Falling_from_a_log.pdf
http://www.whitespacesolutions.com/whitepapers/Falling_from_a_log.pdf
http://www.cmg.org/conference/refs99/papers/99p2119.doc
http://www.cmg.org/conference/refs99/papers/99p2119.doc
http://www.whitespacesolutions.com/whitepapers/Cook--EnterprisePPE.pdf

3
Design Guidelines for
Application Performance

Objectives
● Learn design tradeoffs for performance and scalability.
● Apply a principle-based approach to your design.
● Identify and use a performance and scalability framework.
● Learn design considerations for scaling up and scaling out.
● Minimize communication and data transformation overhead.
● Improve application concurrency.
● Manage resources efficiently.
● Cache application data effectively.
● Manage application state efficiently.
● Design an efficient presentation layer.
● Design an efficient business layer.
● Design an efficient data access layer.

Overview
Performance and scalability are two quality-of-service (QoS) considerations.
Other QoS attributes include availability, manageability, integrity, and security.
These should be balanced with performance and scalability, and this often
involves architecture and design tradeoffs.

90 Improving .NET Application Performance and Scalability

During your design phase, identify performance objectives. How fast is fast enough?
What are your application response time and throughput constraints? How much
CPU, memory, disk I/O, and network I/O is it acceptable for your application to
consume? These are key factors that your design must be able to accommodate.

The guidelines in this chapter will help you design applications that meet your
performance and scalability objectives. The chapter begins with a set of proven
design principles and design process principles. It then covers deployment issues
that you must consider at design time. Subsequent sections present design guidelines
organized by the performance and scalability frame introduced in Chapter 1,
“Fundamentals of Engineering for Performance.” Finally, a set of recommendations
are presented that focus on the client, presentation layer, business layer and data
access layer.

How to Use This Chapter
Use this chapter to help you design your applications and evaluate your design
decisions. You can apply the design guidelines in this chapter to new and existing
applications. To get the most out of this chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Use the “Architecture” section in each technical chapter in Part III of this guide.
Refer to the technical chapter architecture sections to make better design and
implementation choices.

● Use the “Design Considerations” section in each technical chapter in Part III of
this guide. Refer to the technical chapter design considerations sections for
specific technology-related design guidelines.

● Use the “Checklists” section of this guide. Use “Checklist: Architecture and
Design Review for Performance and Scalability” to quickly view and evaluate
the guidelines presented in this chapter.

Principles
The guidance throughout this chapter guide is based on principles. Performance,
like security and many other aspects of software engineering, lends itself to a
principle-based approach, where proven principles are applied regardless of the
implementation technology or application scenario.

 Chapter 3: Design Guidelines for Application Performance 91

Design Process Principles
Consider the following principles to enhance your design process:
● Set objective goals. Avoid ambiguous or incomplete goals that cannot be

measured such as “the application must run fast” or “the application must
load quickly.” You need to know the performance and scalability goals of your
application so that you can (a) design to meet them, and (b) plan your tests
around them. Make sure that your goals are measurable and verifiable.
Requirements to consider for your performance objectives include response times,
throughput, resource utilization, and workload. For example, how long should a
particular request take? How many users does your application need to support?
What is the peak load the application must handle? How many transactions per
second must it support?
You must also consider resource utilization thresholds. How much CPU, memory,
network I/O, and disk I/O is it acceptable for your application to consume?

● Validate your architecture and design early. Identify, prototype, and validate
your key design choices up front. Beginning with the end in mind, your goal is
to evaluate whether your application architecture can support your performance
goals. Some of the important decisions to validate up front include deployment
topology, load balancing, network bandwidth, authentication and authorization
strategies, exception management, instrumentation, database design, data access
strategies, state management, and caching. Be prepared to cut features and
functionality or rework areas that do not meet your performance goals. Know the
cost of specific design choices and features.

● Cut the deadwood. Often the greatest gains come from finding whole sections of
work that can be removed because they are unnecessary. This often occurs when
(well-tuned) functions are composed to perform some greater operation. It is often
the case that many interim results from the first function in your system do not
end up getting used if they are destined for the second and subsequent functions.
Elimination of these “waste” paths can yield tremendous end-to-end
improvements.

● Tune end-to-end performance. Optimizing a single feature could take away
resources from another feature and hinder overall performance. Likewise, a single
bottleneck in a subsystem within your application can affect overall application
performance regardless of how well the other subsystems are tuned. You obtain
the most benefit from performance testing when you tune end-to-end, rather than
spending considerable time and money on tuning one particular subsystem.
Identify bottlenecks, and then tune specific parts of your application. Often
performance work moves from one bottleneck to the next bottleneck.

92 Improving .NET Application Performance and Scalability

● Measure throughout the life cycle. You need to know whether your application’s
performance is moving toward or away from your performance objectives.
Performance tuning is an iterative process of continuous improvement with
hopefully steady gains, punctuated by unplanned losses, until you meet your
objectives. Measure your application’s performance against your performance
objectives throughout the development life cycle and make sure that performance
is a core component of that life cycle. Unit test the performance of specific pieces
of code and verify that the code meets the defined performance objectives before
moving on to integrated performance testing.
When your application is in production, continue to measure its performance.
Factors such as the number of users, usage patterns, and data volumes change
over time. New applications may start to compete for shared resources.

Design Principles
The following design principles are abstracted from architectures that have scaled
and performed well over time:
● Design coarse-grained services. Coarse-grained services minimize the number

of client-service interactions and help you design cohesive units of work. Coarse-
grained services also help abstract service internals from the client and provide a
looser coupling between the client and service. Loose coupling increases your
ability to encapsulate change. If you already have fine-grained services, consider
wrapping them with a facade layer to help achieve the benefits of a coarse-grained
service.

● Minimize round trips by batching work. Minimize round trips to reduce call
latency. For example, batch calls together and design coarse-grained services that
allow you to perform a single logical operation by using a single round trip. Apply
this principle to reduce communication across boundaries such as threads,
processes, processors, or servers. This principle is particularly important when
making remote server calls across a network.

● Acquire late and release early. Minimize the duration that you hold shared and
limited resources such as network and database connections. Releasing and
re-acquiring such resources from the operating system can be expensive, so
consider a recycling plan to support “acquire late and release early.” This enables
you to optimize the use of shared resources across requests.

● Evaluate affinity with processing resources. When certain resources are only
available from certain servers or processors, there is an affinity between the
resource and the server or processor. While affinity can improve performance,
it can also impact scalability. Carefully evaluate your scalability needs. Will you
need to add more processors or servers? If application requests are bound by
affinity to a particular processor or server, you could inhibit your application’s
ability to scale. As load on your application increases, the ability to distribute
processing across processors or servers influences the potential capacity of your
application.

 Chapter 3: Design Guidelines for Application Performance 93

● Put the processing closer to the resources it needs. If your processing involves a
lot of client-service interaction, you may need to push the processing closer to the
client. If the processing interacts intensively with the data store, you may want to
push the processing closer to the data.

● Pool shared resources. Pool shared resources that are scarce or expensive to create
such as database or network connections. Use pooling to help eliminate
performance overhead associated with establishing access to resources and to
improve scalability by sharing a limited number of resources among a much larger
number of clients.

● Avoid unnecessary work. Use techniques such as caching, avoiding round trips,
and validating input early to reduce unnecessary processing. For more
information, see “Cut the Deadwood,” above.

● Reduce contention. Blocking and hotspots are common sources of contention.
Blocking is caused by long-running tasks such as expensive I/O operations.
Hotspots result from concentrated access to certain data that everyone needs.
Avoid blocking while accessing resources because resource contention leads to
requests being queued. Contention can be subtle. Consider a database scenario.
On the one hand, large tables must be indexed very carefully to avoid blocking
due to intensive I/O. However, many clients will be able to access different parts
of the table with no difficulty. On the other hand, small tables are unlikely to have
I/O problems but might be used so frequently by so many clients that they are
hotly contested.
Techniques for reducing contention include the efficient use of shared threads and
minimizing the amount of time your code retains locks.

● Use progressive processing. Use efficient practices for handling data changes.
For example, perform incremental updates. When a portion of data changes,
process the changed portion and not all of the data. Also consider rendering
output progressively. Do not block on the entire result set when you can give
the user an initial portion and some interactivity earlier.

● Process independent tasks concurrently. When you need to process multiple
independent tasks, you can asynchronously execute those tasks to perform them
concurrently. Asynchronous processing offers the most benefits to I/O bound
tasks but has limited benefits when the tasks are CPU-bound and restricted to a
single processor. If you plan to deploy on single-CPU servers, additional threads
guarantee context switching, and because there is no real multithreading, there are
likely to be only limited gains. Single CPU-bound multithreaded tasks perform
relatively slowly due to the overhead of thread switching.

94 Improving .NET Application Performance and Scalability

Deployment Considerations
Runtime considerations bring together application functionality, choices of
deployment architecture, operational requirements, and QoS attributes. These
aspects are shown in Figure 3.1.

P
ol

ic
ie

s
an

d
P

ro
ce

du
re

s

Deployment Architectures

Nondistributed
Architecture

Operational Requirements

Network Topologies

Distributed
Architecture

Q
ua

lit
y-

of
-S

er
vi

ce

A
ttr

ib
ut

es

Figure 3.1
Deployment considerations

During the application design phase, review your corporate policies and procedures
together with the infrastructure your application is to be deployed on. Frequently,
the target environment is rigid, and your application design must reflect the imposed
restrictions. It must also take into account other QoS attributes, such as security and
maintainability. Sometimes design tradeoffs are required, for example because of
protocol restrictions or network topologies.

The main deployment issues to recognize at design time are the following:
● Consider your deployment architecture.
● Identify constraints and assumptions early.
● Evaluate server affinity.
● Use a layered design.
● Stay in the same process.
● Do not remote application logic unless you need to.

Consider Your Deployment Architecture
Nondistributed and distributed architectures are both suitable for .NET applications.
Both approaches have different pros and cons in terms of performance, scalability,
ease of development, administration, and operations.

 Chapter 3: Design Guidelines for Application Performance 95

Nondistributed Architecture
With the nondistributed architecture, presentation, business, and data access code
are logically separated but are physically located in a single Web server process on
the Web server. This is shown in Figure 3.2.

Database ServerWeb/Application
Server

Presentation

Business

Data Access

Figure 3.2
Nondistributed application architecture: logical layers on a single physical tier

Pros
● Nondistributed architecture is less complex than distributed architecture.
● Nondistributed architecture has performance advantages gained through

local calls.

Cons
● With nondistributed architecture, it is difficult to share business logic with other

applications.
● With nondistributed architecture, server resources are shared across layers.

This can be good or bad — layers may work well together and result in optimized
usage because one of them is always busy. However, if one layer requires
disproportionately more resources, you starve resources from another layer.

Distributed Architecture
With the distributed architecture, presentation logic communicates remotely to
business logic located on a middle-tier application server as shown in Figure 3.3.

Database ServerWeb Server

Presentation

Application
Server

Business

Data Access

Figure 3.3
Distributed architecture: logical layers on multiple physical tiers

96 Improving .NET Application Performance and Scalability

Pros
● Distributed architecture has the ability to scale out and load balance business

logic independently.
● Distributed architecture has separate server resources that are available for

separate layers.
● Distributed architecture is flexible.

Cons
● Distributed architecture has additional serialization and network latency

overheads due to remote calls.
● Distributed architecture is potentially more complex and more expensive in

terms of total cost of ownership.

Identify Constraints and Assumptions Early
Identify any constraints and assumptions early in the design phase to avoid surprises
later. Involve members of the network and infrastructure teams to help with this
process. Study any available network diagrams, in addition to your security policy
and operation requirements.

Target environments are often rigid, and your application design needs to
accommodate the imposed restrictions. Sometimes design tradeoffs are required
because of considerations such as protocol restrictions, firewalls, and specific
deployment topologies. Likewise, your design may rely on assumptions such as
the amount of memory or CPU capacity or may not even consider them. Take
maintainability into consideration. Ease of maintenance after deployment often
affects the design of the application.

Evaluate Server Affinity
Affinity can have a positive or negative impact on performance and scalability. Server
affinity occurs when all requests from a particular client must be handled by the same
server. It is most often introduced by using locally updatable caches or in-process or
local session state stores. If your design causes server affinity, scaling out at a later
point forces you to re-engineer or develop complex synchronization solutions to
synchronize data across multiple servers. If you need to scale out, consider affinity
to resources that may limit your ability. If you do not need to support scaling out,
consider the performance benefits that affinity to a resource may bring.

 Chapter 3: Design Guidelines for Application Performance 97

Use a Layered Design
A layered design is one that factors in presentation, business, and data access logic.
A good layered design exhibits high degrees of cohesion by keeping frequently
interacting components within a single layer, close to each other. A multilayered
approach with separate presentation, business, and data access logic helps you build
a more scalable and more maintainable application. For more information, see
“Coupling and Cohesion,” later in this chapter.

Stay in the Same Process
Avoid remote method calls and round trips where possible. Remote calls across
physical boundaries (process and machine) are costly due to serialization and
network latency.

You can host your application’s business logic on your Web server along with the
presentation layer or on a physically separate application server. You achieve
optimum performance by locating your business logic on the Web server in your Web
application process. If you avoid or exploit server affinity in your application design,
this approach supports scaling up and scaling out. You can add more hardware to the
existing servers or add more servers to the Web layer as shown in Figure 3.4.

Database Server

Web/Application
Server

Presentation

Business

Data Access

Web/Application
Server

Presentation

Business

Data Access

Web Farm

Figure 3.4
Scaling out Web servers in a Web farm

98 Improving .NET Application Performance and Scalability

Note: This deployment architecture still assumes logical layers: presentation, business, and
data access. You should make logical layers a design goal, regardless of your physical deployment
architecture.

Do Not Remote Application Logic Unless You Need To
Do not physically separate your business logic layer unless you need to and you
have evaluated the tradeoffs. Remote logic can increase performance overhead.
Performance overhead results from an increased number of round trips over the
network with associated network latency and serialization costs.

However, you might need to physically separate your business layer, as in the
following scenarios:
● You might want to collocate business gateway servers with key partners.
● You might need to add a Web front end to an existing set of business logic.
● You might want to share your business logic among multiple client applications.
● The security policy of your organization might prohibit you from installing

business logic on your front-end Web servers.
● You might want to offload the processing to a separate server because your

business logic might be computationally intensive.

If you do need a remote application layer, use design patterns that help minimize
the performance overhead. For more information, see “Communication,” later in
this chapter.

Scale Up vs. Scale Out
Your approach to scaling is a critical design consideration because whether you
plan to scale out your solution through a Web farm, a load-balanced middle tier,
or a partitioned database, you need to ensure that your design supports this.

When you scale your application, you can choose from and combine two basic
choices:
● Scale up: Get a bigger box.
● Scale out: Get more boxes.

 Chapter 3: Design Guidelines for Application Performance 99

Scale Up: Get a Bigger Box
With this approach, you add hardware such as processors, RAM, and network
interface cards to your existing servers to support increased capacity. This is a
simple option and one that can be cost effective. It does not introduce additional
maintenance and support costs. However, any single points of failure remain, which
is a risk. Beyond a certain threshold, adding more hardware to the existing servers
may not produce the desired results. For an application to scale up effectively, the
underlying framework, runtime, and computer architecture must scale up as well.
When scaling up, consider which resources the application is bound by. If it is
memory-bound or network-bound, adding CPU resources will not help.

Scale Out: Get More Boxes
To scale out, you add more servers and use load balancing and clustering solutions.
In addition to handling additional load, the scale-out scenario also protects against
hardware failures. If one server fails, there are additional servers in the cluster that
can take over the load. For example, you might host multiple Web servers in a Web
farm that hosts presentation and business layers, or you might physically partition
your application’s business logic and use a separately load-balanced middle tier
along with a load-balanced front tier hosting the presentation layer. If your
application is I/O-constrained and you must support an extremely large database,
you might partition your database across multiple database servers. In general, the
ability of an application to scale out depends more on its architecture than on
underlying infrastructure.

Guidelines
Consider the following approaches to scaling:
● Consider whether you need to support scale out.
● Consider design implications and tradeoffs up front.
● Consider database partitioning at design time.

Consider Whether You Need to Support Scale Out
Scaling up with additional processor power and increased memory can be a cost-
effective solution, It also avoids introducing the additional management cost
associated with scaling out and using Web farms and clustering technology. You
should look at scale-up options first and conduct performance tests to see whether
scaling up your solution meets your defined scalability criteria and supports the
necessary number of concurrent users at an acceptable level of performance. You
should have a scaling plan for your system that tracks its observed growth.

100 Improving .NET Application Performance and Scalability

If scaling up your solution does not provide adequate scalability because you reach
CPU, I/O, or memory thresholds, you must scale out and introduce additional
servers. To ensure that your application can be scaled out successfully, consider
the following practices in your design:
● You need to be able to scale out your bottlenecks, wherever they are. If the

bottlenecks are on a shared resource that cannot be scaled, you have a problem.
However, having a class of servers that have affinity with one resource type could
be beneficial, but they must then be independently scaled. For example, if you
have a single SQL Server™ that provides a directory, everyone uses it. In this case,
when the server becomes a bottleneck, you can scale out and use multiple copies.
Creating an affinity between the data in the directory and the SQL Servers that
serve the data allows you to specialize those servers and does not cause scaling
problems later, so in this case affinity is a good idea.

● Define a loosely coupled and layered design. A loosely coupled, layered design
with clean, remotable interfaces is more easily scaled out than tightly-coupled
layers with “chatty” interactions. A layered design will have natural clutch points,
making it ideal for scaling out at the layer boundaries. The trick is to find the right
boundaries. For example, business logic may be more easily relocated to a load-
balanced, middle-tier application server farm.

Consider Design Implications and Tradeoffs Up Front
You need to consider aspects of scalability that may vary by application layer, tier, or
type of data. Know your tradeoffs up front and know where you have flexibility and
where you do not. Scaling up and then out with Web or application servers may not
be the best approach. For example, although you can have an 8-processor server in
this role, economics would probably drive you to a set of smaller servers instead of a
few big ones. On the other hand, scaling up and then out may be the right approach
for your database servers, depending on the role of the data and how the data is
used. Apart from technical and performance considerations, you also need to take
into account operational and management implications and related total cost of
ownership costs.

 Chapter 3: Design Guidelines for Application Performance 101

Use the following points to help evaluate your scaling strategy:
● Stateless components. If you have stateless components (for example, a Web

front end with no in-process state and no stateful business components), this
aspect of your design supports scaling up and out. Typically, you optimize the
price and performance within the boundaries of the other constraints you may
have. For example, 2-processor Web or application servers may be optimal when
you evaluate price and performance compared with 4-processor servers; that is,
four 2-processor servers may be better than two 4-processor servers. You also need
to consider other constraints, such as the maximum number of servers you can
have behind a particular load-balancing infrastructure. In general, there are no
design tradeoffs if you adhere to a stateless design. You optimize price,
performance, and manageability.

● Data. For data, decisions largely depend on the type of data:
● Static, reference, and read-only data. For this type of data, you can easily have

many replicas in the right places if this helps your performance and scalability.
This has minimal impact on design and can be largely driven by optimization
considerations. Consolidating several logically separate and independent
databases on one database server may or may not be appropriate even if you
can do it in terms of capacity. Spreading replicas closer to the consumers of that
data may be an equally valid approach. However, be aware that whenever you
replicate, you will have a loosely synchronized system.

● Dynamic (often transient) data that is easily partitioned. This is data that is
relevant to a particular user or session (and if subsequent requests can come to
different Web or application servers, they all need to access it), but the data for
user A is not related in any way to the data for user B. For example, shopping
carts and session state both fall into this category. This data is slightly more
complicated to handle than static, read-only data, but you can still optimize
and distribute quite easily. This is because this type of data can be partitioned.
There are no dependencies between the groups, down to the individual user
level. The important aspect of this data is that you do not query it across
partitions. For example, you ask for the contents of user A’s shopping cart but
do not ask to show all carts that contain a particular item.

● Core data. This type of data is well maintained and protected. This is the main
case where the “scale up, then out” approach usually applies. Generally, you
do not want to hold this type of data in many places due to the complexity of
keeping it synchronized. This is the classic case in which you would typically
want to scale up as far as you can (ideally, remaining a single logical instance,
with proper clustering), and only when this is not enough, consider
partitioning and distribution scale-out. Advances in database technology (such
as distributed partitioned views) have made partitioning much easier, although
you should do so only if you need to. This is rarely because the database is too
big, but more often it is driven by other considerations such as who owns the
data, geographic distribution, proximity to the consumers and availability.

102 Improving .NET Application Performance and Scalability

Consider Database Partitioning at Design Time
If your application uses a very large database and you anticipate an I/O bottleneck,
ensure that you design for database partitioning up front. Moving to a partitioned
database later usually results in a significant amount of costly rework and often a
complete database redesign.

Partitioning provides several benefits:
● The ability to restrict queries to a single partition, thereby limiting the resource

usage to only a fraction of the data.
● The ability to engage multiple partitions, thereby getting more parallelism and

superior performance because you can have more disks working to retrieve your
data.

Be aware that in some situations, multiple partitions may not be appropriate and
could have a negative impact. For example, some operations that use multiple disks
could be performed more efficiently with concentrated data. So, when you partition,
consider the benefits together with alternate approaches.

More Information
For more information about scaling up versus scaling out, see the following
resources:
● “Deployment and Infrastructure” in Chapter 4, “Architecture and Design Review

of a .NET Application for Performance and Scalability”
● “SQL: Scale Up vs. Scale Out” in Chapter 14, “Improving SQL Server

Performance”
● “How To: Perform Capacity Planning for .NET Applications” in the “How To”

section of this guide

Architecture and Design Issues
In addition to affecting performance, bad design can limit your application’s
scalability. Performance is concerned with achieving response time, throughput, and
resource utilization levels that meet your performance objectives. Scalability refers to
the ability to handle additional workload without adversely affecting performance by
adding resources such as more CPU, memory, or storage capacity.

 Chapter 3: Design Guidelines for Application Performance 103

Sometimes a design decision involves a tradeoff between performance and scalability.
Figure 3.5 highlights some of the main problems that can occur across the layers of
distributed applications.

Web Server Application Server

Web
Applications Applications

Database Server

Browser
DatabaseFi

re
w

al
l

Blocked, No
Perceived

Performance

Large view
state

Poor resource
management

Fetching per
request instead

of caching

Using state
affinity Wrong

data types

Blocking
operations

Inappropriate
choice of data
structures and

algorithms

Not pooling
database

connections

Chatty instead of
batch processing

Contention,
isolation levels ,

locking and
deadlock

Performance and Scalability Frame
Coupling and Cohesion, Communication, Concurrency, Resource Management, Caching and State

Management, Data Structures / Algorithms

Figure 3.5
Common performance issues across application layers

The highlighted issues can apply across application layers. For example, a
nonresponsive application might be the result of concurrency issues in your Web
page’s code, in your application’s middle tier, or in the database. Alternatively, it
could be the direct result of communication issues caused by a chatty interface design
or the failure to pool shared resources. In this case, poor performance might become
apparent only when several users concurrently access your application.

104 Improving .NET Application Performance and Scalability

Table 3.1 lists the key issues that can result from poor design. These issues have been
organized by the categories defined by the performance and scalability frame
introduced in Chapter 1, “Fundamentals of Engineering for Performance.”

Table 3.1: Potential Performance Problems with Bad Design

Category Potential Problem Due to Bad Design

Coupling and Cohesion Limited scalability due to server and resource affinity. Mixed
presentation and business logic, which limits your options for
scaling out your application.

Lifetime issues due to tight coupling.

Communication Increased network traffic and latency due to chatty calls
between layers.

Inappropriate transport protocols and wire formats.

Large data volumes over limited bandwidth networks.

Concurrency Blocking calls and nongranular locks that stall the application’s
user interface.

Additional processor and memory overhead due to inefficient
threading.

Contention at the database due to inappropriate transaction
isolation levels.

Reduced concurrency due to inefficient locking.

Resource Management Large working sets due to inefficient memory management.

Limited scalability and reduced throughput due to failing to
release and pool shared resources.

Reduced performance due to excessive late binding and
inefficient object creation and destruction.

Caching Caching shared resources, cache misses, failure to expire
items, poor cache design, and lack of a cache synchronization
mechanism for scaling out.

State Management State affinity, reduced scalability, inappropriate state design,
inappropriate state store.

Data Structures and Algorithms Excessive type conversion.

Inefficient lookups.

Incorrect choice of data structure for various functions such as
searching, sorting, enumerating, and the size of data.

The subsequent sections in this chapter present design recommendations, organized
by performance category.

 Chapter 3: Design Guidelines for Application Performance 105

Coupling and Cohesion
Reducing coupling and increasing cohesion are two key principles to increasing
application scalability. Coupling is a degree of dependency (at design or run time) that
exists between parts of a system. Cohesion measures how many different components
take advantage of shared processing and data. An application that is designed in a
modular fashion contains a set of highly cohesive components that are themselves
loosely coupled.

To help ensure appropriate degrees of coupling and cohesion in your design, consider
the following recommendations:
● Design for loose coupling.
● Design for high cohesion.
● Partition application functionality into logical layers.
● Use early binding where possible.
● Evaluate resource affinity.

Design for Loose Coupling
Aim to minimize coupling within and across your application components. If you
have tight coupling and need to make changes, the changes are likely to ripple across
the tightly coupled components. With loosely coupled components, changes are
limited because the complexities of individual components are encapsulated from
consumers. In addition, loose coupling provides greater flexibility to choose
optimized strategies for performance and scalability for different components of your
system independently.

There may be certain performance-critical scenarios where you need to tightly couple
your presentation, business, and data access logic because you cannot afford the
slight overhead of loose coupling. For example, code inlining removes the overhead
of instantiating and calling multiple objects, setting up a call stack for calling different
methods, performing virtual table lookups, and so on. However, in the majority of
cases, the benefits of loose coupling outweigh these minor performance gains.

Some of the patterns and principles that enable loose coupling are the following:
● Separate interface from implementation. Providing facades at critical boundaries

in your application leads to better maintainability and helps define units of work
that encapsulate internal complexity.
For a good example of this approach, see the implementation of the “Exception
Management Application Block for .NET” on MSDN®, at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp.

● Message-based communication. Message queues support asynchronous request
invocation, and you can use a client-side queue if you need responses. This
provides additional flexibility for determining when requests should be processed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp

106 Improving .NET Application Performance and Scalability

Design for High Cohesion
Logically related entities, such as classes and methods, should be grouped together.
For example, a class should contain a logically related set of methods. Similarly, a
component should contain logically related classes.

Weak cohesion among components tends to result in more round trips because the
classes or components are not logically grouped and may end up residing in different
tiers. This can force you to require a mix of local and remote calls to complete a
logical operation. You can avoid this with appropriate grouping. This also helps
reduce complexity by eliminating complex sequences of interactions between various
components.

Partition Application Functionality into Logical Layers
Using logical layers to partition your application ensures that your presentation logic,
business logic, and data access logic are not interspersed. This logical organization
leads to a cohesive design in which related classes and data are located close to each
other, generally within a single boundary. This helps optimize the use of expensive
resources. For example, co-locating all data access logic classes ensures they can share
a database connection pool.

Use Early Binding Where Possible
Prefer early binding where possible because this minimizes run-time overhead and
is the most efficient way to call a method.

Late binding provides a looser coupling, but it affects performance because
components must be dynamically located and loaded. Use late binding only where
it is absolutely necessary, such as for extensibility.

Evaluate Resource Affinity
Compare and contrast the pros and cons. Affinity to a particular resource can
improve performance in some situations. However, while affinity may satisfy
your performance goals for today, resource affinity can make it difficult to scale
your application. For example, affinity to a particular resource can limit or prevent
the effective use of additional hardware on servers, such as more processors and
memory. Server affinity can also prevent scaling out.

 Chapter 3: Design Guidelines for Application Performance 107

Some examples of affinity that can cause scalability problems include the following:
● Using an in-process state store. As a result of this, all requests from a specific

client must be routed to the same server.
● Using application logic that introduces thread affinity. This forces the thread to

be run on a specific set of processors. This hinders the ability of the scheduler to
schedule threads across the processors, causing a decrease in performance gains
produced by parallel processing.

More Information
For more information about coupling and cohesion, see “Coupling and Cohesion” in
Chapter 4, “Architecture and Design Review of a .NET Application for Performance
and Scalability.”

Communication
The benefits of distributed architectures such as improved scalability, fault
tolerance, and maintenance are well documented. However, the increased levels
of communication and coordination inevitably affect performance.

To avoid common pitfalls and minimize performance overhead, consider the
following guidelines:
● Choose the appropriate remote communication mechanism.
● Design chunky interfaces.
● Consider how to pass data between layers.
● Minimize the amount of data sent across the wire.
● Batch work to reduce calls over the network.
● Reduce transitions across boundaries.
● Consider asynchronous communication.
● Consider message queuing.
● Consider a “fire and forget” invocation model.

Choose the Appropriate Remote Communication Mechanism
Your choice of transport mechanism is governed by various factors, including
available network bandwidth, amount of data to be passed, average number of
simultaneous users, and security restrictions such as firewalls.

108 Improving .NET Application Performance and Scalability

Services are the preferred communication across application boundaries, including
platform, deployment, and trust boundaries. Object technology, such as Enterprise
Services or .NET remoting, should generally be used only within a service’s
implementation. Use Enterprise Services only if you need the additional feature set
(such as object pooling, declarative distributed transactions, role-based security, and
queued components) or where your application communicates between components
on a local server and you have performance issues with Web services.

You should choose secure transport protocols such as HTTPS only where necessary
and only for those parts of a site that require it.

Design Chunky Interfaces
Design chunky interfaces and avoid chatty interfaces. Chatty interfaces require
multiple request/response round trips to perform a single logical operation, which
consumes system and potentially network resources. Chunky interfaces enable you
to pass all of the necessary input parameters and complete a logical operation in a
minimum number of calls. For example, you can wrap multiple get and set calls with
a single method call. The wrapper would then coordinate property access internally.

You can have a facade with chunky interfaces that wrap existing components to
reduce the number of round trips. Your facade would encapsulate the functionality
of the set of wrapped components and would provide a simpler interface to the
client. The interface internally coordinates the interaction among various components
in the layer. In this way, the client is less prone to any changes that affect the business
layer, and the facade also helps you to reduce round trips between the client and the
server.

Consider How to Pass Data Between Layers
Passing data between layers involves processing overhead for serialization as well as
network utilization. Your options include using ADO.NET DataSet objects, strongly
typed DataSet objects, collections, XML, or custom objects and value types.

To make an informed design decision, consider the following questions:
● In what format is the data retrieved?

If the client retrieves data in a certain format, it may be expensive to transform it.
Transformation is a common requirement, but you should avoid multiple
transformations as the data flows through your application.

● In what format is the data consumed?
If the client requires data in the form of a collection of objects of a particular type,
a strongly typed collection is a logical and correct choice.

 Chapter 3: Design Guidelines for Application Performance 109

● What features does the client require?
A client might expect certain features to be available from the objects it receives as
output from the business layer. For example, if your client needs to be able to view
the data in multiple ways, needs to update data on the server by using optimistic
concurrency, and needs to handle complex relationships between various sets of
data, a DataSet is well suited to this type of requirement.
However, the DataSet is expensive to create due to its internal object hierarchy,
and it has a large memory footprint. Also, default DataSet serialization incurs a
significant processing cost even when you use the BinaryFormatter.
Other client-side requirements can include the need for validation, data binding,
sorting, and sharing assemblies between client and server.
For more information about how to improve DataSet serialization performance,
see “How To: Improve Serialization Performance” in the “How To” section of
this guide.

● Can the data be logically grouped?
If the data required by the client represents a logical grouping, such as the
attributes that describe an employee, consider using a custom type. For example,
you could return employee details as a struct type that has employee name,
address, and employee number as members.
The main performance benefit of custom classes is that they allow you to create
your own optimized serialization mechanisms to reduce the communication
footprint between computers.

● Do you need to consider cross-platform interoperability?
XML is an open standard and is the ideal data representation for cross-platform
interoperability and communicating with external (and heterogeneous) systems.
Performance issues to consider include the considerable parsing effort required to
process large XML strings. Large and verbose strings also consume large amounts
of memory. For more information about XML processing, see Chapter 9,
“Improving XML Performance.”

More Information

For more information about passing data across layers, see “Data Access” in
Chapter 4, “Architecture and Design Review of a .NET Application for Performance
and Scalability.”

110 Improving .NET Application Performance and Scalability

Minimize the Amount of Data Sent Across the Wire
Avoid sending redundant data over the wire. You can optimize data communication
by using a number of design patterns:
● Use coarse-grained wrappers. You can develop a wrapper object with a coarse-

grained interface to encapsulate and coordinate the functionality of one or more
objects that have not been designed for efficient remote access. The wrapper
object abstracts complexity and the relationships between various business objects,
provides a chunky interface optimized for remote access, and helps provide a
loosely coupled system. It provides clients with single interface functionality for
multiple business objects. It also helps define coarser units of work and
encapsulate change. This approach is described by facade design patterns.

● Wrap and return the data that you need. Instead of making a remote call to fetch
individual data items, you fetch a data object by value in a single remote call. You
then operate locally against the locally cached data. This might be sufficient for
many scenarios.
In other scenarios, where you need to ultimately update the data on the server,
the wrapper object exposes a single method that you call to send the data back
to the server. This approach is demonstrated in the following code fragment.

struct Employee {
 private int _employeeID;
 private string _projectCode;

 public int EmployeeID {
 get {return _ employeeID;}
 }
 public string ProjectCode {
 get {return _ projectCode;}
 }
 public SetData(){
 // Send the changes back and update the changes on the remote server
 }
}

Besides encapsulating the relevant data, the value object can expose a SetData or
method for updating the data back on the server. The public properties act locally
on the cached data without making a remote method call. These individual
methods can also perform data validation. This approach is sometimes referred
to as the data transfer object design pattern.

● Serialize only what you need to. Analyze the way your objects implement
serialization to ensure that only the necessary data is serialized. This reduces
data size and memory overhead. For more information, see “How To: Improve
Serialization Performance” in the “How To” section of this guide.

 Chapter 3: Design Guidelines for Application Performance 111

● Use data paging. Use a paging solution when you need to present large volumes
of data to the client. This helps reduce processing load on the server, client, and
network, and it provides a superior user experience. For more information about
various implementation techniques, see “How To: Page Records in .NET
Applications” in the “How To” section of this guide.

● Consider compression techniques. In situations where you absolutely must send
large amounts of data, and where network bandwidth is limited, consider
compression techniques such as HTTP 1.1 compression.

Batch Work to Reduce Calls Over the Network
Batch your work to reduce the amount of remote calls over the network. Some
examples of batching include the following:
● Batch updates. The client sends multiple updates as a single batch to a remote

application server instead of making multiple remote calls for updates for a
transaction.

● Batch queries. Multiple SQL queries can be batched by separating them with
a semicolon or by using stored procedures.

Reduce Transitions Across Boundaries
Keep frequently interacting entities within the same boundary, such as the same
application domain, process, or machine, to reduce communication overhead. When
doing so, consider the performance against scalability tradeoff. A single-process,
single-application domain solution provides optimum performance, and a multiple
server solution provides significant scalability benefits and enables you to scale out
your solution.

The main boundaries you need to consider are the following:
● Managed to unmanaged code
● Process to process
● Server to server

Consider Asynchronous Communication
To avoid blocking threads, consider using asynchronous calls for any sort of I/O
operation. Synchronous calls continue to block on threads during the time they wait
for response. Asynchronous calls give you the flexibility to free up the processing
thread for doing some useful work (maybe handling new requests for server
applications). As a result, asynchronous calls are helpful for potentially long-running
calls that are not CPU-bound. The .NET Framework provides an asynchronous
design pattern for implementing asynchronous communication.

112 Improving .NET Application Performance and Scalability

Note that each asynchronous call actually uses a worker thread from the process
thread pool. If they are used excessively on a single-CPU system, this can lead to
thread starvation and excessive thread switching, thus degrading performance. If
your clients do not need results to be returned immediately, consider using client
and server-side queues as an alternative approach.

Consider Message Queuing
A loosely coupled, message-driven approach enables you to do the following:
● Decouple the lifetime of the client state and server state, which helps to reduce

complexity and increase the resilience of distributed applications.
● Improve responsiveness and throughput because the current request is not

dependent on the completion of a potentially slow downstream process.
● Offload processor-intensive work to other servers.
● Add additional consumer processes that read from a common message queue

to help improve scalability.
● Defer processing to nonpeak periods.
● Reduce the need for synchronized access to resources.

The basic message queuing approach is shown in Figure 3.6. The client submits
requests for processing in the form of messages on the request queue. The processing
logic (which can be implemented as multiple parallel processes for scalability) reads
requests from the request queue, performs the necessary work, and places the
response messages on the response queue, which are then read by the client.

Request
Queue

Client

Consumers

Response
Queue

Figure 3.6
Message queuing with response

 Chapter 3: Design Guidelines for Application Performance 113

Message queuing presents additional design challenges:
● How will your application behave if messages are not delivered or received?
● How will your application behave if duplicate messages arrive or messages arrive

out of sequence? Your design should not have order and time dependencies.

Consider a “Fire and Forget” Invocation Model
If the client does not need to wait for the results of a call, you can use a “fire and
forget” approach to improve response time and avoid blocking while the long-
running server call completes. The “fire and forget” approach can be implemented
in a number of ways:
● The client and the server can have message queues.
● If you are using ASP.NET Web services or .NET remoting, you can use the

OneWay attribute.

More Information

For more information, see the following resources:
● For more information about the .NET Framework asynchronous invocation model,

see Chapter 5, “Improving Managed Code Performance,” and “Asynchronous
Programming Design Pattern,” in the .NET Framework Software Development Kit
(SDK) on MSDN.

● If you require other Enterprise Services in addition to asynchronous
communication, consider using COM+ Queued Components. For more
information about using Queued Components, see Chapter 8, “Improving
Enterprise Services Performance.”

● For more information about using the “fire and forget” approach with Web
services, see Chapter 10, “Improving Web Services Performance.”

● For more information about fire and forget with .NET remoting, see Chapter 11,
“Improving Remoting Performance.”

More Information
For more information about communication, see “Communication” in Chapter 4,
“Architecture and Design Review of a .NET Application for Performance and
Scalability.”

114 Improving .NET Application Performance and Scalability

Concurrency
One of the key benefits of distributed architectures is that they can support high
degrees of concurrency and parallel processing. However, there are many factors
such as contention for shared resources, blocking synchronous calls, and locking,
which reduce concurrency. Your design needs to take these factors into account. A
fundamental design goal is to minimize contention and maximize concurrency.

Use the following guidelines to help achieve that goal:
● Reduce contention by minimizing lock times.
● Balance between coarse- and fine-grained locks.
● Choose an appropriate transaction isolation level.
● Avoid long-running atomic transactions.

Reduce Contention by Minimizing Lock Times
If you use synchronization primitives to synchronize access to shared resources or
code, make sure you minimize the amount of time the lock is held. High contention
for shared resources results in queued requests and increased caller wait time. For
example, hold locks only over those lines of code that need the atomicity. When you
perform database operations, consider the use of partitioning and file groups to
distribute the I/O operations across multiple hard disks.

Balance Between Coarse- and Fine-Grained Locks
Review and test your code against your policy for how many locks, what kind of
locks, and where the lock is taken and released. Determine the right balance of
coarse-grained and fine-grained locks. Coarse-grained locks can result in increased
contention for resources. Fine-grained locks that only lock the relevant lines of code
for the minimum amount of time are preferable because they lead to less lock
contention and improved concurrency. However, having too many fine-grained locks
can introduce processing overhead as well as increase code complexity and the
chances of errors and deadlocks.

Choose an Appropriate Transaction Isolation Level
You need to select the appropriate isolation level to ensure that the data integrity is
preserved without affecting the performance of your application. Different levels of
isolation bring with them different guarantees for data integrity as well as different
levels of performance. Four ANSI isolation levels are supported by SQL Server:
● Read Uncommitted
● Read Committed
● Repeatable Read
● Serializable

 Chapter 3: Design Guidelines for Application Performance 115

Note: The support for isolation levels may vary from database to database. For example, Oracle 8i
does not support the Read Uncommitted isolation level.

Read Uncommitted offers the best performance but provides the fewest data integrity
guarantees, while Serializable offers the slowest performance but guarantees
maximum data integrity.

You should carefully evaluate the impact of changing the SQL Server default isolation
level (Read Committed). Changing it to a value higher than required might increase
contention on database objects, and decreasing it might increase performance but at
the expense of data integrity issues.

Choosing the appropriate isolation levels requires you to understand the way the
database handles locking and the kind of task your application performs. For
example, if your transaction involves a couple of rows in a table, it is unlikely to
interfere as much with other transactions in comparison to one which involves many
tables and may need to lock many rows or entire tables. Transactions that hold many
locks are likely to take considerable time to complete and they require a higher
isolation level than ones that lock only a couple of rows.

The nature and criticality of a transaction also plays a very significant part in
deciding isolation levels. Isolation has to do with what interim states are observable
to readers. It has less to do with the correctness of the data update.

In some scenarios — for example if you need a rough estimate of inactive customer
accounts — you may be willing to sacrifice accuracy by using a lower isolation level
to avoid interfering with other users of the database.

More Information

For more information, see the following resources:
● For more information about transactions and isolation levels, see “Transactions”

in Chapter 12, “Improving ADO.NET Performance.”
● For more information about database performance, see Chapter 14, “Improving

SQL Server Performance.”

116 Improving .NET Application Performance and Scalability

Avoid Long-Running Atomic Transactions
Keep atomic transactions as short as possible to minimize the time that locks are
retained and to reduce contention. Atomic transactions that run for a long time retain
database locks, which can significantly reduce the overall throughput for your
application. The following suggestions help reduce transaction time:
● Avoid wrapping read-only operations in a transaction. To query reference data

(for example, to display in a user interface), the implicit isolation provided by
SQL Server for concurrent operations is enough to guarantee data consistency.

● Use optimistic concurrency strategies. Gather data for coarse-grained operations
outside the scope of a transaction, and when the transaction is submitted, provide
enough data to detect whether the underlying reference data has changed enough
to make it invalid. Typical approaches include comparing timestamps for data
changes and comparing specific fields of the reference data in the database with
the data retrieved.

● Do not flow your transactions across more boundaries than necessary. Gather user
and external data before the transaction and define the transaction scope around
one coarse-grained object or service call.

● Only wrap operations that work against transactional resource managers, such as
SQL Server or Microsoft Windows Message Queuing in transactions.

● Consider using compensating transactions where you need transactional qualities
and where the cost of a synchronous long-running transaction would be too
expensive.

More Information
For more information about concurrency, see “Concurrency” in Chapter 4,
“Architecture and Design Review of a .NET Application for Performance and
Scalability.”

Resource Management
Resources are generally finite and often need to be shared among multiple clients.
Inefficient resource management is often the cause of performance and scalability
bottlenecks. Sometimes the platform provides efficient ways to manage resources,
but you also need to adopt the right design patterns.

When you design for resource management, consider the following
recommendations:
● Treat threads as a shared resource.
● Pool shared or scarce resources.
● Acquire late, release early.
● Consider efficient object creation and destruction.
● Consider resource throttling.

 Chapter 3: Design Guidelines for Application Performance 117

Treat Threads As a Shared Resource
Avoid creating threads on a per-request basis. If threads are created indiscriminately,
particularly for high-volume server applications, this can hurt performance because
it consumes resources (particularly on single-CPU servers) and introduces thread
switching overhead for the processor. A better approach is to use a shared pool of
threads, such as the process thread pool. When using a shared pool, make sure you
optimize the way that you use the threads:
● Optimize the number of threads in the shared pool. For example, specific thread

pool tuning is required for a high-volume Web application making outbound calls
to one or more Web services. For more information about tuning the thread pool in
this situation, see Chapter 10, “Improving Web Services Performance.”

● Minimize the length of jobs that are running on shared threads.

An efficient thread pool implementation offers a number of benefits and allows the
optimization of system resources. For example, the .NET thread pool implementation
dynamically tunes the number of threads in the pool based on current CPU
utilization levels. This helps to ensure that the CPU is not overloaded. The thread
pool also enforces a limit on the number of threads it allows to be active in a process
simultaneously, based on the number of CPUs and other factors.

Pool Shared or Scarce Resources
Pool shared resources that are scarce or expensive to create, such as database or
network connections. Use pooling to help reduce performance overhead and improve
scalability by sharing a limited number of resources among a much higher number of
clients. Common pools include the following:
● Thread pool. Use process-wide thread pools instead of creating threads on a per-

request basis.
● Connection pool. To ensure that you use connection pooling most efficiently, use

the trusted subsystem model to access downstream systems and databases. With
this model, you use a single fixed identity to connect to downstream systems.
This allows the connection to be efficiently pooled.

● Object pool. Objects that are expensive to initialize are ideal candidates for
pooling. For example, you could use an object pool to retain a limited set of
mainframe connections that take a long time to establish. Multiple objects can be
shared by multiple clients as long as no client-specific state is maintained. You
should also avoid any affinity to a particular resource. Creating an affinity to a
particular object effectively counteracts the benefits of object pooling in the first
place. Any object in the pool should be able to service any request and should not
be blocked for one particular request.

118 Improving .NET Application Performance and Scalability

More Information

For more information, see the following resources:
● For more information about the trusted subsystem model, see Chapter 14,

“Building Secure Data Access,” in Improving Web Application Security: Threats and
Countermeasures on MSDN, at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/ThreatCounter.asp.

● For more information about COM+ object pooling, see “Object Pooling” in
Chapter 8, “Improving Enterprise Services Performance.”

Acquire Late, Release Early
Acquire resources as late as possible, immediately before you need to use them, and
release them immediately after you are finished with them. Use language constructs,
such as finally blocks, to ensure that resources are released even in the event of an
exception.

Consider Efficient Object Creation and Destruction
Object creation should generally be deferred to the actual point of usage. This ensures
that the objects do not consume system resources while waiting to be used. Release
objects immediately after you are finished with them.

If objects require explicit cleanup code and need to release handles to system
resources, such as files or network connections, make sure that you perform the
cleanup explicitly to avoid any memory leaks and waste of resources.

More Information

For more information about garbage collection, see Chapter 5, “Improving Managed
Code Performance.”

Consider Resource Throttling
You can use resource throttling to prevent any single task from consuming a
disproportionate percentage of resources from the total allocated for the application.
Resource throttling prevents an application from overshooting its allocated budget
of computer resources, including CPU, memory, disk I/O, and network I/O.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

 Chapter 3: Design Guidelines for Application Performance 119

A server application attempting to consume large amounts of resources can result
in increased contention. This causes increased response times and decreased
throughput. Common examples of inefficient designs that cause this degradation
include the following:
● A user query that returns a large result set from a database. This can increase

resource consumption at the database, on the network, and on the Web server.
● An update that locks a large number of rows across frequently accessed tables.

This causes significant increases in contention.

To help address these and similar issues, consider the following options for resource
throttling:
● Paging through large result sets.
● Setting timeouts on long-running operations such that no single request continues

to block on a shared resource beyond a permissible time limit.
● Setting the process and thread priorities appropriately. Avoid assigning priorities

higher than normal unless the process or the thread is very critical and demands
real-time attention from the processor.

If there are cases where a single request or the application as a whole needs to
consume large amounts of resources, you can either consider splitting the work
across multiple servers or you can offload the work to nonpeak hours when the
resource utilization is generally low.

More Information
For more information about resource management, see “Resource Management” in
Chapter 4, “Architecture and Design Review of a .NET Application for Performance
and Scalability.”

Caching
Caching is one of the best techniques you can use to improve performance. Use
caching to optimize reference data lookups, avoid network round trips, and avoid
unnecessary and duplicate processing. To implement caching you need to decide
when to load the cache data. Try to load the cache asynchronously or by using a
batch process to avoid client delays.

When you design for caching, consider the following recommendations:
● Decide where to cache data.
● Decide what data to cache.
● Decide the expiration policy and scavenging mechanism.
● Decide how to load the cache data.
● Avoid distributed coherent caches.

120 Improving .NET Application Performance and Scalability

Decide Where to Cache Data
Cache state where it can save the most processing and network round trips. This
might be at the client, a proxy server, your application’s presentation logic, business
logic, or in a database. Choose the cache location that supports the lifetime you want
for your cached items. If you need to cache data for lengthy periods of time, you
should use a SQL Server database. For shorter cache durations, use in-memory
caches.

Consider the following scenarios:
● Data caching in the presentation layer. Consider caching data in the presentation

layer when it needs to be displayed to the user and the data is not cached on per-
user basis. For example, if you need to display a list of states, you can look these
up once from the database and then store them in the cache.
For more information about ASP.NET caching techniques, see Chapter 6,
“Improving ASP.NET Performance.”

● Data caching in the business layer. You can implement caching mechanisms
by using hash tables or other data structures in your application’s business logic.
For example, you could cache taxation rules that enable tax calculation. Consider
caching in the business layer when the data cannot be efficiently retrieved from
the database. Data that changes frequently should not be cached.

● Data caching in the database. Cache large amounts of data in a database and
when you need to cache for lengthy periods of time. The data can be served in
smaller chunks or as a whole, depending on your requirements. The data will be
cached in temporary tables, which consume more RAM and may cause memory
bottlenecks. You should always measure to see whether caching in a database is
hurting or improving your application performance.

Decide What Data to Cache
Caching the right data is the most critical aspect of caching. If you fail to get this
right, you can end up reducing performance instead of improving it. You might end
up consuming more memory and at the same time suffer from cache misses, where
the data is not actually getting served from cache but is refetched from the original
source.

 Chapter 3: Design Guidelines for Application Performance 121

The following are some important recommendations that help you decide what
to cache:
● Avoid caching per-user data. Caching data on a per-user basis can cause a

memory bottleneck. Imagine a search engine that caches the results of the query
fired by each user, so that it can page through the results efficiently. Do not cache
per-user data unless the retrieval of the data is expensive and the concurrent load
of clients does not build up memory pressure. Even in this case, you need to
measure both approaches for better performance and consider caching the data
on a dedicated server. In such cases, you can also consider using session state as a
cache mechanism for Web applications, but only for small amounts of data. Also,
you should be caching only the most relevant data.

● Avoid caching volatile data. Cache frequently used, not frequently changing,
data. Cache static data that is expensive to retrieve or create.
Caching volatile data, which is required by the user to be accurate and updated
in real time, should be avoided. If you frequently expire the cache to keep in
synchronization with the rapidly changing data, you might end up using more
system resources such as CPU, memory, and network.
Cache data that does not change very frequently or is completely static. If the
data does change frequently, you should evaluate the acceptable time limit during
which stale data can be served to the user. For example, consider a stock ticker,
which shows the stock quotes. Although the stock rates are continuously updated,
the stock ticker can safely be updated after a fixed time interval of five minutes.
You can then devise a suitable expiration mechanism to clear the cache and
retrieve fresh data from the original medium.

● Do not cache shared expensive resources. Do not cache shared expensive
resources such as network connections. Instead, pool those resources.

● Cache transformed data, keeping in mind the data use. If you need to transform
data before it can be used, transform the data before caching it.

● Try to avoid caching data that needs to be synchronized across servers. This
approach requires manual and complex synchronization logic and should be
avoided where possible.

Decide the Expiration Policy and Scavenging Mechanism
You need to determine the appropriate time interval to refresh data, and design a
notification process to indicate that the cache needs refreshing.

122 Improving .NET Application Performance and Scalability

If you hold data too long, you run the risk of using stale data, and if you expire the
data too frequently you can affect performance. Decide on the expiration algorithm
that is right for your scenario. These include the following:
● Least recently used.
● Least frequently used.
● Absolute expiration after a fixed interval.
● Caching expiration based on a change in an external dependency, such as a file.
● Cleaning up the cache if a resource threshold (such as a memory limit) is reached.

Note: The best choice of scavenging mechanism also depends on the storage choice for the cache.

Decide How to Load the Cache Data
For large caches, consider loading the cache asynchronously with a separate thread
or by using a batch process.

When a client accesses an expired cache, it needs to be repopulated. Doing so
synchronously affects client-response time and blocks the request processing thread.

Avoid Distributed Coherent Caches
In a Web farm, if you need multiple caches on different servers to be kept
synchronized because of localized cache updates, you are probably dealing with
transactional state. You should store this type of state in a transactional resource
manager such as SQL Server. Otherwise, you need to rethink the degree of integrity
and potential staleness you can trade off for increased performance and scalability.

A localized cache is acceptable even in a server farm as long as you require it only for
serving the pages faster. If the request goes to other servers that do not have the same
updated cache, they should still be able to serve the same pages, albeit by querying
the persistent medium for same data.

More Information
For more information, see the following resources:
● For more information about caching, see “Caching” in Chapter 4, “Architecture

and Design Review of a .NET Application for Performance and Scalability.”
● For more information and guidelines about caching, see “Caching Architecture

Guide for .NET Framework Applications,” on MSDN at http://msdn.microsoft.com
/library/en-us/dnbda/html/CachingArch.asp.

● For middle-tier caching solutions, consider the “Caching Application Block
for .NET,” on MSDN at http://msdn.microsoft.com/library/en-us/dnpag/html
/CachingBlock.asp.

http://msdn.microsoft.com/library/en-us/dnbda/html/CachingArch.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/CachingArch.asp
http://msdn.microsoft.com/library/en-us/dnpag/html/CachingBlock.asp
http://msdn.microsoft.com/library/en-us/dnpag/html/CachingBlock.asp

 Chapter 3: Design Guidelines for Application Performance 123

State Management
Improper state management causes many performance and scalability issues.

The following guidelines help you to design efficient state management:
● Evaluate stateful versus stateless design.
● Consider your state store options.
● Minimize session data.
● Free session resources as soon as possible.
● Avoid accessing session variables from business logic.

Evaluate Stateful vs. Stateless Design
Stateful components hold onto state in member variables for completing a logical
activity that spans multiple calls from the client. The state may or may not be
persisted after the completion of an operation. Stateful components can produce
optimized performance for certain load conditions. The client makes all the requests
to a particular instance of the component to complete the operation. Hence, stateful
components result in clients having affinity with the component.

The caveat for stateful components is that they may hold onto server resources
across calls until the logical activity is complete. This can result in increased
contention for resources. The server continues to hold onto resources even if the
client does not make subsequent calls to complete the operation and would release
them only if there is a timeout value set for the activity.

Affinity is an important issue for stateful design. The client is tied to a particular
instance because of localized state. This may be a disadvantage if you have a remote
application tier and have scalability goals that mean you need to scale out your
application tier. The affinity ties clients to a particular server, making it impossible
to truly load balance the application.

As discussed earlier, having state for components is a design tradeoff, and the
decision requires inputs that relate to your deployment requirements (for example,
whether or not you have a remote application tier) and your performance and
scalability goals.

If you decide on a stateless component design, you then need to decide where to
persist state outside of the components so that it can be retrieved on a per-request
basis.

124 Improving .NET Application Performance and Scalability

Consider Your State Store Options
If you use a stateless component design, store state where it can be retrieved most
efficiently. Factors to consider that influence your choice include the amount of state,
the network bandwidth between client and server, and whether state needs to be
shared across multiple servers. You have the following options to store state:
● On the client. If you have only small amounts of state and sufficient network

bandwidth, you can consider storing it at the client and passing it back to the
server with each request.

● In memory on the server. If you have too much state to be passed from the client
with each request, you can store it in memory on the server, either in the Web
application process or in a separate local process. Localized state on the server is
faster and avoids network round trips to fetch the state. However, this adds to
memory utilization on the server.

● In a dedicated resource manager. If you have large amounts of state and it needs
to be shared across multiple servers, consider using SQL Server. The increase in
scalability offered by this approach is achieved at the cost of performance because
of additional round trips and serialization.

Minimize Session Data
Keep the amount of session data stored for a specific user to a minimum to reduce
the storage and retrieval performance overheads. The total size of session data for the
targeted load of concurrent users may result in increased memory pressure when the
session state is stored on the server, or increased network congestion if the data is
held in a remote store.

If you use session state, there are two situations you should avoid:
● Avoid storing any shared resources. These are required by multiple requests

and may result in contention because the resource is not released until the session
times out.

● Avoid storing large collections and objects in session stores. Consider caching
them if they are required by multiple clients.

Free Session Resources As Soon As Possible
Sessions continue to hold server resources until the data is explicitly cleaned up or
until the session times out.

You can follow a two-pronged strategy to minimize this overhead. At design time,
you should ensure that the session state is released as soon as possible. For example,
in a Web application, you may temporarily store a dataset in a session variable so that
the data is available across pages. This data should be removed as soon as possible to
reduce load. One way to achieve this is to release all session variables containing
objects as soon as the user clicks on a menu item.

 Chapter 3: Design Guidelines for Application Performance 125

Also, you should tune your session timeout to ensure that the session data does not
continue to consume resources for long periods.

Avoid Accessing Session Variables from Business Logic
Accessing session variables from business logic makes sense only when the business
logic is interspersed along with presentation code as a result of tight coupling. You
may require this in some scenarios, as discussed in “Coupling and Cohesion” earlier
in this chapter.

However, in the majority of cases, you benefit from loosely coupled presentation and
business logic, partitioned in separate logical layers. This provides better
maintainability and improved scalability options. It is most frequently user interface-
related state that needs to be persisted across calls. Therefore, session-related state
should be part of the presentation layer. In this way, if the workflows of the user
interface change, it is only the presentation layer code that is affected.

More Information
For more information about state management, see “State Management” in
Chapter 4, “Architecture and Design Review of a .NET Application for Performance
and Scalability.”

Data Structures and Algorithms
The correct use of data structures and algorithms plays a significant role in building
high-performance applications. Your choices in these areas can significantly affect
memory consumption and CPU loading.

The following guidelines help you to use efficient data structures and algorithms:
● Choose an appropriate data structure.
● Pre-assign size for large dynamic growth data types.
● Use value and reference types appropriately.

Choose an Appropriate Data Structure
Before choosing the collection type for your scenarios, you should spend time
analyzing your specific requirements by using the following common criteria:
● Data storage. Consider how much data will be stored. Will you store a few records

or a few thousand records? Do you know the amount of data to be stored ahead of
time instead of at run time? How do you need to store the data? Does it need to be
stored in order or randomly?

● Type. What type of data do you need to store? Is it strongly typed data? Do you
store variant objects or value types?

126 Improving .NET Application Performance and Scalability

● Growth. How will your data grow? What size of growth? What frequency?
● Access. Do you need indexed access? Do you need to access data by using a

key-value pair? Do you need sorting in addition to searching?
● Concurrency. Does access to the data need to be synchronized? If the data is

regularly updated, you need synchronized access. You may not need
synchronization if the data is read-only.

● Marshaling. Do you need to marshal your data structure across boundaries? For
example, do you need to store your data in a cache or a session store? If so, you
need to make sure that the data structure supports serialization in an efficient way.

Pre-Assign Size for Large Dynamic Growth Data Types
If you know that you need to add a lot of data to a dynamic data type, assign an
approximate size up front wherever you can. This helps avoid unnecessary memory
re-allocations.

Use Value and Reference Types Appropriately
Value types are stack-based and are passed by value, while reference types are heap-
based and are passed by reference. Use the following guidelines when choosing
between pass-by-value and pass-by-reference semantics:
● Avoid passing large value types by value to local methods. If the target method

is in the same process or application domain, the data is copied onto the stack.
You can improve performance by passing a reference to a large structure through
a method parameter, rather than passing the structure by value.

● Consider passing reference types by value across process boundaries. If you
pass an object reference across a process boundary, a callback to the client process
is required each time the objects’ fields or methods are accessed. By passing the
object by value, you avoid this overhead. If you pass a set of objects or a set of
connected objects, make sure all of them can be passed by value.

● Consider passing a reference type when the size of the object is very large or
the state is relevant only within the current process boundaries. For example,
objects that maintain handles to local server resources, such as files.

More Information
For more information about data structures and algorithms, see “Data Structures and
Algorithms” in Chapter 4, “Architecture and Design Review of a .NET Application
for Performance and Scalability.”

 Chapter 3: Design Guidelines for Application Performance 127

Design Guidelines Summary
Table 3.2 summarizes the design guidelines discussed in this chapter and organizes
them by performance profile category.

Table 3.2: Design Guidelines by Performance Profile Category

Performance profile category Guidelines

Coupling and Cohesion Design for loose coupling.

Design for high cohesion.

Partition application functionality into logical layers.

Use early binding where possible.

Evaluate resource affinity.

Communication Choose the appropriate remote communication mechanism.

Design chunky interfaces.

Consider how to pass data between layers.

Minimize the amount of data sent across the wire.

Batch work to reduce calls over the network.

Reduce transitions across boundaries.

Consider asynchronous communication.

Consider message queuing.

Consider a “fire and forget” invocation model.

Concurrency Reduce contention by minimizing lock times.

Balance between coarse-grained and fine-grained locks.

Choose an appropriate transaction isolation level.

Avoid long-running atomic transactions.

Resource Management Treat threads as a shared resource.

Pool shared or scarce resources.

Acquire late, release early.

Consider efficient object creation and destruction.

Consider resource throttling.

(continued)

128 Improving .NET Application Performance and Scalability

Table 3.2: Design Guidelines by Performance Profile Category (continued)

Performance profile category Guidelines

Caching Decide where to cache data.

Decide what data to cache.

Decide the expiration policy and scavenging mechanism.

Decide how to load the cache data.

Avoid distributed coherent caches.

State Management Evaluate stateful versus stateless design.

Consider your state store options.

Minimize session data.

Free session resources as soon as possible.

Avoid accessing session variables from business logic.

Data Structures/Algorithms Choose an appropriate data structure.

Pre-assign size for large dynamic growth data types.

Use value and reference types appropriately.

Desktop Applications Considerations
Desktop applications must share resources, including CPU, memory, network I/O,
and disk I/O, with other processes that run on the desktop computer. A single
application that consumes a disproportionate amount of resources affects other
applications and the overall performance and responsiveness of the desktop. Some of
the more significant aspects to consider if you build desktop applications include the
following:
● Consider UI responsiveness. User interface responsiveness is an important

consideration for desktop applications. You should consider performing long-
running tasks asynchronously by delegating the task to a separate thread rather
than having the main user interface thread do the work. This keeps the user
interface responsive. You can perform asynchronous work in a number of ways,
such as by using the process thread pool, spawning threads, or by using message
queues. However, asynchronous processing adds complexity and requires careful
design and implementation.

● Consider work priorities. When building complex desktop applications, you
must consider the relative priorities of work items within the application and
relative to other applications the user might be running. Background tasks with
lower priorities and unobtrusive UI designs provide better performance for the
user (both actual and perceived) when performing different tasks. Background
network transfers and progressive data loading are two techniques that you can
use to prioritize different work items.

 Chapter 3: Design Guidelines for Application Performance 129

Browser Client Considerations
The following design guidelines help you to improve both actual and perceived
performance for browser clients:
● Force the user to enter detailed search criteria. By validating that the user has

entered detailed search criteria, you can execute more specific queries that result
in less data being retrieved. This helps to reduce round trips to the server and
reduces the volume of data that needs to be manipulated on the server and client.

● Implement client-side validation. Perform client-side validation to avoid invalid
data being submitted to the server and to minimize unnecessary round trips.
Always validate data on the server in addition to using client-side validation for
security reasons, because client-side validation can easily be bypassed.

● Display a progress bar for long-running operations. When you have long-
running operations that you cannot avoid, implement a progress bar on the client
to improve the perceived performance. For more information about how to make
long-running calls from an ASP.NET application, see “How To: Submit and Poll
for Long-Running Tasks” in the “How To” section of this guide.

● Avoid complex pages. Complex pages can result in multiple server calls to your
business logic and they can result in large amounts of data being transferred
across the network. Consider bandwidth restrictions when you design complex
pages and those that contain graphics.

● Render output in stages. You can render output a piece at a time. The upper or
left part of the output for many Web pages is usually the same for all requests and
can be instantly displayed for every request. You can stream the specific part after
you have finished processing the request. Even in those cases, the text display can
precede streaming of images.

● Minimize image size and number of images. Use small compressed images and
keep the number of images to a minimum to reduce the amount of data that needs
to be sent to the browser. GIF and JPEG formats both use compression, but the GIF
format generally produces smaller files when compressing images that have
relatively few colors. JPEG generally produces smaller files when the images
contain many colors.

130 Improving .NET Application Performance and Scalability

Web Layer Considerations
The following recommendations apply to the design of your application’s Web layer:
● Consider state management implications. Web layer state management involves

storing state (such as client preferences) across multiple calls for the duration of a
user session, or sometimes across multiple user sessions. You can evaluate your
state management approach by using the following criteria: How much data and
how many trips?
Consider the following options:
● Storing data on the client. You can store data on the client and submit it with

each request. If you store data on the client, you need to consider bandwidth
restrictions because the additional state that needs to be persisted across calls
adds to the overall page size. You should store only small amounts of data on
the client so that the effect on the response time for the target bandwidth is
minimal, given a representative load of concurrent users.

● Storing data in the server process. You can store per-user data in the host
process on the server. If you choose to store user data on the server, remember
that the data consumes resources on the server until the session times out. If the
user abandons the session without any notification to the Web application, the
data continues to consume server resources unnecessarily until the session
times out. Storing user data in the server process also introduces server affinity.
This limits your application’s scalability and generally prevents network load
balancing.

● Storing data in a remote server process. You can store per-user data in remote
state store. Storing data on a remote server introduces additional performance
overhead. This includes network latency and serialization time. Any data that
you store must be serializable and you need to design up front to minimize the
number of round trips required to fetch the data. The remote store option does
enable you to scale out your solution by, for example, using multiple Web
servers in a Web farm. A scalable, fault tolerant remote store such as a SQL
Server database also improves application resilience.

● Consider how you build output. Web output can be HTML, XML, text, images, or
some other file type. The activities required to render output include retrieving the
data, formatting the data, and streaming it to the client. Any inefficiency in this
process affects all users of your system.
Some key principles that help you build output efficiently include the following:
● Avoid interspersing user interface and business logic.
● Retain server resources such as memory, CPU, threads, and database

connections for as little time as possible.
● Minimize output concatenation and streaming overhead by recycling the

buffers used for this purpose.

 Chapter 3: Design Guidelines for Application Performance 131

● Implement paging. Implement a data paging mechanism for pages that display
large amounts of data such as search results screens. For more information about
how to implement data paging, see “How To: Page Records in .NET Applications”
in the “How To” section of this guide.

● Minimize or avoid blocking calls. Calls that block your Web application result in
queued and possibly rejected requests and generally cause performance and
scalability issues. Minimize or avoid blocking calls by using asynchronous method
calls, a “fire and forget” invocation model, or message queuing.

● Keep objects close together where possible. Objects that communicate across
process and machine boundaries incur significantly greater communication
overhead than local objects. Choose the proper locality for your objects based on
your reliability, performance, and scalability needs.

Business Layer Considerations
Consider the following design guidelines to help improve the performance and
scalability of your business layer:
● Instrument your code up front. Instrument your application to gather custom

health and performance data that helps you track whether your performance
objectives are being met. Instrumentation can also provide additional information
about the resource utilization associated with your application’s critical and
frequently performed operations.
Design your instrumentation so that it can be enabled and disabled through
configuration file settings. By doing so, you can minimize overhead by enabling
only the most relevant counters when you need to monitor them.

● Prefer a stateless design. By following a stateless design approach for your
business logic, you help minimize resource utilization in your business layer and
you ensure that your business objects do not hold onto shared resources across
calls. This helps reduce resource contention and increase performance. Stateless
objects also make it easier for you to ensure that you do not introduce server
affinity, which restricts your scale-out options.
Ideally, with a stateless design, the lifetime of your business objects is tied to the
lifetime of a single request. If you use singleton objects, you should store state
outside of the object in a resource manager, such as a SQL Server database, and
rehydrate the object with state before servicing each request.
Note that a stateless design may not be a requirement if you need to operate only
on a single server. In this case, stateful components can actually help improve
performance by removing the overhead of storing state outside of components or
having the clients send the necessary state for servicing the request.

132 Improving .NET Application Performance and Scalability

● Partition your logic. Avoid interspersing your business logic with your
presentation logic or data access logic. Doing so significantly reduces the
maintainability of your application and introduces versioning issues. Interspersed
logic often results in a chatty, tightly coupled system that is difficult to optimize
and tune in parts.

● Free shared resources as soon as possible. It is essential for scalability that you
free limited and shared resources, such as database connections, as soon as you
are finished with them. You must also ensure that this occurs even if exceptions
are generated.

Data Access Layer Considerations
Consider the following design guidelines to help improve performance and
scalability of your data access layer:
● Consider abstraction versus performance. If your application uses a single

database, use the database-specific data provider.
If you need to support multiple databases, you generally need to have an
abstraction layer, which helps you transparently connect to the currently
configured store. The information regarding the database and provider is
generally specified in a configuration file. While this approach is very flexible,
it can become a performance overhead if not designed appropriately.

● Consider resource throttling. In certain situations, it is possible for a single
request to consume a disproportionate level of server-side resources. For example,
a select query that spans a large number of tables might place too much stress on
the database server. A request that locks a large number of rows on a frequently
used table causes contention issues. This type of situation affects other requests,
overall system throughput, and response times.
Consider introducing safeguards and design patterns to prevent this type of issue.
For example, implement paging techniques to page through a large amount of
data in small chunks rather than reading the whole set of data in one go. Apply
appropriate database normalization and ensure that you only lock a small range
of relevant rows.

● Consider the identities you flow to the database. If you flow the identity of the
original user to the database, the connection cannot be reused by other users
because the connection request to the database is authorized based on the caller’s
identity. Unless you have a specific requirement where you have a wide audience
of both trusted and nontrusted users, you should make all the requests to the
database by using a single identity. Single identity calls improve scalability by
enabling efficient connection pooling.

 Chapter 3: Design Guidelines for Application Performance 133

● Separate read-only and transactional requests. Avoid interspersing read-only
requests within a transaction. This tends to increase the time duration for the
transaction, which increases lock times and increases contention. Separate out
and complete any read-only requests before starting a transaction that requires
the data as input.

● Avoid unnecessary data returns. Avoid returning data unnecessarily from
database operations. The database server returns control faster to the caller when
using operations that do not return. You should analyze your stored procedures
and “write” operations on the database to minimize returning data the application
does not need, such as row counts, identifiers, and return codes.

Summary
This chapter has shown you a set of design principles and patterns to help you
design applications capable of meeting your performance and scalability objectives.

Designing for performance and scalability involves tradeoffs. Other quality-of-service
attributes, including availability, manageability, integrity, and security, must also be
considered and balanced against your performance objectives. Make sure you have a
clear idea of what your performance objectives are (including resource constraints)
during the design phase.

For more information about technology-specific design guidelines, see the “Design
Considerations” section of each of the chapters in Part III, “Application Performance
and Scalability.”

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Architecture and Design Review for

Performance and Scalability” in the “Checklists” section of this guide.
● For a question-driven approach to reviewing your architecture and design from

a performance perspective, see Chapter 4, “Architecture and Design Review of a
.NET Application for Performance and Scalability.”

● For a question-driven approach to reviewing code and implementation from a
performance perspective, see Chapter 13, “Code Review: .NET Application
Performance.”

134 Improving .NET Application Performance and Scalability

● For information about how to assess whether your software architecture will meet
its performance objectives, see PASA: An Architectural Approach to Fixing Software
Performance Problems, by Lloyd G. Williams and Connie U. Smith, at

● For more information about application architecture, see Application Architecture
for .NET: Designing Applications and Services, on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

● For more information about patterns, see Enterprise Solution Patterns Using
Microsoft .NET, on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpatterns/html/ESP.asp.

● For more information about security, see Building Secure ASP.NET Applications:
Authentication, Authorization and Secure Communication, on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp and Improving Web Application Security: Threats and
Countermeasures, on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/ThreatCounter.asp.

http://www.perfeng.com/papers/pasafix.pdf.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/ESP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/ESP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://www.perfeng.com/papers/pasafix.pdf

4
Architecture and Design Review of
a .NET Application for Performance
and Scalability

Objectives
● Analyze and review the performance and scalability aspects of application

architecture and design.
● Learn what to look for and the key questions to ask when reviewing existing

and new application architecture and design.

Overview
The performance characteristics of your application are determined by its architecture
and design. Your application must have been architected and designed with sound
principles and best practices. No amount of fine-tuning your code can disguise the
performance implications resulting from bad architecture or design decisions.

This chapter starts by introducing a high-level process you can follow for your
architecture and design reviews. It then presents deployment and infrastructure
considerations, followed by a comprehensive set of questions that you can use to
help drive your application reviews. Review questions are presented in sections
that are organized by the performance and scalability frame introduced in Chapter 1,
“Fundamentals of Engineering for Performance.”

136 Improving .NET Application Performance and Scalability

How to Use This Chapter
This chapter presents a series of questions that you should use to help perform
a thorough review of your application architecture and design. There are several
ways to get the most from this chapter:
● Jump to topics or read from beginning to end. The main headings in this

chapter help you locate the topics that interest you. Alternatively, you can
read this chapter from beginning to end to gain a thorough appreciation of
performance and scalability design issues.

● Integrate performance and scalability review into your design process. Start
reviewing as soon as possible. As your design evolves, review the changes and
refinements by using the questions presented in this chapter.

● Know the key performance and scalability principles. Read Chapter 3,
“Design Guidelines for Application Performance,” to learn about the overarching
principles that help you design Web applications that meet your performance and
scalability objectives. It is important to know these fundamental principles to
improve the results of your review process.

● Evolve your performance and scalability review. This chapter provides the
questions you should ask to improve the performance and scalability of your
design. To complete the process, it is highly likely that you will need to add
specific questions that are unique to your application.

● Use the accompanying checklist in the “Checklists” section of this guide. Use
the “Checklist: Architecture and Design Review for Performance and Scalability”
checklist to quickly view and evaluate the guidelines presented in this chapter.

Architecture and Design Review Process
The review process analyzes the performance implications of your application’s
architecture and design. If you have just completed your application’s design,
the design documentation can help you with this process. Regardless of how
comprehensive your design documentation is, you must be able to decompose
your application and be able to identify key items, including boundaries, interfaces,
data flow, caches, and data stores. You must also know the physical deployment
configuration of your application.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 137

Consider the following aspects when you review the architecture and design of
your application:
● Deployment and infrastructure. You review the design of your application in

relation to the target deployment environment and any associated restrictions
that might be imposed by company or institutional policies.

● Performance and scalability frame. Pay particular attention to the design
approaches you have adopted for those areas that most commonly exhibit
performance bottlenecks. This guide refers to these collectively as the performance
and scalability frame.

● Layer by layer analysis. You walk through the logical layers of your application
and examine the performance characteristics of the various technologies that
you have used within each layer. For example, ASP.NET in the presentation layer;
Web services, Enterprise Services, and Microsoft®.NET remoting within the
business layer; and Microsoft SQL Server™ within the data access layer.

Figure 4.1 shows this three-pronged approach to the review process.

Performance and Scalability Frame

Coupling and Cohesion

Communication

Concurrency

Resource Management

Deployment and
Infrastructure

Technologies

Application

Layers and Tiers

Logical Partitioning

ASP.NET

Web Services

Enterprise Services

Remoting

Data Access

2

31

Boundaries

COM Interop

Data Structures / Algorithms

Caching, State Management

Figure 4.1
The application review process

The remainder of this chapter presents the key considerations and questions to ask
during the review process for each of these distinct areas, except for technologies. For
more information about questions to ask for each of the technologies, see Chapter 13,
“Code Review: .NET Application Performance.”

138 Improving .NET Application Performance and Scalability

Deployment and Infrastructure
Assess your deployment environment and any deployment restrictions well before
deployment. The key issues that you need to consider include:
● Do you need a distributed architecture?
● What distributed communication should you use?
● Do you have frequent interaction across boundaries?
● What restrictions does your infrastructure impose?
● Do you consider network bandwidth restrictions?
● Do you share resources with other applications?
● Does your design support scaling up?
● Does your design support scaling out?

Do You Need a Distributed Architecture?
If you host your business logic on a remote server, you need to be aware of the
significant performance implications of the additional overheads, such as network
latency, data serialization and marshaling, and, often, additional security checks.
Figure 4.2 shows the nondistributed and distributed architectures.

Database Server Web Server

Presentation

Application
Server

Business

Data

Database Server Web Server

Presentation

Business

Data

Figure 4.2
Nondistributed and distributed architectures

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 139

By keeping your logical layers physically close to one another, such as on the same
server or even in the same process, you minimize round trips and reduce call latency.
If you do use a remote application tier, make sure your design minimizes the
overhead. Where possible, batch together calls that represent a single unit of work,
design coarse-grained services, and cache data locally, where appropriate. For more
information about these design guidelines, see Chapter 3, “Design Guidelines for
Application Performance.”

The following are some sample scenarios where you would opt for a remote
application tier:
● You might need to add a Web front end to an existing set of business logic.
● Your Web front end and business logic might have different scaling needs. If

you need to scale out only the business logic part, but both front end and business
logic are on the same computer, you unnecessarily end up having multiple copies
of the front end, which adds to the maintenance overhead.

● You might want to share your business logic among multiple client applications.
● The security policy of your organization might prohibit you from installing

business logic on your front-end Web servers.
● Your business logic might be computationally intensive, so you want to offload

the processing to a separate server.

What Distributed Communication Should You Use?
Services are the preferred communication across application boundaries, including
platform, deployment, and trust boundaries.

If you use Enterprise Services, it should be within a service implementation, or
if you run into performance issues when using Web services for cross-process
communication. Make sure you use Enterprise Services only if you need the
additional feature set (such as object pooling, declarative, distributed transactions,
role-based security, and queued components).

If you use .NET remoting, it should be for cross-application domain communication
within a single process and not for cross-process or cross-server communication. The
other situation where you might need to use .NET remoting is if you need to support
custom wire protocols. However, understand that this customization will not port
cleanly to future Microsoft implementations.

More Information

For more information, see “Prescriptive Guidance for Choosing Web Services,
Enterprise Services, and .NET Remoting” in Chapter 11, “Improving Remoting
Performance.”

140 Improving .NET Application Performance and Scalability

Do You Have Frequent Interaction Across Boundaries?
Ensure that your design places frequently interacting components that perform a
single unit of work within the same boundary or as close as possible to each other.
Components that are frequently interacting across boundaries can hurt performance,
due to the increased overhead associated with call latency and serialization. The
boundaries that you need to consider, from a performance perspective, are
application domains, apartments, processes, and servers. These are arranged in
ascending order of increasing cost overhead.

What Restrictions Does Your Infrastructure Impose?
Target environments are often rigidly defined, and your application design needs to
accommodate the imposed restrictions. Identify and assess any restrictions imposed
by your deployment infrastructure, such as protocol restrictions and firewalls.
Consider the following:
● Do you use internal firewalls?

Is there an internal firewall between your Web server and other remote servers?
This limits your choice of technology on the remote server and the related
communication protocols that you can use. Figure 4.3 shows an internal firewall.

Web Server

External Firewall Internal Firewall

R
em

ot
e

S
er

ve
rs

Figure 4.3
Internal and external firewalls

If your remote server hosts business logic and your internal firewall opens
only port 80, you can use HTTP and Web services for remote communication.
This requires Internet Information Server (IIS) on your application server.
If your remote server runs SQL Server, you need to open TCP port 1433 (or an
alternative port, as configured in SQL Server) on the internal firewall. When
using distributed transactions involving the database, you also have to open
the necessary ports for the Distributed Transaction Coordinator (DTC). For more
information about configuring DCOM to use a specific port range, see “Enterprise
Services (COM+) Security Considerations” in Chapter 17, “Securing Your
Application Server,” in “Improving Web Application Security: Threats and
Countermeasures” on MSDN® at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/ThreatCounter.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 141

● Do you use SSL for your ASP.NET application?
If your ASP.NET application uses SSL, consider the following guidelines:
● Keep page sizes as small as possible and minimize your use of graphics.

Evaluate the use of view state and server controls for your Web pages. Both of
these tend to have a significant impact on page size. To find out whether your
page sizes are appropriate for your scenario, you should conduct tests at the
targeted bandwidth levels. For more information, see Chapter 16, “Testing
.NET Application Performance.”

● Use client-side validation to reduce round trips. For security reasons, you
should also use server-side validation. Client-side validation is easily bypassed.

● Partition your secure and nonsecure pages to avoid the SSL overhead for
anonymous pages.

Do You Consider Network Bandwidth Restrictions?
Consider the following questions in relation to the available network bandwidth in
your particular deployment environment:
● Do you know your network bandwidth?

To identify whether you are constrained by network bandwidth, you need to
evaluate the size of the average request and response, and multiply it by the
expected concurrent load of users. The total figure should be considerably
lower than the available network bandwidth.
If you expect network congestion or bandwidth to be an issue, you should
carefully evaluate your communication strategy and implement various design
patterns to help reduce network traffic by making chunkier calls. For example,
do the following to reduce network round trips:
● Use wrapper objects with coarse-grained interfaces to encapsulate and

coordinate the functionality of one or more business objects that have not been
designed for efficient remote access.

● Wrap and return the data that you need by returning an object by value in a
single remote call.

● Batch your work. For example, you can batch SQL queries and execute them
as a batch in SQL Server.

For more information, see “Minimize the Amount of Data Sent Across the Wire”
in Chapter 3, “Design Guidelines for Application Performance.”

142 Improving .NET Application Performance and Scalability

● Have you considered the client bandwidth?
Make sure you know the minimum bandwidth that clients are likely to use to
access your application. With low bandwidth connections, network latency
accounts for the major part of your application’s response time. The following
design recommendations help address this issue:
● Minimize your page size and use of graphics. Measure page sizes and evaluate

performance by using a variety of bandwidths.
● Minimize the iterations required to complete an operation.
● Minimize the use of view state. For more information, see “View State” in

Chapter 6, “Improving ASP.NET Performance.”
● Use client-side validation (in addition to server-side validation) to help

reduce round trips.
● Retrieve only the data you need. If you need to display a large amount of

information to the user, implement a data paging technique.
● Enable HTTP 1.1 compression. By default, IIS uses the GZIP and DEFLATE

HTTP compression methods. Both compression methods are implemented
through an ISAPI filter. For more information about enabling HTTP
compression, review the IIS documentation. You can find more information
about the GZIP File Format Specification (RFC 1952) and DEFLATE
Compressed Data Format Specification (RFC 1951) at http://www.ietf.org/.

Do You Share Resources with Other Applications?
If your application is hosted by an Internet Service Provider (ISP) or runs in another
hosted environment, your application shares resources — such as processor, memory,
and disk space — with other applications. You need to identify the resource
utilization restrictions. For example, how much CPU is your application allowed to
consume?

Knowing your resource restrictions can help you during the early design and
prototyping stage of your application development.

Does Your Design Support Scaling Up?
You scale up by adding resources, such as processors and RAM, to your existing
servers to support increased capacity. While scaling up is usually simpler than scaling
out, there are pitfalls there as well. For example, you can fail to take advantage of
multiple CPUs.

http://www.ietf.org/

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 143

Does Your Design Support Scaling Out?
You scale out by adding more servers and by using load balancing and clustering
solutions to spread the workload. This approach also provides protection against
some hardware failures because, if one server goes down, another takes over. A
common scaling strategy is to start by scaling up, and then scaling out if it is
required.

To support a scale-out strategy, you need to avoid certain pitfalls in your application
design. To help ensure that your application can be scaled out, review the following
questions:
● Does your design use logical layers?
● Does your design consider the impact of resource affinity?
● Does your design support load balancing?

Does Your Design Use Logical Layers?
You use logical layers, such as the presentation, application, and database layers, to
group related and frequently interacting components. You should strive for logical
partitioning and a design where interfaces act as a contract between layers. This
makes it easier for you to relocate your functionality; for example, if you need to
relocate computationally intensive business logic to another server. Failure to apply
logical layering results in monolithic applications that are difficult to maintain,
enhance, and scale. Maintenance and enhancement is a problem, because it becomes
difficult to gauge the effect of change in one component on the remaining
components in your application.

Note: Logical layering does not necessarily mean that you will have physical partitioning and multiple
tiers when you deploy your application.

Does Your Design Consider the Impact of Resource Affinity?
Resource affinity means that your application logic is heavily dependent on a
particular resource for the successful completion of an operation. The resources
could range from hardware resources, such as CPU, memory, disk, or network, to
other dependencies, such as database connections and Web service connections.

144 Improving .NET Application Performance and Scalability

Does Your Design Support Load Balancing?
Load balancing is an essential technique for the majority of Internet-facing Web
applications. When you design an ASP.NET application, you have a number of
options. You can use network load balancing to divide traffic between the multiple
servers in a Web farm. You can also use load balancing at your application tier by
using COM+ component load balancing or network load balancing; for example,
if you use .NET remoting with the HTTP channel. Consider the following:
● Have you considered the impact of server affinity on scalability goals?

Designs that most commonly cause server affinity are those that associate session
state or data caches with a specific server. Affinity can improve performance in
certain scale-up scenarios. However, it limits the effectiveness when scaling out.
You can still scale out by using sticky sessions so that each client keeps coming to
the same server it was connected to before. The limitation is that, instead of “per
request,” load balancing works on a “per client” basis; this is less effective in some
scenarios. Avoid server affinity by designing appropriate state and caching
mechanisms.

● Do you use in-process session state?
In-process state is stored in the hosting Web server process. Out-of-process
state moves the storage to a separate dedicated shared resource that can be
shared between several processes and servers.
You cannot necessarily switch from using in-process state to out-of-process
state simply by changing your Web.config file configuration. For example, your
application might store objects that cannot be serialized. You need to design and
plan for scaling out by considering the impact of round trips, as well as making
all your types stored in the session serializable. For more information, see “State
Management” later in this chapter.

● Do you use a read-write cache?
A read-write cache is a server cache that is updated with user input. This cache
should serve only as a means to serving Web pages faster, and should not be
necessary to successfully process a request. For more information, see “Caching”
later in this chapter.

Coupling and Cohesion
Coupling refers to the number and type of links (at design or at run time) that exist
between parts of a system. Cohesion measures how many different components take
advantage of shared processing and data. A design goal should be to ensure that
your application is constructed in a modular fashion, and that it contains a set of
highly cohesive components that are loosely coupled.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 145

The coupling and cohesion issues that you need to consider are highlighted in
Table 4.1.

Table 4.1: Coupling and Cohesion Issues

Issues Implications

Not using logical layers Mixing functionally different logic (such as presentation and
business) without clear, logical partitioning limits scalability
options.

Object-based communication
across boundaries

Chatty interfaces lead to multiple round trips.

For more information about the questions and issues raised in this section, see
“Coupling and Cohesion” in Chapter 3, “Design Guidelines for Application
Performance.”

Use the following questions to assess coupling and cohesion within your design:
● Is your design loosely coupled?
● How cohesive is your design?
● Do you use late binding?

Is Your Design Loosely Coupled?
Loose coupling helps to provide implementation independence and versioning
independence. A tightly coupled system is more difficult to maintain and scale.
Techniques that encourage loose coupling include the following:
● Interface-based programming. The interfaces define the methods that

encapsulate business logic complexity.
● Statelessness. The data sent in a single call by the client is sufficient to complete

a logical operation; as a result, there is no need to persist state across calls.

How Cohesive Is Your Design?
Review your design to ensure that logically related entities, such as classes and
methods, are appropriately grouped together. For example, check that your
classes contain a logically related set of methods. Check that your assemblies
contain logically related classes. Weak cohesion can lead to increased round trips
because classes are not bundled logically and may end up residing in different
physical tiers.

146 Improving .NET Application Performance and Scalability

Noncohesive designs often require a mixture of local and remote calls to complete
an operation. This can be avoided if the logically related methods are kept close to
each other and do not require a complex sequence of interaction between various
components. Consider the following guidelines for high cohesion:
● Partition your application in logical layers.
● Organize components in such a way that the classes that contribute to performing

a particular logical operation are kept together in a component.
● Ensure that the public interfaces exposed by an object perform a single coherent

operation on the data owned by the object.

Do You Use Late Binding?
Review your design to ensure that, if you use late binding, you do so for the
appropriate reasons and where you really need to. For example, it might be
appropriate to load an object based on configuration information maintained in a
configuration file. For example, a database-agnostic data access layer might load
different objects, depending on the currently configured database.

If you do use late binding, be aware of the performance implications. Late binding
internally uses reflection, which should be avoided in performance-critical code.
Late binding defers type identification until run time and requires extra processing.
Some examples of late binding include using Activator.CreateInstance to load a
library at run time, or using Type.InvokeMember to invoke a method on a class.

Communication
Increased communication across boundaries decreases performance. Common
design issues with communication include choosing inappropriate transport
mechanisms, protocols, or formatters; using remote calls more than necessary;
and passing more data across remote boundaries than you really need to. For
more information about the questions and issues raised in this section, see
“Communication” in Chapter 3, “Design Guidelines for Application Performance.”

The main communication issues that you need to consider are highlighted in
Table 4.2.

Table 4.2: Communication Issues

Issues Implications

Chatty interfaces Requires multiple round trips to perform a single operation.

Sending more data than you need By sending more data than is required, you increase
serialization overhead and network latency.

Ignoring boundary costs Boundary costs include security checks, thread switches,
and serialization.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 147

To assess how efficient your communication is, review the following questions:
● Do you use chatty interfaces?
● Do you make remote calls?
● How do you exchange data with a remote server?
● Do you have secure communication requirements?
● Do you use message queues?
● Do you make long-running calls?
● Could you use application domains instead of processes?

Do You Use Chatty Interfaces?
Chatty interfaces require multiple round trips to perform a single operation. They
result in increased processing overhead, additional authentication and authorization,
increased serialization overhead, and increased network latency. The exact cost
depends on the type of boundary that the call crosses and the amount and type of
data passed on the call.

To help reduce the chattiness of your interfaces, wrap chatty components with an
object that implements a chunky interface. It is the wrapper that coordinates the
business objects. This encapsulates all the complexity of the business logic layer
and exposes a set of aggregated methods that helps reduce round trips. Apply this
approach to COM interop in addition to remote method calls.

Do You Make Remote Calls?
Making multiple remote calls incurs network utilization as well as increased
processing overhead. Consider the following guidelines to help reduce round trips:
● For ASP.NET applications, use client-side validation to reduce round trips to the

server. For security reasons, also use server-side validation.
● Implement client-side caching to reduce round trips. Because the client is caching

data, the server needs to consider implementing data validation before initiating
a transaction with the client. The server can then validate whether the client is
working with a stale version of the data, which would be unsuitable for this type
of transaction.

● Batch your work to reduce round trips. When you batch your work, you may
have to deal with partial success or partial failure. If you do not design for this,
you may have a batch that is too big, which can result in deadlocks, or you may
have an entire batch rejected because one of the parts is out of order.

148 Improving .NET Application Performance and Scalability

How Do You Exchange Data with a Remote Server?
Sending data over the wire incurs serialization costs as well as network utilization.
Inefficient serialization and sending more data than necessary are common causes
of performance problems. Consider the following:
● Do you use .NET remoting?

If you use .NET remoting, the BinaryFormatter reduces the size of data sent over
the wire. The BinaryFormatter creates a binary format that is smaller in
comparison to the SOAP format created by the SoapFormatter.

● Use the [NonSerialized] attribute to mark any private or public data member
that you do not want to be serialized.

● For more information, see Chapter 11, “Improving Remoting Performance.”
● Do you use ADO.NET DataSets?

If you serialize DataSets or other ADO.NET objects, carefully evaluate whether
you really need to send them across the network. Be aware that they are serialized
as XML even if you use the BinaryFormatter.
Consider the following design options if you need to pass ADO.NET objects over
the wire in performance-critical applications:
● Consider implementing custom serialization so that you can serialize the

ADO.NET objects by using a binary format. This is particularly important
when performance is critical and the size of the objects passed is large.

● Consider using the DataSetSurrogate class for the binary serialization of
DataSets.

For more information, see Chapter 12, “Improving ADO.NET Performance.”
● Do you use Web services?

Web Services uses the XmlSerializer to serialize data. XML is transmitted as plain
text, which is larger than a binary representation. Carefully evaluate the
parameters and payload size for your Web service parameters. Make sure the
average size of the request and response payload, multiplied by the expected
number of concurrent users, is well within your network bandwidth limitations.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 149

Make sure you mark any public member that does not need to be serialized with
the [XmlIgnore] attribute. There are other design considerations that help you to
reduce the size of data transmitted over the wire:
● Prefer the data-centric, message-style design for your Web services. With this

approach, the message acts as a data contract between the Web service and its
clients. The message contains all of the information required to complete a
logical operation.

● Use the document/literal encoding format for your Web services because the
payload size is significantly reduced in comparison to the document/encoded
or RPC/encoded formats.

● If you need to pass binary attachments, consider using Base64 encoding or, if
you use Web Services Enhancements (WSE) at the client and server, consider
using Direct Internet Message Encapsulation (DIME). The client can also have
an implementation other than WSE that supports DIME format. For more
information, see “Using Web Services Enhancements to Send SOAP Messages
with Attachments” on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnwse/html/wsedime.asp.

For more information about Web services, see Chapter 10, “Improving Web
Services Performance.”

More Information

For more information, see the following resources:
● For more information about DataSetSurrogate, see Knowledge Base article

829740, “Improving DataSet Serialization and Remoting Performance,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740.

● For more information about measuring serialization overhead, see Chapter 15,
“Measuring .NET Application Performance.”

● For more information about improving serialization performance, see “How To:
Improve Serialization Performance” in the “How To” section of this guide.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/wsedime.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/wsedime.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740

150 Improving .NET Application Performance and Scalability

Do You Have Secure Communication Requirements?
If it is important to ensure the confidentiality and integrity of your data, you need
to use encryption and keyed hashing techniques; they both have an inevitable impact
on performance. However, you can minimize the performance overhead by using the
correct algorithms and key sizes. Consider the following:
● Do you use the right encryption algorithm and key size?

Depending on how sensitive the data is and how much security you need, you
can use techniques ranging from simple encoding solutions to strong encryption.
If you use encryption, where possible (when both parties are known in advance),
use symmetric encryption instead of asymmetric encryption. Asymmetric
encryption provides improved security but has a much greater performance
impact. A common approach is to use asymmetric only to exchange a secret key
and then to use symmetric encryption.

More Information

For more information, see “Cryptography” in Chapter 7, “Building Secure
Assemblies,” of Improving Web Application Security: Threats and Countermeasures
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec
/html/ThreatCounter.asp.

Do You Use Message Queues?
Using message queues allows you to queue work for a component without blocking
for results. Message queues are particularly useful to decouple the front- and back-
end components in a system and to improve system reliability. When processing is
complete, the server can post results back to a client-side message queue, where each
message can be identified and reconciled with a unique message ID. If necessary, you
can use a dedicated background process on the client to process message responses.

To use a component-based programming model with message queuing, consider
using Enterprise Services Queued Components.

Do You Make Long-Running Calls?
A long-running call can be any type of work that takes a long time to complete.
Long is a relative term. Usually, long-running calls result from calling Web services,
a remote database server, or a remote component. For a server application, long-
running calls may end up blocking the worker, I/O threads, or both, depending on
the implementation logic.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 151

The following designs help you avoid the impact of blocking with long-running calls:
● Use message queues. If the client requires a success indicator or results from the

server process later on, use a client-side queue.
● If the client does not need any data from the server, consider the [OneWay]

attribute. With this “fire and forget” model, the client issues the call and then
continues without waiting for results.

● If a client makes a long-running call and cannot proceed without the results,
consider asynchronous invocation. For server applications, asynchronous
invocation allows the worker thread that invokes the call to continue and perform
additional processing before retrieving the results. In most of the scenarios, if the
results are not available at this point, the worker thread blocks until the results are
returned.

More Information

For more information about handling long-running calls from ASP.NET, see “How
To: Submit and Poll for Long-Running Tasks” in the “How To” section of this guide.

For more information about using the OneWay attribute with Web services, see
“One-Way (Fire-and-Forget) Communication” in Chapter 10, “Improving Web
Services Performance.”

Could You Use Application Domains Instead of Processes?
Cross-application domain communication is considerably faster than interprocess
communication (IPC). Some scenarios where multiple application domains would
be appropriate include the following:
● Your application spawns a copy of itself often.
● Your application spends a lot of time in IPC with local programs that work

exclusively with your application.
● Your application opens and closes other programs to perform work.

While cross-application domain communication is far faster than IPC, the cost of
starting and closing an application domain can actually be more expensive. There
are other limitations; for example, a fatal error in one application domain could
potentially bring the entire process down and there could be resource limitation
when all application domains share the same limited virtual memory space of the
process.

152 Improving .NET Application Performance and Scalability

Concurrency
Use the questions in this section to assess how well your design minimizes
contention and maximizes concurrency.

The main concurrency issues that you need to consider are highlighted in Table 4.3.

Table 4.3: Concurrency Issues

Issues Implications

Blocking calls Stalls the application, and reduces response time and throughput.

Nongranular locks Stalls the application, and leads to queued requests and timeouts.

Misusing threads Additional processor and memory overhead due to context
switching and thread management overhead.

Holding onto locks longer
than necessary

Causes increased contention and reduced concurrency.

Inappropriate isolation levels Poor choice of isolation levels results in contention, long wait time,
timeouts, and deadlocks.

To assess concurrency issues, review the following questions:
● Do you need to execute tasks concurrently?
● Do you create threads on a per-request basis?
● Do you design thread safe types by default?
● Do you use fine-grained locks?
● Do you acquire late and release early?
● Do you use the appropriate synchronization primitive?
● Do you use an appropriate transaction isolation level?
● Does your design consider asynchronous execution?

Do You Need to Execute Tasks Concurrently?
Concurrent execution tends to be most suitable for tasks that are independent of
each other. You do not benefit from asynchronous implementation if the work is
CPU bound (especially for single processor servers) instead of I/O-bound. If the
work is CPU bound, an asynchronous implementation results in increased utilization
and thread switching on an already busy processor. This is likely to hurt performance
and throughput.

Consider using asynchronous invocation when the client can execute parallel
tasks that are I/O-bound as part of the unit of work. For example, you can use an
asynchronous call to a Web service to free up the executing thread to do some parallel
work before blocking on the Web service call and waiting for the results.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 153

Do You Create Threads on a Per-Request Basis?
Review your design and ensure that you use the thread pool. Using the thread
pool increases the probability for the processor to find a thread in a ready to run
state (for processing), which results in increased parallelism among the threads.

Threads are shared resources and are expensive to initialize and manage. If you
create threads on a per-request basis in a server-side application, this affects
scalability by increasing the likelihood of thread starvation and affects performance,
due to the increased overhead of thread creation, processor context switching, and
garbage collection.

Do You Design Thread Safe Types by Default?
Avoid making types thread safe by default. Thread safety adds an additional
layer of complexity and overhead to your types, which is often unnecessary if
synchronization issues are dealt with by a higher-level layer of software.

Do You Use Fine-Grained Locks?
Evaluate the tradeoff between having coarse-grained and fine-grained locks.
Fine-grained locks ensure atomic execution of a small amount of code. When used
properly, they provide greater concurrency by reducing lock contention. When used
at the wrong places, the fine-grained locks may add complexity and decrease
performance and concurrency.

Do You Acquire Late and Release Early?
Acquiring late and releasing shared resources early is the key to reducing contention.
You lock a shared resource by locking all the code paths accessing the resource. Make
sure to minimize the duration that you hold and lock on these code paths, because
most resources tend to be shared and limited. The faster you release the lock, the
earlier the resource becomes available to other threads.

The correct approach is to determine the optimum granularity of locking for your
scenario:
● Method level synchronization. It is appropriate to synchronize at the method

level when all that the method does is act on the resource that needs synchronized
access.

● Synchronizing access to relevant piece of code. If a method needs to validate
parameters and perform other operations beyond accessing a resource that
requires serialized access, you should consider locking only the relevant lines
of code that access the resource. This helps to reduce contention and improve
concurrency.

154 Improving .NET Application Performance and Scalability

Do You Use the Appropriate Synchronization Primitive?
Using the appropriate synchronization primitive helps reduce contention for
resources. There may be scenarios where you need to signal other waiting threads
either manually or automatically, based on the trigger of an event. Other scenarios
vary by the frequency of read and write updates. Some of the guidelines that help
you choose the appropriate synchronization primitive for your scenario are the
following:
● Use Mutex for interprocess communication.
● Use AutoResetEvent and ManualResetEvent for event signaling.
● Use System.Threading.InterLocked for synchronized increments and decrements

on integers and longs.
● Use ReaderWriterLock for multiple concurrent reads. When the write operation

takes place, it is exclusive because all other read and write threads are queued up.
● Use lock when you do want to allow one reader or writer acting on the object at a

time.

Do You Use an Appropriate Transaction Isolation Level?
When considering units of work (size of transactions), you need to think about
what your isolation level should be and what locking will be required to provide that
isolation level and, therefore, what your risk of deadlocks and deadlock-based retrys
are. You need to select appropriate isolation levels for your transactions to ensure that
data integrity is preserved without unduly affecting application performance.

Selecting an isolation level higher than you need means that you lock objects in
the database for longer periods of time and increase contention for those objects.
Selecting an isolation level that is too low increases the probability of losing data
integrity by causing dirty reads or writes.

If you are unsure of the appropriate isolation level for your database, you should
use the default implementation, which is designed to work well in most scenarios.

Note: You can selectively lower the isolation level used in specific queries, rather than changing it for
the entire database.

For more information, see Chapter 14, “Improving SQL Server Performance.”

Does Your Design Consider Asynchronous Execution?
Asynchronous execution of work allows the main processing thread to offload the
work to other threads, so it can continue to do some additional processing before
retrieving the results of the asynchronous call, if they are required.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 155

Scenarios that require I/O-bound work, such as file operations and calls to Web
services, are potentially long-running and may block on the I/O or worker threads,
depending on the implementation logic used for completing the operation. When
considering asynchronous execution, evaluate the following questions:
● Are you designing a Windows Forms application?

Windows Forms applications executing an I/O call, such as a call to a Web
service or a file I/O operation, should generally use asynchronous execution to
keep the user interface responsive. The .NET Framework provides support for
asynchronous operations in all the classes related to I/O activities, except in
ADO.NET.

● Are you designing a server application?
Server applications should use asynchronous execution whenever the work is
I/O-bound, such as calling Web services if the application is able to perform
some useful work when the executing worker thread is freed.
You can free up the worker thread completely by submitting work and polling for
results from the client at regular intervals. For more information about how to do
this, see “How To: Submit and Poll for Long-Running Tasks” in the “How To”
section of this guide.
Other approaches include freeing up the worker thread partially to do some useful
work before blocking for the results. These approaches use Mutex derivates such
as WaitHandle.
For server applications, you should not call the database asynchronously, because
ADO.NET does not have support for such operations and it requires the use of
delegates that run on worker threads for processing. You might as well block on
the original thread rather than using another worker thread to complete the
operation.

● Do you use the asynchronous design pattern?
The .NET Framework provides a design pattern for asynchronous communication.
The advantage is that it is the caller that decides whether a particular call should
be asynchronous. It is not necessary for the callee to expose plumbing for
asynchronous invocation. Other advantages include type safety.
For more information, see “Asynchronous Design Pattern Overview”
in the .NET Framework Developer’s Guide on MSDN at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconasynchronousdesignpatternoverview.asp.

More Information

For more information about the questions and issues raised in this section, see
“Concurrency” in Chapter 3, “Design Guidelines for Application Performance.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconasynchronousdesignpatternoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconasynchronousdesignpatternoverview.asp

156 Improving .NET Application Performance and Scalability

Resource Management
Common resource management issues include failing to release and pool resources
in a timely manner and failing to use caching, which leads to excessive resource
access. For more information about the questions and issues raised in this section,
see ”Resource Management” in Chapter 3, “Design Guidelines for Application
Performance.”

The main resource management issues that you need to consider are highlighted in
Table 4.4.

Table 4.4: Resource Management Issues

Issues Implications

Not pooling costly resources Can result in creating many instances of the resources along with
its connection overhead. Increase in overhead cost affects the
response time of the application.

Holding onto shared resources Not releasing (or delaying the release of) shared resources, such
as connections, leads to resource drain on the server and limits
scalability.

Accessing or updating large
amounts of data

Retrieving large amounts of data from the resource increases the
time taken to service the request, as well as network latency.
This should be avoided, especially on low bandwidth access,
because it affects response time. Increase in time spent on the
server also affects response time as concurrent users increase.

Not cleaning up properly Leads to resource shortages and increased memory
consumption; both of these affect scalability.

Failing to consider how to
throttle resources

Large numbers of clients can cause resource starvation and
overload the server.

To assess the efficiency of your application’s resource management, review the
following questions:
● Does your design accommodate pooling?
● Do you acquire late and release early?

Does Your Design Accommodate Pooling?
Identify resources that incur lengthy initialization and make sure that you use
pooling, where possible, to efficiently share them among multiple clients. Resources
suitable for pooling include threads, network connections, I/O buffers, and objects.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 157

As a general guideline, create and initialize pools at application startup. Make sure
that your client code releases the pooled object as soon as it finishes with the
resource. Consider the following:
● Do you use Enterprise Services?

Consider object pooling for custom objects that are expensive to create. Object
pooling lets you configure and optimize the maximum and minimum size of the
object pool. For more information, see “Object Pooling” in Chapter 8, “Improving
Enterprise Services Performance.”

● Do you treat threads as shared resources?
Use the .NET thread pool, where possible, instead of creating threads on a
per-request basis. By default, the thread pool is self-tuning and you should change
its defaults only if you have specific requirements. For more information about
when and how to configure the thread pool, see “Threading Explained” in
Chapter 6, “Improving ASP.NET Performance” and “Threading” in Chapter 10,
“Improving Web Services Performance.”

● Do you use database connection pooling?
You should connect to the database by using a single trusted identity. Avoid
impersonating the original caller and using that identity to access the database.
By using a trusted subsystem approach instead of impersonation, it enables you
to use connection pooling efficiently.

More Information

For more information about connection pooling, see “Connections” in Chapter 12,
“Improving ADO.NET Performance.”

Do You Acquire Late and Release Early?
Minimize the duration that you hold onto a resource. When you work with a shared
resource, the faster you release it, the faster it becomes available for other users. For
example, you should acquire a lock on a resource just before you need to perform the
actual operation, rather than holding onto it in the pre-processing stage. This helps
reduce contention for the shared resources.

Caching
Assess your application’s approach to caching and identify where, when, and
how your application caches data. Review your design to see if you have missed
opportunities for caching. Caching is one of the best known techniques for improving
performance.

158 Improving .NET Application Performance and Scalability

The main caching issues that you need to consider are highlighted in Table 4.5.

Table 4.5: Caching Issues

Issues Implications

Not using caching when
you can

Round trips to data store for every single user request,
increased load on the data store.

Updating your cache more
frequently than you need to

Increased client response time, reduced throughput, and increased
server resource utilization.

Caching the inappropriate
form of data

Increased memory consumption, resulting in reduced performance,
cache misses, and increased data store access.

Caching volatile or
user-specific data

Frequently changing data requires frequent expiration of cache,
resulting in excess usage of CPU, memory, and network resources.

Holding cache data for
prolonged periods

With inappropriate expiration policies or scavenging mechanisms,
your application serves stale data.

Not having a cache
synchronization mechanism
in Web farm

This means that the cache in the servers in the farm is not
the same and can lead to improper functional behavior of the
application.

To assess how effectively your application uses caching, review the following
questions:
● Do you cache data?
● Do you know which data to cache?
● Do you cache volatile data?
● Have you chosen the right cache location?
● What is your expiration policy?

Do You Cache Data?
Do you make expensive lookups on a per-request basis? If you operate on data that is
expensive to retrieve, compute, or render, it is probably a good candidate for caching.
Identify areas in your application that might benefit from caching.

Do You Know Which Data to Cache?
Identify opportunities for caching early during your application’s design.
Avoid considering caching only in the later stages of the development cycle
as an emergency measure to increase performance.

Prepare a list of data suitable for caching throughout the various layers of your
application. If you do not identify candidate data for caching up front, you can easily
generate excessive redundant traffic and perform more work than is necessary.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 159

Potential candidates for caching include the following:
● Relatively static Web pages. You can cache pages that do not change frequently

by using the output cache feature of ASP.NET. Consider using user controls to
contain the static portions of a page. This enables you to benefit from ASP.NET
fragment caching.

● Specific items of output data. You can cache data that needs to be displayed to
users in the ASP.NET Cache class.

● Stored procedure parameters and query results. You can cache frequently used
query parameters and query results. This is usually done in the data access layer
to reduce the number of round trips to the database. Caching partial results helps
dynamic pages generate a wide set of output (such as menus and controls) from a
small set of cached results.

Do You Cache Volatile Data?
Do you know the frequency at which data is modified? Use this information to
decide whether to cache the data. You should also be aware of how out-of-date the
data you display can be, with respect to the source data. You should be aware of the
permissible time limit for which the stale data can be displayed, even when the data
has been updated in its source location.

Ideally, you should cache data that is relatively static over a period of time, and
data that does not need to change for each user. However, even if your data is quite
volatile and changes, for example, every two minutes, you can still benefit from
caching. For example, if you usually expect to receive requests from 20 clients in a
2-minute interval, you can save 20 round trips to the server by caching the data.

To determine whether caching particular sets of data is beneficial, you should
measure performance both with and without caching.

Have You Chosen the Right Cache Location?
Make sure you cache data at a location where it saves the most processing and
round trips. It also needs to be a location that supports the lifetime you require for
the cached items. You can cache data at various layers in your application. Review
the following layer-by-layer considerations:
● Do you cache data in your presentation layer?

You should cache data in the presentation layer that needs to be displayed to the
user. For example, you can cache the information that is displayed in a stock ticker.
You should generally avoid caching per-user data, unless the user base is very
small and the total size of the data cache does not require too much memory.
However, if users tend to be active for a while and then go away again, caching
per-user data for short time periods may be the appropriate approach. This
depends on your caching policy.

160 Improving .NET Application Performance and Scalability

● Do you cache data in your business layer?
Cache data in the business layer if you need it to process requests from the
presentation layer. For example, you can cache the input parameters to a stored
procedure in a collection.

● Do you cache data in your database?
You can consider caching data in temporary tables in a database if you need it for
lengthy periods. It is useful to cache data in a database when it takes a long time
to process the queries to get a result set. The result set may be very large in size, so
it would be prohibitive to send the data over the wire to be stored in other layers.
For a large amount of data, implement a paging mechanism that enables the user
to retrieve the cached data a chunk at a time. You also need to consider the
expiration policy for data when the source data is updated.

● Do you know the format in which the cached data will be used?
Prefer caching data in its most ready state so that it does not need any additional
processing or transformations. For example, you can cache a whole Web page by
using output caching. This significantly reduces the ASP.NET processing overhead
on your Web server.

● Do you write to the cache?
If you write user updates to a cache before updating them in a persistent database,
this creates server affinity. This is problematic if your application is deployed in a
Web farm, because the request from a particular client is tied to a particular server,
due to localized cache updates.
To avoid this situation, you should update cached data only to further improve
performance and not if it is required for successful request processing. In this way,
requests can still be successfully served by other servers in the same cluster in a
Web farm.
Consider using a session state store for user-specific data updates.

What Is Your Expiration Policy?
An inappropriate expiration policy may result in frequent invalidation of the cached
data, which negates the benefits of caching. Consider the following while choosing an
expiration mechanism:
● How often is the cached information allowed to be wrong?

Keep in mind that every piece of cached data is already potentially stale. Knowing
the answer to this question helps you evaluate the most appropriate absolute or
sliding expiration algorithms.

● Is there any dependency whose change invalidates the cached data?
You need to evaluate dependency-based algorithms. For example, the ASP.NET
Cache class allows data expiration if changes are made to a particular file. Note
that, in some scenarios, it might be acceptable to display data that is a little old.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 161

● Is the lifetime dependent upon how frequently the data is used?
If the answer is yes, you need to evaluate the least recently used or least frequently
used algorithms.

● Do you repopulate caches for frequently changing data?
If your data changes frequently, it may or may not be a good candidate for
caching. Evaluate the performance benefits of caching against the cost of building
the cache. Caching frequently changing data can be an excellent idea if slightly
stale data is good enough.

● Have you implemented a caching solution that takes time to load?
If you need to maintain a large cache and the cache takes a long time to build,
consider using a background thread to build the cache or build up the cache
incrementally over time. When the current cache expires, you can then swap out
the current cache with the updated cache you built in the background. Otherwise,
you may block client requests while they wait for the cache to update.

More Information

For more information, see the following resources:
● For more information about the questions raised in this section, see “Caching” in

Chapter 3, “Design Guidelines for Application Performance.”
● For more information and guidelines about caching, see the Caching Architecture

Guide for .NET Framework Applications on MSDN at http://msdn.microsoft.com
/library/en-us/dnbda/html/CachingArch.asp.

● For middle-tier caching solutions, consider the Caching Application Block for .NET
on MSDN at http://msdn.microsoft.com/library/en-us/dnpag/html/CachingBlock.asp.

State Management
The main state management issues that you need to consider are highlighted in
Table 4.6.

Table 4.6: State Management Issues

Issues Implications

Stateful components Holds server resources and can cause server affinity,
which reduces scalability options.

Use of an in-memory state store Limits scalability due to server affinity.

Storing state in the database or server
when the client is a better choice

Increased server resource utilization; limited server
scalability.

(continued)

http://msdn.microsoft.com/library/en-us/dnbda/html/CachingArch.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/CachingArch.asp
http://msdn.microsoft.com/library/en-us/dnpag/html/CachingBlock.asp

162 Improving .NET Application Performance and Scalability

Table 4.6: State Management Issues (continued)

Issues Implications

Storing state on the server when a
database is a better choice

In-process and local state stored on the Web server
limits the ability of the Web application to run in a Web
farm. Large amounts of state maintained in memory also
create memory pressure on the server.

Storing more state than you need Increased server resource utilization, and increased time
for state storage and retrieval.

Prolonged sessions Inappropriate timeout values result in sessions
consuming and holding server resources for longer
than necessary.

For more information about the questions raised in this section, see “State
Management” in Chapter 3, “Design Guidelines for Application Performance.”

To assess the state management efficiency, review the following questions:
● Do you use stateless components?
● Do you use .NET remoting?
● Do you use Web services?
● Do you use Enterprise Services?
● Have you ensured objects to be stored in session stores are serializable?
● Do you depend on view state?
● Do you know the number of concurrent sessions and average session data

per user?

Do You Use Stateless Components?
Carefully consider whether you need stateful components. A stateless design is
generally preferred because it offers greater options for scalability. Some of the key
considerations are the following:
● What are the scalability requirements for your application?

If you need to be able to locate your business components on a remote clustered
middle tier, you may either need to plan for stateless components, or store state on
a different server that is accessible by all of the servers in your middle-tier cluster.
If you do not have such scalability requirements, stateful components in certain
scenarios help improve performance, because the state need not be transmitted by
the client over the wire or retrieved from a remote database.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 163

● How do you manage state in stateless components?
If you design for stateless components and need to abstract state management,
you need to know the lifetime requirements and size of the state data. If you opt
for stateless components, some options for state management are the following:
● Passing state from the client on each component call. This method is efficient

if multiple calls are not required to complete a single logical operation and if
the amount of data is relatively small. This is ideal if the state is mostly needed
to process requests and can be disposed of once the processing is complete.

● Storing state in a database. This approach is appropriate if the operation spans
multiple calls such that transmitting state from the client would be inefficient,
the state is to be accessed by multiple clients, or both.

Do You Use .NET Remoting?
.NET remoting supports server-activated objects (SAOs) and client-activated objects
(CAOs). If you have specific scalability requirements and need to plan for a load-
balanced environment, you should prefer single call SAOs. These objects retain state
only for the duration of a single request.

Singleton SAOs may be stateful or stateless and can rehydrate state from various
mediums, depending on requirements. Use these when you need to provide
synchronized access to a particular resource.

If your scalability objectives enable you to use a single server, you can evaluate the
use of CAOs, which are stateful objects. A client-activated object can be accessed only
by the particular instance of the client that created it. Hence, they are capable of
storing state across calls.

For more information, see “Design Considerations” in Chapter 11, “Improving
Remoting Performance.”

Do You Use Web Services?
Stateful Web services signify a RPC or distributed object design. With RPC-style
design, a single logical operation can span multiple calls. This type of design often
increases round trips and usually requires that state is persisted across multiple calls.

A message-based approach is usually preferable for Web services. With this approach,
the payload serves as a data contract between the client and the server. The client
passes the payload to the server. This contains sufficient information to complete a
single unit of work. This generally does not require any state to be persisted across
calls, and, as a result, this design can be easily scaled out across multiple servers.

For more information, see “State Management” in Chapter 10, “Improving Web
Services Performance.”

164 Improving .NET Application Performance and Scalability

Do You Use Enterprise Services?
If you plan to use Enterprise Services object pooling, you need to design stateless
components. This is because the objects need to be recycled across various requests
from different clients. Storing state for a particular client means the object cannot be
shared across clients.

For more information, see “State Management” in Chapter 8, “Improving Enterprise
Services Performance.”

Have You Ensured Objects to be Stored in Session Stores
are Serializable?
To store objects in an out-of-process session state store, such as a state service or SQL
Server, the objects must be serializable. You do not need serializable objects to store
objects in the in-process state store, but you should bear this in mind in case you need
to move your session state out-of-process.

You enable a class to be serialized by using the Serializable attribute. Make sure that
you use the NonSerialized attribute to avoid any unnecessary serialization.

Do You Depend On View State?
If you use or plan to use view state to maintain state across calls, you should
prototype and carefully evaluate the performance impact. Consider the total page
size and the bandwidth requirements to satisfy your response time goals.

Persisting large amounts of data from server controls, such as the DataGrid,
significantly increases page size and delays response times. Use tracing in ASP.NET
to find out the exact view state size for each server control or for a whole page.

More Information

For more information about improving view state efficiency, see “View State” in
Chapter 6, “Improving ASP.NET Performance.”

Do You Know the Number of Concurrent Sessions and Average Session
Data per User?
Knowing the number of concurrent sessions and the average session data per user
enables you to decide the session store. If the total amount of session data accounts
for a significant portion of the memory allocated for the ASP.NET worker process,
you should consider an out-of-process store.

Using an out-of-process state store increases network round trips and serialization
costs, so this needs to be evaluated. Storing many custom objects in session state or
storing a lot of small values increases overhead. Consider combining the values in a
type before adding them to the session store.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 165

Data Structures and Algorithms
The main data structure issues that you need to consider are highlighted in Table 4.7.

Table 4.7: Data Structure Issues

Issues Implications

Choosing a collection without evaluating your
needs (size, adding, deleting, updating)

Reduced efficiency; overly complex code.

Using the wrong collection for a given task Reduced efficiency; overly complex code.

Excessive type conversion Passing value type to reference type causing boxing
and unboxing overhead, causing performance hit.

Inefficient lookups Complete scan of all the content in the data
structure, resulting in slow performance.

Not measuring the cost of your data
structures or algorithms in your actual
scenarios

Undetected bottlenecks due to inefficient code,

For more information, see “Data Structures and Algorithms” in Chapter 3, “Design
Guidelines for Application Performance.”

Consider the following questions to assess your data structure and algorithm design:
● Do you use appropriate data structures?
● Do you need custom collections?
● Do you need to extend IEnumerable for your custom collections?

Do You Use Appropriate Data Structures?
Choosing the wrong data structure for your task can hurt performance because
specific data structures are designed and optimized for particular tasks. For example,
if you need to store and pass value types across a physical boundary, rather than
using a collection, you can use a simple array, which avoids the boxing overhead.

Clearly define your requirements for a data structure before choosing one. For
example, do you need to sort data, search for data, or access elements by index?

More Information

For more information about choosing the appropriate data structure, see “Collection
Guidelines” in Chapter 5, “Improving Managed Code Performance” and “Selecting
a Collection Class” in the .NET Framework Developer’s Guide on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconselectingcollectionclass.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconselectingcollectionclass.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconselectingcollectionclass.asp

166 Improving .NET Application Performance and Scalability

Do You Need Custom Collections?
For most scenarios, the collections provided by .NET Framework are sufficient,
although on occasion, you might need to develop a custom collection. Carefully
investigate the supplied collection classes before developing your own. The main
reasons for wanting to develop your own custom collection include the following:
● You need to marshal a collection by reference rather than by value, which is the

default behavior of collections provided by .NET Framework.
● You need a strongly typed collection.
● You need to customize the serialization behavior of a collection.
● You need to optimize on the cost of enumeration.

Do You Need to Extend IEnumerable for Your Custom Collections?
If you are developing a custom collection and need to frequently enumerate through
the collection, you should extend the IEnumerable interface to minimize the cost of
enumeration.

For more information, see “Collections Explained” in Chapter 5, “Improving
Managed Code Performance.”

Data Access
The main data access issues that you need to consider are highlighted in Table 4.8.

Table 4.8: Data Access Issues

Issues Implications

Poor schema design Increased database server processing; reduced
throughput.

Failure to page large result sets Increased network bandwidth consumption; delayed
response times; increased client and server load.

Exposing inefficient object
hierarchies when simpler would do

Increased garbage collection overhead; increased
processing effort required.

Inefficient queries or fetching all
the data

Inefficient queries or fetching all the data to display a
portion is an unnecessary cost, in terms of server
resources and performance.

Poor indexes or stale index statistics Creates unnecessary load on the database server.

Failure to evaluate the processing
cost on your database server and
your application

Failure to meet performance objectives and exceeding
budget allocations.

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 167

For more information about the questions and issues raised by this section,
see Chapter 12, “Improving ADO.NET Performance.” Consider the following:
● How do you pass data between layers?
● Do you use stored procedures?
● Do you process only the required data?
● Do you need to page through data?
● Do your transactions span multiple data stores?
● Do you manipulate BLOBs?
● Are you consolidating repeated data access code?

How Do You Pass Data Between Layers?
Review your approach for passing data between the layers of your application. In
addition to raw performance, the main considerations are usability, maintainability,
and programmability. Consider the following:
● Have you considered client requirements?

Focus on the client requirements and avoid transmitting data in one form and
forcing the client to convert it to another. If the client requires the data just for
display purposes, simple collections, such as arrays or an Arraylist object, are
suitable because they support data binding.

● Do you transform the data?
If you need to transform data, avoid multiple transformations as the data flows
through your application.

● Can you logically group data?
For logical groupings, such as the attributes that describe an employee, consider
using a custom class or struct type, which are efficient to serialize. Use the
NonSerializable attribute on any field you do not need to serialize.

● Is cross-platform interoperability a design goal?
If so, you should use XML, although you need to consider performance issues
including memory requirements and the significant parsing effort required to
process large XML strings.

● Do you use DataSet objects?
If your client needs to be able to view the data in multiple ways, update data on
the server using optimistic concurrency, and handle complex relationships
between various sets of data, a DataSet is well suited to these requirements.
DataSets are expensive to create and serialize, and they have large memory
footprints. If you do need a disconnected cache and the rich functionality
supported by the DataSet object, have you considered a strongly typed DataSet,
which offers marginally quicker field access?

168 Improving .NET Application Performance and Scalability

Do You Use Stored Procedures?
Using stored procedures is preferable in most scenarios. They generally provide
improved performance in comparison to dynamic SQL statements. From a security
standpoint, you need to consider the potential for SQL injection and authorization.
Both approaches, if poorly written, are susceptible to SQL injection. Database
authorization is often easier to manage with stored procedures because you can
restrict your application’s service accounts to executing specific stored procedures
and prevent them from accessing tables directly.

If you use stored procedures, consider the following:
● Try to avoid recompiles. For more information about how recompiles are caused,

see Microsoft Knowledge Base article 243586, “INF: Troubleshooting Stored
Procedure Recompilation,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;243586.

● Use the Parameters collection; otherwise you are still susceptible to SQL injection.
● Avoid building dynamic SQL within the stored procedure.
● Avoid mixing business logic in your stored procedures.

If you use dynamic SQL, consider the following:
● Use the Parameters collection to help prevent SQL injection.
● Batch statements if possible.
● Consider maintainability (for example, updating resource files versus statements

in code).

When using stored procedures, consider the following guidelines to maximize their
performance:
● Analyze your schema to see if it is well suited to perform the updates needed or

the searches. Does your schema support your unit of work? Do you have the
appropriate indexes? Do your queries take advantage of your schema design?

● Look at your execution plans and costs. Logical I/O is often an excellent indicator
of the overall query cost on a loaded server.

● Where possible, use output parameters instead of returning a result set that
contains single rows. This avoids the performance overhead associated with
creating the result set on the server.

● Evaluate your stored procedure to ensure that there are no frequent
recompilations for multiple code paths. Instead of having multiple if else
statements for your stored procedure, consider splitting it into multiple small
stored procedures and calling them from a single stored procedure.

http://support.microsoft.com/default.aspx?scid=kb;en-us;243586
http://support.microsoft.com/default.aspx?scid=kb;en-us;243586

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 169

Do You Process Only the Required Data?
Review your design to ensure you do not retrieve more data (columns or rows) than
is required. Identify opportunities for paging records to reduce network traffic and
server loading. When you update records, make sure you update only the changes
instead of the entire set of data.

Do You Need to Page Through Data?
Paging through data requires transmitting data from database to the presentation
layer and displaying it to the user. Paging through a large number of records may be
costly if you send more than the required data over the wire, which may add to the
network, memory, and processing costs on presentation and database tiers. Consider
the following guidelines to develop a solution for paging through records:
● If the data is not very large and needs to be served to multiple clients, consider

sending the data in a single iteration and caching it on the client side. You can
page through the data without making round trips to the server. Make sure you
use an appropriate data expiration policy.

● If the data to be served is based on user input and can potentially be large,
consider sending only the most relevant rows to the client for each page size. Use
the SELECT TOP statement and the TABLE data type in your SQL queries to
develop this type of solution.

● If the data to be served consists of a large result set and is the same for all users,
consider using global temporary tables to create and cache the data once, and then
send the relevant rows to each client as they need it. This approach is most useful
if you need to execute long-running queries spanning multiple tables to build the
result set. If you need to fetch data only from a single table, the advantages of a
temporary table are minimized.

More Information
For more information, see “How To: Page Records in .NET Applications” in the
“How To” section of this guide.

Do Your Transactions Span Multiple Data Stores?
If you have transactions spanning multiple data stores, you should consider using
distributed transactions provided by the Enterprise Services. Enterprise Services uses
the DTC to enforce transactions.

The DTC performs the inter-data source communication, and ensures that either all of
the data is committed or none of the data is committed. This comes at an operational
cost. If you do not have transactions that span multiple data sources, Transact-SQL
(T-SQL) or ADO.NET manual transactions offer better performance. However, you
need to trade the performance benefits against ease of programming. Declarative
Enterprise Services transactions offer a simple component-based programming
model.

170 Improving .NET Application Performance and Scalability

Do You Manipulate BLOBs?
If you need to read or write BLOB data such as images, you should first consider the
options of storing them directly on a hard disk and storing the physical path or the
URL in the database. This reduces load on the database. If you do read or write to
BLOBs, one of the most inefficient ways is to perform the operation in a single call.
This results in the whole of the BLOB being transferred over the wire and stored in
memory. This can cause network congestion and memory pressure, particularly when
there is a considerable load of concurrent users.

If you do need to store BLOB data in the database, consider the following options to
reduce the performance cost:
● Use chunking to reduce the amount of data transferred over the wire. Chunking

involves more round trips, but it places comparatively less load on the server and
consumes less network bandwidth. You can use the DataReader.GetBytes to read
the data in chunks or use SQL Server-specific commands, such as READTEXT and
UPDATEDTEXT, to perform such chunking operations.

● Avoid moving the BLOB repeatedly because the cost of moving them around can
be significant in terms of server and network resources. Consider caching the
BLOB on the client side after a read operation.

Are You Consolidating Repeated Data Access Code?
If you have many classes that perform data access, you should think about
consolidating repeated functionality into helper classes. Developers with varying
levels of expertise and data access knowledge may unexpectedly take inconsistent
approaches to data access, and inadvertently introduce performance and scalability
issues.

By consolidating critical data access code, you can focus your tuning efforts and have
a single consistent approach to database connection management and data access.

More Information

For more information, see the following resources:
● For more information about a best practices data access code, see “Data Access

Application Block for .NET” on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp.

● For more information about best practice data access, see the .NET Data Access
Architecture Guide on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/daag.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 171

Exception Handling
The main exception handling issues that you need to consider are highlighted
in Table 4.9.

Table 4.9: Exception Handling Issues

Issues Implications

Poor client code validations Round trips to servers and expensive calls

Exceptions as a method of controlling regular
application flow

Expensive compared to returning enumeration or
Boolean values.

Throwing and catching too many exceptions Increased inefficiency

Catching exceptions unnecessarily Adds to performance overhead and can conceal
information unnecessarily.

To assess the efficiency of your approach to exception handling, review the following
questions:
● Do you use exceptions to control application flow?
● Are exception handling boundaries well defined?
● Do you use error codes?
● Do you catch exceptions only when required?

Do You Use Exceptions to Control Application Flow?
You should not use exceptions to control the application flow because throwing
exceptions is expensive. Some alternatives include the following:
● Change the API so it communicates its success or failure by returning a bool value

as shown in the following code.

// BAD WAY
// ... search for Product
if (dr.Read() ==0) // no record found, ask to create{
//this is an example of throwing an unnecessary exception because
//nothing has gone wrong and it is a perfectly acceptable situation
throw(new Exception("User Account Not found"));
}
// GOOD WAY
// ... search for Product
if (dr.Read() ==0){ // no record found, ask to create
 return false;
}

● Refactor your code to include validation logic to avoid exceptions instead of
throwing exceptions.

172 Improving .NET Application Performance and Scalability

More Information

For more information, see the following resources:
● For more information about using exceptions, see “Writing Exceptional Code”

on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol
/html/csharp07192001.asp.

● For exception management best practices, see the Exception Management
Architecture Guide on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/exceptdotnet.asp.

Are Exception Handling Boundaries Well Defined?
You should catch, wrap, and rethrow exceptions in predictable locations. Exception
handling should be implemented using a common set of exception handling
techniques per application layer. Well defined exception handling boundaries help to
avoid redundancy and inconsistency in the way exceptions are caught and handled,
and help maintain an appropriate level of abstraction of the error. Avoiding
redundant exception handling helps application performance and can help simplify
the instrumentation information an operator receives from the application.

It is common to set exception management boundaries around components that
access external resources or services, and around façades that external systems or
user interface logic may access.

Do You Use Error Codes?
Generally, you should avoid using method return codes to indicate error conditions.
Instead, you should use structured exception handling. Using exceptions is much
more expressive, results in more robust code, and is less prone to abuse than error
codes as return values.

The common language runtime (CLR) internally uses exceptions even in the
unmanaged portions of the engine. However, the performance overhead associated
with exceptions should be factored into your decision. You can return a simple bool
value to inform the caller of the result of the function call.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp07192001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp07192001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 173

Do You Catch Exceptions Only When Required?
Catching exceptions and rethrowing them is expensive, and makes it harder to debug
and identify the exact source code that was responsible for the exception. Do not
catch exceptions unless you specifically want to record and log the exception details,
or can retry a failed operation. If you do not do anything with the exception, it is
likely that you end up rethrowing the same exception. Consider the following
guidelines for catching exceptions:
● You should not arbitrarily catch exceptions unless you can add some value. You

should let the exception propagate up the call stack to a handler that can perform
some appropriate processing.

● Do not swallow any exceptions that you do not know how to handle. For example,
do not swallow exceptions in your catch block as shown in the following code.

catch(Exception e){
 //Do nothing
}

More Information
For more information about the questions and issues raised in this section, see
“Exception Management” in Chapter 5, “Improving Managed Code Performance.”

Class Design Considerations
Use the following questions to help review your class design:
● Does your class own the data that it acts upon?
● Do your classes expose interfaces?
● Do your classes contain virtual methods?
● Do your classes contain methods that take variable parameters?

Does Your Class Own the Data That It Acts Upon?
Review your class designs to ensure that individual classes group related data and
behavior together appropriately. A class should have most of the data that it needs
for processing purposes and should not be excessively reliant on other child classes.
Too much reliance on other classes can quickly lead to inefficient round trips.

174 Improving .NET Application Performance and Scalability

Do Your Classes Expose Interfaces?
Generally, you should use an implicit interface-based approach in a class by
wrapping functionality and exposing a single API (method) capable of performing
a unit of work. This avoids the cost of unnecessary virtual table hops.

Use explicit interfaces only when you need to support multiple versions or when you
need to define common functionality applicable to multiple class implementations
(that is, for polymorphism).

Do Your Classes Contain Virtual Methods?
Review the way you use virtual members in your classes. If you do not need to
extend your class, avoid using them because, for .NET Framework 1.1, calling a
virtual method involves a virtual table lookup. As a result, virtual methods are not
inlined by the compiler because the final destination cannot be known at design time.

Use only virtual members to provide extensibility to your class. If you derive from a
class that has virtual members, you can mark the derived class methods with the
sealed keyword, which results in the method being invoked as a nonvirtual method.
This stops the chain of virtual overrides.

Consider the following example.

public class MyClass{
 protected virtual void SomeMethod() { ... }
}

You can override and seal the method in a derived class as follows.

public class DerivedClass : MyClass {
 protected override sealed void SomeMethod () { ... }
}

This code ends the chain of virtual overrides and makes DerivedClass.SomeMethod
a candidate for inlining.

Do Your Classes Contain Methods that Take Variable Parameters?
Methods with a variable number of parameters result in special code paths for each
possible combination of parameters. If you have high performance objects, you could
use overloaded methods with varying parameters rather than having a sensitive
method that takes a variable number of parameters.

More Information
For more information about methods with variable numbers, see the “Methods
With Variable Numbers of Arguments” section of “Method Usage Guidelines” in
the .NET Framework General Reference on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpgenref/html/cpconmethodusageguidelines.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconmethodusageguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconmethodusageguidelines.asp

 Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability 175

Summary
Architecture and design reviews for performance should be a regular part of your
application development life cycle. The performance characteristics of your
application are determined by its architecture and design. No amount of fine-tuning
and optimization can make up for poor design decisions that fundamentally prevent
your application from achieving its performance and scalability objectives.

This chapter has presented a process and a set of questions that you should use to
help you perform reviews. Apply this review guidance to new and existing designs.

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Architecture and Design Review for

Performance and Scalability “ in the “Checklists” section of this guide.
● For a question-driven approach to reviewing code and implementation from a

performance perspective, see Chapter 13, “Code Review: .NET Application
Performance.”

● For information about how to assess whether your software architecture will
meet its performance objectives, see PASA: An Architectural Approach to Fixing
Software Performance Problems, by Lloyd G. Williams and Connie U. Smith, at
http://www.perfeng.com/papers/pasafix.pdf.

● For information about patterns, see Enterprise Solution Patterns Using Microsoft
.NET on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnpatterns/html/ESP.asp.

● For more information about application architecture, see Application Architecture
for .NET: Designing Applications and Services on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

http://www.perfeng.com/papers/pasafix.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/ESP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/ESP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

Part III
Application Performance
and Scalability

In This Part:
● Improving Managed Code Performance
● Improving ASP.NET Performance
● Improving Interop Performance
● Improving Enterprise Services Performance
● Improving XML Performance
● Improving Web Services Performance
● Improving Remoting Performance
● Improving ADO.NET Performance
● Code Review: .NET Application Performance

5
Improving Managed Code
Performance

Objectives
● Optimize assembly and class design.
● Maximize garbage collection (GC) efficiency in your application.
● Use Finalize and Dispose properly.
● Minimize boxing overhead.
● Evaluate the use of reflection and late binding.
● Optimize your exception handling code.
● Make efficient use of iterating and looping constructs.
● Optimize string concatenation.
● Evaluate and choose the most appropriate collection type.
● Avoid common threading mistakes.
● Make asynchronous calls effectively and efficiently.
● Develop efficient locking and synchronization strategies.
● Reduce your application’s working set.
● Apply performance considerations to code access security.

Overview
Considerable effort went into making the common language runtime (CLR)
suitable for applications that require high performance. However, the way you
write managed code can either take advantage of that capability or it can hinder it.
This chapter identifies the core performance-related issues that you need to be aware
of to develop optimized managed code. It identifies common mistakes and many
ways to improve the performance of your managed code.

180 Improving .NET Application Performance and Scalability

The chapter starts by presenting the CLR architecture and provides an overview
of the top performance and scalability issues to be aware of when you develop
managed code. It then presents a set of design guidelines you should apply to all
of your managed code development (such as business logic, data access logic, utility
component, or Web page assembly). The chapter then presents a series of sections
that highlight the top recommendations for each of the performance critical areas
of managed code development. These include memory management and garbage
collection, boxing operations, reflection and late binding, use of collections, string
handling, threading, concurrency, asynchronous operations, exception management,
and more.

How to Use This Chapter
This chapter presents the CLR architecture, top performance and scalability issues,
and a set of design guidelines for managed code development. To get the most from
this chapter, do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Know the CLR architecture and components. Understanding managed code
execution can help towards writing code optimized for performance.

● Know the major performance and scalability issues. Read “Performance and
Scalability Issues” in this chapter to learn about the major issues that can impact
the performance and scalability of managed code. It is important to understand
these key issues so you can effectively identify performance and scalability
problems and apply the recommendations presented in this chapter.

● Measure your application performance. Read the “CLR and Managed Code”
and “.NET Framework Technologies” sections of Chapter 15, “Measuring .NET
Application Performance,” to learn about the key metrics that can be used to
measure application performance. It is important that you be able to measure
application performance so that performance issues can be accurately targeted.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important that you apply a coherent testing process and that you be able to
analyze the results.

● Tune your application performance. Read the “CLR Tuning” section of Chapter
17, “Tuning .NET Application Performance,” to learn how to resolve performance
issues identified through the use of tuning metrics.

● Use the accompanying checklist in the “Checklists” section of this guide. Use
the “Checklist: Managed Code Performance” checklist to quickly view and
evaluate the guidelines presented in this chapter.

 Chapter 5: Improving Managed Code Performance 181

Architecture
The CLR consists of a number of components that are responsible for managed code
execution. These components are referred to throughout this chapter, so you should
be aware of their purpose. Figure 5.1 shows the basic CLR architecture and
components.

Web Services ASP.NET ADO.NET XML

Remoting

Collections Strings Configuration Diagnostics

Globalization

InteropServices

IO NET

Reflection Resources Security Serialization

ServiceProcess Text Threading

JIT Code
Generation

Arithmetic Ops

Method Calls

Method Calls

Casts and
Type Checking

Fields and
Properties

Array Element
Access

Delegates

Allocation and
Type

Instantiation

Garbage
Collection

Boxing and
Unboxing

Finalization
and Dispose

Code

Data

Common Language Runtime (CLR)

Framework

Base Class Library (BCL)

Class Loading

Deployment

Figure 5.1
CLR architecture

182 Improving .NET Application Performance and Scalability

The way you write managed code significantly impacts the efficiency of the CLR
components shown in Figure 5.1. By following the guidelines and techniques
presented in this chapter, you can optimize your code, and enable the run-time
components to work most efficiently. The purpose of each component is summarized
below:
● JIT compiler. The just-in-time (JIT) compiler converts the Microsoft intermediate

language (MSIL) that is contained in an assembly into native machine code at run
time. Methods that are never called are not JIT-compiled.

● Garbage collector. The garbage collector is responsible for allocating, freeing,
and compacting memory.

● Structured exception handling. The runtime supports structured exception
handling to allow you to build robust, maintainable code. Use language constructs
such as try/catch/finally to take advantage of structured exception handling.

● Threading. The .NET Framework provides a number of threading and
synchronization primitives to allow you to build high performance, multithreaded
code. Your choice of threading approach and synchronization mechanism impacts
application concurrency; hence, it also impacts scalability and overall
performance.

● Security. The .NET Framework provides code access security to ensure that
code has the necessary permissions to perform specific types of operations such
as accessing the file system, calling unmanaged code, accessing network resources,
and accessing the registry.

● Loader. The .NET Framework loader is responsible for locating and loading
assemblies.

● Metadata. Assemblies are self-describing. An assembly contains metadata that
describes aspects of your program, such as the set of types that it exposes, and the
members those types contain. Metadata facilitates JIT compilation and is also used
to convey version and security-related information.

● Interop. The CLR can interoperate with various kinds of unmanaged code, such
as Microsoft Visual Basic®, Microsoft Visual C++®, DLLs, or COM components.
Interop allows your managed code to call these unmanaged components.

● Remoting. The .NET remoting infrastructure supports calls across application
domains, between processes, and over various network transports.

● Debugging. The CLR exposes debugging hooks that can be used to debug or
profile your assemblies.

 Chapter 5: Improving Managed Code Performance 183

Performance and Scalability Issues
This section is designed to give you a high-level overview of the major issues that
can impact the performance and scalability of managed code. Subsequent sections in
this chapter provide strategies, solutions, and technical recommendations to prevent
or resolve these issues. There are several main issues that impact managed code
performance and scalability:
● Memory misuse. If you create too many objects, fail to properly release resources,

preallocate memory, or explicitly force garbage collection, you can prevent the
CLR from efficiently managing memory. This can lead to increased working set
size and reduced performance.

● Resource cleanup. Implementing finalizers when they are not needed, failing to
suppress finalization in the Dispose method, or failing to release unmanaged
resources can lead to unnecessary delays in reclaiming resources and can
potentially create resource leaks.

● Improper use of threads. Creating threads on a per-request basis and not sharing
threads using thread pools can cause performance and scalability bottlenecks for
server applications. The .NET Framework provides a self-tuning thread pool that
should be used by server-side applications.

● Abusing shared resources. Creating resources per request can lead to resource
pressure, and failing to properly release shared resources can cause delays in
reclaiming them. This quickly leads to scalability issues.

● Type conversions. Implicit type conversions and mixing value and reference types
leads to excessive boxing and unboxing operations. This impacts performance.

● Misuse of collections. The .NET Framework class library provides an extensive
set of collection types. Each collection type is designed to be used with specific
storage and access requirements. Choosing the wrong type of collection for
specific situations can impact performance.

● Inefficient loops. Even the slightest coding inefficiency is magnified when that
code is located inside a loop. Loops that access an object’s properties are a
common culprit of performance bottlenecks, particularly if the object is remote or
the property getter performs significant work.

Design Considerations
The largest contributing factor to application performance is the application
architecture and design. Make sure performance is a functional requirement that
your design and test performance takes into account throughout the application
development life cycle. Application development should be an iterative process.
Performance testing and measuring should be performed between iterations and
should not be left to deployment time.

184 Improving .NET Application Performance and Scalability

This section summarizes the major design considerations to consider when you
design managed code solutions:
● Design for efficient resource management.
● Reduce boundary crossings.
● Prefer single large assemblies rather than multiple smaller assemblies.
● Factor code by logical layers.
● Treat threads as a shared resource.
● Design for efficient exception management.

Design for Efficient Resource Management
Avoid allocating objects and the resources they encapsulate before you need them,
and make sure you release them as soon as your code is completely finished with
them. This advice applies to all resource types including database connections, data
readers, files, streams, network connections, and COM objects. Use finally blocks or
Microsoft Visual C#® using statements to ensure that resources are closed or released
in a timely fashion, even in the event of an exception. Note that the C# using
statement is used only for resources that implement IDisposable; whereas finally
blocks can be used for any type of cleanup operations.

Reduce Boundary Crossings
Aim to reduce the number of method calls that cross remoting boundaries because
this introduces marshaling and potentially thread switching overhead. With managed
code, there are several boundaries to consider:
● Cross application domain. This is the most efficient boundary to cross because

it is within the context of a single process. Because the cost of the actual call is so
low, the overhead is almost completely determined by the number, type, and size
of parameters passed on the method call.

● Cross process. Crossing a process boundary significantly impacts performance.
You should do so only when absolutely necessary. For example, you might
determine that an Enterprise Services server application is required for security
and fault tolerance reasons. Be aware of the relative performance tradeoff.

● Cross machine. Crossing a machine boundary is the most expensive boundary
to cross, due to network latency and marshaling overhead. While marshaling
overhead impacts all boundary crossings, its impact can be greater when crossing
machine boundaries. For example, the introduction of an HTTP proxy might force
you to use SOAP envelopes, which introduces additional overhead. Before
introducing a remote server into your design, you need to consider the relative
tradeoffs including performance, security, and administration.

 Chapter 5: Improving Managed Code Performance 185

● Unmanaged code. You also need to consider calls to unmanaged code, which
introduces marshaling and potentially thread switching overhead. The Platform
Invoke (P/Invoke) and COM interop layers of the CLR are very efficient, but
performance can vary considerably depending on the type and size of data that
needs to be marshaled between the managed and unmanaged code. For more
information, see Chapter 7, “Improving Interop Performance.”

Prefer Single Large Assemblies Rather Than Multiple
Smaller Assemblies
To help reduce your application’s working set, you should prefer single larger
assemblies rather than multiple smaller assemblies. If you have several assemblies
that are always loaded together, you should combine them and create a single
assembly.

The overhead associated with having multiple smaller assemblies can be attributed
to the following:
● The cost of loading metadata for smaller assemblies.
● Touching various memory pages in pre-compiled images in the CLR in order

to load the assembly (if it is precompiled with Ngen.exe).
● JIT compile time.
● Security checks.

Because you pay for only the memory pages your program accesses, larger
assemblies provide the Native Image Generator utility (Ngen.exe) with a greater
chance to optimize the native image it produces. Better layout of the image means
that necessary data can be laid out more densely, which in turn means fewer overall
pages are needed to do the job compared to the same code laid out in multiple
assemblies.

Sometimes you cannot avoid splitting assemblies; for example, for versioning and
deployment reasons. If you need to ship types separately, you may need separate
assemblies.

Factor Code by Logical Layers
Consider your internal class design and how you factor code into separate methods.
When code is well factored, it becomes easier to tune to improve performance,
maintain, and add new functionality. However, there needs to be a balance. While
clearly factored code can improve maintainability, you should be wary of over
abstraction and creating too many layers. Simple designs can be effective and
efficient.

186 Improving .NET Application Performance and Scalability

Treat Threads as a Shared Resource
Do not create threads on a per-request basis because this can severely impact
scalability. Creating new threads is also a fairly expensive operation that should
be minimized. Treat threads as a shared resource and use the optimized .NET
thread pool.

Design for Efficient Exception Management
The performance cost of throwing an exception is significant. Although structured
exception handling is the recommended way of handling error conditions, make sure
you use exceptions only in exceptional circumstances when error conditions occur.
Do not use exceptions for regular control flow.

Class Design Considerations
Class design choices can affect system performance and scalability. However,
analyze your tradeoffs, such as functionality, maintainability, and company
coding guidelines. Balance these with performance guidelines.

This section summarizes guidelines for designing your managed classes:
● Do not make classes thread safe by default.
● Consider using the sealed keyword.
● Consider the tradeoffs of virtual members.
● Consider using overloaded methods.
● Consider overriding the Equals method for value types.
● Know the cost of accessing a property.
● Consider private vs. public member variables.
● Limit the use of volatile fields.

Do Not Make Classes Thread Safe by Default
Consider carefully whether you need to make an individual class thread safe.
Thread safety and synchronization is often required at a higher layer in the software
architecture and not at an individual class level. When you design a specific class,
you often do not know the proper level of atomicity, especially for lower-level classes.

For example, consider a thread safe collection class. The moment the class needs to be
atomically updated with something else, such as another class or a count variable, the
built-in thread safety is useless. Thread control is needed at a higher level. There are
two problems in this situation. Firstly, the overhead from the thread-safety features
that the class offers remains even though you do not require those features. Secondly,
the collection class likely had a more complex design in the first place to offer those
thread-safety services, which is a price you have to pay whenever you use the class.

 Chapter 5: Improving Managed Code Performance 187

In contrast to regular classes, static classes (those with only static methods) should
be thread safe by default. Static classes have only global state, and generally offer
services to initialize and manage that shared state for a whole process. This requires
proper thread safety.

Consider Using the sealed Keyword
You can use the sealed keyword at the class and method level. In Visual Basic .NET,
you can use the NotInheritable keyword at the class level or NotOverridable at the
method level. If you do not want anybody to extend your base classes, you should
mark them with the sealed keyword. Before you use the sealed keyword at the class
level, you should carefully evaluate your extensibility requirements.

If you derive from a base class that has virtual members and you do not want
anybody to extend the functionality of the derived class, you can consider sealing
the virtual members in the derived class. Sealing the virtual methods makes them
candidates for inlining and other compiler optimizations.

Consider the following example.

public class MyClass{
 protected virtual void SomeMethod() { ... }
}

You can override and seal the method in a derived class.

public class DerivedClass : MyClass {
 protected override sealed void SomeMethod () { ... }
}

This code ends the chain of virtual overrides and makes DerivedClass.SomeMethod
a candidate for inlining.

More Information

For more information about inheritance in Visual Basic .NET, see MSDN®
Magazine article, “Using Inheritance in the .NET World, Part 2,” by Ted Pattison
at http://msdn.microsoft.com/msdnmag/issues/01/12/instincts/.

Consider the Tradeoffs of Virtual Members
Use virtual members to provide extensibility. If you do not need to extend your
class design, avoid virtual members because they are more expensive to call due to a
virtual table lookup and they defeat certain run-time performance optimizations. For
example, virtual members cannot be inlined by the compiler. Additionally, when you
allow subtyping, you actually present a very complex contract to consumers and you
inevitably end up with versioning problems when you attempt to upgrade your class
in the future.

http://msdn.microsoft.com/msdnmag/issues/01/12/instincts/

188 Improving .NET Application Performance and Scalability

Consider Using Overloaded Methods
Consider having overloaded methods for varying parameters instead of having a
sensitive method that takes a variable number of parameters. Such a method results
in special code paths for each possible combination of parameters.

//method taking variable number of arguments
void GetCustomers (params object [] filterCriteria)

//overloaded methods
void GetCustomers (int countryId, int regionId)
void GetCustomers (int countryId, int regionId, int CustomerType)

Note: If there are COM clients accessing .NET components, using overloaded methods will not work
as a strategy. Use methods with different names instead.

Consider Overriding the Equals Method for Value Types
You can override the Equals method for value types to improve performance of
the Equals method. The Equals method is provided by System.Object. To use the
standard implementation of Equals, your value type must be boxed and passed as
an instance of the reference type System.ValueType. The Equals method then uses
reflection to perform the comparison. However, the overhead associated with the
conversions and reflections can easily be greater than the cost of the actual
comparison that needs to be performed. As a result, an Equals method that is specific
to your value type can do the required comparison significantly more cheaply.

The following code fragment shows an overridden Equals method implementation
that improves performance by avoiding reflection costs.

public struct Rectangle{
 public double Length;
 public double Breadth;
 public override bool Equals (object ob) {
 if(ob is Rectangle)
 return Equals((Rectangle)ob);
 else
 return false;

 }
 private bool Equals(Rectangle rect) {
 return this.Length == rect.Length && this.Breadth==rect.Breadth;
 }
}

 Chapter 5: Improving Managed Code Performance 189

Know the Cost of Accessing a Property
A property looks like a field, but it is not, and it can have hidden costs. You can
expose class-level member variables by using public fields or public properties. The
use of properties represents good object-oriented programming practice because it
allows you to encapsulate validation and security checks and to ensure that they are
executed when the property is accessed, but their field-like appearance can cause
them to be misused.

You need to be aware that if you access a property, additional code, such as validation
logic, might be executed. This means that accessing a property might be slower than
directly accessing a field. However, the additional code is generally there for good
reason; for example, to ensure that only valid data is accepted.

For simple properties that contain no additional code (other than directly setting or
getting a private member variable), there is no performance difference compared to
accessing a public field because the compiler can inline the property code. However,
things can easily become more complicated; for example, virtual properties cannot be
inlined.

If your object is designed for remote access, you should use methods with multiple
parameters instead of requiring the client to set multiple properties or fields. This
reduces round trips.

It is extremely bad form to use properties to hide complex business rules or other
costly operations, because there is a strong expectation by callers that properties are
inexpensive. Design your classes accordingly.

Consider Private vs. Public Member Variables
In addition to the usual visibility concerns, you should also avoid unnecessary
public members to prevent any additional serialization overhead when you use
the XmlSerializer class, which serializes all public members by default.

Limit the Use of Volatile Fields
Limit the use of the volatile keyword because volatile fields restrict the way the
compiler reads and writes the contents of the field. The compiler generates the code
that always reads from the field’s memory location instead of reading from a register
that may have loaded the field’s value. This means that accessing volatile fields is
slower than nonvolatile ones because the system is forced to use memory addresses
rather than registers.

190 Improving .NET Application Performance and Scalability

Implementation Considerations
After design is underway, consideration must be given to the technical details of
your managed code development. To improve performance, managed code must
make effective use of the CLR. Key managed code performance measures include
response times, speed of throughput, and resource management.

Response times can be improved by optimizing critical code paths and by writing
code that enables the garbage collector to release memory efficiently. By analyzing
your application’s allocation profile, garbage collection performance can be
increased.

Throughput can be improved by making effective use of threads. Minimize thread
creation, and ensure you use the thread pool to avoid expensive thread initialization.
Performance critical code should avoid reflection and late binding.

Utilization of resources can be improved by effective use of finalization (using the
Dispose pattern) to release unmanaged resources, and efficient use of strings, arrays,
collections and looping constructs. Locking and synchronization should be used
sparingly, and where used, lock duration should be minimized.

The following sections highlight performance considerations when developing
managed code.

Garbage Collection Explained
The .NET Framework uses automatic garbage collection to manage memory for all
applications. When you use the new operator to create an object, the object’s memory
is obtained from the managed heap. When the garbage collector decides that
sufficient garbage has accumulated that it is efficient to do so, it performs a collection
to free some memory. This process is fully automatic, but there are a number of
factors that you need to be aware of that can make the process more or less efficient.

To understand the principles of garbage collection, you need to understand the life
cycle of a managed object:
1. Memory for an object is allocated from the managed heap when you call new.

The object’s constructor is called after the memory is allocated.
2. The object is used for a period of time.
3. The object dies due to all its references either being explicitly set to null or

else going out of scope.
4. The object’s memory is freed (collected) some time later. After the memory is

freed, it is generally available for other objects to use again.

 Chapter 5: Improving Managed Code Performance 191

Allocation
The managed heap can be thought of as a block of contiguous memory. When you
create a new object, the object’s memory is allocated at the next available location
on the managed heap. Because the garbage collector does not need to search for
space, allocations are extremely fast if there is enough memory available. If there
is not enough memory for the new object, the garbage collector attempts to reclaim
space for the new object.

Collection
To reclaim space, the garbage collector collects objects that are no longer reachable.
An object is no longer reachable when there are no references to it, all references are
set to null, or all references to it are from other objects that can be collected as part
of the current collection cycle.

When a collection occurs, the reachable objects are traced and marked as the trace
proceeds. The garbage collector reclaims space by moving reachable objects into the
contiguous space and reclaiming the memory used by the unreachable objects. Any
object that survives the collection is promoted to the next generation.

Generations
The garbage collector uses three generations to group objects by their lifetime and
volatility:
● Generation 0 (Gen 0). This consists of newly created objects. Gen 0 is collected

frequently to ensure that short-lived objects are quickly cleaned up. Those objects
that survive a Gen 0 collection are promoted to Generation 1.

● Generation 1 (Gen 1). This is collected less frequently than Gen 0 and contains
longer-lived objects that were promoted from Gen 0.

● Generation 2 (Gen 2). This contains objects promoted from Gen 1 (which means
it contains the longest-lived objects) and is collected even less frequently. The
general strategy of the garbage collector is to collect and move longer-lived objects
less frequently.

192 Improving .NET Application Performance and Scalability

Key GC Methods Explained
Table 5.1 shows the key methods of the System.GC class. You can use this class to
control the behavior of the garbage collector.

Table 5.1: Key GC Methods

Method Description

System.GC.Collect This method forces a garbage collection. You should
generally avoid this and let the runtime determine the
appropriate time to perform a collection. The main reason
that you might be tempted to call this method is that you
cannot see memory being freed that you expect to see
freed. However, the main reason that this occurs is
because you are inadvertently holding on to one or more
objects that are no longer needed. In this case, forcing a
collection does not help.

System.GC.WaitForPendingFinalizers This suspends the current thread until the finalization
thread has emptied the finalization queue. Generally, this
method is called immediately after System.GC.Collect to
ensure that the current thread waits until finalizers for all
objects are called. However, because you should not call
GC.Collect, you should not need to call
GC.WaitForPendingFinalizers.

System.GC.KeepAlive This is used to prevent an object from being prematurely
collected by holding a reference to the object. A common
scenario is when there are no references to an object in
managed code but the object is still in use in unmanaged
code.

System.GC.SuppressFinalize This prevents the finalizer being called for a specified
object. Use this method when you implement the dispose
pattern. If you have explicitly released resources because
the client has called your object’s Dispose method.
Dispose should call SuppressFinalize because
finalization is no longer required.

Server GC vs. Workstation GC
The CLR provides two separate garbage collectors:
● Workstation GC (Mscorwks.dll). This is designed for use by desktop applications

such as Windows Forms applications.
● Server GC (Mscorsvr.dll). This is designed for use by server applications.

ASP.NET loads server GC but only if the server has more than one processor.
On single processor servers, it loads workstation GC.

 Chapter 5: Improving Managed Code Performance 193

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) includes both
GCs inside Mscorwks.dll, and Mscorsvr.dll no longer exists.

Server GC is optimized for throughput, memory consumption, and multiprocessor
scalability, while the workstation GC is tuned for desktop applications. When using
the server GC, the managed heap is split into several sections, one per CPU on a
multiprocessor computer. When a collection is initiated, the collector has one thread
per CPU; all threads collect their own sections simultaneously. The workstation
version of the execution engine (Mscorwks.dll) is optimized for smaller latency.
Workstation GC performs collection in parallel with the CLR threads. Server GC
suspends the CLR threads during collection.

You might sometimes need the functionality of the server GC for your custom
application when hosting it on a multiprocessor computer. For example, you might
need it for a Windows service that uses a .NET remoting host and is deployed on a
multiprocessor server. In this scenario, you need to develop a custom host that loads
the CLR and the server GC version of the garbage collector. For more information
about how to do this, see MSDN Magazine article, “Microsoft .NET: Implement a
Custom Common Language Runtime Host for Your Managed App,” by Steven
Pratschner at http://msdn.microsoft.com/msdnmag/issues/01/03/clr/default.aspx.

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) provides a way
to switch between server and workstation GC through application configuration.

Garbage Collection Guidelines
This section summarizes recommendations to help improve garbage collection
performance:
● Identify and analyze your application’s allocation profile.
● Avoid calling GC.Collect.
● Consider weak references with cached data.
● Prevent the promotion of short-lived objects.
● Set unneeded member variables to Null before making long-running calls.
● Minimize hidden allocations.
● Avoid or minimize complex object graphs.
● Avoid preallocating and chunking memory.

http://msdn.microsoft.com/msdnmag/issues/01/03/clr/default.aspx

194 Improving .NET Application Performance and Scalability

Identify and Analyze Your Application’s Allocation Profile
Object size, number of objects, and object lifetime are all factors that impact your
application’s allocation profile. While allocations are quick, the efficiency of garbage
collection depends (among other things) on the generation being collected. Collecting
small objects from Gen 0 is the most efficient form of garbage collection because Gen
0 is the smallest and typically fits in the CPU cache. In contrast, frequent collection of
objects from Gen 2 is expensive. To identify when allocations occur, and which
generations they occur in, observe your application’s allocation patterns by using an
allocation profiler such as the CLR Profiler.

For more information, see “How To: Use CLR Profiler” in the “How To” section of
this guide.

Avoid Calling GC.Collect
The default GC.Collect method causes a full collection of all generations. Full
collections are expensive because literally every live object in the system must be
visited to ensure complete collection. Needless to say, exhaustively visiting all live
objects could, and usually does, take a significant amount of time. The garbage
collector’s algorithm is tuned so that it does full collections only when it is likely to
be worth the expense of doing so. As a result, do not call GC.Collect directly — let
the garbage collector determine when it needs to run.

The garbage collector is designed to be self-tuning and it adjusts its operation to
meet the needs of your application based on memory pressure. Programmatically
forcing collection can hinder tuning and operation of the garbage collector.

If you have a particular niche scenario where you have to call GC.Collect, consider
the following:
● Call GC.WaitForPendingFinalizers after you call GC.Collect. This ensures that

the current thread waits until finalizers for all objects are called.
● After the finalizers run, there are more dead objects (those that were just finalized)

that need to be collected. One more call to GC.Collect collects the remaining dead
objects.

 System.GC.Collect(); // This gets rid of the dead objects
 System.GC.WaitForPendingFinalizers(); // This waits for any finalizers to
finish.
 System.GC.Collect(); // This releases the memory associated with the objects
that were just finalized.

 Chapter 5: Improving Managed Code Performance 195

Consider Using Weak References with Cached Data
Consider using weak references when you work with cached data, so that cached
objects can be resurrected easily if needed or released by garbage collection when
there is memory pressure. You should use weak references mostly for objects that
are not small in size because the weak referencing itself involves some overhead.
They are suitable for medium to large-sized objects stored in a collection.

Consider a scenario where you maintain a custom caching solution for the employee
information in your application. By holding onto your object through a
WeakReference wrapper, the objects are collected when memory pressure grows
during periods of high stress.

If on a subsequent cache lookup, you cannot find the object, re-create it from the
information stored in an authoritative persistent source. In this way, you balance the
use of cache and persistent medium. The following code demonstrates how to use a
weak reference.

void SomeMethod()
{
 // Create a collection
 ArrayList arr = new ArrayList(5);
 // Create a custom object
 MyObject mo = new MyObject();
 // Create a WeakReference object from the custom object
 WeakReference wk = new WeakReference(mo);
 // Add the WeakReference object to the collection
 arr.Add(wk);
 // Retrieve the weak reference
 WeakReference weakReference = (WeakReference)arr[0];
 MyObject mob = null;
 if(weakReference.IsAlive){
 mob = (MyOBject)weakReference.Target;
 }
 if(mob==null){
 // Resurrect the object as it has been garbage collected
 }
 //continue because we have the object
}

196 Improving .NET Application Performance and Scalability

Prevent the Promotion of Short-Lived Objects
Objects that are allocated and collected before leaving Gen 0 are referred as short-lived
objects. The following principles help ensure that your short-lived objects are not
promoted:
● Do not reference short-lived objects from long-lived objects. A common example

where this occurs is when you assign a local object to a class level object reference.

class Customer{
 Order _lastOrder;
 void insertOrder (int ID, int quantity, double amount, int productID){
 Order currentOrder = new Order(ID, quantity, amount, productID);
 currentOrder.Insert();
 this._lastOrder = currentOrder;
 }
}

Avoid this type of code because it increases the likelihood of the object being
promoted beyond Gen 0, which delays the object’s resources from being
reclaimed. One possible implementation that avoids this issue follows.

class Customer{
 int _lastOrderID;
 void ProcessOrder (int ID, int quantity, double amount, int productID){
 . . .
 this._lastOrderID = ID;
 . . .
 }
}

The specific Order class is brought in by ID as needed.
● Avoid implementing a Finalize method. The garbage collector must promote

finalizable objects to older generations to facilitate finalization, which makes
them long-lived objects.

● Avoid having finalizable objects refer to anything. This can cause the referenced
object(s) to become long-lived.

More Information

For more information about garbage collection, see the following resources:
● “Garbage Collector Basics and Performance Hints” on MSDN at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet
/html/dotnetgcbasics.asp.

● MSDN Magazine article, “Garbage Collection: Automatic Memory Management in
the Microsoft .NET Framework,” by Jeffrey Richter, at http://msdn.microsoft.com
/msdnmag/issues/1100/GCI/TOC.ASP?frame=true.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/TOC.ASP?frame=true
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/TOC.ASP?frame=true

 Chapter 5: Improving Managed Code Performance 197

● MSDN Magazine article, “Garbage Collection — Part 2: Automatic Memory
Management in the Microsoft .NET Framework,” by Jeffrey Richter, at
http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/TOC.ASP?frame=true.

Set Unneeded Member Variables to Null Before Making
Long-Running Calls
Before you block on a long-running call, you should explicitly set any unneeded
member variables to null before making the call so they can be collected. This is
demonstrated in the following code fragment.

class MyClass{
 private string str1;
 private string str2;

 void DoSomeProcessing(...){
 str1= GetResult(...);
 str2= GetOtherResult(...);
 }
 void MakeDBCall(...){
 PrepareForDBCall(str1,str2);
 str1=null;
 str2=null;
 // Make a database (long running) call
 }
}

This advice applies to any objects which are still statically or lexically reachable
but are actually not needed:
● If you no longer need a static variable in your class, or some other class, set it

to null.
● If you can “prune” your state, that is also a good idea. You might be able to

eliminate most of a tree before a long-running call, for instance.
● If there are any objects that could be disposed before the long-running call, set

those to null.

Do not set local variables to null (C#) or Nothing (Visual Basic .NET) because the
JIT compiler can statically determine that the variable is no longer referenced and
there is no need to explicitly set it to null. The following code shows an example
using local variables.

void func(...)
{
 String str1;
 str1="abc";
 // Avoid this
 str1=null;
}

http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/TOC.ASP?frame=true

198 Improving .NET Application Performance and Scalability

Minimize Hidden Allocations
Memory allocation is extremely quick because it involves only a pointer relocation to
create space for the new object. However, the memory has to be garbage collected at
some point and that can hurt performance, so be aware of apparently simple lines of
code that actually result in many allocations. For example, String.Split uses a
delimiter to create an array of strings from a source string. In doing so, String.Split
allocates a new string object for each string that it has split out, plus one object for
the array. As a result, using String.Split in a heavy duty context (such as a sorting
routine) can be expensive.

string attendees = "bob,jane,fred,kelly,jim,ann";
// In the following single line the code allocates 6 substrings,
// outputs the attendees array, and the input separators array
string[] names = attendees.Split(new char[] {','});

Also watch out for allocations that occur inside a loop such as string concatenations
using the += operator. Finally, hashing methods and comparison methods are
particularly bad places to put allocations because they are often called repeatedly
in the context of searching and sorting. For more information about how to handle
strings efficiently, see “String Operations” later in this chapter.

Avoid or Minimize Complex Object Graphs
Try to avoid using complex data structures or objects that contain a lot of references
to other objects. These can be expensive to allocate and create additional work for
the garbage collector. Simpler graphs have superior locality and less code is needed
to maintain them. A common mistake is to make the graphs too general.

Avoid Preallocating and Chunking Memory
C++ programmers often allocate a large block of memory (using malloc) and then
use chunks at a time, to save multiple calls to malloc. This is not advisable for
managed code for several reasons:
● Allocation of managed memory is a quick operation and the garbage collector has

been optimized for extremely fast allocations. The main reason for preallocating
memory in unmanaged code is to speed up the allocation process. This is not an
issue for managed code.

● If you preallocate memory, you cause more allocations than needed; this can
trigger unnecessary garbage collections.

● The garbage collector is unable to reclaim the memory that you manually recycle.
● Preallocated memory ages and costs more to recycle when it is ultimately released.

 Chapter 5: Improving Managed Code Performance 199

Finalize and Dispose Explained
The garbage collector offers an additional, optional service called finalization. Use
finalization for objects that need to perform cleanup processing during the collection
process and just before the object’s memory is reclaimed. Finalization is most often
used to release unmanaged resources maintained by an object; any other use should
be closely examined. Examples of unmanaged resources include file handles,
database connections, and COM object references.

Finalize
Some objects require additional cleanup because they use unmanaged resources,
and these need to be released. This is handled by finalization. An object registers
for finalization by overriding the Object.Finalize method. In C# and Managed
Extensions for C++, implement Finalize by providing a method that looks like a
C++ destructor.

Note: The semantics of the Finalize method and a C++ destructor should not be confused.
The syntax is the same but the similarity ends there.

An object’s Finalize method is called before the object’s managed memory is
reclaimed. This allows you to release any unmanaged resources that are maintained
by the object. If you implement Finalize, you cannot control when this method
should be called because this is left to the garbage collector — this is commonly
referred to as nondeterministic finalization.

The finalization process requires a minimum of two collection cycles to fully
release the object’s memory. During the first collection pass, the object is marked
for finalization. Finalization runs on a specialized thread that is independent from
the garbage collector. After finalization occurs, the garbage collector can reclaim the
object’s memory.

Because of the nondeterministic nature of finalization, there is no guarantee
regarding the time or order of object collection. Also, memory resources may
be consumed for a large amount of time before being garbage collected.

In C#, implement Finalize by using destructor syntax.

class yourObject {
 // This is a finalizer implementation
 ~yourObject() {
 // Release your unmanaged resources here
 . . .
 }
}

200 Improving .NET Application Performance and Scalability

The preceding syntax causes the compiler to generate the following code.

class yourObject {
 protected override void Finalize() {
 try{
 . . .
 }
 finally {
 base.Finalize();
 }
}

In Visual Basic .NET, you need to override Object.Finalize.

Protected Overrides Sub Finalize()
 ' clean up unmanaged resources
End Sub

Dispose
Provide the Dispose method (using the Dispose pattern, which is discussed later in
this chapter) for types that contain references to external resources that need to be
explicitly freed by the calling code. You can avoid finalization by implementing the
IDisposable interface and by allowing your class’s consumers to call Dispose.

The reason you want to avoid finalization is because it is performed asynchronously
and unmanaged resources might not be freed in a timely fashion. This is especially
important for large and expensive unmanaged resources such as bitmaps or database
connections. In these cases, the classic style of explicitly releasing your resources is
preferred (using the IDisposable interface and providing a Dispose method). With
this approach, resources are reclaimed as soon as the consumer calls Dispose and the
object need not be queued for finalization. Statistically, what you want to see is that
almost all of your finalizable objects are being disposed and not finalized. The
finalizer should only be your backup.

With this approach, you release unmanaged resources in the IDisposable.Dispose
method. This method can be called explicitly by your class’s consumers or implicitly
by using the C# using statement.

To prevent the garbage collector from requesting finalization, your Dispose
implementation should call GC.SuppressFinalization.

More Information

For more information about the Dispose method, see Microsoft Knowledge Base
article 315528, “INFO: Implementing Dispose Method in a Derived Class,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;315528.

http://support.microsoft.com/default.aspx?scid=kb;en-us;315528

 Chapter 5: Improving Managed Code Performance 201

Close
For certain classes of objects, such as files or database connection objects, a Close
method better represents the logical operation that should be performed when the
object’s consumer is finished with the object. As a result, many objects expose a Close
method in addition to a Dispose method. In well written cases, both are functionally
equivalent.

Dispose Pattern
The Dispose pattern defines the way you should implement dispose (and finalizer)
functionality on all managed classes that maintain resources that the caller must be
allowed to explicitly release. To implement the Dispose pattern, do the following:
● Create a class that derives from IDisposable.
● Add a private member variable to track whether IDisposable.Dispose has already

been called. Clients should be allowed to call the method multiple times without
generating an exception. If another method on the class is called after a call to
Dispose, you should throw an ObjectDisposedException.

● Implement a protected virtual void override of the Dispose method that accepts
a single bool parameter. This method contains common cleanup code that is
called either when the client explicitly calls IDisposable.Dispose or when the
finalizer runs. The bool parameter is used to indicate whether the cleanup is being
performed as a result of a client call to IDisposable.Dispose or as a result of
finalization.

● Implement the IDisposable.Dispose method that accepts no parameters.
This method is called by clients to explicitly force the release of resources.
Check whether Dispose has been called before; if it has not been called, call
Dispose(true) and then prevent finalization by calling GC.SuppressFinalize(this).
Finalization is no longer needed because the client has explicitly forced a release
of resources.

● Create a finalizer, by using destructor syntax. In the finalizer, call Dispose(false).

202 Improving .NET Application Performance and Scalability

C# Example of Dispose
Your code should look like the following.

public sealed class MyClass: IDisposable
{
 // Variable to track if Dispose has been called
 private bool disposed = false;
 // Implement the IDisposable.Dispose() method
 public void Dispose(){
 // Check if Dispose has already been called
 if (!disposed)
 {
 // Call the overridden Dispose method that contains common cleanup code
 // Pass true to indicate that it is called from Dispose
 Dispose(true);
 // Prevent subsequent finalization of this object. This is not needed
 // because managed and unmanaged resources have been explicitly released
 GC.SuppressFinalize(this);
 }
 }

 // Implement a finalizer by using destructor style syntax
 ~MyClass() {
 // Call the overridden Dispose method that contains common cleanup code
 // Pass false to indicate the it is not called from Dispose
 Dispose(false);
 }

 // Implement the override Dispose method that will contain common
 // cleanup functionality
 protected virtual void Dispose(bool disposing){
 if(disposing){
 // Dispose time code
 . . .
 }
 // Finalize time code
 . . .
 }
 ...
}

Passing true to the protected Dispose method ensures that dispose specific code
is called. Passing false skips the Dispose specific code. The Dispose(bool) method
can be called directly by your class or indirectly by the client.

If you reference any static variables or methods in your finalize-time Dispose code,
make sure you check the Environment.HasShutdownStarted property. If your object
is thread safe, be sure to take whatever locks are necessary for cleanup.

 Chapter 5: Improving Managed Code Performance 203

Use the HasShutdownStarted property in an object’s Dispose method to determine
whether the CLR is shutting down or the application domain is unloading. If that is
the case, you cannot reliably access any object that has a finalization method and is
referenced by a static field.

protected virtual void Dispose(bool disposing){
 if(disposing){
 // dispose-time code
 . . .
 }
 // finalize-time code
 CloseHandle();

 if(!Environment.HasShutDownStarted)
 { //Debug.Write or Trace.Write – static methods
 Debug.WriteLine("Finalizer Called");
 }
 disposed = true;
}

Visual Basic .NET Example of Dispose
The Visual Basic .NET version of the Dispose pattern is shown in the following code
sample.

'Visual Basic .NET Code snippet
Public Class MyDispose Implements IDisposable

 Public Overloads Sub Dispose() Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me) ' No need call finalizer
 End Sub

 Protected Overridable Overloads Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 ' Free managed resources
 End If
 ' Free unmanaged resources
 End Sub

 Protected Overrides Sub Finalize()
 Dispose(False)
 End Sub
End Class

204 Improving .NET Application Performance and Scalability

Finalize and Dispose Guidelines
This section summarizes Finalize and Dispose recommendations:
● Call Close or Dispose on classes that support it.
● Use the using statement in C# and Try/Finally blocks in Visual Basic .NET to

ensure Dispose is called.
● Do not implement Finalize unless required.
● Implement Finalize only if you hold unmanaged resources across client calls.
● Move the Finalization burden to the leaves of object graphs.
● If you implement Finalize, implement IDisposable.
● If you implement Finalize and Dispose, use the Dispose pattern.
● Suppress finalization in your Dispose method.
● Allow Dispose to be called multiple times.
● Call Dispose on base classes and on IDisposable members.
● Keep finalizer code simple to prevent blocking.
● Provide thread safe cleanup code only if your type is thread safe.

Call Close or Dispose on Classes that Support It
If the managed class you use implements Close or Dispose, call one of these
methods as soon as you are finished with the object. Do not simply let the resource
fall out of scope. If an object implements Close or Dispose, it does so because it holds
an expensive, shared, native resource that should be released as soon as possible.

Disposable Resources
Common disposable resources include the following:
● Database-related classes: SqlConnection, SqlDataReader, and SqlTransaction.
● File-based classes: FileStream and BinaryWriter.
● Stream-based classes: StreamReader, TextReader, TextWriter, BinaryReader,

and TextWriter.
● Network-based classes: Socket, UdpClient, and TcpClient.

For a full list of classes that implement IDisposable in the .NET Framework,
see “IDisposable Interface” in the .NET Framework Class Library on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html
/frlrfSystemIDisposableClassTopic.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemIDisposableClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemIDisposableClassTopic.asp

 Chapter 5: Improving Managed Code Performance 205

COM Objects
In server scenarios where you create and destroy COM objects on a per-request basis,
you may need to call System.Runtime.InteropServices.Marshal.ReleaseComObject.

The Runtime Callable Wrapper (RCW) has a reference count that is incremented
every time a COM interface pointer is mapped to it (this is not the same as the
reference count of the IUnknown AddRef/Release methods). The
ReleaseComObject method decrements the reference counts of the RCW. When the
reference count reaches zero, the runtime releases all its references on the unmanaged
COM object.

For example, if you create and destroy COM objects from an ASP.NET page, and you
can track their lifetime explicitly, you should test calling ReleaseComObject to see if
throughput improves.

For more information about RCWs and ReleaseComObject, see Chapter 7,
“Improving Interop Performance.”

Enterprise Services (COM+)
You are not recommended to share serviced components or COM or COM+ objects
in cases where your objects are created in a nondefault context. An object can end
up in a nondefault context either because your component is a serviced component
configured in COM+ or because your component is a simple COM component that
is placed in a nondefault context by virtue of its client. For example, clients such
as ASP.NET pages running in a transaction or running in ASPCOMPAT mode are
always located inside a COM+ context. If your client is a serviced component itself,
the same rule applies.

The main reason for not sharing serviced components is that crossing a COM+
context boundary is expensive. This issue is increased if your client-side COM+
context has thread affinity because it is located inside an STA.

In such cases, you should follow acquire, work, release semantics. Activate
your component, perform work with it, and then release it immediately.
When you use Enterprise Services and classes that derive from
System.EnterpriseServices.ServicedComponent, you need to call Dispose
on those classes.

If the component you call into is an unmanaged COM+ component, you need to
call Marshal.ReleaseComObject. In the case of nonconfigured COM components
(components not installed in the COM+ catalog) if your client is inside a COM+
context and your COM component is not agile, it is still recommended that you
call Marshal.ReleaseComObject.

For more information about proper cleanup of serviced components, see the
“Resource Management” section in Chapter 8, “Improving Enterprise Services
Performance.”

206 Improving .NET Application Performance and Scalability

Use the using Statement in C# and Try/Finally Blocks in Visual
Basic .NET to Ensure Dispose Is Called
Call Close or Dispose inside a Finally block in Visual Basic .NET code to ensure
that the method is called even when an exception occurs.

Dim myFile As StreamReader
myFile = New StreamReader("C:\\ReadMe.Txt")
Try
 String contents = myFile.ReadToEnd()
 '... use the contents of the file
Finally
 myFile.Close()
End Try

The using Statement in C#
For C# developers, the using statement automatically generates a try and finally
block at compile time that calls Dispose on the object allocated inside the using
block. The following code illustrates this syntax.

using(StreamReader myFile = new StreamReader("C:\\ReadMe.Txt")){
 string contents = myFile.ReadToEnd();
 //... use the contents of the file

} // dispose is called and the StreamReader's resources released

During compilation, the preceding code is converted into the following
equivalent code.

StreamReader myFile = new StreamReader("C:\\ReadMe.Txt");
try{
 string contents = myFile.ReadToEnd();
 //... use the contents of the file
}
finally{
 myFile.Dispose();
}

Note: The next release of Visual Basic .NET will contain the equivalent of a using statement.

 Chapter 5: Improving Managed Code Performance 207

Do Not Implement Finalize Unless Required
Implementing a finalizer on classes that do not require it adds load to the finalizer
thread and the garbage collector. Avoid implementing a finalizer or destructor
unless finalization is required.

Classes with finalizers require a minimum of two garbage collection cycles to be
reclaimed. This prolongs the use of memory and can contribute to memory pressure.
When the garbage collector encounters an unused object that requires finalization,
it moves it to the “ready-to-be-finalized” list. Cleanup of the object’s memory is
deferred until after the single specialized finalizer thread can execute the registered
finalizer method on the object. After the finalizer runs, the object is removed from
the queue and literally dies a second death. At that point, it is collected along with
any other objects. If your class does not require finalization, do not implement a
Finalize method.

Implement Finalize Only If You Hold Unmanaged Resources across
Client Calls
Use a finalizer only on objects that hold unmanaged resources across client calls.
For example, if your object has only one method named GetData that opens a
connection, fetches data from an unmanaged resource, closes the connection, and
returns data, there is no need to implement a finalizer. However, if your object also
exposes an Open method in which a connection to an unmanaged resource is made,
and then data is fetched using a separate GetData method, it is possible for the
connection to be maintained to the unmanaged resource across calls. In this case,
you should provide a Finalize method to clean up the connection to the unmanaged
resource, and in addition use the Dispose pattern to give the client the ability to
explicitly release the resource after it is finished.

Note: You must be holding the unmanaged resource directly. If you use a managed wrapper you do
not need your own finalizer, although you might still choose to implement IDisposable so that you
can pass along the dispose request to the underlying object.

Move the Finalization Burden to the Leaves of Object Graphs
If you have an object graph with an object referencing other objects (leaves) that hold
unmanaged resources, you should implement the finalizers in the leaf objects instead
of in the root object.

208 Improving .NET Application Performance and Scalability

There are several reasons for this. First, the object that is being finalized will survive
the first collection and be placed on the finalization list. The fact that the object
survives means that it could be promoted to an older generation just like any other
object, increasing the cost of collecting it in the future. Second, because the object
survived, any objects it might be holding will also survive, together with their sub
objects, and so on. So the entire object graph below the finalized object ends up living
longer than necessary and being collected in a more expensive generation.

Avoid both these problems by making sure that your finalizable objects are always
leaves in the object graph. It is recommended that they hold the unmanaged resource
they wrap and nothing else.

Moving the finalization burden to leaf objects results in the promotion of only the
relevant ones to the finalization queue, which helps optimize the finalization process.

If You Implement Finalize, Implement IDisposable
You should implement IDisposable if you implement a finalizer. In this way, the
calling code has an explicit way to free resources by calling the Dispose method.

You should still implement a finalizer along with Dispose because you cannot
assume that the calling code always calls Dispose. Although costly, the finalizer
implementation ensures that resources are released.

If You Implement Finalize and Dispose, Use the Dispose Pattern
If you implement Finalize and Dispose, use the Dispose pattern as described earlier.

Suppress Finalization in Your Dispose Method
The purpose of providing a Dispose method is to allow the calling code to release
unmanaged resources as soon as possible and to prevent two cycles being taken for
the object’s cleanup. If the calling code calls Dispose, you do not want the garbage
collector to call a finalizer because the unmanaged resources will have already been
returned to the operating system. You must prevent the garbage collector from calling
the finalizer by using GC.SuppressFinalization in your Dispose method.

public void Dispose()
{
 // Using the dispose pattern
 Dispose(true);
 // ... release unmanaged resources here
 GC.SuppressFinalize(this);
}

 Chapter 5: Improving Managed Code Performance 209

Allow Dispose to Be Called Multiple Times
Calling code should be able to safely call Dispose multiple times without causing
exceptions. After the first call, subsequent calls should do nothing and not throw
an ObjectDisposedException for subsequent calls.

You should throw an ObjectDisposedException exception from any other method
(other than Dispose) on the class that is called after Dispose has been called.

A common practice is to keep a private variable that denotes whether Dispose has
been called.

public class Customer : IDisposable{
 private bool disposed = false;
 . . .
 public void SomeMethod(){
 if(disposed){
 throw new ObjectDisposedException(this.ToString());
 }
 . . .
 }
 public void Dispose(){
 //check before calling your Dispose pattern
 if (!disposed)
 { ... }
 }
 . . .
}

Call Dispose On Base Classes and On IDisposable Members
If your class inherits from a disposable class, then make sure that it calls the base
class’s Dispose. Also, if you have any member variables that implement IDisposable,
call Dispose on them, too.

The following code fragment demonstrates calling Dispose on base classes.

public class BusinessBase : IDisposable{
 public void Dispose() {...}
 protected virtual void Dispose(bool disposing) {}
 ~BusinessBase() {...}
}

public class Customer : BusinessBase, IDisposable{
private bool disposed = false;

(continued)

210 Improving .NET Application Performance and Scalability

(continued)

 protected virtual void Dispose(bool disposing) {
 // Check before calling your Dispose pattern
 if (!disposed){
 if (disposing) {
 // free managed objects
 }
 // free unmanaged objects
 base.Dispose(disposing);
 disposed = true;
 }
 }

Keep Finalizer Code Simple to Prevent Blocking
Finalizer code should be simple and minimal. The finalization happens on
a dedicated, single finalizer thread. Apply the following guidelines to your
finalizer code:
● Do not issue calls that could block the calling thread. If the finalizer does block,

resources are not freed and the application leaks memory.
● Do not use thread local storage or any other technique that requires thread

affinity because the finalizer method is called by a dedicated thread, separate
from your application’s main thread.

If multiple threads allocate many finalizable objects, they could allocate more
finalizable objects in a specific timeframe than the finalizer thread can clean up.
For this reason, Microsoft may choose to implement multiple finalizer threads in
a future version of the CLR. As a result, it is recommended that you write your
finalizers so they do not depend on shared state. If they do, you should use locks
to prevent concurrent access by other instances of the same finalizer method on
different object instances. However, you should try to keep finalizer code simple
(for example, nothing more complicated than just a CloseHandle call) to avoid
these issues.

Provide Thread Safe Cleanup Code Only if Your Type Is Thread Safe
If your type is thread safe, make sure your cleanup code is also thread safe. For
example, if your thread safe type provides both Close and Dispose methods to
clean up resources, ensure you synchronize threads calling Close and Dispose
simultaneously.

 Chapter 5: Improving Managed Code Performance 211

Pinning
To safely communicate with unmanaged services, it is sometimes necessary to ask
the garbage collector to refrain from relocating a certain object in memory. Such an
object is said to be “pinned” and the process is called “pinning”. Because the garbage
collector is not able to move pinned objects, the managed heap may fragment like a
traditional heap and thereby reduce available memory. Pinning can be performed
both explicitly and implicitly:
● Implicit pinning is performed in most P/Invoke and COM interop scenarios when

passing certain parameters, such as strings.
● Explicit pinning can be performed in a number of ways. You can create a

GCHandle and pass GCHandleType.Pinned as the argument.

GCHandle hmem = GCHandle.Alloc((Object) someObj, GCHandleType.Pinned);

● You can also use the fixed statement in an unsafe block of code.

// assume class Circle { public int rad; }
Circle cr = new Circle (); // cr is a managed variable, subject to gc.
fixed (int* p = &cr.rad){ // must use fixed to get address of cr.rad
 *p = 1; // pin cr in place while we use the pointer
}

If You Need to Pin Buffers, Allocate Them at Startup
Allocating buffers just before a slow I/O operation and then pinning them can
result in excessive memory consumption because of heap fragmentation. Because
the memory just allocated will most likely be in Gen 0 or perhaps Gen 1, pinning this
is problematic because, by design, those generations are the ones that are the most
frequently compacted. Each pinned object makes the compaction process that much
more expensive and leads to a greater chance of fragmentation. The youngest
generations are where you can least afford this cost.

To avoid these problems, you should allocate these buffers during application
startup and treat them as a buffer pool for all I/O operations. The sooner the objects
are allocated, the sooner they can get into Gen 2. After the objects are in Gen 2, the
cost of pinning is greatly reduced due to the lesser frequency of compaction.

212 Improving .NET Application Performance and Scalability

Threading Explained
The .NET Framework exposes various threading and synchronization features. Your
use of multiple threads can have a significant impact on application performance and
scalability.

Managed Threads and Operating System Threads
The CLR exposes managed threads, which are distinct from Microsoft Win32® threads.
The logical thread is the managed representation of a thread, and the physical thread
is the Win32 thread that actually executes code. You cannot guarantee that there will
be a one-to-one correspondence between a managed thread and a Win32 thread.

If you create a managed thread object and then do not start it by calling its Start
method, a new Win32 thread is not created. When a managed thread is terminated or
it completes, the underlying Win32 thread is destroyed. The managed representation
(the Thread object) is cleaned up only during garbage collection some indeterminate
time later.

The .NET Framework class library provides the ProcessThread class as the
representation of a Win32 thread and the System.Threading.Thread class as the
representation of a managed thread.

Poorly-written multithreaded code can lead to numerous problems including
deadlocks, race conditions, thread starvation, and thread affinity. All of these issues
can negatively impact application performance, scalability, resilience, and
correctness.

Threading Guidelines
This section summarizes guidelines to improve the efficiency of your threading code:
● Minimize thread creation.
● Use the thread pool when you need threads.
● Use a Timer to schedule periodic tasks.
● Consider parallel vs. synchronous tasks.
● Do not use Thread.Abort to terminate other threads.
● Do not use Thread.Suspend and Thread.Resume to pause threads.

 Chapter 5: Improving Managed Code Performance 213

Minimize Thread Creation
Threads use both managed and unmanaged resources and are expensive to initialize.
If you spawn threads indiscriminately, it can result in increased context switching on
the processor. The following code shows a new thread being created and maintained
for each request. This may result in the processor spending most of its time
performing thread switches; it also places increased pressure on the garbage collector
to clean up resources.

private void Page_Load(object sender, System.EventArgs e)
{
 if (Page.IsPostBack)
 {
 // Create and start a thread
 ThreadStart ts = new ThreadStart(CallMyFunc);
 Thread th = new Thread(ts);
 ts.Start();

 }

Use the Thread Pool When You Need Threads
Use the CLR thread pool to execute thread-based work to avoid expensive thread
initialization. The following code shows a method being executed using a thread
from the thread pool.

WaitCallback methodTarget = new WaitCallback(myClass.UpdateCache);
ThreadPool.QueueUserWorkItem(methodTarget);

When QueueUserWorkItem is called, the method is queued for execution and the
calling thread returns and continues execution. The ThreadPool class uses a thread
from the application’s pool to execute the method passed in the callback as soon as
a thread is available.

Use a Timer to Schedule Periodic Tasks
Use the System.Threading.Timer class to schedule periodic tasks. The Timer
class allows you to specify a periodic interval that your code should be executed.
The following code shows a method being called every 30 seconds.

...
TimerCallback myCallBack = new TimerCallback(myHouseKeepingTask);
Timer myTimer = new System.Threading.Timer(myCallBack, null, 0, 30000);

static void myHouseKeepingTask(object state)
{
 ...
}

214 Improving .NET Application Performance and Scalability

When the timer elapses, a thread from the thread pool is used to execute the code
indicated in the TimerCallback. This results in optimum performance because it
avoids the thread initialization incurred by creating a new thread.

Consider Parallel vs. Synchronous Tasks
Before implementing asynchronous code, carefully consider the need for performing
multiple tasks in parallel. Increasing parallelism can have a significant effect on your
performance metrics. Additional threads consume resources such as memory, disk
I/O, network bandwidth, and database connections. Also, additional threads may
cause significant overhead from contention, or context switching. In all cases, it is
important to verify that adding threads is helping you to meet your objectives rather
then hindering your progress.

The following are examples where performing multiple tasks in parallel might be
appropriate:
● Where one task is not dependent on the results of another, such that it can run

without waiting on the other.
● If work is I/O bound. Any task involving I/O benefits from having its own

thread, because the thread sleeps during the I/O operation which allows other
threads to execute. However, if the work is CPU bound, parallel execution is likely
to have a negative impact on performance.

Do Not Use Thread.Abort to Terminate Other Threads
Avoid using Thread.Abort to terminate other threads. When you call Abort, the
CLR throws a ThreadAbortException. Calling Abort does not immediately result in
thread termination. It causes an exception on the thread to be terminated. You can use
Thread.Join to wait on the thread to make sure that the thread has terminated.

Do Not Use Thread.Suspend and Thread.Resume to Pause Threads
Never call Thread.Suspend and Thread.Resume to synchronize the activities of
multiple threads. Do not call Suspend to suspend low priority threads — consider
setting the Thread.Priority property instead of controlling the threads intrusively.

Calling Suspend on one thread from the other is a highly intrusive process that can
result in serious application deadlocks. For example, you might suspend a thread that
is holding onto resources needed by other threads or the thread that called Suspend.

If you need to synchronize the activities of multiple threads, use lock(object), Mutex,
ManualResetEvent, AutoResetEvent, and Monitor objects. All of these objects are
derivatives of the WaitHandle class, which allows you to synchronize threads within
and across a process.

Note: lock(object) is the cheapest operation and will meet most, if not all, of your synchronization
needs.

 Chapter 5: Improving Managed Code Performance 215

More Information
For more information, see the following resources:
● For more information about threading in ASP.NET applications, see the

“Threading” section in Chapter 6, “Improving ASP.NET Performance.”
● For more information about .NET threading, see the following Microsoft

Knowledge Base articles:
● 315677, “HOW TO: Create Threads in Visual Basic .NET,” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;315677.
● 316136, “HOW TO: Synchronize the Access to a Shared Resource in a

Multithreading Environment with Visual Basic .NET,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;316136.

● For more information about threading design guidelines, see “Threading
Design Guidelines” in the .NET Framework General Reference on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref
/html/cpconthreadingdesignguidelines.asp.

Asynchronous Calls Explained
Asynchronous calls provide a mechanism for increasing the concurrency of
your application. Asynchronous calls are nonblocking and when you call a method
asynchronously, the calling thread returns immediately and continues execution of
the current method.

There are a number of ways to make asynchronous method calls:
● Calling asynchronous components. Certain classes support the .NET

Framework asynchronous invocation model by providing BeginInvoke and
EndInvoke methods. If the class expects an explicit call to EndInvoke at the end
of the unit of work, then call it. This also helps capture failures if there are any in
your asynchronous calls.

● Calling nonasynchronous components. If a class does not support BeginInvoke
and EndInvoke, you can use one of the following approaches:
● Use the .NET thread pool.
● Explicitly create a thread.
● Use delegates.
● Use timers.

http://support.microsoft.com/default.aspx?scid=kb;en-us;315677
http://support.microsoft.com/default.aspx?scid=kb;en-us;316136
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconthreadingdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconthreadingdesignguidelines.asp

216 Improving .NET Application Performance and Scalability

Asynchronous Guidelines
This section summarizes guidelines for optimized performance when you are
considering asynchronous execution:
● Consider client-side asynchronous calls for UI responsiveness.
● Use asynchronous methods on the server for I/O bound operations.
● Avoid asynchronous calls that do not add parallelism.

Consider Client-Side Asynchronous Calls for UI Responsiveness
You can use asynchronous calls to increase the responsiveness of client applications.
However, think about this carefully because asynchronous calls introduce additional
programming complexity and require careful synchronization logic to be added to
your graphical interface code.

The following code shows an asynchronous call followed by a loop that polls for the
asynchronous call’s completion. You can add an exit criteria to the while condition in
case you need to exit from function before call is completed. You can use the callback
mechanism or wait for completion if you do not need to update the client.

IAsyncResult CallResult = SlowCall.BeginInvoke(slow,null,null);
while (CallResult.IsCompleted == false)
{
 ... // provide user feedback
}
SlowCall.EndInvoke(CallResult);

Use Asynchronous Methods on the Server for I/O Bound Operations
You can increase the performance of your application by executing multiple
operations at the same time. The two operations are not dependent on each other.
For example, the following code calls two Web services. The duration of the code
is the sum of both methods.

// get a reference to the proxy
EmployeeService employeeProxy = new EmployeeService();

// execute first and block until complete
employeeProxy.CalculateFederalTaxes(employee, null, null);
// execute second and block until complete
employeeProxy.CalculateStateTaxes(employee);

 Chapter 5: Improving Managed Code Performance 217

You can refactor the code as follows to reduce the total duration of the
operation. In the following code, both methods execute simultaneously, which
reduces the overall duration of the operation. Note that the following example
uses the BeginCalculateFederalTaxes method, an asynchronous version of
CalculateFederalTaxes; both of these methods are automatically generated when
you reference a Web service from your client application in Visual Studio .NET.

// get a reference to the proxy
EmployeeService employeeProxy = new EmployeeService();

// start async call, BeginCalculateFederalTaxes
// call returns immediately allowing local execution to continue
IAsyncResult ar = employeeProxy.BeginCalculateFederalTaxes(employee, null, null);
// execute CalculateStateTaxes synchronously
employeeProxy.CalculateStateTaxes(employee);
// wait for the CalculateFederalTaxes call to finish
employeeProxy.EndCalculateFederalTaxes(ar);

More Information

For more information, see “Asynchronous Web Methods” in Chapter 10,
“Improving Web Services Performance.”

Avoid Asynchronous Calls That Do Not Add Parallelism
Avoid asynchronous calls that will block multiple threads for the same operation.
The following code shows an asynchronous call to a Web service. The calling code
blocks while waiting for the Web service call to complete. Notice that the calling
code performs no additional work while the asynchronous call is executing.

// get a proxy to the Web service
customerService serviceProxy = new customerService ();
//start async call to CustomerUpdate
IAsyncResult result = serviceProxy.BeginCustomerUpdate(null,null);
// Useful work that can be done in parallel should appear here
// but is absent here
//wait for the asynchronous operation to complete
// Client is blocked until call is done
result.AsyncWaitHandle.WaitOne();
serviceProxy.EndCustomerUpdate(result);

When code like this is executed in a server application such as an ASP.NET
application or Web service, it uses two threads to do one task and offers no benefit;
in fact, it delays other requests being processed. This practice should be avoided.

218 Improving .NET Application Performance and Scalability

Locking and Synchronization Explained
Locking and synchronization provide a mechanism to grant exclusive access
to data or code to avoid concurrent execution.

This section summarizes steps to consider to help you approach locking and
synchronization correctly:
● Determine that you need synchronization.
● Determine the approach.
● Determine the scope of your approach.

Determine That You Need Synchronization
Before considering synchronization options, you should think about other
approaches that avoid the necessity of synchronization, such as loose coupling.
Particularly, you need to synchronize when multiple users concurrently need to
access or update a shared resource, such as static data.

Determine the Approach
The CLR provides the following mechanisms for locking and synchronization.
Consider the one that is right for your scenario:
● Lock (C#). The C# compiler converts the Lock statement into Monitor.Enter and

Monitor.Exit calls around a try/finally block. Use SyncLock in Visual Basic .NET.
● WaitHandle class. This class provides functionality to wait for exclusive access to

multiple objects at the same time. There are three derivatives of WaitHandle:
● ManualResetEvent. This allows code to wait for a signal that is manually reset.
● AutoResetEvent. This allows code to wait for a signal that is automatically

reset.
● Mutex. This is a specialized version of WaitHandle that supports cross-process

use. The Mutex object can be provided a unique name so that a reference to the
Mutex object is not required. Code in different processes can access the same
Mutex by name.

● MethodImplOptions.Synchronized enumeration option. This provides the
ability to grant exclusive access to an entire method, which is rarely a good idea.

● Interlocked class. This provides atomic increment and decrement methods for
types. Interlocked can be used with value types. It also supports the ability to
replace a value based on a comparison.

 Chapter 5: Improving Managed Code Performance 219

● Monitor object. This provides static methods for synchronizing access to reference
types. It also provides overridden methods to allow the code to attempt to lock for
a specified period. The Monitor class cannot be used with value types. Value types
are boxed when used with the Monitor and each attempt to lock generates a new
boxed object that is different from the rest; this negates any exclusive access. C#
provides an error message if you use a Monitor on a value type.

Determine the Scope of Your Approach
You can lock on different objects and at different levels of granularity, ranging from
the type to specific lines of code within an individual method. Identify what locks
you have and where you acquire and release them. You can implement a policy
where you consistently lock on the following to provide a synchronization
mechanism:
● Type. You should avoid locking a type (for example, lock(typeof(type)). Type

objects can be shared across application domains. Locking the type locks all the
instances of that type across the application domains in a process. Doing so can
have very unexpected results, not the least of which is poor performance.

● “this”. You should avoid locking externally visible objects (for example,
lock(this)) because you cannot be sure what other code might be acquiring the
same lock, and for what purpose or policy. For correctness reasons, “this” is best
avoided.

● Specific object that is a member of a class. This choice is preferred over locking a
type, instance of a type, or “this” within the class. Lock on a private static object if
you need synchronization at class level. Lock on a private object (that is not static)
if you need to synchronize only at the instance level for a type. Implement your
locking policy consistently and clearly in each relevant method.

While locking, you should also consider the granularity of your locks. The options
are as follows:
● Method. You can provide synchronized access to a whole method of an instance

using the MethodImplOptions.Synchronized enumeration option. You should
consider locking at method level only when all the lines of code in the method
need synchronized access; otherwise this might result in increased contention.
Additionally, this provides no protection against other methods running and using
the shared state — it is rarely useful as a policy, because it corresponds to having
one lock object per method.

● Code block in a method. Most of your requirements can be fulfilled choosing an
appropriately scoped object as the lock and by having a policy where you acquire
that lock just before entering the code that alters the shared state that the lock
protects. By locking objects, you can guarantee that only one of the pieces of code
that locks the object will run at a time.

220 Improving .NET Application Performance and Scalability

Locking and Synchronization Guidelines
This section summarizes guidelines to consider when developing multithreaded code
that requires locks and synchronization:
● Acquire locks late and release them early.
● Avoid locking and synchronization unless required.
● Use granular locks to reduce contention.
● Avoid excessive fine-grained locks.
● Avoid making thread safety the default for your type.
● Use the fine-grained lock (C#) statement instead of Synchronized.
● Avoid locking “this”.
● Coordinate multiple readers and single writers by using ReaderWriterLock

instead of lock.
● Do not lock the type of the objects to provide synchronized access.

Acquire Locks Late and Release Them Early
Minimize the duration that you hold and lock resources, because most resources
tend to be shared and limited. The faster you release a resource, the earlier it becomes
available to other threads.

Acquire a lock on the resource just before you need to access it and release the lock
immediately after you are finished with it.

Avoid Locking and Synchronization Unless Required
Synchronization requires extra processing by the CLR to grant exclusive access
to resources. If you do not have multithreaded access to data or require thread
synchronization, do not implement it. Consider the following options before
opting for a design or implementation that requires synchronization:
● Design code that uses existing synchronization mechanisms; for example, the

Cache object used by ASP.NET applications.
● Design code that avoids concurrent modifications to data. Poor synchronization

implementation can negate the effects of concurrency in your application. Identify
areas of code in your application that can be rewritten to eliminate the potential
for concurrent modifications to data.

● Consider loose coupling to reduce concurrency issues. For example, consider
using the event-delegation model (the producer-consumer pattern) to minimize
lock contention.

 Chapter 5: Improving Managed Code Performance 221

Use Granular Locks to Reduce Contention
When used properly and at the appropriate level of granularity, locks provide greater
concurrency by reducing contention. Consider the various options described earlier
before deciding on the scope of locking. The most efficient approach is to lock on an
object and scope the duration of the lock to the appropriate lines of code that access a
shared resource. However, always watch out for deadlock potential.

Avoid Excessive Fine-Grained Locks
Fine-grained locks protect either a small amount of data or a small amount of code.
When used properly, they provide greater concurrency by reducing lock contention.
Used improperly, they can add complexity and decrease performance and
concurrency. Avoid using multiple fine-grained locks within your code. The
following code shows an example of multiple lock statements used to control three
resources.

s = new Singleton();

sb1 = new StringBuilder();
sb2 = new StringBuilder();

s.IncDoubleWrite(sb1, sb2)

class Singleton
{
 private static Object myLock = new Object();
 private int count;
 Singleton()
 {
 count = 0;
 }

 public void IncDoubleWrite(StringBuilder sb1, StringBuilder sb2)
 {
 lock (myLock)
 {
 count++;
 sb1.AppendFormat("Foo {0}", count);
 sb2.AppendFormat("Bar {0}", count);
 }
 }
 public void DecDoubleWrite(StringBuilder sb1, StringBuilder sb2)
 {
 lock (myLock)
 {
 count--;
 sb1.AppendFormat("Foo {0}", count);
 sb2.AppendFormat("Bar {0}", count);
 }
 }
}

222 Improving .NET Application Performance and Scalability

Note: All methods in all examples require locking for correctness (although Interlocked.Increment
could have been used instead).

Identify the smallest block of code that can be locked to avoid the resource expense
of taking multiple locks.

Avoid Making Thread Safety the Default for Your Type
Consider the following guidelines when deciding thread safety as an option for your
types:
● Instance state may or may not need to be thread safe. By default, classes should

not be thread safe because if they are used in a single threaded or synchronized
environment, making them thread safe adds additional overhead. You may need
to synchronize access to instance state by using locks but this depends on what
thread safety model your code will offer. For example, in the Neutral threading
model instance, state does not need to be protected. With the free threading model,
it does need to be protected.
Adding locks to create thread safe code decreases performance and increases lock
contention (as well as opening up deadlock bugs). In common application models,
only one thread at a time executes user code, which minimizes the need for thread
safety. For this reason, most .NET Framework class libraries are not thread safe.

● Consider thread safety for static data. If you must use static state, consider how
to protect it from concurrent access by multiple threads or multiple requests. In
common server scenarios, static data is shared across requests, which means
multiple threads can execute that code at the same time. For this reason, it is
necessary to protect static state from concurrent access.

Use the Fine-Grained lock (C#) Statement Instead of Synchronized
The MethodImplOptions.Synchronized attribute will ensure that only one thread
is running anywhere in the attributed method at any time. However, if you have long
methods that lock few resources, consider using the lock statement instead of using
the Synchronized option, to shorten the duration of your lock and improve
concurrency.

 Chapter 5: Improving Managed Code Performance 223

[MethodImplAttribute(MethodImplOptions.Synchronized)]
public void MyMethod ()

//use of lock
public void MyMethod()
{
 ...
 lock(mylock)
 {
 // code here may assume it is the only code that has acquired mylock
 // and use resources accordingly
 ...
 }
}

Avoid Locking “this”
Avoid locking “this” in your class for correctness reasons, not for any specific
performance gain. To avoid this problem, consider the following workarounds:
● Provide a private object to lock on.

public class A {
 ...
 lock(this) { ... }
 ...
}
// Change to the code below:
public class A
{
 private Object thisLock = new Object();
 ...
 lock(thisLock) { ... }
 ...
}

This results in all members being locked, including the ones that do not require
synchronization.

● If you require atomic updates to a particular member variable, use the
System.Threading.Interlocked class.

Note: Even though this approach will avoid the correctness problems, a locking policy like this
one will result in all members being locked, including the ones that do not require synchronization.
Finer-grained locks may be appropriate.

224 Improving .NET Application Performance and Scalability

Coordinate Multiple Readers and Single Writers By Using
ReaderWriterLock Instead of lock
A monitor or lock that is lightly contested is relatively cheap from a performance
perspective, but it becomes more expensive if it is highly contested. The
ReaderWriterLock provides a shared locking mechanism. It allows multiple threads
to read a resource concurrently but requires a thread to wait for an exclusive lock to
write the resource.

You should always try to minimize the duration of reads and writes. Long writes can
hurt application throughput because the write lock is exclusive. Long reads can block
the other threads waiting for read and writes.

For more information, see “ReaderWriterLock Class,” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html
/frlrfSystemThreadingReaderWriterLockClassTopic.asp.

Do Not Lock the Type of the Objects to Provide Synchronized Access
Type objects are application domain-agile, which means that the same instance can
be used in multiple application domains without any marshaling or cloning. If you
implement a policy of locking on the type of an object using lock(typeof(type)), you
lock all the instances of the objects across application domains within the process.

An example of locking the whole type is as follows.

lock(typeof(MyClass))
{
 //custom code
}

Provide a static object in your type instead. This object can be locked to provide
synchronized access.

class MyClass{
 private static Object obj = new Object();
 public void SomeFunc()
 {
 lock(obj)
 {
 //perform some operation
 }
 }
}

Note: A single lock statement does not prevent other code from accessing the protected resource
— it is only when a policy of consistently acquiring a certain lock before certain operations is
implemented that there is true protection.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemThreadingReaderWriterLockClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemThreadingReaderWriterLockClassTopic.asp

 Chapter 5: Improving Managed Code Performance 225

You should also avoid locking other application domain-agile types such as strings,
assembly instances, or byte arrays, for the same reason.

Value Types and Reference Types
All .NET Framework data types are either value types or reference types.
This section introduces you to these two basic categories of data types. Table 5.2
illustrates common value and reference types.

Table 5.2: Value and Reference Types

Value Types Reference Types

Enums

Structs

Primitive types including Boolean, Date, Char

Numeric types such as Decimal

Integral types such as Byte, Short, Integer, Long

Floating types such as Single and Double

Classes

Delegates

Exceptions

Attributes

Arrays

Value Types
Memory for a value type is allocated on the current thread’s stack. A value type’s
data is maintained completely within this memory allocation. The memory for a
value type is maintained only for the lifetime of the stack frame in which it is created.
The data in value types can outlive their stack frames when a copy is created by
passing the data as a method parameter or by assigning the value type to a reference
type. Value types by default are passed by value. If a value type is passed to a
parameter of reference type, a wrapper object is created (the value type is boxed),
and the value type’s data is copied into the wrapper object. For example, passing an
integer to a method that expects an object results in a wrapper object being created.

Reference Types
In contrast to value types, the data for reference type objects is always stored on the
managed heap. Variables that are reference types consist of only the pointer to that
data. The memory for reference types such as classes, delegates, and exceptions is
reclaimed by the garbage collector when they are no longer referenced. It is important
to know that reference types are always passed by reference. If you specify that a
reference type should be passed by value, a copy of the reference is made and the
reference to the copy is passed.

226 Improving .NET Application Performance and Scalability

Boxing and Unboxing Explained
You can convert value types to reference types and back again. When a value
type variable needs to be converted to a reference (object) type, an object (a box) is
allocated on the managed heap to hold the value and its value is copied into the box.
This process is known as boxing. Boxing can be implicit or explicit, as shown in the
following code.

int p = 123;
Object box;
box = p; // Implicit boxing
box = (Object)p; // Explicit boxing with a cast

Boxing occurs most often when you pass a value type to a method that takes an
Object as its parameter. When a value in an object is converted back into a value
type, the value is copied out of the box and into the appropriate storage location.
This process is known as unboxing.

p = (int)box; // Unboxing

Boxing issues are exacerbated in loops or when dealing with large amount of data
such as large-sized collections storing value types.

Boxing and Unboxing Guidelines
To help ensure that boxing and unboxing does not significantly impact your code’s
performance, consider the following recommendations:
● Avoid frequent boxing and unboxing overhead.
● Measure boxing overhead.
● Use DirectCast in your Visual Basic .NET code.

Avoid Frequent Boxing and Unboxing Overhead
Boxing causes a heap allocation and a memory copy operation. To avoid boxing,
do not treat value types as reference types. Avoid passing value types in method
parameters that expect a reference type. Where boxing is unavoidable, to reduce the
boxing overhead, box your variable once and keep an object reference to the boxed
copy as long as needed, and then unbox it when you need a value type again.

int p = 123;
object box;
box = (object)p; // Explicit boxing with a cast
//use the box variable instead of p

 Chapter 5: Improving Managed Code Performance 227

Note: Boxing in Visual Basic .NET tends to occur more frequently than in C# due to the language’s
pass-by-value semantics and extra calls to GetObjectValue.

Collections and Boxing
Collections store only data with base type as Object. Passing value types such as
integers and floating point numbers to collections causes boxing. A common scenario
is populating collections with data containing int or float types returned from a
database. The overhead can be excessive in the case of collections due to iteration.
The problem is illustrated by the following code snippet.

ArrayList al = new ArrayList();
for (int i=0; i<1000;i++)
 al.Add(i); //Implicitly boxed because Add() takes an object
int f = (int)al[0]; // The element is unboxed

To prevent this, consider using an array instead, or creating a custom collection
class for your specific value type. You must perform unboxing with an explicit cast
operator.

Note: The .NET Framework 2.0, at the time of this writing, introduces generics to the C# language.
This will make it possible to write variations of the above code with no boxing.

Measure Boxing Overhead
There are several ways to measure the impact of boxing operations. You can use
Performance Monitor to measure the performance impact of boxing overhead on the
resource utilization and response times for your application. To do a static analysis of
where exactly you are affected by boxing and unboxing in your code, you can
analyze MSIL code. Search for box and unbox instructions in MSIL by using the
following command line.

Ildasm.exe yourcomponent.dll /text | findstr box
Ildasm.exe yourcomponent.dll /text | findstr unbox

However, you must watch out where exactly you optimize the boxing overhead.
The overhead is significant in places where there are frequent iterations such as loops,
inserting, and retrieving value types in collections. Instances where boxing occurs
only once or twice are not worth optimizing.

228 Improving .NET Application Performance and Scalability

Use DirectCast In Your Visual Basic .NET Code
Use the DirectCast operator to cast up and down an inheritance hierarchy instead of
using CType. DirectCast offers superior performance because it compiles directly to
MSIL. Also, note that DirectCast throws an InvalidCastException if there is no
inheritance relationship between two types.

Exception Management
Structured exception handling using try/catch blocks is the recommended way to
handle exceptional error conditions in managed code. You should also use finally
blocks (or the C# using statement) to ensure that resources are closed even in the
event of exceptions.

While exception handling is recommended to create robust, maintainable code, there
is an associated performance cost. Throwing and catching exceptions is expensive.
For this reason, you should use exceptions only in exceptional circumstances and not
to control regular logic flow. A good rule of thumb is that the exceptional path should
be taken less than one time in a thousand.

This section summarizes guidelines for you to review to ensure the appropriate use
of exception handling:
● Do not use exceptions to control application flow.
● Use validation code to avoid unnecessary exceptions.
● Use the finally block to ensure resources are released.
● Replace Visual Basic .NET On Error Goto code with exception handling.
● Do not catch exceptions that you cannot handle.
● Be aware that rethrowing is expensive.
● Preserve as much diagnostic information as possible in your exception

handlers.
● Use Performance Monitor to monitor CLR exceptions.

Do Not Use Exceptions to Control Application Flow
Throwing exceptions is expensive. Do not use exceptions to control application flow.
If you can reasonably expect a sequence of events to happen in the normal course of
running code, you probably should not throw any exceptions in that scenario.

 Chapter 5: Improving Managed Code Performance 229

The following code throws an exception inappropriately, when a supplied product is
not found.

static void ProductExists(string ProductId)
{
 //... search for Product
 if (dr.Read(ProductId) ==0) // no record found, ask to create
 {
 throw(new Exception("Product Not found"));
 }
}

Because not finding a product is an expected condition, refactor the code to return
a value that indicates the result of the method’s execution. The following code uses
a return value to indicate whether the customer account was found.

static bool ProductExists(string ProductId)
{
 //... search for Product
 if (dr.Read(ProductId) ==0) // no record found, ask to create
 {
 return false;
 }
 . . .
}

Returning error information using an enumerated type instead of throwing an
exception is another commonly used programming technique in performance-critical
code paths and methods.

Use Validation Code to Reduce Unnecessary Exceptions
If you know that a specific avoidable condition can happen, proactively write code
to avoid it. For example, adding validation checks such as checking for null before
using an item from the cache can significantly increase performance by avoiding
exceptions. The following code uses a try/catch block to handle divide by zero.

double result = 0;
try{
 result = numerator/divisor;
}
catch(System.Exception e){
 result = System.Double.NaN;
}

230 Improving .NET Application Performance and Scalability

The following rewritten code avoids the exception, and as a result is more efficient.

double result = 0;
if (divisor != 0)
 result = numerator/divisor;
else
 result = System.Double.NaN;

Use the finally Block to Ensure Resources Are Released
For both correctness and performance reasons, it is good practice to make sure
all expensive resources are released in a suitable finally block. The reason this is a
performance issue as well as a correctness issue is that timely release of expensive
resources is often critical to meeting your performance objectives.

The following code ensures that the connection is always closed.

SqlConnection conn = new SqlConnection("...");
try
{
 conn.Open();
 //.Do some operation that might cause an exception

 // Calling Close as early as possible
 conn.Close();
 // ... other potentially long operations

}
finally
{
 if (conn.State==ConnectionState.Open)
conn.Close(); // ensure that the connection is closed
}

Notice that Close is called inside the try block and in the finally block. Calling
Close twice does not cause an exception. Calling Close inside the try block allows the
connection to be released quickly so that the underlying resources can be reused. The
finally block ensures that the connection closes if an exception is thrown and the try
block fails to complete. The duplicated call to Close is a good idea if there is other
significant work in the try block, as in this example.

Replace Visual Basic .NET On Error Goto Code with Exception Handling
Replace code that uses the Visual Basic .NET On Error/Goto error handling
mechanism with exception handling code that uses Try/Catch blocks. On Error Goto
code works but Try/Catch blocks are more efficient, and it avoids the creation of the
error object.

 Chapter 5: Improving Managed Code Performance 231

More Information

For more information about why Try/Catch is more efficient, see the “Exception
Handling“ section of “Performance Optimization in Visual Basic .NET” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html
/vbtchPerfOpt.asp.

Do Not Catch Exceptions That You Cannot Handle
Do not catch exceptions unless you specifically want to record and log the exception
details or can retry a failed operation. Do not arbitrarily catch exceptions unless you
can add some value. You should let the exception propagate up the call stack to a
handler that can perform some appropriate processing.

You should not catch generic exceptions in your code as follows.

catch (Exception e)
{....}

This results in catching all exceptions. Most of these exceptions are rethrown
eventually. Catching generic exceptions in your code makes it harder to debug the
original source of the exception because the contents of the call stack (such as local
variables) are gone.

Explicitly name the exceptions that your code can handle. This allows you to avoid
catching and rethrowing exceptions. The following code catches all System.IO
exceptions.

catch (System.IO)
{
 // evaluate the exception
}

Be Aware That Rethrowing Is Expensive
The cost of using throw to rethrow an existing exception is approximately the same as
throwing a new exception. In the following code, there is no savings from rethrowing
the existing exception.

try {
 // do something that may throw an exception...
} catch (Exception e) {
 // do something with e
 throw;
}

You should consider wrapping exceptions and rethrowing them only when you want
to provide additional diagnostic information.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vbtchPerfOpt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vbtchPerfOpt.asp

232 Improving .NET Application Performance and Scalability

Preserve as Much Diagnostic Information as Possible in Your
Exception Handlers
Do not catch exceptions that you do not know how to handle and then fail to
propagate the exception. By doing so, you can easily obscure useful diagnostic
information as shown in the following example.

try
{
 // exception generating code
}
catch(Exception e)
{
 // Do nothing
}

This might result in obscuring information that can be useful for diagnosing the
erroneous code.

Use Performance Monitor to Monitor CLR Exceptions
Use Performance Monitor to identify the exception behavior of your application.
Evaluate the following counters for the .NET CLR Exceptions object:
● # of Exceps Thrown. This counter provides the total number of exceptions

thrown.
● # of Exceps Thrown / sec. This counter provides the frequency of exceptions

thrown.
● # of Finallys / sec. This counter provides the frequency of finally blocks being

executed.
● Throw to Catch Depth / sec. This counter provides the number of stack frames

that were traversed from the frame throwing the exception, to the frame handling
the exception in the last second.

Identify areas of your application that throw exceptions and look for ways to reduce
the number of exceptions to increase your application’s performance.

More Information
For more information on exception management, see the following resources:
● Chapter 15, “Measuring .NET Application Performance”
● Microsoft Knowledge Base article 315965, “HOW TO: Use Structured Exception

Handling in Visual Basic .NET,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;315965

http://support.microsoft.com/default.aspx?scid=kb;en-us;315965
http://support.microsoft.com/default.aspx?scid=kb;en-us;315965

 Chapter 5: Improving Managed Code Performance 233

● Microsoft Knowledge Base article 308043, “HOW TO: Obtain Underlying Provider
Errors by Using ADO.NET in Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;308043

● “Exception Management Application Block for .NET” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/emab-rm.asp

● Exception Management .NET Architecture Guide on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/exceptdotnet.asp

● “Best Practices for Handling Exceptions” in the .NET Framework Developer’s Guide
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconbestpracticesforhandlingexceptions.asp

Iterating and Looping
Applications use iterations to execute a set of statements a number of times.
Nonoptimized code within the loops can result in exacerbated performance issues,
ranging from increased memory consumption to CPU exhaustion.

This section summarizes guidelines that can improve iteration and loop efficiency:
● Avoid repetitive field or property access.
● Optimize or avoid expensive operations within loops.
● Copy frequently called code into the loop.
● Consider replacing recursion with looping.
● Use for instead of foreach in performance-critical code paths.

Avoid Repetitive Field or Property Access
If you use data that is static for the duration of the loop, obtain it before the loop
instead of repeatedly accessing a field or property. The following code shows a
collection of orders being processed for a single customer.

for (int item = 0; item < Customer.Orders.Count ; item++){
 CalculateTax (Customer.State, Customer.Zip, Customer.Orders[item]);
}

http://support.microsoft.com/default.aspx?scid=kb;en-us;308043
http://support.microsoft.com/default.aspx?scid=kb;en-us;308043
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbestpracticesforhandlingexceptions
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbestpracticesforhandlingexceptions
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbestpracticesforhandlingexceptions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbestpracticesforhandlingexceptions.asp

234 Improving .NET Application Performance and Scalability

Note that State and Zip are constant for the loop and could be stored in local
variables rather than accessed for each pass through the loop as shown in the
following code.

string state = Customer.State;
string zip = Customer.Zip;
int count = Customers.Orders.Count;
for (int item = 0; item < count ; item++)
{
 CalculateTax (state, zip, Customer.Orders[item]);
}

Note that if these are fields, it may be possible for the compiler to do this
optimization automatically. If they are properties, it is much less likely. If the
properties are virtual, it cannot be done automatically.

Optimize or Avoid Expensive Operations Within Loops
Identify operations in your loop code that can be optimized. Look for code that
causes boxing or allocations as a side effect. The following code causes side effect
strings to be created for each pass through the loop.

String str;
Array arrOfStrings = GetStrings();
for(int i=0; i<10; i++)
{
 str+= arrOfStrings[i];
}

The following code avoids extra string allocations on the heap by using
StringBuilder.

StringBuilder sb = new StringBuilder();
Array arrOfStrings = GetStrings();
for(int i=0; i<10; i++)
{
 sb.Append(arrOfStrings.GetValue(i));
}

The following guidelines can help you avoid expensive operations in loops:
● Be aware of the method calls you make inside loops. Watch out for inadvertent

method calls and consider using inline code where appropriate.
● Consider StringBuilder for string concatenation inside a loop. For more

information, see “String Operations” later in this chapter.
● When testing for multiple conditions to exit out or continue looping, order your

tests so that the one most likely to let you escape the loop, is run first.

 Chapter 5: Improving Managed Code Performance 235

Copy Frequently Called Code into the Loop
If you repeatedly call methods from inside a loop, consider changing the loop to
reduce the number of calls made. The JIT compiler usually inlines any called code
if it is simple, but in most complex scenarios it is your responsibility to optimize the
code. The costs of the call increase as you cross process or computer boundaries with
remoting or Web services. The following code shows a method being called
repeatedly inside a loop.

for (int item = 0 ; item < Circles.Items.Length; item++){
 CalculateAndDisplayArea(Circles[item]);
}

Consider the following strategies to reduce the calls incurred:
● Move the called code into the loop. This reduces the number of calls being made.
● Move the whole unit of work to the called object. The following code modifies the

object being called and passes all the required data so that the whole loop can
happen remotely. This is helpful to avoid round trips and offloads the work to
local calls for an object which may be hosted remotely.

// call function to store all items
OrderProcessing op = new OrderProcessing();
StoreAllOrderItems (Order.Items);
...
class OrderProcessing{
...
 public bool StoreAllOrderItems (Items itemsToInsert)
 {
 SqlConnection conn = new SqlConnection(...
 SqlCommnd cmd = new SqlCommand(...
 for (int item = 0 ; item < orders.Items.Length; item++){
 // insert order into database
 // set parameters on command object
 cmd.ExecuteNonQuery();
 // insert order item
 }
 }
 . . .
}

236 Improving .NET Application Performance and Scalability

Consider Replacing Recursion with Looping
Each recursive call adds data to the stack. Examine your code and see if your
recursive calls can be converted to a looping equivalent. The following code
makes recursive calls to accomplish a small task of string concatenation.

Array arr = GetArrayOfStrings();
int index = arr.Length-1;
String finalStr= RecurStr(index);
string RecurStr(int ind){
 if (ind<=0)
 return "";
 else
 return (arr.GetValue(ind)+RecurStr(ind-1));
}

Rewritten, the following code now avoids creating new data on the stack for each
successive call and avoids an additional method call to itself.

string ConcString (Array array)
{
 StringBuilder sb = new StringBuilder();
 for (int i= array.Length; i>0; i--)
 {
 sb.Append(array.GetValue(i));
 }
 return sb;
}

Use for Instead of foreach in Performance-Critical Code Paths
Use for instead of foreach (C#) to iterate the contents of arrays or collections in
performance-critical code. foreach in C# and For Each in Visual Basic .NET use an
enumerator to provide enhanced navigation through arrays and collections. For
more information, see “Enumeration Overhead” in the “Collection Guidelines”
section later in this chapter.

String Operations
The .NET Framework provides the System.String data type to represent a string.
Intensive string manipulation can significantly degrade performance due to the
immutable nature of the System.String type. This means that every time you perform
an operation to change the string data, the original string in memory is discarded for
later garbage collection and a new one is created to hold the new string data. Also
note that the String type is a reference type, so the contents of the string are stored on
the managed heap. As a result, strings must be garbage collected to be cleaned up.

 Chapter 5: Improving Managed Code Performance 237

This section summarizes recommendations to consider when working with strings:
● Avoid inefficient string concatenation.
● Use + when the number of appends is known.
● Use StringBuilder when the number of appends is unknown.
● Treat StringBuilder as an accumulator.
● Use the overloaded Compare method for case insensitive string comparisons.

Avoid Inefficient String Concatenation
Excessive string concatenation results in many allocation and deallocation operations,
because each time you perform an operation to change the string, a new one is
created and the old one is subsequently collected by the garbage collector.
● If you concatenate string literals, the compiler concatenates them at compile time.

//'Hello' and 'world' are string literals
String str = "Hello" + "world";

● If you concatenate nonliteral strings, CLR concatenates them at run time. So using
the + operator creates multiple strings objects in the managed heap.

● Use StringBuilder for complex string manipulations and when you need to
concatenate strings multiple times.

// using String and '+' to append
String str = "Some Text";
for (... loop several times to build the string ...) {
 str = str + " additional text ";
}
// using String and .Append method to append
StringBuilder strBuilder = new StringBuilder("Some Text ");
for (... loop several times to build the string ...) {
 strBuilder.Append(" additional text ");
}

Use + When the Number of Appends Is Known
If you know the number of appends to be made and you are concatenating the strings
in one shot, prefer the + operator for concatenation.

String str = str1+str2+str3;

If you concatenate the strings in a single expression, only one call to String.Concat
needs to be made. It results in no temporary strings (for partial combinations of the
strings to be concatenated).

Note: You should not be using + on strings inside a loop or for multiple iterations. Use StringBuilder
instead.

238 Improving .NET Application Performance and Scalability

Use StringBuilder When the Number of Appends Is Unknown
If you do not know the number of appends to be made, which might be the case
when iterating through a loop or building dynamic SQL queries, use the
StringBuilder class as shown in the following code sample.

for (int i=0; i< Results.Count; i++)
{
 StringBuilder.Append (Results[i]);
}

The StringBuilder class starts with a default initial capacity of 16. Strings less than
the initial capacity are stored in the StringBuilder object.

The initial capacity of the buffer can be set by using the following overloaded
constructor.

public StringBuilder (int capacity);

You can continue to concatenate without additional allocations until you consume
the preallocated buffer. As a result, using a StringBuilder object is often more
efficient than using String objects for concatenation. If you concatenate further, the
StringBuilder class creates a new buffer of the size equal to double the current
capacity.

So if you start with a StringBuilder of size 16 and exceed the limit, the StringBuilder
allocates a new buffer of size 32 and copies the old string to the new buffer. The old
buffer is inaccessible and becomes eligible for garbage collection.

Note: You should always try to set the initial capacity of the StringBuilder to an optimum value to
reduce the cost of new allocations. To determine the optimum value for your case, the best way is to
track the memory consumption by using the CLR profiler. For more information about how to use CLR
profiler, see “How To: Use CLR Profiler” in the “How To” section of this guide.

 Chapter 5: Improving Managed Code Performance 239

Treat StringBuilder as an Accumulator
You can treat StringBuilder as an accumulator or reusable buffer. This helps avoid
the allocations of temporary strings during multiple append iterations. Some of the
scenarios where this helps are as follows:
● Concatenating strings. You should always prefer the following approach to string

concatenation when using StringBuilder.

StringBuilder sb;
sb.Append(str1);
sb.Append(str2);

Use the preceding code rather than the following.

sb.Append(str1+str2);

This is because you do not need to make the temporary str1+str2 to append str1
and then str2.

● Concatenating the strings from various functions. An example of this is shown in
the following code sample.

StringBuilder sb;
sb.Append(f1(...));
sb.Append(f2(...));
sb.Append(f3(...));

The preceding code snippet results in temporary string allocations for the return
values by the functions f1 (...), f2 (...), f3 (...). You can avoid these temporary
allocations by using the following pattern.

void f1(sb,...);
void f2(sb,...);
void f3(sb,...);

In this case, the StringBuilder instance is directly passed as an input parameter to
the methods. sb.Append is directly called in the function body, which avoids the
allocation of temporary strings.

240 Improving .NET Application Performance and Scalability

Use the Overloaded Compare Method for Case-Insensitive String Comparisons
Carefully consider how you perform case-insensitive string comparisons. Avoid
using ToLower as shown in the following code because you end up creating
temporary string objects.

// Bad way for insensitive operations because ToLower creates temporary strings
String str="New York";
String str2 = "New york";
if (str.ToLower()==str2.ToLower())
 // do something

The more efficient way to perform case-insensitive string comparisons is to use the
Compare method.

str.Compare(str,str2,false);

Note: The String.Compare method uses the info in the CultureInfo.CompareInfo property to
compare culture-sensitive strings.

More Information
For more information on string management performance, see “Improving
String Handling Performance in .NET Framework Applications” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/vbnstrcatn.asp.

Arrays
Arrays provide basic functionality for grouping types. Every language implements
array syntax in its own way, although the following considerations apply regardless
of language:
● Arrays have a static size. The size of the array remains fixed after initial allocation.

If you need to extend the size of the array, you must create a new array of the
required size and then copy the elements from the old array.

● Arrays support indexed access. To access an item in an array, you can use its
index.

● Arrays support enumerator access. You can access items in the array by
enumerating through the contents using the foreach construct (C#) or For Each
(Visual Basic .NET).

● Memory is contiguous. The CLR arranges arrays in contiguous memory space,
which provides fast item access.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/vbnstrcatn.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/vbnstrcatn.asp

 Chapter 5: Improving Managed Code Performance 241

This section summarizes performance guidelines to consider when using arrays:
● Prefer arrays to collections unless you need functionality.
● Use strongly typed arrays.
● Use jagged arrays instead of multidimensional arrays.

Prefer Arrays to Collections Unless You Need Functionality
Arrays are the fastest of all collections, so unless you need special functionality, such
as dynamic extension of the collection, you should consider using arrays rather than
collections. Arrays also avoid the boxing and unboxing overhead.

Use Strongly Typed Arrays
Use strongly typed arrays where possible, rather than using object arrays to store
types. This avoids type conversion or boxing depending upon the type stored in the
array. If you declare an array of objects and then proceed to add a value type such as
an integer or float to the array, it involves the boxing overhead as shown in the
following code sample.

Object[] array = new Object[10]
arr[0] = 2+3; //boxing occurs here

To avoid the boxing overhead declare a strongly typed int array, as follows:
int [] arrIn = new int [10];
arrIn[0] = 2+3;

Storing reference types, such as string or custom classes in the array of objects,
involves the typecasting overhead. Therefore, you should use strongly typed
arrays to store your reference types to, as shown in the following code sample.

string[10] arrStr = new string[10];
arrStr[0] = new string("abc");

Use Jagged Arrays Instead of Multidimensional Arrays
A jagged array is a single dimensional array of arrays. The elements of a jagged
array can be of different dimensions and sizes. Use jagged arrays instead of
multidimensional arrays to benefit from MSIL performance optimizations.

MSIL has specific instructions that target single dimensional zero-based
arrays (SZArrays) and access to this type of array is optimized. In contrast,
multidimensional arrays are accessed using the same generic code for all types,
which results in boxing and unboxing for arrays of primitive types.

Note: Avoid nonzero-based arrays because they perform more slowly than SZArrays.

242 Improving .NET Application Performance and Scalability

The following example shows the declaration and use of jagged arrays.

string[][] Address = new string[2][]; // A jagged array of strings
Address[0] = new string[1];
Address[1] = new string[2];
Address[0][0] = "Address [0,1]";
Address[1][0] = "Address [1,0]";
Address[1][1] = "Address [1,1]";
for (int i =0; i <=1; i++) {
 for (int j = 0; j < Address[i].Length; j ++)
 MessageBox.Show(Address[i][j]);
}

Note: Jagged arrays are not Common Language Specification (CLS) compliant and may not be used
across languages.

You can compare the efficiency of jagged versus multidimensional arrays by studying
the MSIL code generated in each case. Notice how the following code that uses a
multidimensional array results in a function call.

int [,] secondarr = new int[1, 2];
secondarr[0, 0] = 40;

The preceding code generates the following MSIL. Notice the function call.

IL_0029: ldc.i4.s 40
IL_002b: call instance void int32[0...,0...]::Set(int32,
 int32,
 int32)

The following code shows the MSIL generated for a jagged array. Notice the use of
the MSIL stelem instruction. The stelem instruction replaces the array element at a
given index with the int32 value on the evaluation stack.

int [][] intarr = new int[1][];
intarr[0] = new int[2];
intarr[0][0] = 10;

The preceding code generates the following MSIL. Note the use of the stelem
instruction.

IL_001c: ldc.i4.s 10
IL_001e: stelem.i4

 Chapter 5: Improving Managed Code Performance 243

Additional Considerations
When using arrays, also consider the following:
● Sorting. If you retrieve data from a database, see if you can presort it by using

an ORDER BY clause in your query. If you need to use the sorted results from
the database for additional searching and sorting of the subset of results, you may
require sorting the arrays. You should always measure to find out which approach
works better for your scenario: sorting, using SQL queries, or sorting using arrays
in the business layer.

● Avoid returning an Array from a property. Instead, consider using indexing
properties.

EmployeeList l = FillList();
for (int i = 0; i < l.Length; i++) {
 if (l.All[i] == x){...}
}

In the preceding code, each time the property All is used, you might be creating
and returning an array. If the calling code uses the property in a loop as shown in
the preceding code, an array is created on each iteration of the loop.
In addition, if you return an array from a method, the resulting code is somewhat
nonintuitive. A code example follows. In either case, document the details for
your API.

// calling code:
if (l.GetAll()[i]== x) {...}

If you must return an array from a piece of code, consider returning a copy to
prevent synchronization issues between clients.

● In the following code example, each call to the myObj property creates a copy of
the array. As a result, a copy of the array will be created each time the code
DoSomething(obj.myObj[i]) is executed.

for (int i = 0; i < obj.myObj.Count; i++)
 DoSomething(obj.myObj[i]);

244 Improving .NET Application Performance and Scalability

Collections Explained
There are two basic types of collections: lists and dictionaries. Lists are index-based.
Dictionaries are key-based, which means you store a key with the value. Table 5.3
summarizes the various list and dictionary types provided by the .NET Framework
class libraries.

Collections are types that implement the IEnumerable, ICollection, or IList
interfaces. If the types implement IDictionary separately or in addition to these three
interfaces, they are referred to as Dictionaries. Table 5.3 lists the guidelines for each of
these collection types.

Table 5.3: List and Dictionary Collection Types

Type Description

ArrayList This is a dynamically sizable array. It is useful when you do not know the
required array size at design time.

Hashtable This is a collection of key/value pairs that are organized based on the
hash code of the key. It is appropriate when you need to search but
not sort.

HybridDictionary This uses a ListDictionary when the collection is small, and switches to
Hashtable when the collection gets large.

ListDictionary This is useful for storing 10 or less key/value pairs.

NameValueCollection This is a sorted collection of associated String keys and String values
that can be accessed either with the key or with the index.

Queue This is a first-in, first-out collection that implements ICollection.

SortedList This is a collection of key/value pairs that are sorted by the keys and are
accessible by key and by index.

Stack This is a simple last-in, first-out collection of objects.

StringCollection This is a strongly typed array list for strings.

StringDictionary This is a hash table with the key strongly typed to be a string rather than
an object.

Collection Issues
This section summarizes performance-related issues associated with collections:
● Boxing issues
● Thread safety
● Enumeration overhead

 Chapter 5: Improving Managed Code Performance 245

Boxing Issues
If you use a collection such as an ArrayList to store value types such as integer or
float, every item is boxed (a reference type is created and the value copied) when it is
added to the collection. If you are adding many items to the collection, the overhead
can be excessive. The problem is illustrated by the following code snippet.

ArrayList al = new ArrayList();
for (int i=0; i<1000;i++)
 al.Add(i); //Implicitly boxed because Add() takes an object
int f = (int)al[0]; // The element is unboxed

To prevent this problem, consider using an array instead, or creating a custom
collection class for your specific value type.

Note: The .NET Framework 2.0, at the time of this writing, introduces generics to the C# language
which will avoid the boxing and unboxing overhead.

Thread Safety
Collections are generally not thread safe by default. It is safe for multiple threads to
read the collection, but any modification to the collection produces undefined results
for all threads that access the collection. To make a collection thread safe, do the
following:
● Create a thread safe wrapper using the Synchronized method, and access the

collection exclusively through that wrapper.

// Creates and initializes a new ArrayList.
ArrayList myAr = new ArrayList();
// add objects to the collection
// Creates a synchronized wrapper around the ArrayList.
ArrayList mySyncdAr = ArrayList.Synchronized(myAr);

● Use the lock statement in C# (or SyncLock in Visual Basic .NET) on the SyncRoot
property when accessing the collection.

ArrayList myCollection = new ArrayList();
lock(myCollection.SyncRoot) {
 // Insert your code here.
}

● You can also implement a synchronized version of the collection by deriving from
the collection and implementing a synchronized method using the SyncRoot
property. See the preceding “Locking and Synchronization Guidelines” section to
understand the implications because synchronizing in this way is usually a less
effective method.

246 Improving .NET Application Performance and Scalability

Enumeration Overhead
The .NET Framework version 1.1 collections provide an enumerator by overriding
IEnumerable.GetEnumerator. This turns out to be less than optimal for a number
of reasons:
● The GetEnumerator method is virtual, so the call cannot be inlined.
● The return value is an IEnumerator interface instead of an exact type; as a result,

the exact enumerator cannot be known at compile time.
● The MoveNext method and Current properties are again virtual and so cannot be

inlined.
● IEnumerator.Current requires a return type of System.Object, rather than a more

specific data type which may require boxing and unboxing, depending on the data
types stored in the collection.

As a result of these factors, there are both managed heap and virtual function
overhead associated with foreach on simple collection types. This can be a significant
factor in performance-sensitive regions of your application.

For information about how to minimize the overhead, see “Consider Enumerating
Overhead” in the next section.

Collection Guidelines
This section summarizes guidelines that help you to use .NET Framework collection
types most efficiently and to avoid common performance mistakes:
● Analyze your requirements before choosing the collection type.
● Initialize collections to the right size when you can.
● Consider enumerating overhead.
● Prefer to implement IEnumerable with optimistic concurrency.
● Consider boxing overhead.
● Consider for instead of foreach.
● Implement strongly typed collections to prevent casting overhead.
● Be efficient with data in collections.

 Chapter 5: Improving Managed Code Performance 247

Analyze Your Requirements Before Choosing the Collection Type
Do you need to use a collection? Arrays are generally more efficient, particularly if
you need to store value types. You should choose a collection based on the size, type
of data to be stored, and usage requirements. Use the following evaluation criteria
when determining which collection is appropriate:
● Do you need to sort your collection?
● Do you need to search your collection?
● Do you need to access each element by index?
● Do you need a custom collection?

Do You Need to Sort Your Collection?
If you need to sort your collection, do the following:
● Use ArrayList to bind the read-only sorted data to a data grid as a data source.

This is better than using a SortedList if you only need to bind read-only data
using the indexes in the ArrayList (for example, because the data needs to be
displayed in a read-only data grid). The data is retrieved in an ArrayList and
sorted for displaying.

● Use SortedList for sorting data that is mostly static and needs to be updated only
infrequently.

● Use NameValueCollection for sorting strings.
● SortedList presorts the data while constructing the collection. This results in a

comparatively expensive creation process for the sorted list, but all updates to the
existing data and any small additions to the list are automatically and efficiently
resorted as the changes are made. Sortedlist is suitable for mostly static data with
minor updates.

Do You Need to Search Your Collection?
If you need to search your collection, do the following:
● Use Hashtable if you search your collection randomly based on a key/value pair.
● Use StringDictionary for random searches on string data.
● Use ListDictionary for sizes less than 10.

248 Improving .NET Application Performance and Scalability

Do You Need to Access Each Element by Index?
If you need to access each element by index, do the following:
● Use ArrayList and StringCollection for zero-based index access to the data.
● Use Hashtable, SortedList, ListDictionary, and StringDictionary to access

elements by specifying the name of the key.
● Use NameValueCollection to access elements, either by using a zero-based index

or specifying the key of the element.
● Remember that arrays do this better than any other collection type.

Do You Need a Custom Collection?
Consider developing a custom collection to address the following scenarios:
● Develop your own custom collection if you need to marshal by reference because

all standard collections are passed by value. For example, if the collection stores
objects that are relevant only on the server, you might want to marshal the
collection by ref rather than by value.

● You need to create a strongly typed collection for your own custom object to avoid
the costs of upcasting or downcasting, or both. Note that if you create a strongly
typed collection by inheriting CollectionBase or Hashtable, you still end up
paying the price of casting, because internally, the elements are stored as objects.

● You need a read-only collection.
● You need to have your own custom serializing behavior for your strongly typed

collection. For example, if you extend Hashtable and are storing objects that
implement IDeserializationCallback, you need to customize serialization to factor
for the computation of hash values during the serialization process.

● You need to reduce the cost of enumeration.

Initialize Collections to the Right Size When You Can
Initialize collections to the right size if you know exactly, or even approximately, how
many items you want to store in your collection; most collection types let you specify
the size with the constructor, as shown in the following example.

ArrayList ar = new ArrayList (43);

Even if the collection is able to be dynamically resized, it is more efficient to allocate
the collection with the correct or approximate initial capacity (based on your tests).

Consider Enumerating Overhead
A collection supports enumeration of its elements using the foreach construct by
implementing IEnumerable.

 Chapter 5: Improving Managed Code Performance 249

To reduce the enumeration overhead in collections, consider implementing the
Enumerator pattern as follows:
● If you implement IEnumerable.GetEnumerator also implement a non-virtual

GetEnumerator method. Your class’s IEnumerable.GetEnumerator method
should call this nonvirtual method, which should return a nested public
enumerator struct as shown in the following code sample.

class MyClass : IEnumerable
{
 // non-virtual implementation for your custom collection
 public MyEnumerator GetEnumerator() {
 return new MyEnumerator(this); // Return nested public struct
 }
 // IEnumerator implementation
 public IEnumerator.GetEnumerator() {
 return GetEnumerator();//call the non-interface method
 }
}

The foreach language construct calls your class’s nonvirtual GetEnumerator
if your class explicitly provides this method. Otherwise, it calls
IEnumerable.GetEnumerator if your class inherits from IEnumerable. Calling
the nonvirtual method is slightly more efficient than calling the virtual method
through the interface.

● Explicitly implement the IEnumerator.Current property on the enumerator
struct. The implementation of .NET collections causes the property to return a
System.Object rather than a strongly typed object; this incurs a casting overhead.
You can avoid this overhead by returning a strongly typed object or the exact
value type rather than System.Object in your Current property. Because you
have explicitly implemented a non-virtual GetEnumerator method (not the
IEnumerable.GetEnumerator) the runtime can directly call the
Enumerator.Current property instead of calling the IEnumerator.Current
property, thereby obtaining the desired data directly and avoiding the casting
or boxing overhead, eliminating virtual function calls, and enabling inlining.
Your implementation should be similar to the following.

// Custom property in your class
//call this property to avoid the boxing or casting overhead
Public MyValueType Current {
 MyValueType obj = new MyValueType();
 // the obj fields are populated here
 return obj;
}
// Explicit member implementation
Object IEnumerator.Current {
get { return Current} // Call the non-interface property to avoid casting
}

250 Improving .NET Application Performance and Scalability

Implementing the Enumerator pattern involves having an extra public type
(the enumerator) and several extra public methods that are really there only for
infrastructure reasons. These types add to the perceived complexity of the API and
must be documented, tested, versioned, and so on. As a result, you should adopt this
pattern only where performance is paramount.

The following sample code illustrates the pattern.

public class ItemTypeCollection: IEnumerable
{
 public struct MyEnumerator : IEnumerator
 {
 public ItemType Current { get {... } }
 object IEnumerator.Current { get { return Current; } }
 public bool MoveNext() { ... }
 ...
 }
 public MyEnumerator GetEnumerator() { ... }
 IEnumerator IEnumerable.GetEnumerator() { ... }
 ...
}

To take advantage of JIT inlining, avoid using virtual members in your collection
unless you really need extensibility. Also, limit the code in the Current property
to returning the current value to enable inlining, or alternatively, use a field.

Prefer to Implement IEnumerable with Optimistic Concurrency
There are two legitimate ways to implement the IEnumerable interface.
With the optimistic concurrency approach, you assume that the collection will
not be modified while it is being enumerated. If it is modified, you throw an
InvalidOperationException. An alternate pessimistic approach is to take a snapshot
of the collection in the enumerator to isolate the enumerator from changes in the
underlying collection. In most general cases, the optimistic concurrency model
provides better performance.

Consider Boxing Overhead
When storing value types in a collection, you should consider the overhead involved,
because the boxing overhead can be excessive depending on the size of the collection
and the rate of updating or accessing the data. If you do not need the functionality
provided by collections, consider using arrays to avoid the boxing overhead.

Consider for Instead of foreach
Use for instead of foreach (C#) to iterate the contents of arrays or collections in
performance critical code, particularly if you do not need the protections offered by
foreach.

 Chapter 5: Improving Managed Code Performance 251

Both foreach in C# and For Each in Visual Basic .NET use an enumerator to provide
enhanced navigation through arrays and collections. As discussed earlier, typical
implementations of enumerators, such as those provided by the .NET Framework,
will have managed heap and virtual function overhead associated with their use.

If you can use the for statement to iterate over your collection, consider doing so in
performance sensitive code to avoid that overhead.

Implement Strongly Typed Collections to Prevent Casting Overhead
Implement strongly typed collections to prevent upcasting or downcasting overhead.
Do so by having its methods accept or return specific types instead of the generic
object type. StringCollection and StringDictionary are examples of strongly typed
collections for strings.

For more information and a sample implementation, see “Walkthrough:
Creating Your Own Collection Class” in Visual Basic and Visual C# Concepts on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vaconCreatingYourOwnCollectionClass.asp.

Be Efficient with Data in Collections
When dealing with very large numbers of objects, it becomes very important to
manage the size of each object. For example, it makes little difference whether you
use a short (Int16), int/Integer (Int32), or long (Int64) for a single variable, but it can
make a huge difference if you have a million of them in a collection or array. Whether
you are dealing with primitive types or complex user-defined objects, make sure you
do not allocate more memory than you need if you will be creating a large number of
these objects.

Collection Types
This section summarizes the main issues to consider when using the following
collection types:
● ArrayList
● Hashtable
● HybridDictionary
● ListDictionary
● NameValueCollection
● Queue
● SortedList
● Stack
● StringCollection
● StringDictionary

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vaconCreatingYourOwnCollectionClass.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vaconCreatingYourOwnCollectionClass.asp

252 Improving .NET Application Performance and Scalability

ArrayList
The ArrayList class represents a list that dynamically resizes as new items are added
to the list and its current capacity is exceeded. Consider the following
recommendations when using an ArrayList:
● Use ArrayList to store custom object types and particularly when the data changes

frequently and you perform frequent insert and delete operations.
● Use TrimToSize after you achieve a desired size (and there are no further

insertions expected) to trim the array list to an exact size. This also optimizes
memory use. However, be aware that if your program subsequently needs to
insert new elements, the insertion process is now slower because the ArrayList
must now dynamically grow; trimming leaves no room for growth.

● Store presorted data and use ArrayList.BinarySearch for efficient searches. Sorting
and linear searches using Contains are expensive. This is essentially for one-off
sorting of data, but if you need to perform frequent sorting, a SortedList might be
more beneficial because it automatically re-sorts the entire collection after each
insertion or update.

● Avoid ArrayList for storing strings. Use a StringCollection instead.

Hashtable
Hashtable represents a collection of key/value pairs that are organized based on the
hash code of the key. Consider the following recommendations when using
Hashtable:
● Hashtable is suitable for large number of records and data that may or may not

change frequently. Frequently changing data has an extra overhead of computing
the hash value as compared to data which does not change frequently.

● Use Hashtable for frequently queried data; for example, product catalogues where
a product ID is the key.

HybridDictionary
HybridDictionary is implemented internally, using either a ListDictionary when the
collection is small or a Hashtable when the collection increases in size. Consider the
following recommendations:
● Use HybridDictionary for storing data when the number of records is expected

to be low most of the time, with occasional increases in size. If you are sure that
the size of collection will be always high or always low, you should choose
Hashtable and ListDictionary respectively. This avoids the extra cost of the
HybridDictionary, which acts as a wrapper around both these collections.

● Use HybridDictionary for frequently queried data.
● Do not use HybridDictionary to sort data. It is not optimized for sorting.

 Chapter 5: Improving Managed Code Performance 253

ListDictionary
Use ListDictionary to store small amounts of data (fewer than 10 items).This
implements the IDictionary interface using a singly-linked list implementation. For
example, a factory class that implements the Factory pattern might store instantiated
objects in a cache using a ListDictionary, so they can be served directly from the
cache the next time a creation request is made.

NameValueCollection
This represents a sorted collection of associated string keys and string values that can
be accessed either with the key or with the index. For example, you may use a
NameValueCollection if you need to display subjects registered by students in a
particular class because it can store the data in alphabetical order of student names.
● Use NameValueCollection to store strings of key/value pairs in a pre-sorted

order. Note that you can also have multiple entries with the same key.
● Use NameValueCollection for frequently changing data where you need to insert

and delete items regularly.
● Use NameValueCollection when you need to cache items and for fast retrieval.

Queue
Queue represents a first-in, first-out object collection. Consider the following
recommendations for using Queue:
● Use Queue when you need to access data sequentially, based on priority. For

example, an application that scans the waiting list of plane reservation requests
and gives priority by allocating vacant seats to passengers at the beginning of
queue.

● Use Queue when you need to process items sequentially in a first-in, first-out
manner.

● If you need to access items based on a string identifier, use a
NameValueCollection instead.

254 Improving .NET Application Performance and Scalability

SortedList
The SortedList represents a collection of key/value pairs that are sorted by the keys
and are accessible by key and by index. New items are added in sorted order and the
positions of existing items are adjusted to accommodate the new items. The creation
costs associated with a SortedList are relatively high, so you should use it in the
following situations:
● The collection can be used where the data is mostly static and only a few

records need to be added or updated over a period of time; for example, a
cache of employee information. This can be updated by adding a new key
based on employee number, which is added quickly in the SortedList, whereas
an ArrayList needs to run the Sorting algorithm all over again so the delta change
is faster in SortedList.

● Use SortedList for fast object retrieval using an index or key. It is well suited for
circumstances where you need to retrieve a set of sorted objects, or for querying
for a specific object.

● Avoid using SortedList for large data changes because the cost of inserting the
large amount of data is high. Instead, prefer an ArrayList and sort it by calling
the Sort method. The ArrayList uses the QuickSort algorithm by default. The time
taken by ArrayList is much less for creating and sorting than the time taken by the
SortedList.

● Avoid using SortedList for storing strings because of the casting overhead.
Use a StringCollection instead.

Stack
This represents a simple last-in, first-out object collection. Consider the following
recommendations for using a Stack:
● Use Stack in scenarios where you need to process items in a last-in, first-out

manner. For example, an application that needs to monitor the 10 most recent
users visiting a Web site over a period of time.

● Specify the initial capacity if you know the size.
● Use Stack where you can discard the items after processing it.
● Use Stack where you do not need to access arbitrary items in the collection.

 Chapter 5: Improving Managed Code Performance 255

StringCollection
This represents a collection of strings and is a strongly typed ArrayList. Consider
the following recommendations for using StringCollection:
● Use StringCollection to store string data that changes frequently and needs to be

retrieved in large chunks.
● Use StringCollection for binding string data to a data grid. This avoids the cost of

downcasting it to a string during retrieval.
● Do not use StringCollection for sorting strings or to store presorted data.

StringDictionary
This is a Hashtable with the key strongly typed as a string, rather than an object.
Consider the following recommendations for using StringDictionary:
● Use StringDictionary when the data does not change frequently because the

underlying structure is a Hashtable used for storing strongly typed strings.
● Use StringDictionary to store static strings that need to be frequently queried.
● Always prefer StringDictionary over Hashtable for storing string key/value pairs

if you want to preserve the string type to ensure type safety.

More Information
For more information about .NET collection classes, see the following Microsoft
Knowledge Base articles:
● 307933, “HOW TO: Work with the HashTable Collection in Visual Basic .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;307933
● 309357, “HOW TO: Work with the HashTable Collection in Visual C# .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;309357
● 312389, “HOW TO: Return a Strongly-Typed Array from the ToArray(type)

Method by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;312389

● 313638, “HOW TO: Bind an ArrayList or Collection of Structures to a
Windows Form by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;313638

● 316302, “HOW TO: Bind a DataGrid Control to an ArrayList of Objects or
Structures by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;316302

http://support.microsoft.com/default.aspx?scid=kb;en-us;307933
http://support.microsoft.com/default.aspx?scid=kb;en-us;309357
http://support.microsoft.com/default.aspx?scid=kb;en-us;312389
http://support.microsoft.com/default.aspx?scid=kb;en-us;312389
http://support.microsoft.com/default.aspx?scid=kb;en-us;313638
http://support.microsoft.com/default.aspx?scid=kb;en-us;313638
http://support.microsoft.com/default.aspx?scid=kb;en-us;316302
http://support.microsoft.com/default.aspx?scid=kb;en-us;316302

256 Improving .NET Application Performance and Scalability

● 315784, “HOW TO: Bind a DataGrid Control to an Array of Objects or
Structures by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;315784

● 313640, “HOW TO: Bind an ArrayList or Collection of Objects to a
Windows Form by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;313640

● 313639, “HOW TO: Bind an Array of Objects to a Windows Form by Using
Visual Basic .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;313639

Reflection and Late Binding
Reflection provides the ability to examine and compare types, enumerate methods
and fields, and dynamically create and execute types at runtime. Even though all
reflection costs are high, some reflection operations cost much more than others. The
first (comparing types) is the least expensive, while the last (dynamically creating and
executing) is the most expensive. This is accomplished by examining the metadata
contained in assemblies. Many reflection APIs need to search and parse the metadata.
This requires extra processing that should be avoided in performance-critical code.

The late binding technique uses reflection internally and is an expensive operation
that should be avoided in performance critical code.

This section summarizes recommendations to minimize the performance impact of
reflection or late binding code:
● Prefer early binding and explicit types rather than reflection.
● Avoid late binding.
● Avoid using System.Object in performance critical code paths.
● Enable Option Explicit and Option Strict in Visual Basic .NET.

Prefer Early Binding and Explicit Types Rather Than Reflection
Visual Basic .NET uses reflection implicitly when you declare the type as object. In
C#, you use reflection explicitly. You should avoid reflection wherever possible by
using early binding and declaring types explicitly.

Some examples where you use reflection explicitly in C# are when you perform any
of the following operations:
● Type comparisons using TypeOf, GetType, and IsInstanceOfType.
● Late bound enumeration using Type.GetFields.
● Late bound execution using Type.InvokeMember.

http://support.microsoft.com/default.aspx?scid=kb;en-us;315784
http://support.microsoft.com/default.aspx?scid=kb;en-us;315784
http://support.microsoft.com/default.aspx?scid=kb;en-us;313640
http://support.microsoft.com/default.aspx?scid=kb;en-us;313640
http://support.microsoft.com/default.aspx?scid=kb;en-us;313639

 Chapter 5: Improving Managed Code Performance 257

Avoid Late Binding
Early binding allows the compiler to identify the specific type required and perform
optimizations that are used at run time. Late binding defers the type identification
process until run time and requires extra processing instructions to allow type
identification and initialization. The following code loads a type at run time.

Assembly asm = System.Reflection.Assembly.LoadFrom("C:\\myAssembly.dll");
Type myType = asm.GetType("myAssembly.MyTypeName");
Object myinstance = Activator.CreateInstance(myType);

This is the equivalent of the following.

MyTypeName myinstance = new MyTypeName();

In some cases, you need dynamic execution of types but when performance is critical,
avoid late binding.

Avoid Using System.Object in Performance-Critical Code Paths
The System.Object data type can represent any value or reference type but requires
late bound calls to execute methods and access properties. Avoid using the Object
type when performance of your code is critical.

The Visual Basic .NET compiler implicitly uses reflection if you declare the type as
Object.

'VB.NET
Dim obj As Object
Set Obj = new CustomType()
Obj.CallSomeMethod()

Note: This is a Visual Basic .NET specific issue. C# has no such problem.

Enable Option Explicit and Option Strict in Visual Basic .NET
By default, Visual Basic .NET allows late bound code. Set the Strict and Explicit
properties to true to force Visual Basic .NET to not allow late bound code. In Visual
Studio .NET, you can access these properties through the Project Properties dialog
box. If you use the command line compiler Vbc.exe to compile your code, use the
/optionexplicit and /optionstrict flags.

258 Improving .NET Application Performance and Scalability

Code Access Security
The .NET Framework provides code access security to control the ability of code
to access various protected resources and operations. An administrator can control
which permissions a particular assembly is granted through policy configuration.
At run time, access to specific resource types and operations triggers a permission
demand that verifies that every caller in the call stack has the appropriate permission
to access the resource or perform the restricted operation. If the calling code does not
have the relevant permission, a security exception is thrown.

If security is a requirement, you typically cannot trade security for performance. But
then, neither can you trade performance for security. If your planning indicates that
you do not have the necessary resources to deliver a feature that is both secure and
has the necessary performance, it may be time to start making simplifications.
Delivering a secure feature that is not actually usable because its performance is so
poor is really the same as not delivering at all, and is a whole lot more expensive.
That said, there are usually plenty of other areas in your application where you can
investigate and tune first. Make sure you use security wisely and account for the
overhead.

This section summarizes guidelines to consider only after a careful security review
of your application:
● Consider SuppressUnmanagedCodeSecurity for performance-critical trusted

scenarios.
● Prefer declarative demands rather than imperative demands.
● Consider using link demands rather than full demands for performance-critical,

trusted scenarios.

Consider SuppressUnmanagedCodeSecurity for Performance-Critical
Trusted Scenarios
When you use P/Invoke or COM interop, the interop code is subject to permission
demands that walk the call stack to ensure that the calling code is authorized to call
unmanaged code.

You can use the SuppressUnmanagedCodeSecurity attribute to improve
performance by eliminating the stack walk permission demand and replacing it
with a link demand that only checks the immediate caller. Before doing so, you
should perform a thorough code review and be certain that your code is not
susceptible to luring attacks.

 Chapter 5: Improving Managed Code Performance 259

The following code shows how to use SuppressUnmanagedCodeSecurity with
P/Invoke.

public NativeMethods
{
 // The use of SuppressUnmanagedCodeSecurity here applies only to FormatMessage
 [DllImport("kernel32.dll"), SuppressUnmanagedCodeSecurity]
 private unsafe static extern int FormatMessage(
 int dwFlags,
 ref IntPtr lpSource,
 int dwMessageId,
 int dwLanguageId,
 ref String lpBuffer, int nSize,
 IntPtr *Arguments);
}

The following example shows how to use SuppressUnmanagedCodeSecurity with
COM interop, where this attribute must be used at the interface level.

[SuppressUnmanagedCodeSecurity]
public interface IComInterface
{
}

More Information

For more information, see “Use SuppressUnmanagedCodeSecurity with Caution”
in Chapter 8, “Code Access Security in Practice,” in Improving Web Application
Security: Threats and Countermeasures on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp.

Prefer Declarative Demands Rather Than Imperative Demands
Use declarative demands where possible. Declarative security has a rich syntax and
using declarative demands provides the .NET Framework with the maximum ability
to optimize code because you are specifying your intent succinctly and directly.

Consider Using Link Demands Rather Than Full Demands for
Performance-Critical, Trusted Scenarios
When code accesses a protected resource or performs a privileged operation,
code access security demands are used to ensure that the code has the required
permissions. Full demands require the runtime to perform a stack walk to ensure
that the calling code has the required permissions.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

260 Improving .NET Application Performance and Scalability

The full stack walk can be avoided by using a link demand instead of a full demand.
While performance is improved because the link demand checks only the immediate
caller during JIT compilation, you need to balance this performance gain with your
security requirements. The link demand significantly increases the chances of your
code being subjected to a luring attack, where malicious code calls your code to
access a protected resource or perform a privileged operation.

You should consider using link demands only in trusted scenarios where
performance is critical, and you should consider it only after you have fully
evaluated the security implications.

More Information

For more information about link demands and how to use them appropriately, see
“Link Demands” in Chapter 8, “Code Access Security in Practice,” in Improving Web
Application Security: Threats and Countermeasures on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp.

Working Set Considerations
A smaller working set produces better system performance. The working set of a
program is the collection of those pages in the program’s virtual address space that
have recently been referenced. As the working set size increases, memory demand
increases. Factors that govern the working set size include the number of loaded
DLLs, the number of application domains in the process, the number of threads, and
the amount of memory allocated by your process. When you design your application,
review the following points:
● For better application startup time, load only the assemblies you need.
● Consider assemblies that are being loaded as side effects of the assemblies

you need.
● Delay application initialization, touch code, and data when requested by the user

(pay for play).
● Reduce the number of application domains or make assemblies shared (nonshared

assemblies are loaded once per application domain), or both.
● Reduce the number of threads. This is less critical, but it reduces the working

set by eliminating each thread’s stack, the thread-specific memory allocations,
and whatever code is unique to that thread. This can especially be an issue if you
expect multiple copies of your application to be running, such as a client
application running on a terminal server system.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

 Chapter 5: Improving Managed Code Performance 261

● Experiment with NGen and non-NGen to determine which saves the largest
number of working set pages. Note that an application that is completely natively
compiled does not load Mscorjit.dll, which saves approximately 200 KB or more,
depending on the cost of the compilations. Generally, you can expect NGen to
improve the shareability of your application (fewer private pages) at the price of
slightly less raw speed (< 5% slower). Frequently, the speed gains from being
smaller more than offset speed lost from having shareable code. Smaller is often
faster.

More Information
You can use the Vadump.exe tool to measure your application’s working
set size. For more information, see “Vadump.exe: Virtual Address Dump” at
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/vadump-o.asp.

Ngen.exe Explained
The Native Image Generator utility (Ngen.exe) allows you to run the JIT compiler on
your assembly’s MSIL to generate native machine code that is cached to disk. After a
native image is created for an assembly, the runtime automatically uses that native
image each time it runs the assembly. Running Ngen.exe on an assembly potentially
allows the assembly to load and execute faster, because it restores code and data
structures from the native image cache rather than generating them dynamically.

While this can lead to quicker application startup times and smaller working sets, it
does so at the expense of runtime optimization. It is important that you measure your
code’s performance to see whether Ngen.exe actually provides any benefits for your
application.

Startup Time
Ngen.exe can improve startup time due to shared pages and reduced working set.
Keep the following points about Ngen.exe and startup time in mind:
● If all modules are precompiled with Ngen.exe, JIT compilation is not required.
● I/O for startup can be reduced if the precompiled modules are already (partly)

resident.
● I/O can be increased due to preloading more code than the corresponding MSIL.
● Startup time can be improved due to reduced or eliminated JIT compilation.
● Startup time can actually be increased due to additional I/O, if some modules are

not precompiled with Ngen.exe and require JIT compilation.

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/vadump-o.asp

262 Improving .NET Application Performance and Scalability

Working Set
Ngen.exe can reduce the total memory utilization for applications that use shared
assemblies which are loaded into many application domains in different processes.
In the .NET Framework version 1.0 and 1.1, Ngen.exe cannot generate images that
can be shared across application domains but does generate images that can be
shared across processes. The operating system can share one copy of the natively
compiled code across all processes; whereas code that is JIT-compiled cannot be
shared across processes because of its dynamic nature.

An application that is completely precompiled with Ngen.exe does not load
Mscorjit.dll, which reduces your application’s working set by approximately 200 KB.
It should be noted that native modules do not contain metadata (in .NET Framework
1.0 and 1.1) and so in precompiled code cases, the CLR must still load both the MSIL
version of the assembly along with the precompiled image to gain access to necessary
metadata and MSIL. However, the need for MSIL and metadata is minimized when
the precompiled image is available, so those sections of the original MSIL image do
not contribute nearly as significantly to the working set.

Keep the following points about Ngen.exe and working set in mind:
● Code that is precompiled with Ngen.exe has the potential to be shared while

JIT-compiled code cannot be shared.
● Shareable pages only help if something actually shares them.
● Libraries and multi-instance applications can expect some savings due to sharing.
● Single instance DLL’s (those that exist for deployment or factoring reasons) and

single instance EXE’s will not benefit from improved potential for sharing.

Running Ngen.exe
To run Ngen.exe, use the following command line.

ngen.exe assemblyname

This generates the native code for the specified assembly. The generated native code
is stored in the native image cache, alongside the global assembly cache.

You can delete the assembly from the image cache by running the following
command.

ngen.exe /delete assemblyname.

 Chapter 5: Improving Managed Code Performance 263

Ngen.exe Guidelines
This section summarizes recommendations if you are considering using Ngen.exe:
● Scenarios where startup time is paramount should consider Ngen.exe for their

startup path.
● Scenarios which will benefit from the ability to share assemblies should adopt

Ngen.exe.
● Scenarios with limited or no sharing should not use Ngen.exe.
● Do not use Ngen.exe for ASP.NET version 1.0 and 1.1.
● Consider Ngen.exe for ASP.NET version 2.0.
● Measure performance with and without Ngen.exe.
● Regenerate your image when you ship new versions.
● Choose an appropriate base address.

Scenarios Where Startup Time Is Paramount Should Consider
Ngen.exe for Their Startup Path
Use Ngen.exe for faster startup. Common examples include client scenarios that need
the faster startup to be responsive or where you need to improve startup
performance of large applications and system services.

Ngen.exe improves startup time for the following reasons:
● It defers the use of JIT compilation until more infrequent paths start being taken.
● It potentially allows sharing of pages in memory.
● It leverages the disk cache to get code loaded quickly.

Scenarios That Benefit from the Ability to Share Assemblies Should
Adopt Ngen.exe
Ngen.exe is appropriate for scenarios that benefit from page sharing and working
set reduction. Ngen.exe often helps the following scenarios:
● A line of business executable running on a terminal server (multiple instance).
● A shared library used by a series of line of business applications (multiple

instance).

264 Improving .NET Application Performance and Scalability

Scenarios with Limited or No Sharing Should Not Use Ngen.exe
In general, Ngen.exe is not beneficial for scenarios with limited or no sharing, for
the following reasons:
● A dependency on Ngen.exe creates a servicing burden.
● Single instance applications or libraries gain little benefit. Although code is

shareable, no processes will be sharing it because there is only a single instance.
● The JIT compiler is itself shareable, so the 200 KB cost of loading the JIT compiler

is amortized over the applications using it.

Do Not Use Ngen.exe with ASP.NET Version 1.0 and 1.1
Ngen.exe is not recommended for ASP.NET because the assemblies that Ngen.exe
produces cannot be shared between application domains. If you use Ngen.exe on a
strong named assembly, ASP.NET 1.0 and 1.1 uses the precompiled image for the first
application domain that needs it, but then all subsequent application domains load
and JIT-compile their own images so you do not get the performance benefit.

More Information

For more information, see Microsoft Knowledge Base article 331979, “INFO: ASP.NET
Does Not Support Pre-Just-In-Time (JIT) Compilation Through Native Image
Generator (Ngen.exe),” at http://support.microsoft.com/default.aspx?scid=kb;en-us;331979.

Consider Ngen.exe with ASP.NET Version 2.0
At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”)
includes a version of Ngen.exe that produces images that can be shared between
application domains. Consider using Ngen.exe on assemblies that you share between
applications. Make sure you measure performance with and without Ngen.exe.

Measure Performance with and without Ngen.exe
Measure the performance of your application both with and without using Ngen.exe
to be sure about the benefits. Make sure that any performance improvements warrant
the use of the utility.

Note that Ngen.exe produces code which is optimized for the greatest ability to be
shared, sometimes at the expense of raw speed. Ngen.exe can potentially reduce the
run-time performance of frequently called procedures because it cannot make some
of the optimizations that the JIT compiler can make at run time. It prefers to create
code that is shareable; the JIT compiler has no such restriction. You should also
consider the extra maintenance required when regenerating native images as
required.

http://support.microsoft.com/default.aspx?scid=kb;en-us;331979

 Chapter 5: Improving Managed Code Performance 265

Regenerate Your Image When You Ship New Versions
Make sure you regenerate your native image when you ship new versions of your
assemblies for bug fixes, updates, or when an external dependency changes.

Ngen.exe emits information including the version of the .NET Framework, CPU type,
assembly, and operating system on which the native code was generated. The CLR
reverts to JIT compilation if the run-time environment does not match the compiled
environment.

Choose an Appropriate Base Address
Choose an appropriate base address for optimum performance. You can specify the
base address in the Visual Studio .NET integrated development environment (IDE)
in the Project Properties dialog box (in the Optimization section of Configuration
Properties). You can also specify it using the /baseaddress option of the Csc.exe or
Vbc.exe command line compilers.

Try to avoid collisions between assemblies. A good practice is to allocate an address
range three times the size of your MSIL assembly file. You should include extra space
to accommodate an increase in assembly size due to bug fixes.

More Information
For more information about how to use Ngen.exe, see “Native Image Generator
(Ngen.exe)” in “.NET Framework Tools” on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cptools/html/cpgrfnativeimagegeneratorngenexe.asp.

Summary
The CLR is highly optimized and designed to support high performance applications.
However, the specific coding techniques that you use to build .NET assemblies
determine the extent to which your code can benefit from that high performance.
This chapter presented the main performance-related issues that you need to consider
when programming managed code applications.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfnativeimagegeneratorngenexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfnativeimagegeneratorngenexe.asp

266 Improving .NET Application Performance and Scalability

Additional Resources
For more information about CLR and managed code performance, see the following
resources:
● For a printable checklist, see “Checklist: Managed Code Performance” in the

“Checklists” section of this guide.
● Chapter 13, “Code Review: .NET Application Performance.” See the “Managed

Code and CLR Performance” section.
● Chapter 15, “Measuring .NET Application Performance.” See the “CLR and

Managed Code” section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “CLR Tuning”

section.

For more information about managed code performance, see the following resources:
● “Performance Optimizations in Visual Basic .NET” on MSDN at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html
/vbtchPerfOpt.asp

● Microsoft Knowledge Base article 324768, “Support WebCast:
Microsoft .NET Framework Performance: Tips, Tools, and Techniques,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;324768

● “Writing High-Performance Managed Applications: A Primer” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/highperfmanagedapps.asp

● “Writing Faster Managed Code: Know What Things Cost” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/fastmanagedcode.asp

● “Garbage Collector Basics and Performance Hints” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/dotnetgcbasics.asp

● “Performance Considerations for Run-Time Technologies in the .NET Framework”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet
/html/dotnetperftechs.asp

● “Performance Tips and Tricks in .NET Applications” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/dotnetperftips.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vbtchPerfOpt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vbtchPerfOpt.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;324768
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetperftechs.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetperftechs.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetperftips.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetperftips.asp

6
Improving ASP.NET Performance

Objectives
● Improve page response times.
● Design scalable Web applications.
● Use server controls efficiently.
● Use efficient caching strategies.
● Analyze and apply appropriate state management techniques.
● Minimize view state impact.
● Improve performance without impacting security.
● Minimize COM interop scalability issues.
● Optimize threading.
● Optimize resource management.
● Avoid common data binding mistakes.
● Use security settings to reduce server load.
● Avoid common deployment mistakes.

Overview
To build ASP.NET applications that meet your performance objectives, you
need to understand the places where bottlenecks typically occur, the causes of the
bottlenecks, and the steps to take to prevent the bottlenecks from occurring in your
application. A combination of sound architecture and design, best practice coding
techniques, and optimized platform and Microsoft® .NET Framework configuration
is required. This chapter addresses each of these areas.

268 Improving .NET Application Performance and Scalability

The chapter starts by examining the architecture of an ASP.NET application and
then explains the anatomy of a Web request as it progresses through the HTTP and
ASP.NET pipeline. The chapter explains the processing that occurs at each stage and
identifies common performance bottlenecks. The chapter then provides a series of
ASP.NET design guidelines. By following the guidelines in this section, you can help
ensure that your top-level design does not create performance issues that can only
be corrected by costly reengineering efforts. Finally, the chapter provides a series of
sections that discusses top ASP.NET performance issues. These issues include page
and control issues, caching, resource management, session and view state issues,
threading, exception and string management, COM interop, and more.

How to Use This Chapter
Use this chapter to help improve the performance of your ASP.NET applications.
You can apply the design considerations, coding techniques, and optimized platform
and .NET Framework configuration information in this chapter to new and existing
applications. To get the most out of this chapter, do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Use the checklist. Use “Checklist: ASP.NET Performance” in the “Checklists”
section of this guide to quickly view and evaluate the guidelines presented in
this chapter.

● Know the ASP.NET runtime infrastructure. Understanding the runtime
infrastructure can help you write code that is optimized for performance.

● Know the major performance and scalability issues. Read “Performance and
Scalability Issues” in this chapter to learn about the major issues that affect the
performance and scalability of your ASP.NET application. It is important to
understand these key issues so that you can effectively identify performance and
scalability problems and apply the recommendations presented in this chapter.

● Design with performance in mind. Read “Design Considerations” in this chapter
to learn about best practice design guidelines.

● Use the “Architecture” section of this chapter. This section helps you understand
how ASP.NET works. By understanding the architecture, you can make better
design and implementation choices.

 Chapter 6: Improving ASP.NET Performance 269

● Use the “Design Considerations” section of this chapter. This section helps
you understand the high-level decisions that affect implementation choices for
ASP.NET code.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the
“ASP.NET” section for specific guidance.

● Measure your application performance. Read the “ASP.NET” and “.NET
Framework Technologies” sections of Chapter 15, “Measuring .NET Application
Performance,” to learn about the key metrics that you can use to measure
application performance. You have to measure application performance so that
you can identify and resolve performance issues.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important for you to apply a coherent testing process and to analyze the results.

● Tune your application performance. Read the “ASP.NET” section of Chapter 17,
“Tuning .NET Application Performance,” to learn how to resolve performance
issues that you identify through the use of tuning metrics.

Architecture
ASP.NET requires a host. On Windows Server™ 2003, the default host is the
Internet Information Services (IIS) 6.0 worker process (W3wp.exe). When you use the
ASP.NET Process Model, the host is the ASP.NET worker process (Aspnet_wp.exe).

When a request is received by ASP.NET, the request is handled by the HttpRuntime
object. The HttpRuntime is responsible for application creation and initialization,
managing the request queue and thread pool, and dispatching the incoming requests
to the correct application. After the request is dispatched to the appropriate
application, the request is passed through a pipeline. This pipeline is a staged, event-
based execution framework consisting of multiple HttpModule objects and a single
HttpHandler object. This architecture is shown in Figure 6.1.

270 Improving .NET Application Performance and Scalability

HTTP
Handlers

Web Service
Handler
(.asmx)

Global.asax

HTTP Runtime

Managed Code

Native Code

HTTP
Context

Web Forms
Handler
(.aspx)

HTTP Module

Authentication Module

Caching Module

Host (IIS 6.0, IIS 5.0, User Host)

Figure 6.1
ASP.NET runtime infrastructure

HttpModule objects participate in the pipeline by handling predefined events that
ASP.NET exposes. These events include BeginRequest, AuthenticateRequest, and
EndRequest. The request flows through the pipeline of HttpModule objects and is
then run by a single HttpHandler. After the event handler is completed, the request
then flows back through the pipeline and is sent to the client.

Throughout the entire lifetime of a request, a context is exposed. The HttpContext
object encapsulates information about individual requests and their associated
responses.

Performance and Scalability Issues
The main issues that can adversely affect the performance and scalability of your
ASP.NET application are summarized below. Subsequent sections in this chapter
provide strategies and technical information to prevent or resolve each of these
issues.
● Resource affinity. Resource affinity can prevent you from adding more servers,

or resource affinity can reduce the benefits of adding more CPUs and memory.
Resource affinity occurs when code needs a specific thread, CPU, component
instance, or server.

 Chapter 6: Improving ASP.NET Performance 271

● Excessive allocations. Applications that allocate memory excessively on a per-
request basis consume memory and create additional work for garbage collection.
The additional garbage collection work increases CPU utilization. These excessive
allocations may be caused by temporary allocations. For example, the excessive
allocations may be caused by excessive string concatenation that uses the +=
operator in a tight loop.

● Failure to share expensive resources. Failing to call the Dispose or Close method
to release expensive resources, such as database connections, may lead to resource
shortages. Closing or disposing resources permits the resources to be reused more
efficiently.

● Blocking operations. The single thread that handles an ASP.NET request is
blocked from servicing additional user requests while the thread is waiting for a
downstream call to return. Calls to long-running stored procedures and remote
objects may block a thread for a significant amount of time.

● Misusing threads. Creating threads for each request incurs thread initialization
costs that can be avoided. Also, using single-threaded apartment (STA) COM
objects incorrectly may cause multiple requests to queue up. Multiple requests in
the queue slow performance and create scalability issues.

● Making late-bound calls. Late-bound calls require extra instructions at runtime
to identify and load the code to be run. Whether the target code is managed or
unmanaged, you should avoid these extra instructions.

● Misusing COM interop. COM interop is generally very efficient, although many
factors affect its performance. These factors include the size and type of the
parameters that you pass across the managed/unmanaged boundary and crossing
apartment boundaries. Crossing apartment boundaries may require expensive
thread switches.

● Large pages. Page size is affected by the number and the types of controls on the
page. Page size is also affected by the data and images that you use to render the
page. The more data you send over the network, the more bandwidth you
consume. When you consume high levels of bandwidth, you are more likely to
create a bottleneck.

● Failure to use data caching appropriately. Failure to cache static data, caching too
much data so that the items get flushed out, caching user data instead of
application-wide data, and caching infrequently used items may limit your
system's performance and scalability.

● Failure to use output caching appropriately. If you do not use output caching or
if you use it incorrectly, you can add avoidable strain to your Web server.

● Inefficient rendering. Interspersing HTML and server code, performing
unnecessary initialization code on page postback, and late-bound data binding
may all cause significant rendering overhead. This may decrease the perceived
and true page performance.

272 Improving .NET Application Performance and Scalability

Design Considerations
Building high-performance ASP.NET applications is significantly easier if you
design with performance in mind. Make sure you develop a performance plan from
the outset of your project. Never try to add performance as a post-build step. Also,
use an iterative development process that incorporates constant measuring between
iterations.

By following best practice design guidelines, you significantly increase your chances
of creating a high-performance Web application. Consider the following design
guidelines:
● Consider security and performance.
● Partition your application logically.
● Evaluate affinity.
● Reduce round trips.
● Avoid blocking on long-running tasks.
● Use caching.
● Avoid unnecessary exceptions.

Consider Security and Performance
Your choice of authentication scheme can affect the performance and scalability
of your application. You need to consider the following issues:
● Identities. Consider the identities you are using and the way that you flow

identity through your application. To access downstream resources, you can
use the ASP.NET process identity or another specific service identity. Or, you
can enable impersonation and flow the identity of the original caller. If you
connect to Microsoft SQL Server™, you can also use SQL authentication. However,
SQL authentication requires you to store credentials in the database connection
string. Storing credentials in the database connection string is not recommended
from a security perspective. When you connect to a shared resource, such as a
database, by using a single identity, you benefit from connection pooling.
Connection pooling significantly increases scalability. If you flow the identity of
the original caller by using impersonation, you cannot benefit from efficient
connection pooling, and you have to configure access control for multiple
individual user accounts. For these reasons, it is best to use a single trusted
identity to connect to downstream databases.

 Chapter 6: Improving ASP.NET Performance 273

● Managing credentials. Consider the way that you manage credentials. You
have to decide if your application stores and verifies credentials in a database, or
if you want to use an authentication mechanism provided by the operating system
where credentials are stored for you in the Active Directory® directory service.
You should also determine the number of concurrent users that your application
can support and determine the number of users that your credential store
(database or Active Directory) can handle. You should perform capacity planning
for your application to determine if the system can handle the anticipated load.

● Protecting credentials. Your decision to encrypt and decrypt credentials when
they are sent over the network costs additional processing cycles. If you use
authentication schemes such as Windows® Forms authentication or SQL
authentication, credentials flow in clear text and can be accessed by network
eavesdroppers. In these cases, how important is it for you to protect them as they
are passed across the network? Decide if you can choose authentication schemes
that are provided by the operating system, such as NTLM or the Kerberos
protocol, where credentials are not sent over the network to avoid encryption
overhead.

● Cryptography. If your application only needs to ensure that information is not
tampered with during transit, you can use keyed hashing. Encryption is not
required in this case, and it is relatively expensive compared to hashing. If you
need to hide the data that you send over the network, you require encryption and
probably keyed hashing to ensure data validity. When both parties can share the
keys, using symmetric encryption provides improved performance in comparison
to asymmetric encryption. Although larger key sizes provide greater encryption
strength, performance is slower relative to smaller key sizes. You must consider
this type of performance and balance the larger key sizes against security tradeoffs
at design time.

More Information

For more information, see “Performance Comparison: Security Design Choices” on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/bdadotnetarch15.asp.

Partition Your Application Logically
Use layering to logically partition your application logic into presentation, business,
and data access layers. This helps you create maintainable code, but it also permits
you to monitor and optimize the performance of each layer separately. A clear logical
separation also offers more choices for scaling your application. Try to reduce the
amount of code in your code-behind files to improve maintenance and scalability.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch15.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch15.asp

274 Improving .NET Application Performance and Scalability

Do not confuse logical partitioning with physical deployment. A logical separation
enables you to decide whether to locate presentation and business logic on the same
server and clone the logic across servers in a Web farm, or to decide to install the
logic on servers that are physically separate. The key point to remember is that
remote calls incur a latency cost, and that latency increases as the distance between
the layers increases.

For example, in-process calls are the quickest calls, followed by cross-process calls
on the same computer, followed by remote network calls. If possible, try to keep the
logical partitions close to each other. For optimum performance you should place
your business and data access logic in the Bin directory of your application on the
Web server.

For more information about these and other deployment issues, see “Deployment
Considerations” later in this chapter.

Evaluate Affinity
Affinity can improve performance. However, affinity may affect your ability to scale.
Common coding practices that introduce resource affinity include the following:
● Using in-process session state. To avoid server affinity, maintain ASP.NET session

state out of process in a SQL Server database or use the out-of-process state service
running on a remote machine. Alternatively, design a stateless application, or store
state on the client and pass it with each request.

● Using computer-specific encryption keys. Using computer-specific encryption
keys to encrypt data in a database prevents your application from working in a
Web farm because common encrypted data needs to be accessed by multiple Web
servers. A better approach is to use computer-specific keys to encrypt a shared
symmetric key. You use the shared symmetric key to store encrypted data in the
database.

More Information

For more information about how to encrypt and decrypt data in a shared database,
without introducing affinity, see Chapter 14, “Building Secure Data Access,” in
Improving Web Application Security: Threats and Countermeasures on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/ThreatCounter.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

 Chapter 6: Improving ASP.NET Performance 275

Reduce Round Trips
Use the following techniques and features in ASP.NET to minimize the number of
round trips between a Web server and a browser, and between a Web server and a
downstream system:
● HttpResponse.IsClientConnected. Consider using the

HttpResponse.IsClientConnected property to verify if the client is still connected
before processing a request and performing expensive server-side operations.
However, this call may need to go out of process on IIS 5.0 and can be very
expensive. If you use it, measure whether it actually benefits your scenario.

● Caching. If your application is fetching, transforming, and rendering data that is
static or nearly static, you can avoid redundant hits by using caching.

● Output buffering. Reduce roundtrips when possible by buffering your output.
This approach batches work on the server and avoids chatty communication with
the client. The downside is that the client does not see any rendering of the page
until it is complete. You can use the Response.Flush method. This method sends
output up to that point to the client. Note that clients that connect over slow
networks where buffering is turned off, affect the response time of your server.
The response time of your server is affected because your server needs to wait for
acknowledgements from the client. The acknowledgements from the client occur
after the client receives all the content from the server.

● Server.Transfer. Where possible, use the Server.Transfer method instead of the
Response.Redirect method. Response.Redirect sends a response header to the
client that causes the client to send a new request to the redirected server by using
the new URL. Server.Transfer avoids this level of indirection by simply making a
server-side call.
You cannot always just replace Response.Redirect calls with Server.Transfer calls
because Server.Transfer uses a new handler during the handler phase of request
processing. If you need authentication and authorization checks during
redirection, use Response.Redirect instead of Server.Transfer because the two
mechanisms are not equivalent. When you use Response.Redirect, ensure you use
the overloaded method that accepts a Boolean second parameter, and pass a value
of false to ensure an internal exception is not raised.
Also note that you can only use Server.Transfer to transfer control to pages in the
same application. To transfer to pages in other applications, you must use
Response.Redirect.

More Information

For more information, see Knowledge Base article 312629, “PRB:
ThreadAbortException Occurs If You Use Response.End, Response.Redirect, or
Server.Transfer,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;312629.

http://support.microsoft.com/default.aspx?scid=kb;en-us;312629

276 Improving .NET Application Performance and Scalability

Avoid Blocking on Long-Running Tasks
If you run long-running or blocking operations, consider using the following
asynchronous mechanisms to free the Web server to process other incoming requests:
● Use asynchronous calls to invoke Web services or remote objects when there is an

opportunity to perform additional parallel processing while the Web service call
proceeds. Where possible, avoid synchronous (blocking) calls to Web services
because outgoing Web service calls are made by using threads from the ASP.NET
thread pool. Blocking calls reduce the number of available threads for processing
other incoming requests.
For more information, see “Avoid Asynchronous Calls Unless You Have
Additional Parallel Work” later in this chapter.

● Consider using the OneWay attribute on Web methods or remote object methods
if you do not need a response. This “fire and forget” model allows the Web server
to make the call and continue processing immediately. This choice may be an
appropriate design choice for some scenarios.

● Queue work, and then poll for completion from the client. This permits the Web
server to invoke code and then let the Web client poll the server to confirm that
the work is complete.

More Information

For more information about how to implement these mechanisms, see “Threading
Guidelines” later in this chapter.

Use Caching
A well-designed caching strategy is probably the single most important performance-
related design consideration. ASP.NET caching features include output caching,
partial page caching, and the cache API. Design your application to take advantage
of these features.

 Chapter 6: Improving ASP.NET Performance 277

Caching can be used to reduce the cost of data access and rendering output. Knowing
how your pages use or render data enables you to design efficient caching strategies.
Caching is particularly useful when your Web application constantly relies on data
from remote resources such as databases, Web services, remote application servers,
and other remote resources. Applications that are database intensive may benefit
from caching by reducing the load on the database and by increasing the throughput
of the application. As a general rule, if caching is cheaper than the equivalent
processing, you should use caching. Consider the following when you design for
caching:
● Identify data or output that is expensive to create or retrieve. Caching data or

output that is expensive to create or retrieve can reduce the costs of obtaining the
data. Caching the data reduces the load on your database server.

● Evaluate the volatility. For caching to be effective, the data or output should be
static or infrequently modified. Lists of countries, states, or zip codes are some
simple examples of the type of data that you might want to cache. Data or output
that changes frequently is usually less suited to caching but can be manageable,
depending upon the need. Caching user data is typically only recommended when
you use specialized caches, such as the ASP.NET session state store.

● Evaluate the frequency of use. Caching data or output that is frequently used can
provide significant performance and scalability benefits. You can obtain
performance and scalability benefits when you cache static or frequently modified
data and output alike. For example, frequently used, expensive data that is
modified on a periodic basis may still provide large performance and scalability
improvements when managed correctly. If the data is used more often than it is
updated, the data is a candidate for caching.

● Separate volatile data from nonvolatile data. Design user controls to encapsulate
static content such as navigational aids or help systems, and keep them separate
from more volatile data. This permits them to be cached. Caching this data
decreases the load on your server.

● Choose the right caching mechanism. There are many different ways to cache
data. Depending on your scenario, some are better than others. User-specific data
is typically stored in the Session object. Static pages and some types of dynamic
pages such as non-personalized pages that are served to large user sets can be
cached by using the ASP.NET output cache and response caching. Static content in
pages can be cached by using a combination of the output cache and user controls.
The ASP.NET caching features provide a built-in mechanism to update the cache.
Application state, session state, and other caching means do not provide a built-in
mechanism to update the cache.

278 Improving .NET Application Performance and Scalability

Avoid Unnecessary Exceptions
Exceptions add significant overhead to your application. Do not use exceptions
to control logic flow, and design your code to avoid exceptions where possible.
For example, validate user input, and check for known conditions that can cause
exceptions. Also, design your code to fail early to avoid unnecessary processing.

If your application does not handle an exception, it propagates up the stack and is
ultimately handled by the ASP.NET exception handler. When you design your
exception handling strategy, consider the following:
● Design code to avoid exceptions. Validate user input and check for known

conditions that can cause exceptions. Design code to avoid exceptions.
● Avoid using exceptions to control logic flow. Avoid using exception management

to control regular application logic flow.
● Avoid relying on global handlers for all exceptions. Exceptions cause the

runtime to manipulate and walk the stack. The further the runtime traverses the
stack searching for an exception handler, the more expensive the exception is to
process.

● Catch and handle exceptions close to where they occur. When possible, catch and
handle exceptions close to where they occur. This avoids excessive and expensive
stack traversal and manipulation.

● Do not catch exceptions you cannot handle. If your code cannot handle an
exception, use a try/finally block to ensure that you close resources, regardless of
whether an exception occurs. When you use a try/finally block, your resources are
cleaned up in the finally block if an exception occurs, and the exception is
permitted to propagate up to an appropriate handler.

● Fail early to avoid expensive work. Design your code to avoid expensive or long-
running work if a dependent task fails.

● Log exception details for administrators. Implement an exception logging
mechanism that captures detailed information about exceptions so that
administrators and developers can identify and remedy any issues.

● Avoid showing too much exception detail to users. Avoid displaying detailed
exception information to users, to help maintain security and to reduce the
amount of data that is sent to the client.

 Chapter 6: Improving ASP.NET Performance 279

Implementation Considerations
When you move from application design to application development, consider the
technical details of your ASP.NET application. Key ASP.NET performance measures
include response times, speed of throughput, and resource management.

You can improve response times by reducing page sizes, reducing your reliance on
server controls, and using buffering to reduce chatty communication with the client.
You can avoid unnecessary work by caching resources.

Throughput can be improved by making effective use of threads. Tune the thread
pool to reduce connections, and to avoid blocking threads because blocking threads
reduce the number of available worker threads.

Poor resource management can place excessive loads on server CPU and memory.
You can improve resource utilization by effectively using pooled resources, by
explicitly closing or disposing resources you open, and by using efficient string
management.

When you follow best practice implementation guidelines, you increase the
performance of your application by using well-engineered code and a well-
configured application platform. The following sections describe performance
considerations for ASP.NET features and scenarios.

Threading Explained
ASP.NET processes requests by using threads from the .NET thread pool. The thread
pool maintains a pool of threads that have already incurred the thread initialization
costs. Therefore, these threads are easy to reuse. The .NET thread pool is also self-
tuning. It monitors CPU and other resource utilization, and it adds new threads or
trims the thread pool size as needed. You should generally avoid creating threads
manually to perform work. Instead, use threads from the thread pool. At the same
time, it is important to ensure that your application does not perform lengthy
blocking operations that could quickly lead to thread pool starvation and rejected
HTTP requests.

Formula for Reducing Contention
The formula for reducing contention can give you a good empirical start for tuning
the ASP.NET thread pool. Consider using the Microsoft product group-recommended
settings that are shown in Table 6.1 if the following conditions are true:
● You have available CPU.
● Your application performs I/O bound operations such as calling a Web method or

accessing the file system.
● The ASP.NET Applications/Requests in Application Queue performance counter

indicates that you have queued requests.

280 Improving .NET Application Performance and Scalability

Table 6.1: Recommended Threading Settings for Reducing Contention

Configuration setting Default value (.NET Framework 1.1) Recommended value

maxconnection 2 12 * #CPUs

maxIoThreads 20 100

maxWorkerThreads 20 100

minFreeThreads 8 88 * #CPUs

minLocalRequestFreeThreads 4 76 * #CPUs

To address this issue, you need to configure the following items in the
Machine.config file. Apply the recommended changes that are described in the
following section, across the settings and not in isolation. For a detailed description
of each of these settings, see “Thread Pool Attributes” in Chapter 17, “Tuning .NET
Application Performance.”
● Set maxconnection to 12 * # of CPUs. This setting controls the maximum number

of outgoing HTTP connections that you can initiate from a client. In this case,
ASP.NET is the client. Set maxconnection to 12 * # of CPUs.

● Set maxIoThreads to 100. This setting controls the maximum number of I/O
threads in the .NET thread pool. This number is automatically multiplied by the
number of available CPUs. Set maxloThreads to 100.

● Set maxWorkerThreads to 100. This setting controls the maximum number of
worker threads in the thread pool. This number is then automatically multiplied
by the number of available CPUs. Set maxWorkerThreads to 100.

● Set minFreeThreads to 88 * # of CPUs. This setting is used by the worker process
to queue all the incoming requests if the number of available threads in the thread
pool falls below the value for this setting. This setting effectively limits the number
of requests that can run concurrently to maxWorkerThreads — minFreeThreads.
Set minFreeThreads to 88 * # of CPUs. This limits the number of concurrent
requests to 12 (assuming maxWorkerThreads is 100).

● Set minLocalRequestFreeThreads to 76 * # of CPUs. This setting is used by the
worker process to queue requests from localhost (where a Web application sends
requests to a local Web service) if the number of available threads in the thread
pool falls below this number. This setting is similar to minFreeThreads but it only
applies to localhost requests from the local computer. Set
minLocalRequestFreeThreads to 76 * # of CPUs.

Note: The recommendations that are provided in this section are not rules. They are a starting point.
Test to determine the appropriate settings for your scenario. If you move your application to a new
computer, ensure that you recalculate and reconfigure the settings based on the number of CPUs in
the new computer.

 Chapter 6: Improving ASP.NET Performance 281

If your ASPX Web page makes multiple calls to Web services on a per-request basis,
apply the recommendations.

The recommendation to limit the ASP.NET runtime to 12 threads for handling
incoming requests is most applicable for quick-running operations. The limit also
reduces the number of context switches. If your application makes long-running
calls, first consider the design alternatives presented in the “Avoid Blocking on Long-
Running Tasks” section. If the alternative designs cannot be applied in your scenario,
start with 100 maxWorkerThreads, and keep the defaults for minFreeThreads. This
ensures that requests are not serialized in this particular scenario. Next, if you see
high CPU utilization and context-switching when you test your application, test by
reducing maxWorkerThreads or by increasing minFreeThreads.

The following occurs if the formula has worked:
● CPU utilization increases.
● Throughput increases according to the ASP.NET Applications\Requests/Sec

performance counter.
● Requests in the application queue decrease according to the ASP.NET

Applications/Requests in Application Queue performance counter.

If using the recommended settings does not improve your application performance,
you may have a CPU bound scenario. By adding more threads you increase thread
context switching. For more information, see “ASP.NET Tuning” in Chapter 17,
“Tuning .NET Application Performance.”

More Information
For more information, see Knowledge Base article 821268, “PRB: Contention, Poor
Performance, and Deadlocks When You Make Web Service Requests from ASP.NET
Applications,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;821268.

Threading Guidelines
This section discusses guidelines that you can use to help improve threading
efficiency in ASP.NET. The guidelines include the following:
● Tune the thread pool by using the formula to reduce contention.
● Consider minIoThreads and minWorkerThreads for burst load.
● Do not create threads on a per-request basis.
● Avoid blocking threads.
● Avoid asynchronous calls unless you have additional parallel work.

http://support.microsoft.com/default.aspx?scid=kb;en-us;821268

282 Improving .NET Application Performance and Scalability

Tune the Thread Pool by Using the Formula to Reduce Contention
If you have available CPU and if requests are queued, configure the ASP.NET
thread pool. For more information about how to do this, see “Formula for Reducing
Contention” in the preceding “Threading Explained” section. The recommendations
in “Threading Explained” are a starting point.

When your application uses the common language runtime (CLR) thread pool,
it is important to tune the thread pool correctly. Otherwise, you may experience
contention issues, performance problems, or possible deadlocks. Your application
may be using the CLR thread pool if the following conditions are true:
● Your application makes Web service calls.
● Your application uses the WebRequest or HttpWebRequest classes to make

outgoing Web requests.
● Your application explicitly queues work to the thread pool by calling the

QueueUserWorkItem method.

More Information

For more information, see Knowledge Base article 821268, “PRB: Contention, Poor
Performance, and Deadlocks When You Make Web Service Requests from ASP.NET
Applications,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;821268.

Consider minIoThreads and minWorkerThreads for Burst Load
If your application experiences burst loads where there are prolonged periods of
inactivity between the burst loads, the thread pool may not have enough time to
reach the optimal level of threads. A burst load occurs when a large number of users
connect to your application suddenly and at the same time. The minIoThreads and
minWorkerThreads settings enable you to configure a minimum number of worker
threads and I/O threads for load conditions.

At the time of this writing, you need a supported fix to configure these settings.
For more information, see the following Knowledge Base articles:
● 810259, “FIX: SetMinThreads and GetMinThreads API Added to Common

Language Runtime ThreadPool Class,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;810259

● 827419, “PRB: Sudden Requirement for a Larger Number of Threads from
the ThreadPool Class May Result in Slow Computer Response Time,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;827419

http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259
http://support.microsoft.com/default.aspx?scid=kb;en-us;827419

 Chapter 6: Improving ASP.NET Performance 283

Do Not Create Threads on a Per-Request Basis
Creating threads is an expensive operation that requires initialization of both
managed and unmanaged resources. You should avoid manually creating threads
on each client request for server-based applications such as ASP.NET applications
and Web services.

Consider using asynchronous calls if you have work that is not CPU bound that
can run in parallel with the call. For example, this might include disk I/O bound
or network I/O bound operations such as reading or writing files, or making calls
to another Web method.

You can use the infrastructure provided by the .NET Framework to perform
asynchronous operations by calling the Beginsynchronous and Endsynchronous
methods (where synchronous represents the synchronous method name). If this
asynchronous calling pattern is not an option, then consider using threads from the
CLR thread pool. The following code fragment shows how you queue a method to
run on a separate thread from the thread pool.

WaitCallback methodTarget = new WaitCallback(myClass.UpdateCache);
bool isQueued = ThreadPool.QueueUserWorkItem(methodTarget);

Avoid Blocking Threads
Any operation that you perform from an ASP.NET page that causes the current
request thread to block means that one less worker thread from the thread pool is
available to service other ASP.NET requests. Avoid blocking threads.

Avoid Asynchronous Calls Unless You Have Additional Parallel Work
Make asynchronous calls from your Web application only when your application
has additional parallel work to perform while it waits for the completion of the
asynchronous calls, and the work performed by the asynchronous call is not CPU
bound. Internally, the asynchronous calls use a worker thread from the thread pool;
in effect, you are using additional threads.

At the same time that you make asynchronous I/O calls, such as calling a Web
method or performing file operations, the thread that makes the call is released so
that it can perform additional work, such as making other asynchronous calls or
performing other parallel tasks. You can then wait for completion of all of those tasks.
Making several asynchronous calls that are not CPU bound and then letting them run
simultaneously can improve throughput.

284 Improving .NET Application Performance and Scalability

More Information
For more information about ASP.NET threading and asynchronous communication,
see “ASP.NET Pipeline: Use Threads and Build Asynchronous Handlers in Your
Server-Side Web Code” at http://msdn.microsoft.com/msdnmag/issues/03/06/Threading
/default.aspx.

Resource Management
Poor resource management from pages and controls is one of the primary causes of
poor Web application performance. Poor resource management can place excessive
loads on CPUs and can consume vast amounts of memory. When CPU or memory
thresholds are exceeded, applications might be recycled or blocked until the load on
the server is lower. For more information, see “Resource Management” in Chapter 3,
“Design Guidelines for Application Performance.” Use the following guidelines to
help you manage your resources efficiently:
● Pool resources.
● Explicitly call Dispose or Close on resources you open.
● Do not cache or block on pooled resources.
● Know your application allocation pattern.
● Obtain resources late and release them early.
● Avoid per-request impersonation.

Pool Resources
ADO.NET provides built-in database connection pooling that is fully automatic and
requires no specific coding. Make sure that you use the same connection string for
every request to access the database.

Make sure you release pooled resources so that they can be returned to the pool as
soon as possible. Do not cache pooled resources or make lengthy blocking calls while
you own the pooled resource, because this means that other clients cannot use the
resource in the meantime. Also, avoid holding objects across multiple requests.

http://msdn.microsoft.com/msdnmag/issues/03/06/Threading/default.aspx
http://msdn.microsoft.com/msdnmag/issues/03/06/Threading/default.aspx

 Chapter 6: Improving ASP.NET Performance 285

Explicitly Call Dispose or Close on Resources You Open
If you use objects that implement the IDisposable interface, make sure you call the
Dispose method of the object or the Close method if one is provided. Failing to call
Close or Dispose prolongs the life of the object in memory long after the client stops
using it. This defers the cleanup and can contribute to memory pressure. Database
connection and files are examples of shared resources that should be explicitly closed.
The finally clause of the try/finally block is a good place to ensure that the Close or
Dispose method of the object is called. This technique is shown in the following
Visual Basic® .NET code fragment.

Try
 conn.Open()
...
Finally
 If Not(conn Is Nothing) Then
 conn.Close()
 End If
End Try

In Visual C#®, you can wrap resources that should be disposed, by using a using
block. When the using block completes, Dispose is called on the object listed in the
brackets on the using statement. The following code fragment shows how you can
wrap resources that should be disposed by using a using block.

SqlConnection conn = new SqlConnection(connString);
using (conn)
{
 conn.Open();
 . . .
} // Dispose is automatically called on the connection object conn here.

More Information

For more information, see “Finalize and Dispose Guidelines” in Chapter 5,
“Improving Managed Code Performance.” Also, see “Explicitly Close Connections”
in Chapter 12, “Improving ADO.NET Performance.”

Do Not Cache or Block on Pooled Resources
If your application uses resources that are pooled, release the resource back to the
pool. Caching the pooled resources or making blocking calls from a pooled resource
reduces the availability of the pooled resource for other users. Pooled resources
include database connections, network connections, and Enterprise Services pooled
objects.

286 Improving .NET Application Performance and Scalability

Know Your Application Allocation Pattern
Poor memory allocation patterns may cause the garbage collector to spend most of
its time collecting objects from Generation 2. Collecting objects from Generation 2
leads to poor application performance and high loads on the CPU.

Coding techniques that cause large numbers of temporary allocations during a short
interval put pressure on the garbage collector. For example, when you perform a
large number of string concatenation operations by using the += operator in a tight
loop, or when you use String.Split for every request, you may put pressure on the
garbage collector. All of these operations create hidden objects (temporary
allocations). Use tools such as the CLR Profiler and System Monitor to better
understand allocation patterns in your application.

More Information

For more information, see “How To: Use CLR Profiler” in the “How To” section of
this guide. Also, see “CLR and Managed Code” in Chapter 15, “Measuring .NET
Application Performance.”

For more information about the mechanics of garbage collection and generations,
see “Garbage Collection Explained” in Chapter 5, “Improving Managed Code
Performance.”

Obtain Resources Late and Release Them Early
Open critical, limited, and shared resources just before you need them, and release
them as soon as you can. Critical, limited, and shared resources include resources
such as database connections, network connections, and transactions.

Avoid Per-Request Impersonation
Identify and, if necessary, authorize the caller at the Web server. Obtain access to
system resources or application-wide resources by using the identity of the Web
application process or by using a fixed service account. System resources are
resources such as event logs. Application-wide resources are resources such as
databases. Avoiding per-request impersonation minimizes security overhead and
maximizes resource pooling.

Note: Impersonation on its own does not cause performance issues. However, impersonation
often prevents efficient resource pooling. This is a common cause of performance and scalability
problems.

 Chapter 6: Improving ASP.NET Performance 287

Pages
The efficiency of your ASP.NET page and code-behind page logic plays a large part
in determining the overall performance of your Web application. The following
guidelines relate to the development of individual .aspx and .ascx Web page files.
● Trim your page size.
● Enable buffering.
● Use Page.IsPostBack to minimize redundant processing.
● Partition page content to improve caching efficiency and reduce rendering.
● Ensure pages are batch compiled.
● Ensure debug is set to false.
● Optimize expensive loops.
● Consider using Server.Transfer instead of Response.Redirect.
● Use client-side validation.

Trim Your Page Size
Processing large page sizes increases the load on the CPU, increases the consumption
of network bandwidth, and increases the response times for clients. Avoid designing
and developing large pages that accomplish multiple tasks, particularly where only a
few tasks are normally executed for each request. Where possible logically partition
your pages.

To trim your page size, you can do one or all of the following:
● Use script includes for any static scripts in your page to enable the client to cache

these scripts for subsequent requests. The following script element shows how to
do this.

<script language=jscript src="scripts\myscript.js">

● Remove characters such as tabs and spaces that create white space before you send
a response to the client. Removing white spaces can dramatically reduce the size
of your pages. The following sample table contains white spaces.

// with white space
<table>
 <tr>
 <td>hello</td>
 <td>world</td>
 </tr>
</table>

288 Improving .NET Application Performance and Scalability

The following sample table does not contain white spaces.

// without white space
<table>
<tr><td>hello</td><td>world</td></tr>
</table>

Save these two tables in separate text files by using Notepad, and then view the size
of each file. The second table saves several bytes simply by removing the white space.
If you had a table with 1,000 rows, you could reduce the response time by just
removing the white spaces. In intranet scenarios, removing white space may not
represent a huge saving. However, in an Internet scenario that involves slow clients,
removing white space can increase response times dramatically. You can also consider
HTTP compression; however, HTTP compression affects CPU utilization.

You cannot always expect to design your pages in this way. Therefore, the most
effective method for removing the white space is to use an Internet Server API
(ISAPI) filter or an HttpModule object. An ISAPI filter is faster than an HttpModule;
however, the ISAPI filter is more complex to develop and increases CPU utilization.
You might also consider IIS compression. IIS compression can be added by using a
metabase entry.
● Additionally, you can trim page size in the following ways:
● Disable view state when you do not need it. For more information, see “View

State” later in this chapter.
● Limit the use of graphics, and consider using compressed graphics.
● Consider using cascading style sheets to avoid sending the same formatting

directives to the client repeatedly.
● Avoid long control names; especially ones that are repeated in a DataGrid or

Repeater control. Control names are used to generate unique HTML ID names. A
10-character control name can easily turn into 30 to 40 characters when it is used
inside nested controls that are repeated.

Note: When using the ASP.NET process model, the ASP.NET worker process sends responses
back to the client, it first sends them through IIS in 31-kilobyte (KB) chunks. This applies to .NET
Framework 1.1, but it could change in future versions. The more 31-KB chunks that ASP.NET has to
send through IIS, the slower your page runs. You can determine how many chunks ASP.NET requires
for your page by browsing the page, viewing the source, and then saving the file to disk. To determine
the number of chunks, divide the page size by 31.

More Information

For more information about IIS compression, see Knowledge Base article, 322603,
“HOW TO: Enable ASPX Compression in IIS,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;322603.

http://support.microsoft.com/default.aspx?scid=kb;en-us;322603
http://support.microsoft.com/default.aspx?scid=kb;en-us;322603

 Chapter 6: Improving ASP.NET Performance 289

Enable Buffering
Because buffering is enabled by default, ASP.NET batches work on the server and
avoid chatty communication with the client. The disadvantage to this approach is
that for a slow page, the client does not see any rendering of the page until it is
complete. You can use Response.Flush to mitigate this situation because
Response.Flush sends output up to that point to the client. Clients that connect over
slow networks affect the response time of your server because your server has to wait
for acknowledgements from the client to proceed. Because you sent headers with the
first send, there is no chance to do it later.

If buffering is turned off, you can enable buffering by using the following methods:
● Enable buffering programmatically in a page.

// Response.Buffer is available for backwards compatibility; do not use.
Response.BufferOutput = true;

● Enable buffering at the page level by using the @Page directive.

<%@ Page Buffer = "true" %>

● Enable buffering at the application or computer level by using the <pages>
element in the Web.config or Machine.config file.

<pages buffer="true" ...>

When you run your ASP.NET application by using the ASP.NET process model,
it is even more important to have buffering enabled. The ASP.NET worker process
first sends responses to IIS in the form of response buffers. After the ISAPI filter is
running, IIS receives the response buffers. These response buffers are 31 KB in size.,
After IIS receives the response buffers, it then sends that actual response back to the
client. With buffering disabled, instead of using the entire 31-KB buffer, ASP.NET can
only send a few characters to the buffer. This causes extra CPU processing in both
ASP.NET as well as in IIS. This may also cause memory consumption in the IIS
process to increase dramatically.

Use Page.IsPostBack to Minimize Redundant Processing
Use the Page.IsPostBack property to ensure that you only perform page initialization
logic when a page is first loaded and not in response to client postbacks. The
following code fragment shows how to use the Page.IsPostBack property.

if (Page.IsPostBack == false) {
 // Initialization logic
} else {
 // Client post-back logic
}

290 Improving .NET Application Performance and Scalability

Partition Page Content to Improve Caching Efficiency and
Reduce Rendering
Partition the content in your page to increase caching potential. Partitioning your
page content enables you to make different decisions about how you retrieve, display,
and cache the content. You can use user controls to segregate static content, such as
navigational items, menus, advertisements, copyrights, page headers, and page
footers. You should also separate dynamic content and user-specific content for
maximum flexibility when you want to cache content.

More Information

For more information, see “Partial Page or Fragment Caching” later in this chapter.

Ensure Pages Are Batch Compiled
As the number of assemblies that are loaded in a process grows, the virtual address
space can become fragmented. When the virtual address space is fragmented, out-of-
memory conditions are more likely to occur. To prevent a large number of assemblies
from loading in a process, ASP.NET tries to compile all pages that are in the same
directory into a single assembly. This occurs when the first request for a page in that
directory occurs. Use the following techniques to reduce the number of assemblies
that are not batch compiled:
● Do not mix multiple languages in the same directory. When multiple languages

such as C# or Visual Basic .NET are used in pages in the same directory, ASP.NET
compiles a separate assembly for each language.

● Ensure content updates do not cause additional assemblies to be loaded. For more
information, see “Deployment Considerations” later in this chapter.

● Ensure that the debug attribute is set to false at the page level and in the
Web.config file, as described in the following section.

Ensure Debug Is Set to False
When debug is set to true, the following occurs:
● Pages are not batch compiled.
● Pages do not time out. When a problem occurs, such as a problem with a Web

service call, the Web server may start to queue requests and stop responding.
● Additional files are generated in the Temporary ASP.NET Files folder.
● The System.Diagnostics.DebuggableAttribute attribute is added to generated

code. This causes the CLR to track extra information about generated code, and
it also disables certain optimizations.

 Chapter 6: Improving ASP.NET Performance 291

Before you run performance tests and before you move your application into
production, be sure that debug is set to false in the Web.config file and at the page
level. By default, debug is set to false at the page level. If you do need to set this
attribute during development time, it is recommended that you set it at the
Web.config file level, as shown in the following fragment.

<compilation debug="false" ... />

The following shows how to set debug to false at the page level.

<%@ Page debug="false" ... %>

Note: A common pitfall is to set this attribute at the page level during development and then forget
to set it back when the application is moved to production.

Optimize Expensive Loops
Expensive loops in any application can cause performance problems. To reduce
the overhead that is associated with code inside loops, you should follow these
recommendations:
● Avoid repetitive field or property access.
● Optimize code inside the loop.
● Copy frequently called code into the loop.
● Replace recursion with looping.
● Use For instead of ForEach in performance-critical code paths.

More Information

For more information about the recommendations in this section, see “Iterating and
Looping” in Chapter 5, “Improving Managed Code Performance.”

Consider Using Server.Transfer Instead of Response.Redirect
Response.Redirect sends a metatag to the client that makes the client send a new
request to the server by using the new URL. Server.Transfer avoids this indirection
by making a server-side call. When you use Server.Transfer, the URL in the browser
does not change, and load test tools may incorrectly report the page size because
different pages are rendered for the same URL.

The Server.Transfer, Response.Redirect, and Response.End methods all raise
ThreadAbortException exceptions because they internally call Response.End. The
call to Response.End causes this exception. Consider using the overloaded method
to pass false as the second parameter so that you can suppress the internal call to
Response.End.

292 Improving .NET Application Performance and Scalability

More Information

For more information, see Knowledge Base article 312629, “PRB:
ThreadAbortException Occurs If You Use Response.End, Response.Redirect, or
Server.Transfer,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;312629.

Use Client-Side Validation
Prevalidating data can help reduce the round trips that are required to process a
user's request. In ASP.NET, you can use validation controls to implement client-side
validation of user input.

Note: Ensure that you also use server-side validation for security reasons.

More Information

For more information on validation controls, see the following:
● “Web Forms Validation” in Visual Basic and Visual C# Concepts on MSDN at

http://msdn.microsoft.com/library/en-us/vbcon/html/vboriWebFormsValidation.asp
● Knowledge Base article 316662, “HOW TO: Use ASP.NET Validation

Controls from Visual Basic .NET” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;316662

Server Controls
You can use server controls to encapsulate and to reuse common functionality. Server
controls provide a clean programming abstraction and are the recommended way to
build ASP.NET applications. When server controls are used properly, they can
improve output caching and code maintenance. The main areas you should review
for performance optimizations are view state and control composition. Use the
following guidelines when you develop server controls:
● Identify the use of view state in your server controls.
● Use server controls where appropriate.
● Avoid creating deep hierarchies of controls.

Identify the Use of View State in Your Server Controls
View state is serialized and deserialized on the server. To save CPU cycles, reduce
the amount of view state that your application uses. Disable view state if you do not
need it. Disable view state if you are doing at least one of the following:
● Displaying a read-only page where there is no user input
● Displaying a page that does not post back to the server
● Rebuilding server controls on each post back without checking the postback data

http://support.microsoft.com/default.aspx?scid=kb;en-us;312629
http://msdn.microsoft.com/library/en-us/vbcon/html/vboriWebFormsValidation.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;316662
http://support.microsoft.com/default.aspx?scid=kb;en-us;316662

 Chapter 6: Improving ASP.NET Performance 293

More Information

For more information about view state, see “View State” later in this chapter.

Use Server Controls Where Appropriate
The HTTP protocol is stateless; however, server controls provide a rich programming
model that manages state between page requests by using view state. Server controls
require a fixed amount of processing to establish the control and all of its child
controls. This makes server controls relatively expensive compared to HTML controls
or possibly static text. Scenarios where server controls are expensive include the
following:
● Large payload over low bandwidth. The more controls that you have on a page,

the higher the network payload is. Therefore, multiple controls decreases the time
to last byte (TTLB) and the time to first byte (TTFB) for the response that is sent to
the client. When the bandwidth between client and server is limited, as is the case
when a client uses a low-speed dial-up connection, pages that carry a large view
state payload can significantly affect performance.

● View state overhead. View state is serialized and deserialized on the server. The
CPU effort is proportional to the view state size. In addition to server controls that
use view state, it is easy to programmatically add any object that can be serialized
to the view state property. However, adding objects to the view state adds to the
overhead. Other techniques such as storing, computed data or storing several
copies of common data adds unnecessary overhead.

● Composite controls or large number of controls. Pages that have composite
controls such as DataGrid may increase the footprint of the view state. Pages that
have a large number of server controls also may increase the footprint of the view
state. Where possible, consider the alternatives that are presented later in this
section.

When you do not need rich interaction, replace server controls with an inline
representation of the user interface that you want to present. You might be able
to replace a server control under the following conditions:
● You do not need to retain state across postbacks.
● The data that appears in the control is static. For example, a label is static data.
● You do not need programmatic access to the control on the server-side.
● The control is displaying read-only data.
● The control is not needed during postback processing.

Alternatives to server controls include simple rendering, HTML elements, inline
Response.Write calls, and raw inline angle brackets (<% %>). It is essential to
balance your tradeoffs. Avoid over optimization if the overhead is acceptable and
if your application is within the limits of its performance objectives.

294 Improving .NET Application Performance and Scalability

Avoid Creating Deep Hierarchies of Controls
Deeply nested hierarchies of controls compound the cost of creating a server control
and its child controls. Deeply nested hierarchies create extra processing that could be
avoided by using a different design that uses inline controls, or by using a flatter
hierarchy of server controls. This is especially important when you use list controls
such as Repeater, DataList, and DataGrid because they create additional child
controls in the container.

For example, consider the following Repeater control.

<asp:repeater id=r runat=server>
 <itemtemplate>
 <asp:label runat=server><%# Container.DataItem %>
</asp:label>
 </itemtemplate>
</asp:repeater>

Assuming there are 50 items in the data source, if you enable tracing for the page that
contains the Repeater control, you would see that the page actually contains more
than 200 controls.

Table 6.2: Partial Repeater Control Hierarchy

Control ID Type

Repeater System.Web.UI.WebControls.Repeater

 repeater:_ctl0 System.Web.UI.WebControls.RepeaterItem

 repeater_ctl0:_ctl1 System.Web.UI.LiteralControl

 repeater_ctl0:_ctl0 System.Web.UI.WebControls.Label

 repeater_ctl0:_ctl2 System.Web.UI.LiteralControl

 repeater:_ctl49 System.Web.UI.WebControls.RepeaterItem

 repeater_ctl49:_ctl1 System.Web.UI.LiteralControl

 repeater_ctl49:_ctl0 System.Web.UI.WebControls.Label

 repeater_ctl49:_ctl2 System.Web.UI.LiteralControl

The ASP.NET list controls are designed to handle many different scenarios and may
not be optimized for your scenario. In situations where performance is critical, you
can choose from the following options:

 Chapter 6: Improving ASP.NET Performance 295

If you want to display data that is not very complex, you might render it yourself by
calling Response.Write. For example, the following code fragment would produce
the same output, as noted earlier in the section.

for(int i=0;i<datasource.Count;i++)
{
 Response.Write(datasource[i] + "
");
}

If you want to display more complex data, you can create a custom control to do the
rendering. For example, the following custom control produces the same output as
noted earlier in the section.

public class MyControl : Control
{
 private IList _dataSource;
 public IList DataSource
 {
 get {return _dataSource;}
 set {_dataSource=value;}
 }
 protected override void Render(HtmlTextWriter writer)
 {
 for(int i=0;i<_dataSource.Count;i++)
 {
 writer.WriteLine(_dataSource[i] + "
");
 }
 }
}

More Information
For general background information about server controls, see
Knowledge Base article 306459, “INFO: ASP.NET Server Controls Overview,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;306459.

Data Binding
Data binding is another common area that often leads to performance problems if it is
used inefficiently. If you use data binding, consider the following recommendations:
● Avoid using Page.DataBind.
● Minimize calls to DataBinder.Eval.

http://support.microsoft.com/default.aspx?scid=kb;en-us;306459

296 Improving .NET Application Performance and Scalability

Avoid Using Page.DataBind
Calling Page.DataBind invokes the page-level method. The page-level method
in turn calls the DataBind method of every control on the page that supports data
binding. Instead of calling the page-level DataBind, call DataBind on specific
controls. Both approaches are shown in the following examples.

The following line calls the page level DataBind. The page level DataBind in turn
recursively calls DataBind on each control.

DataBind();

The following line calls DataBind on the specific control.

yourServerControl.DataBind();

Minimize Calls to DataBinder.Eval
The DataBinder.Eval method uses reflection to evaluate the arguments that are
passed in and to return the results. If you have a table that has 100 rows and
10 columns, you call DataBinder.Eval 1,000 times if you use DataBinder.Eval on each
column. Your choice to use DataBinder.Eval is multiplied 1,000 times in this scenario.
Limiting the use of DataBinder.Eval during data binding operations significantly
improves page performance. Consider the following ItemTemplate element within
a Repeater control using DataBinder.Eval.

<ItemTemplate>
 <tr>
 <td><%# DataBinder.Eval(Container.DataItem,"field1") %></td>
 <td><%# DataBinder.Eval(Container.DataItem,"field2") %></td>
 </tr>
</ItemTemplate>

There are alternatives to using DataBinder.Eval in this scenario. The alternatives
include the following:
● Use explicit casting. Using explicit casting offers better performance by avoiding

the cost of reflection. Cast the Container.DataItem as a DataRowView.

<ItemTemplate>
 <tr>
 <td><%# ((DataRowView)Container.DataItem)["field1"] %></td>
 <td><%# ((DataRowView)Container.DataItem)["field2"] %></td>
 </tr>
</ItemTemplate>

 Chapter 6: Improving ASP.NET Performance 297

You can gain even better performance with explicit casting if you use a
DataReader to bind your control and use the specialized methods to retrieve
your data. Cast the Container.DataItem as a DbDataRecord.

<ItemTemplate>
 <tr>
 <td><%# ((DbDataRecord)Container.DataItem).GetString(0) %></td>
 <td><%# ((DbDataRecord)Container.DataItem).GetInt(1) %></td>
 </tr>
</ItemTemplate>

The explicit casting depends on the type of data source you are binding to;
the preceding code illustrates an example.

● Use the ItemDataBound event. If the record that is being data bound contains
many fields, it may be more efficient to use the ItemDataBound event. By using
this event, you only perform the type conversion once. The following sample uses
a DataSet object.

protected void Repeater_ItemDataBound(Object sender, RepeaterItemEventArgs e)
{
 DataRowView drv = (DataRowView)e.Item.DataItem;
 Response.Write(string.Format("<td>{0}</td>",drv["field1"]));
 Response.Write(string.Format("<td>{0}</td>",drv["field2"]));
 Response.Write(string.Format("<td>{0}</td>",drv["field3"]));
 Response.Write(string.Format("<td>{0}</td>",drv["field4"]));
}

More Information
For more information about data binding, see the following Knowledge Base articles:
● 307860, “INFO: ASP.NET Data Binding Overview” at http://support.microsoft.com

/default.aspx?scid=kb;en-us;307860
● 313481, “INFO: Roadmap for Web Forms Data Binding” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;313481
● 314809, “PRB: ASP.NET Fires Change Events Even If You Do Not Change the

Control Value” at http://support.microsoft.com/default.aspx?scid=kb;en-us;314809

Caching Explained
Caching avoids redundant work. If you use caching properly, you can avoid
unnecessary database lookups and other expensive operations. You can also
reduce latency.

http://support.microsoft.com/default.aspx?scid=kb;en-us;307860
http://support.microsoft.com/default.aspx?scid=kb;en-us;307860
http://support.microsoft.com/default.aspx?scid=kb;en-us;313481
http://support.microsoft.com/default.aspx?scid=kb;en-us;314809

298 Improving .NET Application Performance and Scalability

The ASP.NET cache is a simple, scalable, in-memory caching service provided to
ASP.NET applications. It provides a time-based expiration facility, and it also tracks
dependencies on external files, directories, or other cache keys. It also provides a
mechanism to invoke a callback function when an item expires in the cache. The
cache automatically removes items based on a least recently used (LRU) algorithm,
a configured memory limit, and the CacheItemPriority enumerated value of the
items in the cache. Cached data is also lost when your application or worker process
recycles.

ASP.NET provides the following three caching techniques:
● Cache API
● Output caching
● Partial page or fragment caching

These caching techniques are briefly summarized in the following sections.

Cache API
You should use the cache API to programmatically cache application-wide data that
is shared and accessed by multiple users. The cache API is also a good place for data
that you need to manipulate in some way before you present the data to the user.
This includes data such as strings, arrays, collections, and data sets.

Some common scenarios where you might want to use the cache API include the
following:
● Headlines. In most cases, headlines are not updated in real time; they are often

delayed for 10 to 20 minutes. Because headlines are shared by multiple users and
are updated infrequently, this makes them good candidates for the cache API.

● Product catalogs. Product catalogs are good candidates for the cache API because
the data typically needs to be updated at specific intervals, shared across the
application, and manipulated before sending the content to the client.

You should avoid using the cache API in the following circumstances:
● The data you are caching is user-specific. Consider using session state instead.
● The data is updated in real time.
● Your application is already in production, and you do not want to update the code

base. In this case, consider using output caching.

 Chapter 6: Improving ASP.NET Performance 299

The cache API permits you to insert items in the cache that have a dependency upon
external conditions. Cached items are automatically removed from the cache when
the external conditions change. You use this feature by using a third parameter on
the Cache.Insert method that accepts an instance of a CacheDependency class. The
CacheDependency class has eight different constructors that support various
dependency scenarios. These constructors include file-based, time-based, and
priority-based dependencies, together with dependencies that are based on existing
dependencies.

You can also run code before serving data from the cache. For example, you might
want to serve cached data for certain customers, but for others you might want to
serve data that is updated in real time. You can perform this type of logic by using
the HttpCachePolicy.AddValidationCallback method.

Output Caching
The output cache enables you to cache the contents of entire pages for a specific
duration of time. It enables you to cache multiple variations of the page based on
query strings, headers, and userAgent strings. The output cache also enables you
to determine where to cache the content, for example on a proxy, server, or a client.
Like the cache API, output caching enables you to save time retrieving data. Output
caching also saves time rendering content. You should enable output caching on
dynamically generated pages that do not contain user-specific data in scenarios
where you do not need to update the view on every request.

Some common scenarios that are ideal for output caching include the following:
● Pages that are frequently visited. Output caching can be used to increase the

overall performance of an application after the application is released to
production by identifying the heavily visited pages and by enabling output
caching on those specific pages if possible.

● Reports. Reports that only contain a low number of variations are good candidates
for using output caching because you save time by not retrieving and processing
the data each time the page is accessed.

Avoid using output caching in the following circumstances:
● You need programmatic access to the data on your page. Consider using the cache

API instead.
● The number of page variants becomes too large.
● The page contains a mixture of static, dynamic, and user-specific data. Consider

using fragment caching instead.
● The page contains content that must be refreshed with every view.

300 Improving .NET Application Performance and Scalability

Partial Page or Fragment Caching
Partial page or fragment caching is a subset of output caching. It includes an
additional attribute that allows you to cache a variation based on the properties
of the user control (.ascx file.)

Fragment caching is implemented by using user controls in conjunction with the
@OutputCache directive. Use fragment caching when caching the entire content
of a page is not practical. If you have a mixture of static, dynamic, and user-specific
content in your page, partition your page into separate logical regions by creating
user controls. These user controls can then be cached, independent of the main page,
to reduce processing time and to increase performance.

Some common scenarios that make good candidates for fragment caching include
the following:
● Navigation menus. Navigation menus that are not user-specific are great

candidates for fragment caching because menus are usually rendered with
each request and are often static.

● Headers and footers. Because headers and footers are essentially static content
that does not need to be regenerated with every request, they make good
candidates for fragment caching.

You should avoid using fragment caching under the following conditions:
● The number of page variants becomes too large.
● The cached user controls contain content that must be refreshed with every view.

If your application uses the same user control on multiple pages, make the pages
share the same instance by setting the Shared attribute of the user control @
OutputCache directive to true. This can save a significant amount of memory.

Caching Guidelines
Consider the following guidelines when you are designing a caching strategy:
● Separate dynamic data from static data in your pages.
● Configure the memory limit.
● Cache the right data.
● Refresh your cache appropriately.
● Cache the appropriate form of data.
● Use output caching to cache relatively static pages.
● Choose the right cache location.
● Use VaryBy attributes for selective caching.
● Use kernel caching on Windows Server 2003.

 Chapter 6: Improving ASP.NET Performance 301

Separate Dynamic Data from Static Data in Your Pages
Partial page caching enables you to cache parts of a page by using user controls. Use
user controls to partition your page. For example, consider the following simple page
which contains static, dynamic, and user-specific information.

[main.aspx]
<html>
<body>
<table>
<tr><td colspan=3>Application Header – Welcome John Smith</td></tr>
<tr><td>Menu</td><td>Dynamic Content</td><td>Advertisments</td></tr>
<tr><td colspan=3>Application Footer</td></tr>
</table>
</html>

You can partition and cache this page by using the following code:

[main.aspx]
<%@ Register TagPrefix="app" TagName="header" src="header.ascx" %>
<%@ Register TagPrefix="app" TagName="menu" src="menu.ascx" %>
<%@ Register TagPrefix="app" TagName="advertisements" src="advertisements.ascx" %>
<%@ Register TagPrefix="app" TagName="footer" src="footer.ascx" %>
<html>
<body>
<table>
<tr><td colspan=3><app:header runat=server /></td></tr>
<tr><td><app:menu runat=server /></td><td>Dynamic
Content</td><td><app:advertisements runat=server /></td></tr>
<tr><td colspan=3><app:footer runat=server /></td></tr>
</table>
</html>

[header.ascx]
<%@Control %>
Application Header – Welcome <% GetName() %>

[menu.ascx]
<%@Control %>
<%@ OutputCache Duration="30" VaryByParam="none" %>
Menu

[advertisements.ascx]
<%@Control %>
<%@ OutputCache Duration="30" VaryByParam="none" %>
Advertisements

[footer.ascx]
<%@Control %>
<%@ OutputCache Duration="60" VaryByParam="none" %>
Footer

302 Improving .NET Application Performance and Scalability

By partitioning the content, as shown in the sample, you can cache selected portions
of the page to reduce processing and rendering time.

Configure the Memory Limit
Configuring and tuning the memory limit is critical for the cache to perform
optimally. The ASP.NET cache starts trimming the cache based on a LRU algorithm
and the CacheItemPriority enumerated value assigned to the item after memory
consumption is within 20 percent of the configured memory limit. If the memory
limit is set too high, it is possible for the process to be recycled unexpectedly. Your
application might also experience out-of-memory exceptions. If the memory limit is
set too low, it could increase the amount of time spent performing garbage
collections, which decreases overall performance.

Empirical testing shows that the likelihood of receiving out-of-memory exceptions
increases when private bytes exceed 800 megabytes (MB). A good rule to follow when
determining when to increase or decrease this number is that 800 MB is only relevant
for .NET Framework 1.0. If you have .NET Framework 1.1 and if you use the /3 GB
switch, you can go up to 1,800 MB.

When using the ASP.NET process model, you configure the memory limit in the
Machine.config file as follows.

<processModel memoryLimit="50">

This value controls the percentage of physical memory that the worker process is
allowed to consume. The process is recycled if this value is exceeded. In the previous
sample, if there are 2 gigabytes (GB) of RAM on your server, the process recycles after
the total available physical RAM falls below 50 percent of the RAM; in this case 1 GB.
In other words, the process recycles if the memory used by the worker process goes
beyond 1 GB. You monitor the worker process memory by using the process
performance counter object and the private bytes counter.

More Information
For more information about how to tune the memory limit and about the /3GB
switch, see “Configure the Memory Limit” and “/3GB Switch” in Chapter 17,
“Tuning .NET Application Performance.”

Cache the Right Data
It is important to cache the right data. If you cache the wrong data, you may
adversely affect performance.

 Chapter 6: Improving ASP.NET Performance 303

Cache application-wide data and data that is used by multiple users. Cache static
data and dynamic data that is expensive to create or retrieve. Data that is expensive
to retrieve and that is modified on a periodic basis can still provide performance
and scalability improvements when managed properly. Caching data even for a few
seconds can make a big difference to high volume sites. Datasets or custom classes
that use optimized serialization for data binding are also good candidates for
caching. If the data is used more often than it is updated, it is also a candidate for
caching.

Do not cache expensive resources that are shared, such as database connections,
because this creates contention. Avoid storing DataReader objects in the cache
because these objects keep the underlying connections open. It is better to pool these
resources. Do not cache per-user data that spans requests — use session state for that.
If you need to store and to pass request-specific data for the life of the request instead
of repeatedly accessing the database for the same request, consider storing the data in
the HttpContext.Current.Cache object.

Refresh Your Cache Appropriately
Just because your data updates every ten minutes does not mean that your cache
needs to be updated every ten minutes. Determine how frequently you have to
update the data to meet your service level agreements. Avoid repopulating caches
for data that changes frequently. If your data changes frequently, that data may not
be a good candidate for caching.

Cache the Appropriate Form of the Data
If you want to cache rendered output, you should consider using output caching or
fragment caching. If the rendered output is used elsewhere in the application, use the
cache API to store the rendered output. If you need to manipulate the data, then
cache the data by using the cache API. For example, if you need the data to be bound
to a combo box, convert the retrieved data to an ArrayList object before you cache it.

Use Output Caching to Cache Relatively Static Pages
If your page is relatively static across multiple user requests, consider using page
output caching to cache the entire page for a specified duration. You specify the
duration based on the nature of the data on the page. A dynamic page does not
always have to be rebuilt for every request just because it is a dynamic page. For
example, you might be able to cache Web-based reports that are expensive to
generate for a defined period. Caching dynamic pages for even a minute or two
can increase performance drastically on high volume pages.

304 Improving .NET Application Performance and Scalability

If you need to remove an item from the cache instead of waiting until the item
expires, you can use the HttpResponse.RemoveOutputCacheItem method. This
method accepts an absolute path to the page that you want to remove as shown in
the following code fragment.

HttpResponse.RemoveOutputCacheItem("/Test/Test.aspx");

The caveat here is that this is specific to a server, because the cache is not shared
across a Web farm. Also, it cannot be used from a user control.

Note: The next version of ASP.NET (code-named “Whidbey”) is likely to support a database cache
dependency. If it is implemented, this database cache dependency will allow you to remove items
from the cache when data changes in the database.

Choose the Right Cache Location
The @OutputCache directive allows you to determine the cache location of the page
by using the Location attribute. The Location attribute provides the following values:
● Any. This is the default value. The output cache can be located on the browser

client where the request originated, on a proxy server, or any other server that is
participating in the request or on the server where the request is processed.

● Client. The output cache is located on the browser client where the request
originated.

● DownStream. The output cache can be stored in any HTTP 1.1 cache-capable
device except for the origin server. This includes proxy servers and the client
that made the request.

● None. The output cache is disabled for the requested page.
● Server. The output cache is located on the Web server where the request was

processed.
● ServerAndClient. The output cache can be stored only at the origin server or

at the requesting client. Proxy servers cannot cache the response.

Unless you know for certain that your clients or your proxy server will cache
responses, it is best to keep the Location attribute set to Any, Server, or
ServerAndClient. Otherwise, if there is not a downstream cache available,
the attribute effectively negates the benefits of output caching.

Note: The Location attribute does not apply to user controls.

 Chapter 6: Improving ASP.NET Performance 305

Use VaryBy Attributes for Selective Caching
The VaryBy attributes allow you to cache different versions of the same page.
ASP.NET provides four VaryBy attributes:
● VaryByParam. Different versions of the page are stored based on the query string

values.
● VaryByHeader. Different versions of the page are stored based on the specified

header values.
● VaryByCustom. Different versions of the page are stored based on browser type

and major version. Additionally, you can extend output caching by defining
custom strings.

● VaryByControl. Different versions of the page are stored based on the property
value of a user control. This only applies to user controls.

The VaryBy attribute determines the data that is cached. The following sample shows
how to use the VaryBy attribute.

<%@ OutputCache Duration="30" VaryByParam="a" %>

The setting shown in the previous sample would make the following pages have the
same cached version:
● http://localhost/cache.aspx?a=1
● http://localhost/cache.aspx?a=1&b=1
● http://localhost/cache.aspx?a=1&b=2

If you add b to the VaryByParam attribute, you would have three separate versions of
the page rather than one version. It is important for you to be aware of the number of
variations of the cached page that could be cached. If you have two variables (a and
b), and a has 5 different combinations, and b has 10 different combinations, you can
calculate the total number of cached pages that could exist by using the following
formula:

(MAX a × MAX b) + (MAX a + MAX b) = 65 total variations

When you make the decision to use a VaryBy attribute, make sure that there are a
finite number of variations because each variation increases the memory
consumption on the Web server.

306 Improving .NET Application Performance and Scalability

Use Kernel Caching on Windows Server 2003
Windows Server 2003 and IIS 6.0 provide kernel caching. ASP.NET pages can
automatically benefit from the IIS 6.0 kernel cache. Kernel caching produces
significant performance gains because requests for cached responses are served
without switching to user mode.

More Information

For more information, see “Kernel Mode Caching” in “IIS 6.0 Considerations” later
in this chapter.

More Information
For more information on caching in general, see the following Knowledge Base
articles:
● 811431, “HOWTO: Cache in ASP.NET by Using Visual Basic .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;811431
● 323290, “HOWTO: To: Cache in ASP.NET by Using Visual C# .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;323290
● 308375, “HOW TO: Control Page Output Caching in ASP.NET by Using Visual C#

.NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;308375
● 315896, “HOW TO: Improve Performance by Caching Pages in ASP.NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;315896
● 312358, “HOW TO: Implement Key-Based Dependencies for Data Caching

in ASP.NET by Using Visual Basic .NET,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;312358

● 308147, “HOW TO: Implement Key-Based Dependencies for Data Caching
in ASP.NET by Using Visual C# .NET,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;308147

For more information about programmatic caching, see “Using Programmatic
Caching” in “Understanding Caching Technologies” of the Caching Architecture Guide
for .NET Framework Applications at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/CachingArchch2.asp.

http://support.microsoft.com/default.aspx?scid=kb;en-us;811431
http://support.microsoft.com/default.aspx?scid=kb;en-us;323290
http://support.microsoft.com/default.aspx?scid=kb;en-us;308375
http://support.microsoft.com/default.aspx?scid=kb;en-us;315896
http://support.microsoft.com/default.aspx?scid=kb;en-us;312358
http://support.microsoft.com/default.aspx?scid=kb;en-us;308147
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/CachingArchch2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/CachingArchch2.asp

 Chapter 6: Improving ASP.NET Performance 307

State Management
Web applications present specific challenges for state management. This is especially
true for Web applications that are deployed in Web farms. The choices that you make
regarding where and how state is stored have a significant impact on the
performance and scalability of your application. There are several different types
of state:
● Application state. Application state is used for storing application-wide state

for all clients. Using application state affects scalability because it causes server
affinity. In a Web scenario, if you modify application state, there is no mechanism
to replicate the changes across servers. Therefore, if a subsequent request from the
same user goes to another server, the change is not available. You store data in
application state by using a key/value pair, as shown in the following sample.

Application["YourGlobalState"] = somevalue;

● Session state. Session state is used for storing per-user state on the server. The
state information is tracked by using a session cookie or a mangled URL. ASP.NET
session state scales across Web servers in a farm.

● View state. View state is used for storing per-page state information. The state
flows with every HTTP POST request and response.

● Alternatives. Other techniques for state management include client cookies,
query strings, and hidden form fields.

Guidelines that are specific to application state, session state, and view state are
included in later sections. The following are guidelines that address the broad issues
that concern state management in general:
● Store simple state on the client where possible.
● Consider serialization costs.

Store Simple State on the Client Where Possible
Use cookies, query strings, and hidden controls for storing lightweight, user-specific
state that is not sensitive such as personalization data. Do not use them to store
security-sensitive information because the information can be easily read or
manipulated.
● Client cookies. Client cookies are created on the server, and they are sent and

stored on the client browser. They are domain specific and are not completely
secure. All subsequent requests from a browser include the cookies, which the
server code can inspect and modify. The maximum amount of data that you can
put in cookie is 4 KB.

308 Improving .NET Application Performance and Scalability

● Query strings. Query strings are the data that is appended to a URL. The data is
clear text and there is a limit on the overall string length. The data can easily be
manipulated by the user. Therefore, do not retrieve and display sensitive data
based on query parameters without using authentication or validation. For
anonymous Web sites, this is less of an issue.

● Hidden controls. Hidden controls on the page store state information that is sent
back and forth in requests and responses.

More Information

For more information about the security implications of using these various state
management techniques, see Chapter 10, “Building Secure ASP.NET Pages and
Controls” in Improving Web Application Security: Threats and Countermeasures on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec
/html/thcmch10.asp.

Consider Serialization Costs
If you need to serialize state, consider the serialization costs. For example, you might
want to serialize state to store in a remote state store. Only store what is absolutely
necessary, and prefer simple types rather than complex objects to reduce the impact
of serialization.

Application State
Application state is used to store application-wide static information. ASP.NET
includes application state primarily for compatibility with classic Active Server Pages
(ASP) technology so that it is easier to migrate existing applications to ASP.NET.

If you use application state, use the following guidelines to ensure your application
runs optimally:
● Use static properties instead of the Application object to store application state.
● Use application state to share static, read-only data.
● Do not store STA COM objects in application state.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch10.asp

 Chapter 6: Improving ASP.NET Performance 309

Use Static Properties Instead of the Application Object to Store
Application State
You should store data in static members of the application class instead of in the
Application object. This increases performance because you can access a static
variable faster than you can access an item in the Application dictionary. The
following is a simplified example.

<%
private static string[] _states[];
private static object _lock = new object();
public static string[] States
{
 get {return _states;}
}
public static void PopulateStates()
{
 //ensure this is thread safe
 if(_states == null)
 {
 lock(_lock)
 {
 //populate the states...
 }
 }
}
public void Application_OnStart(object sender, EventArgs e)
{
 PopulateStates();
}
%>

Use Application State to Share Static, Read-Only Data
Application state is application-wide and specific to a server. Even though you
can store read-write data, it advisable to only store read-only data to avoid server
affinity. Consider using the Cache object. The Cache object is a better alternative for
read-only data.

Do Not Store STA COM Objects in Application State
Storing STA COM objects in application state bottlenecks your application because
the application uses a single thread of execution when it accesses the component.
Avoid storing STA COM objects in application state.

310 Improving .NET Application Performance and Scalability

More Information
For more information about application state, see Knowledge Base article,
312607, “INFO: Application Instances, Application Events, and Application State
in ASP.NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;312607.

Session State
If you need session state in ASP.NET, there are three session state modes that you
can choose from. Each mode offers varying degrees of performance and scalability
as described in the following list:
● InProc. The in-process store provides the fastest access to session state. There are

no serialization or marshaling costs involved because state is maintained within
the managed memory of the ASP.NET process. The ASP.NET process is the
Aspnet_wp.exe file on Windows 2000 Server, and the W3wp.exe file on Windows
Server 2003. When the process recycles, the state data is lost, although you can
disable process recycling in IIS 6 if process recycling affects your application.
The in-process store limits application scalability because you cannot use it in
conjunction with multiple worker processes; for example, it prevents Web farm or
Web garden deployment. Also, high numbers of large or concurrent sessions can
cause your application to run out of memory.

● StateServer. The session state service, a Microsoft Win32® service, can be installed
on your local Web server or on a remote server that is accessible by all Web servers
in a Web farm. This approach scales well, but performance is reduced in
comparison to the in-process provider because of the additional serialization and
marshaling that is required to transfer the state to and from the state store.

● SQL Server. Microsoft SQL Server provides a highly scalable and easily available
solution. SQL Server is a solution that is well-suited to large amounts of session
state. The serialization and marshalling costs are the same as the costs for the
session state service, although overall performance is slightly lower. SQL Server
provides clustering for failover, although this is not supported in the default
configuration for session state. To enable clustering for failover, you have to apply
configuration changes, and the session data must be stored in a non temporary
table.
For more information, see Knowledge Base article 323262,”INFO: ASP.NET
Session State with SqlServer Mode in a Failover Cluster,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;323262.

http://support.microsoft.com/default.aspx?scid=kb;en-us;312607
http://support.microsoft.com/default.aspx?scid=kb;en-us;323262

 Chapter 6: Improving ASP.NET Performance 311

Choosing a State Store
The in-process state store provides excellent performance and scales well. However,
most high volume Web applications run in a Web farm. To be able to scale out, you
need to choose between the session state service and the SQL Server state store. With
either of these choices, you have to understand the associated impact of network
latency and serialization, and you have to measure them to ensure that your
application meets its performance objectives. Use the following information to help
choose a state store:
● Single Web server. Use the in-process state store when you have a single Web

server, when you want optimum session state performance, and when you have
a reasonable and limited number of concurrent sessions. Use the session state
service running on the local Web server when your sessions are expensive to
rebuild and when you require durability in the event of an ASP.NET restart.
Use the SQL Server state store when reliability is your primary concern.

● Web farm. Avoid the in-process option, and avoid running the session state
service on the local Web server. These cause server affinity. You can use Internet
Protocol (IP) affinity to ensure that the same server handles subsequent requests
from the same client, but Internet service providers (ISP) that use a reverse proxy
cause problems for this approach. Use a remote session state service or use
SQL Server for Web farm scenarios.

● StateServer versus SQLServer. Use a remote state service, if you do not have a
SQL Server database. Use SQL Server for enterprise applications or high volume
Web applications. If your remote state service and your Web server are separated
by a firewall, then you need to open a port. The default port is port 42424. You can
change the port in the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\aspnet_state
\Parameters.

To ensure optimized session state performance, follow these guidelines:
● Prefer basic types to reduce serialization costs.
● Disable session state if you do not use it.
● Avoid storing STA COM objects in session state.
● Use the ReadOnly attribute when you can.

312 Improving .NET Application Performance and Scalability

Prefer Basic Types to Reduce Serialization Costs
You incur serialization overhead if you use the StateServer or the SQLServer
out-of-process state stores. The simpler the object graph, the faster it should serialize.
To minimize serialization costs, use basic types such as Int, Byte, Decimal, String,
DateTime, TimeSpan, Guid, IntPtr, and UintPrt. ASP.NET uses an optimized
internal serialization method to serialize basic types. Complex types are serialized
using a relatively slow BinaryFormatter object. For complex types, you can use the
Serializable attribute, or you can implement the ISerializable interface. Using this
interface provides you with more precise control and may speed up serialization.

Minimize what you serialize. Disable serialization when you do not use it, and
mark specific fields from a serializable class that you want to exclude with the
NonSerialized attribute. Alternatively, control the serialization process by using
the ISerializable interface.

Note: You should only implement the ISerializable interface as a last resort. New formatters
provided by future versions of the .NET Framework and improvements to the framework provided
serialization will not be utilized once you take this approach. Prefer the NonSerialized attribute.

More Information
For more information, see “How To: Improve Serialization Performance” in the
“How To” section of this guide.

Disable Session State If You Do Not Use It
If you do not use session state, disable session state to eliminate redundant session
processing performed by ASP.NET. You might not use session state because you
store simple state on the client and then pass it to the server for each request. You
can disable session state for all applications on the server, for specific applications,
or for individual pages, as described in the following list:
● To disable session state for all applications on your server, use the following

element in the Machine.config file.

<sessionState mode='Off'/>

You can also remove the session state module from <httpModules> to completely
remove session processing overhead.

● To disable session state for a specific application, use the following element in the
Web.config file of the application.

<sessionState mode='Off'/>

● To disable session state for a specific Web page, use the following page setting.

<%@ Page EnableSessionState="false" . . .%>

 Chapter 6: Improving ASP.NET Performance 313

Avoid Storing STA COM Objects in Session State
Storing STA COM objects in session state causes thread affinity. Thread affinity
severely affects performance and scalability. If you do use STA COM objects in
session state, be sure to set the AspCompat attribute of the @ Page directive.

More Information

For more information, see “COM Interop” later in this chapter.

Use the ReadOnly Attribute When You Can
Page requests that use session state internally use a ReaderWriterLock object to
manage session data. This allows multiple reads to occur at the same time when no
lock is held. When the writer acquires the lock to update session state, all read
requests are blocked. Normally two calls are made to the database for each request.
The first call connects to the database, marks the session as locked, and executes the
page. The second call writes any changes and unlocks the session. For pages that only
read session data, consider setting EnableSessionState to ReadOnly as shown in the
following sample.

<%@ Page EnableSessionState="ReadOnly" . . .%>

Setting EnableSessionState to ReadOnly is particularly useful when you use
frames. In this event, the default setting serializes the execution of the page because
a ReaderWriterLock is used. By setting EnableSessionState to ReadOnly, you avoid
blocking, and you send fewer calls to the database. One option is to disable sessions
in the configuration file as shown earlier, and to set the ReadOnly attribute on a
page-by-page basis.

More Information
For more information about session state, see “Underpinnings of the Session
State Implementation in ASP.NET” on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnaspp/html/ASPNetSessionState.asp.

For additional information on session state, see the following Knowledge Base
articles:
● 307598, “INFO: ASP.NET State Management Overview,” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;307598
● 311209, “HOW TO: Configure ASP.NET for Persistent SQL Server Session State

Management,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;311209
● 317604, “HOW TO: Configure SQL Server to Store ASP.NET Session State,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;317604

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/ASPNetSessionState.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/ASPNetSessionState.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;307598
http://support.microsoft.com/default.aspx?scid=kb;en-us;311209
http://support.microsoft.com/default.aspx?scid=kb;en-us;317604

314 Improving .NET Application Performance and Scalability

● 306996, “HOW TO: Disable ASP Session State in ASP.NET,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;306996

● 326606, “BUG: Impersonation May Not Work When You Use ASP.NET SQL
Server Session State with Integrated Security,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;326606

● 324772, “PRB: Session Data Is Lost When You Use ASP.NET InProc Session
State Mode,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;324772

View State
View state is used primarily by server controls to retain state only on pages that post
data back to themselves. The information is passed to the client and read back in a
specific hidden variable called _VIEWSTATE. ASP.NET makes it easy to store any
types that are serializable in view state. However, this capability can easily be
misused and performance reduced. View state is an unnecessary overhead for pages
that do not need it. As the view state grows larger. it affects performance in the
following ways:
● Increased CPU cycles are required to serialize and to deserialize the view state.
● Pages take longer to download because they are larger.
● Very large view state can impact the efficiency of garbage collection.

Transmitting a huge amount of view state can significantly affect application
performance. The change in performance becomes more marked when your Web
clients use slow, dial-up connections. Consider testing for different bandwidth
conditions when you work with view state. Optimize the way your application
uses view state by following these recommendations:
● Disable view state if you do not need it.
● Minimize the number of objects you store in view state.
● Determine the size of your view state.

Disable View State If You Do Not Need It
View state is turned on in ASP.NET by default. Disable view state if you do not need
it. For example, you might not need view state because your page is output-only or
because you explicitly reload data for each request. You do not need view state when
the following conditions are true:
● Your page does not post back. If the page does not post information back to itself,

if the page is only used for output, and if the page does not rely on response
processing, you do not need view state.

http://support.microsoft.com/default.aspx?scid=kb;en-us;306996
http://support.microsoft.com/default.aspx?scid=kb;en-us;326606
http://support.microsoft.com/default.aspx?scid=kb;en-us;326606
http://support.microsoft.com/default.aspx?scid=kb;en-us;324772

 Chapter 6: Improving ASP.NET Performance 315

● You do not handle server control events. If your server controls do not handle
events, and if your server controls have no dynamic or data bound property
values, or they are set in code on every request, you do not need view state.

● You repopulate controls with every page refresh. If you ignore old data, and
if you repopulate the server control each time the page is refreshed, you do not
need view state.

There are several ways to disable view state at various levels:
● To disable view state for all applications on a Web server, configure the <pages>

element in the Machine.config file as follows.

<pages enableViewState="false" />

This approach allows you to selectively enable view state just for those pages
that need it by using the EnableViewState attribute of the @ Page directive.

● To disable view state for a single page, use the @ Page directive as follows.

<%@ Page EnableViewState="false" %>

● To disable view state for a single control on a page, set the EnableViewState
property of the control to false, as shown in the following code fragment.

//programatically
yourControl.EnableViewState = false;
//something
<asp:datagrid EnableViewState="false" runat= "server" />

Minimize the Number of Objects You Store In View State
As you increase the number of objects you put into view state, the size of your
view state dictionary grows, and the processing time required to serialize and to
deserialize the objects increases. Use the following guidelines when you put objects
into view state:
● View state is optimized for serializing basic types such as strings, integers, and

Booleans, and objects such as arrays, ArrayLists, and Hashtables if they contain
these basic types. When you want to store a type which is not listed previously,
ASP.NET internally tries to use the associated type converter. If it cannot find one,
it uses the relatively expensive binary serializer.

● The size of the object is directly proportional to the size of the view state. Avoid
storing large objects.

316 Improving .NET Application Performance and Scalability

Determine the Size of Your View State
By enabling tracing for the page, you can monitor the view state size for each control.
The view state size for each control appears in the leftmost column in the control tree
section of the trace output. Use this information as a guide to determine if there are
any controls that you can reduce the amount of view state for or if there are controls
that you can disable view state for.

More Information

For related information, see “Taking a Bite out of ASP.NET ViewState” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html
/asp11222001.asp.

HTTP Modules
HTTP modules are filters that allow you to add preprocessing and postprocessing
to HTTP request and response messages as they flow through the ASP.NET pipeline.
They are commonly used for authorization, authentication, logging, and machine-
level error handling. HTTP modules run on every request, so whatever processing
they perform has global impact either on the application or the computer, depending
on where you register them.

If you develop HTTP modules, consider the following:
● Avoid long-running and blocking calls in pipeline code.
● Consider asynchronous events.

Avoid Long-Running and Blocking Calls in Pipeline Code
Avoid placing long-running code in an HTTP module for the following reasons:
● ASP.NET pages are processed in a synchronous fashion.
● HTTP modules typically use synchronous events.

Long-running or blocking code reduces the concurrent requests that can run in
ASP.NET.

Consider Asynchronous Events
For every synchronous event, there is also an asynchronous version of that event.
Although asynchronous events still logically block the request for the duration of
the asynchronous work, they do not block the ASP.NET thread.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html/asp11222001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html/asp11222001.asp

 Chapter 6: Improving ASP.NET Performance 317

More Information
For more information on HTTP modules, see the MSDN Magazine article, “ASP.NET
Pipeline: Use Threads and Build Asynchronous Handlers in Your Server-Side Web
Code,” at http://msdn.microsoft.com/msdnmag/issues/03/06/threading/default.aspx.

In addition, see Knowledge Base article 307985, “INFO: ASP.NET HTTP Modules
and HTTP Handlers Overview,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;307985.

String Management
When you build output, you often need to concatenate strings. This is an expensive
operation because it requires temporary memory allocation and subsequent
collection. As a result, you should minimize the amount of string concatenation that
you perform. There are three common ways to concatenate strings in your pages to
render data:
● Using the += operator. Use the += operator when the number of appends is

known.
● StringBuilder. Use the StringBuilder object when the number of appends is

unknown. Treat StringBuffer as a reusable buffer.
● Response.Write <% %>. Use the Response.Write method. It is one of the fastest

ways to return output back to the browser.

The most effective way to determine the option to choose is to measure the
performance of each option. If your application relies heavily on temporary buffers,
consider implementing a reusable buffer pool of character arrays or byte arrays.

Use the following guidelines when you are managing your strings:
● Use Response.Write for formatting output.
● Use StringBuilder for temporary buffers.
● Use HttpTextWriter when building custom controls.

Use Response.Write for Formatting Output
Where possible, avoid using loops to concatenate strings for formatting page layout.
Consider using Response.Write instead. This approach writes output to the ASP.NET
response buffers. When you are looping through datasets or XML documents, using
Response.Write is a highly efficient approach. It is more efficient than concatenating
the content by using the += operator before writing the content back to the client.
Response.Write internally appends strings to a reusable buffer so that it does not
suffer the performance overhead of allocating memory, in addition to cleaning that
memory up.

http://msdn.microsoft.com/msdnmag/issues/03/06/threading/default.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;307985
http://support.microsoft.com/default.aspx?scid=kb;en-us;307985

318 Improving .NET Application Performance and Scalability

Use StringBuilder for Temporary Buffers
In many cases it is not feasible to use Response.Write. For example, you might need
to create strings to write to a log file or to build XML documents. In these situations,
use a StringBuilder object as a temporary buffer to hold your data. Measure the
performance of your scenario by trying various initial capacity settings for the
StringBuilder object.

Use HtmlTextWriter When Building Custom Controls
When you are building custom controls, the Render, RenderChildren, and
RenderControl methods provide access to the HtmlTextWriter object. The
HtmlTextWriter writes to the same reusable buffer as Response.Write. In the same
way as Response.Write, HtmlTextWriter does not suffer the performance overhead
of allocating memory in addition to cleaning up the memory.

More Information
For more information about strings, see “String Operations” in Chapter 5,
“Improving Managed Code Performance.”

To determine if your application is creating excessive temporary memory allocation
due to inefficient string concatenations, use performance counters, as discussed in
the “Memory” topic in “CLR and Managed Code” in Chapter 15, “Measuring .NET
Application Performance.” To determine the source of the problem, use the CLR
Profiler. For more information, see “How To: Use CLR Profiler” in the “How To”
section of this guide.

Exception Management
Exceptions are expensive. By knowing the causes of exceptions, and by writing code
that avoids exceptions and that handles exceptions efficiently, you can significantly
improve the performance and scalability of your application. When you design and
implement exception handling, consider the following guidelines to ensure optimum
performance:
● Implement a Global.asax error handler.
● Monitor application exceptions.
● Use try/finally on disposable resources.
● Write code that avoids exceptions.
● Set timeouts aggressively.

 Chapter 6: Improving ASP.NET Performance 319

Implement a Global.asax Error Handler
The first step in managing exceptions is to implement a global error handler in the
Global.asax file or in the code-behind file. Implementing a global error handler traps
all unhandled exceptions in your application. Inside the handler, you should, at a
minimum, log the following information to a data store such as a database, the
Windows event log, or a log file:
● The page that the error occurred on
● Call stack information
● The exception name and message

In your Global.asax file or your code-behind page, use the Application_Error event
to handle your error logic, as shown in the following code sample:

public void Application_Error(object s, EventArgs ev)
{
 StringBuilder message = new StringBuilder();
 if (Server != null) {
 Exception e;
 for (e = Server.GetLastError(); e != null; e = e.InnerException)
 {
 message.AppendFormat("{0}: {1}{2}",
 e.GetType().FullName,
 e.Message,
 e.StackTrace);
 }
 //Log the exception and inner exception information.
 }
}

More Information

For more information, see “Rich Custom Error Handling with ASP.NET” on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html
/customerrors.asp.

Also, see Knowledge Base article 306355, “HOW TO: Create Custom Error Reporting
Pages in ASP.NET by Using Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;306355.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/customerrors.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/customerrors.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;306355
http://support.microsoft.com/default.aspx?scid=kb;en-us;306355

320 Improving .NET Application Performance and Scalability

Monitor Application Exceptions
To reduce the number of exceptions occurring in your application, you need to
effectively monitor your application for exceptions. You can do the following:
● If you have implemented exception handling code, review your exception logs

periodically.
● Monitor the # of Exceps Thrown / sec counter under the .NET CLR Exceptions

Performance Monitor object. This value should be less then 5 percent of your
average requests per second.

Use Try/Finally on Disposable Resources
To guarantee resources are cleaned up when an exception occurs, use a try/finally
block. Close the resources in the finally clause. Using a try/finally block ensures
that resources are disposed even if an exception occurs. The following code fragment
demonstrates this.

try
{
 conn.Open();
 ...
}
finally
{
 if(null!=conn)
 conn.close;
}

Write Code That Avoids Exceptions
The following is a list of common techniques you can use to avoid exceptions:
● Check for null values. If it is possible for an object to be null, check to make sure

it is not null, rather then throwing an exception. This commonly occurs when you
retrieve items from view state, session state, application state, or cache objects as
well as query string and form field variables. For example, do not use the
following code to access session state information.

try {
 loginid = Session["loginid"].ToString();
}
catch(Exception ex) {
 Response.Redirect("login.aspx", false);
}

 Chapter 6: Improving ASP.NET Performance 321

Instead, use the following code to access session state information.

if(Session["loginid"]!=null)
 loginid = Session["loginid"].ToString();
else
 Response.Redirect("login.aspx", false);

● Do not use exceptions to control logic. Exceptions are just that — exceptions. A
database connection that fails to open is an exception. A user who mistypes his
password is simply a condition that needs to be handled. For example, consider
the following function prototype used to log in a user.

public void Login(string UserName, string Password) {}

The following code is used to call the login.

try
{
 Login(userName,password);
}
catch (InvalidUserNameException ex)
{...}
catch (InvalidPasswordException ex)
{...}

It is better to create an enumeration of possible values and then change the Login
method to return that enumeration, as follows.

public enum LoginResult
{
 Success,InvalidUserName, InvalidPassword, AccountLockedOut
}
public LoginResult Login(string UserName, string Password) {}

The following code is used to call Login.

LoginResult result = Login(userName,password)
switch(result)
{
 case Success:
 . . .
 case InvalidUserName:
 . . .
 case InvalidPassword:
}

322 Improving .NET Application Performance and Scalability

● Suppress the internal call to Response.End. The Server.Transfer,
Response.Redirect, Response.End methods all raise exceptions. Each of these
methods internally call Response.End. The call to Response.End, in turn, causes
a ThreadAbortException exception. If you use Response.Redirect, consider using
the overloaded method and passing false as the second parameter to suppress the
internal call to Response.End.
For more information, see Knowledge Base article 312629, “PRB:
ThreadAbortException Occurs If You Use Response.End, Response.Redirect, or
Server.Transfer,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;312629.

● Do not catch exceptions you cannot handle. If your code cannot handle an
exception, use a try/finally block to ensure that you close resources, regardless
of whether an exception occurs. Do not catch the exception if you cannot try
recovery. Permit the exception to propagate to an appropriate handler that can
deal with the exception condition.

Set Timeouts Aggressively
Page timeouts that are set too high can cause problems if parts of your application
are operating slowly. For example, page timeouts that are set too high may cause the
following problems:
● Browsers stop responding.
● Incoming requests start to queue.
● IIS rejects requests after the request queue limit is reached.
● ASP.NET stops responding.

The default page timeout is 90 seconds. You can change this value to accommodate
your application scenario.

Consider the following scenario where an ASP.NET front-end application makes calls
to a remote Web service. The remote Web service then calls a mainframe database. If,
for any reason, the Web service calls to the mainframe start blocking, your front-end
ASP.NET pages continue to wait until the back end calls time out, or the page timeout
limit is exceeded. As a result, the current request times out, ASP.NET starts to queue
incoming requests, and those incoming requests may time out, too. It is more efficient
for your application to time out these requests in less than 90 seconds. Additionally,
timing out the requests in less than 90 seconds improves the user experience.

In most Internet and intranet scenarios, 30 seconds is a very reasonable timeout limit.
For high traffic pages such as a home page, you might want to consider lowering the
timeout limit. If your application takes a long time to generate certain pages, such as
report pages, increase the timeout limit for those pages.

http://support.microsoft.com/default.aspx?scid=kb;en-us;312629

 Chapter 6: Improving ASP.NET Performance 323

More Information
For more information about exception handling, see the following MSDN articles:
● “An Exception to the Rule, Part 1,” at http://msdn.microsoft.com/library/en-us

/dnaspnet/html/asp07232001.asp
● “An Exception to the Rule, Part 2,” at http://msdn.microsoft.com/library/en-us

/dnaspnet/html/asp08232001.asp

For more information about the various timeout parameters and how to configure
them, see “Configure Timeouts Aggressively” in Chapter 17, “Tuning .NET
Application Performance.”

COM Interop
Calling COM objects from ASP.NET may present performance challenges because
you have to deal with threading issues, marshaling data types, and transitions
across the boundary between managed and unmanaged code. Because ASP.NET
runs requests on multithreaded apartment (MTA) threads, working with STA COM
components may be especially challenging.

Use the following guidelines to improve COM interop performance:
● Use ASPCOMPAT to call STA COM objects.
● Avoid storing COM objects in session state or application state.
● Avoid storing STA objects in session state.
● Do not create STA objects in a page constructor.
● Supplement classic ASP Server.CreateObject with early binding.

Use ASPCOMPAT to Call STA COM Objects
When you call an STA object, such as a Visual Basic 6.0 component, from an ASP.NET
page, use the page-level ASPCOMPAT attribute. Use the ASPCOMPAT attribute as
shown in the following sample, to denote that the events in your page should
run using a thread from the STA thread pool rather than a default MTA thread.

<%@ Page ASPCOMPAT="true" language="c#" %>

STA object calls require an STA thread. If you do not use the ASPCOMPAT attribute,
all STA object calls are serialized on the host STA thread and a serious bottleneck
occurs.

http://msdn.microsoft.com/library/en-us/dnaspnet/html/asp07232001.asp
http://msdn.microsoft.com/library/en-us/dnaspnet/html/asp07232001.asp
http://msdn.microsoft.com/library/en-us/dnaspnet/html/asp08232001.asp
http://msdn.microsoft.com/library/en-us/dnaspnet/html/asp08232001.asp

324 Improving .NET Application Performance and Scalability

Avoid Storing COM Objects in Session State or Application State
Avoid storing COM objects in state containers such as session state or application
state. COM objects are not serializable, and although calling the object may work
with a single-server deployment, affinity and serialization issues will prevent your
application from working when it is moved to a Web farm.

Avoid Storing STA Objects in Session State
Even though it is technically possible to store STA objects in session state, do not
do so because it causes thread affinity issues. If you do so, requests to the STA object
have to be run on the same thread that created the object, and this quickly becomes
a bottleneck as the number of users increases.

More Information

For more information, see Knowledge Base article 817005, “FIX: Severe
Performance Issues When You Bind Session State to Threads in ASPCompat Mode,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;817005.

Do Not Create STA Objects in a Page Constructor
Do not create STA objects in a page constructor because this causes a thread switch
to the host STA and causes all calls to be serialized. Although the ASPCOMPAT
attribute ensures that an STA thread from the STA thread pool is used for page events
such as onload, button_click, and other page events, other parts of your page such as
the constructor are run by using an MTA thread.

Supplement Classic ASP Server.CreateObject with Early Binding
Late binding requires extra instructions to locate the target code, whether this is a
COM class or executing a method by name. Methods such as Server.CreateObject,
Activator.CreateInstance and MethodInfo.Invoke allow late bound execution of
code. When you migrate ASP code, use the new keyword to allow early bound calls.

The following example uses early binding. The new operator is used to create a
classic ActiveX® Data Objects (ADO) connection.

<%@ Import namespace="ADODB" %>
<%@ Assembly name="ADODB" %>
... Connection con = new Connection();

The following example uses late binding. The <object> tag along with the class
attribute is used to create an ADO connection object. ADODB.Connection represents
the namespace and class name. The second ADODB represents the assembly name.

<object id="con" runat="server" class="ADODB.Connection, ADODB" />

http://support.microsoft.com/default.aspx?scid=kb;en-us;817005

 Chapter 6: Improving ASP.NET Performance 325

The following example also uses late binding. GetType is used to obtain the type and
this is passed to the overloaded Server.CreateObject method that is provided by
ASP.NET.

con = Server.CreateObject(Type.GetType("ADODB.Connection, ADODB"));

For these code samples to work, add a reference to the Microsoft ActiveX Data
Objects X.X Library in Visual Studio® .NET. Replace X.X with the version number
that you want to use. This approach causes an interop assembly to be used if one
exists or creates one automatically for you. If you are not using Visual Studio. NET,
use the TlbImp.exe file to generate the interop assembly. It is recommended that you
look for and use a primary interop assembly. Copy the generated interop assembly to
the Bin directory of your application.

More Information
For more information about COM interop performance and issues, see Chapter 7,
“Improving Interop Performance” in this guide. In addition, see the following
Knowledge Base articles:
● 308095, “PRB: Creating STA Components in the Constructor in ASP.NET

ASPCOMPAT Mode Negatively Affects Performance,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;308095

● 817005, “FIX: Severe Performance Issues When You Bind Session State
to Threads in ASPCompat Mode” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;817005

● 818612, “FIX: “COM Object Can Not Be Used” Error Message When You Use an
STA COM Object That You Created by Using Server.CreateObject and Stored in
Session Scope in a Different Web Page,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;818612

● 827164, “FIX: References to STA Objects That Are Stored in Session State May
Become Corrupted If They Are Called from a Session_End Event,”
http://support.microsoft.com/default.aspx?scid=kb;en-us;827164

Data Access
Almost all ASP.NET applications use some form of data access. Data access is
typically a focal point for improving performance because the majority of application
requests require data that comes from a database.

Use the following guidelines to improve your data access:
● Use paging for large result sets.
● Use a DataReader for fast and efficient data binding.
● Prevent users from requesting too much data.
● Consider caching data.

http://support.microsoft.com/default.aspx?scid=kb;en-us;308095
http://support.microsoft.com/default.aspx?scid=kb;en-us;817005
http://support.microsoft.com/default.aspx?scid=kb;en-us;817005
http://support.microsoft.com/default.aspx?scid=kb;en-us;818612
http://support.microsoft.com/default.aspx?scid=kb;en-us;818612
http://support.microsoft.com/default.aspx?scid=kb;en-us;827164

326 Improving .NET Application Performance and Scalability

Use Paging for Large Result Sets
Paging large query result sets can significantly improve the performance of an
application. If you have large result sets, implement a paging solution that achieves
the following:
● The paging solution reduces back-end work on the database.
● The paging solution reduces the size of data that is sent to the client.
● The paging solution limits client work.

Several paging solutions are available; each solution solves the problems that are
inherent to specific scenarios. The following paragraphs briefly summarize the
solutions. For implementation-specific details, see the “How To: Page Records in
.NET Applications” in the “How To” section of this guide.

A relatively quick and easy solution is to use the automatic paging provided by
the DataGrid object. However, this solution works only for tables that have unique
incrementing columns; it is not suitable for large tables. With the custom paging
approach, you set AllowPaging and AllowCustomPaging properties to true, and
then set the PageSize and VirtualItemCount properties. Then the StartIndex (the
last browsed row) and NextIndex (StartIndex + PageSize) properties are calculated.
The StartIndex and NextIndex values are used as ranges for the identity column to
retrieve and display the requested page. This solution does not cache data; it pulls
only the relevant records across the network.

There are several solutions available for tables that do not have unique incrementing
column numbers. For tables that have a clustered index and that do not require
special server-side coding, use the subquery solution to track the number of rows to
skip from the start. From the resulting records, use the TOP keyword in conjunction
with the <pagesize> element to retrieve the next page of rows. Only the relevant
page records are retrieved over the network. Other solutions use either the Table data
type or a global temporary table with an additional IDENTITY column to store the
queried results. This column is used to limit the range of rows fetched and displayed.
This requires server-side coding.

More Information
For more information and implementation details for paging solutions, see “How To:
Page Records in .NET Applications” in the “How To” section of this guide. Also, see
Knowledge Base article 318131, “HOW TO: Page Through a Query Result for Better
Performance,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;318131.

http://support.microsoft.com/default.aspx?scid=kb;en-us;318131

 Chapter 6: Improving ASP.NET Performance 327

Use a DataReader for Fast and Efficient Data Binding
Use a DataReader object if you do not need to cache data, if you are displaying read -
 only data, and if you need to load data into a control as quickly as possible. The
DataReader is the optimum choice for retrieving read-only data in a forward-only
manner. Loading the data into a DataSet object and then binding the DataSet to the
control moves the data twice. This method also incurs the relatively significant
expense of constructing a DataSet.

In addition, when you use the DataReader, you can use the specialized type-specific
methods to retrieve the data for better performance.

Prevent Users from Requesting Too Much Data
Allowing users to request and retrieve more data than they can consume puts an
unnecessary strain on your application resources. This unnecessary strain causes
increased CPU utilization, increased memory consumption, and decreased response
times. This is especially true for clients that have a slow connection speed. From a
usability standpoint, most users do not want to see thousands of rows presented as
a single unit.

Limit the amount of data that users can retrieve by using one of the following
techniques:
● Implement a paging mechanism. For more information, see “How To: Page

Records in .NET Applications” in the “How To” section of this guide.
● Design a master/detail form. Instead of giving users all of the information for

each piece of data, only display enough information to allow the users to
recognize the piece of data they are interested in. Permit the user to select that
piece of data and obtain more details.

● Enable users to filter the data.

Consider Caching Data
If you have application-wide data that is fairly static and expensive to retrieve,
consider caching the data in the ASP.NET cache.

More Information
For more information about data access, see Chapter 12, “Improving ADO.NET
Performance.”

328 Improving .NET Application Performance and Scalability

Security Considerations
Security and performance are often at the center of design tradeoffs, because
additional security mechanisms often negatively impacts performance. However,
you can reduce server load by filtering unwanted, invalid, or malicious traffic, and
by constraining the requests that are allowed to reach your Web server. The earlier
that you block unwanted traffic, the greater the processing overhead that you avoid.
Consider the following recommendations:
● Constrain unwanted Web server traffic.
● Turn off authentication for anonymous access.
● Validate user input on the client.
● Avoid per-request impersonation.
● Avoid caching sensitive data.
● Segregate secure and non-secure content.
● Only use SSL for pages that require it.
● Use absolute URLs for navigation.
● Consider using SSL hardware to offload SSL processing.
● Tune SSL timeout to avoid SSL session expiration.

Constrain Unwanted Web Server Traffic
Constrain the traffic to your Web Server to avoid unnecessary processing. For
example, block invalid requests at your firewall to limit the load on your Web server.
In addition, do the following:
● Map unsupported extensions to the 404.dll file in IIS.
● Use the UrlScan filter to control the verbs and the URL requests that you allow.

Verbs that you might want to control include Get, Post, and SOAP.
● Review your IIS logs. If the logs are full of traffic that you do not allow, investigate

blocking that traffic at the firewall or filtering the traffic by using a reverse proxy.

Turn Off Authentication for Anonymous Access
Partition pages that require authenticated access from pages that support anonymous
access. To avoid authentication overhead, set the authentication mode to None in the
Web.config file in the directory that contains the anonymous pages. The following
line shows how to set the authentication mode in the Web.config file.

<authentication mode="None" />

 Chapter 6: Improving ASP.NET Performance 329

Validate User Input on the Client
Consider using client-side validation to avoid sending unwanted traffic to the server.
However, do not trust client-side validation alone because it can easily be bypassed.
For security reasons, you should implement the equivalent server-side checks for
every client check.

Avoid Per-Request Impersonation
Per-request impersonation where you use the original caller's identity to access the
database places severe scalability constraints on your application. Per-request
impersonation prevents the effective use of database connection pooling. The trusted
subsystem model is the preferred and scalable alternative. With this approach, you
use a fixed service account to access the database and to pass the identity of the
original caller at the application level if the identity of the original caller is required.
For example, you might pass the identity of the original caller through stored
procedure parameters.

More Information

For more information about the trusted subsystem model, see Chapter 3,
“Authentication and Authorization,” in Building Secure ASP.NET Applications
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod
/html/secmod00.asp.

Avoid Caching Sensitive Data
Instead of caching sensitive data, retrieve the data when you need it. When you
measure application performance, if you discover that retrieving the data on a per-
request basis is very costly, measure the cost to encrypt, cache, retrieve, and decrypt
the data. If the cost to retrieve the data is higher than the cost to encrypt and decrypt
the data, consider caching encrypted data.

Segregate Secure and Non-Secure Content
When you design the folder structure of your Web site, clearly differentiate between
the publicly accessible areas and restricted areas that require authenticated access and
Secure Sockets Layer (SSL). Use separate subfolders beneath the virtual root folder of
your application to hold restricted pages such as forms logon pages, checkout pages,
and any other pages that users transmit sensitive information to that needs to be
secured by using HTTPS. By doing so, you can use HTTPS for specific pages without
incurring the SSL performance overhead across your entire site.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod00.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod00.asp

330 Improving .NET Application Performance and Scalability

Only Use SSL for Pages That Require It
Using SSL is expensive. Only use SSL for pages that require it. This includes pages
that contain or capture sensitive data, such as pages that accept credit card numbers
and passwords. Use SSL only if the following conditions are true:
● You want to encrypt the page data.
● You want to guarantee that the server to which you send the data is the server that

you expect.

For pages where you must use SSL, follow these guidelines:
● Make the page size as small as possible.
● Avoid using graphics that have large file sizes. If you use graphics, use graphics

that have smaller file sizes and resolution. Or, use graphics from a site that is not
secure. However, when you use graphics from a site that is not secure, Web
browsers display a dialog box that asks the user if the user wants to display the
content from the site that is not secure.

Use Absolute URLs for Navigation
Navigating between HTTP and HTTPs using redirects uses the protocol of the current
page instead of the protocol of the target page. When your redirects use relative links
(..\publicpage.aspx) to sites that are not secure from a site that uses HTTPS, these
public pages are served by using the HTTPS protocol. This use of the HTTPS protocol
incurs unnecessary overhead. To avoid this problem, use the absolute link instead of
the relative link for your redirects. For example, use an absolute link such as
http://yourserver/publicpage.aspx. The same applies when you navigate from pages
that use HTTP to pages that use HTTPS. The following code fragment shows how to
create a redirect from a page that uses HTTP to a page that uses HTTPS.

string serverName = HttpUtility.UrlEncode(Request.ServerVariables["SERVER_NAME"]);
string vdirName = Request.ApplicationPath;
Response.Redirect("https://" + serverName + vdirName + "/Restricted/Login.aspx",
false);

Consider Using SSL Hardware to Offload SSL Processing
Consider a hardware solution for SSL processing. Terminating SSL sessions at a load
balancer by using a hardware accelerator generally offers better performance,
particularly for sites that experience heavy use.

 Chapter 6: Improving ASP.NET Performance 331

Tune SSL Timeout to Avoid SSL Session Expiration
If you are not using SSL hardware, tune the ServerCacheTimer property to avoid
having to renegotiate the SSL handshakes with browser clients. The largest use of
resources when you use SSL occurs during the initial handshake, where asymmetric
public/private-key encryption is used. After a secure session key is generated and
exchanged, faster, symmetric encryption is used to encrypt application data.

Monitor your SSL connections and increase the value of the ServerCacheTime
registry entry if you find that a longer time is better for your scenario.

More Information

For more information about how to change the ServerCacheTime value, see
Knowledge Base article 247658, “HOW TO: Configure Secure Sockets Layer
Server and Client Cache Elements,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;247658.

More Information
For more information about security-related performance considerations, see the
following:
● “Cryptographic Services” in the .Net Framework Developer's Guide at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconcryptographicservices.asp

● “Performance Comparison: Security Design Choices” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/bdadotnetarch15.asp

http://support.microsoft.com/default.aspx?scid=kb;en-us;247658
http://support.microsoft.com/default.aspx?scid=kb;en-us;247658
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcryptographicservices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcryptographicservices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch15.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch15.asp

332 Improving .NET Application Performance and Scalability

IIS 6.0 Considerations
On Microsoft Windows Server 2003, the IIS 6.0 architecture is different from IIS 5.0
on Windows 2000 Server. IIS 6.0 enables multiple processes to be used to host
separate Web applications. This is shown in Figure 6.2.

U
se

r
M

od
e

K
er

ne
l M

od
e

Listener

Sender

Request Queue

Cache

HTTP Listener (HTTP.sys)
HTTP Request

HTTP Response

FTP
SMTP
NNTP

In-Memory
Metabase

Web
Administration

Service
(WAS)

Application(s)

ISAPI
Extensions

ISAPI Filters

Worker Process

Single
Application

ISAPI
Extensions

ISAPI Filters

Worker Process

Web
Garden

IIS Admin
Service

Web Server

XML
Metabase

Figure 6.2
IIS 6.0 architecture

IIS 6.0 includes a new HTTP listener (HTTP.Sys) that is implemented in the kernel.
Requests are routed to one of the multiple worker process instances (W3wp.exe) that
host ASP.NET applications and Web services.

Process Model
The primary difference between the ASP.NET architecture under Windows 2000 and
Windows Server 2003 is that under Windows 2003, you can use separate IIS worker
process instances to host Web applications

 Chapter 6: Improving ASP.NET Performance 333

By default, the IIS worker process instances run using the NT
Authority\NetworkService account. This account is a least-privileged local account
that acts as the computer account over the network. A Web application that runs in
the context of the Network Service account presents the computer's credentials to
remote servers for authentication.

IIS 6.0 also supports a backwards-compatibility mode that supports the IIS 5.0
ASP.NET worker process model.

Kernel Mode Caching
If you deploy your application on Windows Server 2003, ASP.NET pages
automatically benefit from the IIS 6.0 kernel cache. The kernel cache is managed by
the HTTP.sys kernel-mode device driver. This driver handles all HTTP requests.
Kernel mode caching may produce significant performance gains because requests
for cached responses are served without switching to user mode.

The following default setting in the Machine.config file ensures that dynamically
generated ASP.NET pages can use kernel mode caching, subject to the requirements
listed below.

<httpRunTime enableKernelOutputCache="true" . . ./>

Dynamically generated ASP.NET pages are automatically cached subject to the
following restrictions:
● Pages must be retrieved by using HTTP GET requests. Responses to HTTP POST

requests are not cached in the kernel.
● Query strings are ignored when responses are cached. If you want a request for

http://contoso.com/myapp.aspx?id=1234 to be cached in the kernel, all requests
for http://contoso.com/myapp.aspx are served from the cache, regardless of the
query string.

● Pages must have an expiration policy. In other words, the pages must have an
Expires header.

● Pages must not have VaryByParams.
● Pages must not have VaryByHeaders.
● The page must not have security restrictions. In other words, the request must be

anonymous and not require authentication. The HTTP.sys driver only caches
anonymous responses.

● There must be no filters configured for the W3wp.exe file instance that are
unaware of the kernel cache.

334 Improving .NET Application Performance and Scalability

More Information

For more information about IIS 6.0 and kernel caching,
see the IIS 6.0 Resource Kit at http://www.microsoft.com/downloads
/details.aspx?FamilyID=80a1b6e6-829e-49b7-8c02-333d9c148e69&DisplayLang=en.

Web Gardens
By default, ASP.NET uses all CPUs available. In Web garden mode, ASP.NET creates
one process per CPU. Each process creates an affinity to a single CPU. Web gardens
offer an addition layer of reliability and robustness. If a process crashes, there are
other processes that still service incoming requests.

Web gardens may perform better under the following scenarios:
● Your application uses STA objects heavily.
● Your application accesses a pool of resources that are bound by the number of

processes. For example, a single process is restricted to using a particular number
of resources.

To determine the effectiveness of Web gardens for your application, run performance
tests, and then compare your results with and without Web gardens. Typically, in the
two scenarios that are described in this section, you are likely to notice a greater
benefit with servers that contain four or eight CPUs.

Note: Do not use the in-process session state store or any technique that causes process affinity
if Web gardens are enabled.

IIS 6.0 vs. the ASP.NET Process Model
By default, the ASP.NET Process Model is not enabled in IIS 6.0. If you enable Web
gardens, you may adversely affect the performance of the garbage collector. The
performance of the garbage collector may be affected because the server version of
the garbage collector is still used while bound to a single CPU. The disadvantage is
that this creates one worker process per CPU. Because there is a worker process for
each CPU, additional system resources are consumed.

Enabling Web Gardens by Using IIS 6.0
You can enable Web gardens in IIS 6.0 by using the Internet Information Services
Manager. To do so, follow these steps:
1. Right-click the application pool that you want enable Web gardening on, and

then click Properties.
2. Click the Performance tab.
3. In the Web garden section, specify the number of worker processes that you

want to use.

http://www.microsoft.com/downloads/details.aspx?FamilyID=80a1b6e6-829e-49b7-8c02-333d9c148e69&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=80a1b6e6-829e-49b7-8c02-333d9c148e69&DisplayLang=en

 Chapter 6: Improving ASP.NET Performance 335

Enabling Web Gardens by Using the ASP.NET Process Model
In the <processModel> section of the Machine.config file, set the webGarden
attribute to true, and then configure the cpuMask attribute as follows.

<processModel webGarden="true" cpuMask="0xffffffff" />

Configuring the cpuMask Attribute
The cpuMask attribute specifies the CPUs on a multiprocessor server that are eligible
to run ASP.NET processes. By default, all CPUs are enabled and ASP.NET creates one
process for each CPU. If the webGarden attribute is set to false, the cpuMask
attribute is ignored, and only one worker process runs. The value of the cpuMask
attribute specifies a bit pattern that indicates the CPUs that are eligible to run
ASP.NET threads. Table 6.3 shows some examples.

Table 6.3: Processor Mask Bit Patterns

CPUs Hex Bit Pattern Results

2 0x3 11 2 processes, uses CPU 0 and 1.

4 0xF 1111 4 processes, uses CPU 0, 1, 2, and 3.

4 0xC 1100 2 processes, uses CPU 2 and 3.

4 0xD 1101 3 processes, uses CPU 0, 2 and 3.

8 0xFF 11111111 8 processes, uses CPU 0, 1, 2, 3, 4, 5, 6, and 7.

8 0xF0 11110000 4 processes, uses CPU 4 ,5, 6 and 7.

More Information

For more information about how to use ASP.NET Web gardens, see Knowledge Base
article 815156, “HOW TO: Restrict ASP.NET to Specific Processors in a Multiprocessor
System,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;815156.

Garbage Collector Configuration Flag
By default, if you have a multiple processor server, the server GC is loaded. If you
have a single processor server, the workstation GC is loaded. At the time of writing,
.NET Framework version 1.1 Service Pack 1 (SP1) provides a switch that enables you
to configure whether ASP.NET loads the server or the workstation GC. You can use
this switch to configure ASP.NET to load the workstation GC even on a multiple-
processor server.

http://support.microsoft.com/default.aspx?scid=kb;en-us;815156

336 Improving .NET Application Performance and Scalability

When to Use the Workstation GC
If you host several isolated worker processes on Windows Server 2003 on a
multiprocessor computer, use the workstation GC and nonconcurrent mode.

The server GC is optimized for throughput, memory consumption, and
multiprocessor scalability. However, using the workstation GC when you are
running Windows Server 2003 on a multiprocessor server can dramatically reduce
the memory used per-worker process, and greatly increases the number of isolated
worker processes that you can host. Disabling concurrent garbage collection further
increases the number of isolated worker processes that you can run.

Configuring the Workstation GC
To configure ASP.NET to use the workstation GC, add the following configuration
to the Aspnet.config file. The Aspnet.config file is in the same directory as the
Aspnet_isapi.dll file.

<configuration>
 <runtime>
 <gcServer enabled="false"/>
 <gcConcurrent enabled="false"/>
 </runtime>
</configuration>

More Information

For more information about garbage collection in general and about server and
workstation GCs, see “Garbage Collection Explained” in Chapter 5, “Improving
Managed Code Performance.”

Deployment Considerations
Physical deployment plays a key role in determining the performance and scalability
characteristics of your application. Unless you have a compelling reason to introduce
a remote middle tier, you should deploy your Web application's presentation,
business, and data access layers on the Web server. The only remote hop should be
the hop to the database. This section discusses the following key deployment
considerations:
● Avoid unnecessary process hops.
● Understand the performance implications of a remote middle tier.
● Short circuit the HTTP pipeline.
● Configure the memory limit.
● Disable tracing and debugging.
● Ensure content updates do not cause additional assemblies to be loaded.

 Chapter 6: Improving ASP.NET Performance 337

● Avoid XCOPY under heavy load.
● Consider precompiling pages.
● Consider Web garden configuration.
● Consider using HTTP compression.
● Consider using perimeter caching.

Avoid Unnecessary Process Hops
Although process hops are not as expensive as machine hops, you should avoid
process hops where possible. Process hops cause added overhead because they
require interprocess communication (IPC) and marshaling. For example, if your
solution uses Enterprise Services, use library applications where possible, unless you
need to put your Enterprise Services application on a remote middle tier.

Understand the Performance Implications of a Remote Middle Tier
If possible, avoid the overhead of interprocess and intercomputer communication.
Unless your business requirements dictate the use of a remote middle tier, keep your
presentation, business, and data access logic on the Web server. Deploy your business
and data access assemblies to the Bin directory of your application. However, you
might require a remote middle tier for any of the following reasons:
● You want to share your business logic between your Internet-facing Web

applications and other internal enterprise applications.
● Your scale-out and fault tolerance requirements dictate the use of a middle tier

cluster or of load-balanced servers.
● Your corporate security policy mandates that you cannot put business logic on

your Web servers.

If you do have to deploy by using a remote middle tier, ensure you recognize this
early so that you can measure and test by using the same environment.

Short Circuit the HTTP Pipeline
The HTTP pipeline sequence is determined by settings in the Machine.config file.
Put the modules that you do not use inside comments. For example, if you do not use
Forms authentication, you should either put the entry for Forms authentication in the
Machine.config file in a comment or, explicitly remove the entry in your Web.config
file for a particular application. The following sample shows how to comment out an
entry.

<httpModules>
<!-- <add name="FormsAuthentication"
 type="System.Web.Security.FormsAuthenticationModule"/> -->
</httpModules>

338 Improving .NET Application Performance and Scalability

The following sample from a Web.config file shows how to remove the entry for a
specific application.

<httpModules>
<remove name="FormsAuthentication" />
</httpModules>

If you have other applications on your Web server that are using the HTTP module
that you do not use, remove the HTTP module from the Web.config file of the
application. Do this instead of using comments to disable the HTTP module in the
Machine.config file.

Configure the Memory Limit
Before you deploy your application, configure the memory limit. Configuring the
memory limit ensures optimal ASP.NET cache performance and server stability.

More Information

For more information, see “Configure the Memory Limit” in the “Caching
Guidelines” section of this chapter.

Disable Tracing and Debugging
Before you deploy your application, disable tracing and debugging. Tracing and
debugging may cause performance issues. Tracing and debugging are not
recommended while your application is running in production.

Disable tracing and debugging in the Machine.config and Web.config files, as shown
in the following sample.

<configuration>
 <system.web>
 <trace enabled="false" pageOutput="false" />
 <compilation debug="false" />
 </system.web>
</configuration>

Note: You may also want to verify that tracing and debugging are not enabled on individual pages.
Individual page settings override the settings in the Web.config file.

More Information

For more information, see Knowledge Base article 815157, “HOW TO: Disable
Debugging for ASP.NET Applications” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;815157.

http://support.microsoft.com/default.aspx?scid=kb;en-us;815157
http://support.microsoft.com/default.aspx?scid=kb;en-us;815157

 Chapter 6: Improving ASP.NET Performance 339

Ensure Content Updates Do Not Cause Additional Assemblies
to Be Loaded
Problems may arise when updates to .aspx or .ascx pages occur without an
application restart. Consider the following scenario. Assume you have five pages
in a directory as follows.

\mydir
 Page1.aspx
 Page2.aspx
 Page3.aspx
 Page4.aspx
 Page5.aspx

When a page in the Mydir directory is first requested, all pages in that directory
are compiled into a single assembly, as shown in the following sample.

Assembly1.dll {page1.aspx, page2.aspx, page3.aspx, page4.aspx}

If Page1.aspx is updated, a new single assembly is created for Page1.aspx. Now there
are two assemblies, as shown in the following sample.

Assembly1.dll {page1.aspx, page2.aspx, page3.aspx, page4.aspx, page5.aspx}
Assembly2.dll {page1.aspx}

If Page2.aspx is updated, a new single assembly is created for Page2.aspx. Now there
are three assemblies.

Assembly1.dll {page1.aspx, page2.aspx, page3.aspx, page4.aspx, page5.aspx}
Assembly2.dll {page1.aspx}
Assembly3.dll {page2.aspx}

To ensure that you do not experience this problem and generate multiple assemblies,
follow these steps when you want to update content:
1. Remove the Web server from rotation.
2. Restart IIS.
3. Delete all files in the Temporary ASP.NET Files folder.
4. Request a single page in each directory to ensure that each directory is batch

compiled.
5. Put the Web server back into rotation.

340 Improving .NET Application Performance and Scalability

This approach to updating content also solves another problem. If a server is put
into rotation before batch compilation is complete, some pages may be compiled as
a single assembly. If another request is made during batch compilation for a page in
the same directory that is being batch compiled, that page is compiled as a single
assembly. Taking the Web server out of rotation and then putting it back in rotation
helps you avoid this problem.

Avoid XCOPY Under Heavy Load
XCOPY deployment is designed to make deployment easy because you do not have
to stop your application or IIS. However, for production environments you should
remove a server from rotation, stop IIS, perform the XCOPY update, restart IIS, and
then put the server back into rotation.

It is particularly important to follow this sequence under heavy load conditions.
For example, if you copy 50 files to a virtual directory, and each file copy takes 100
milliseconds, the entire file copy takes 5 seconds. During that time, the application
domain of your application may be unloaded and loaded more than once. Also,
certain files may be locked by the XCOPY process (Xcopy.exe). If the XCOPY process
locks certain files, the worker process and the compilers cannot access the files.

If you do want to use XCOPY deployment for updates, the .NET Framework version
1.1 includes the waitChangeNotification and maxWaitChangeNotification settings.
You can use these settings to help resolve the XCOPY issues described in this section.

Note: These settings are also available in a hotfix for .NET Framework version 1.0. For more
information, see Knowledge Base article 810281, “Error Message: Cannot Access File
AssemblyName Because It Is Being Used by Another Process,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;810281.

The value of the waitChangeNotification setting should be based on the amount
of time that it takes to use XCOPY to copy your largest file. The
maxWaitChangeNotification setting should be based on the total amount of time
that XCOPY uses to copy all the files plus a small amount of extra time.

More Information

For more information, see the following Knowledge Base articles:
● 810281, “Error Message: Cannot Access File AssemblyName Because It

Is Being Used by Another Process” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;810281

● 326355, “Deploy an ASP.NET Web Application Using Xcopy Deployment”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;326355

http://support.microsoft.com/default.aspx?scid=kb;en-us;810281
http://support.microsoft.com/default.aspx?scid=kb;en-us;810281
http://support.microsoft.com/default.aspx?scid=kb;en-us;810281
http://support.microsoft.com/default.aspx?scid=kb;en-us;810281
http://support.microsoft.com/default.aspx?scid=kb;en-us;326355

 Chapter 6: Improving ASP.NET Performance 341

Consider Precompiling Pages
So that your users do not have to experience the batch compile of your ASP.NET files,
you can initiate batch compiles by issuing one request to a page per directory and
then waiting until the processor idles again before putting the Web server back into
rotation. This increases the performance that your users experience, and it decreases
the burden of batch compiling directories while handling requests at the same time.

Consider Web Garden Configuration
Consider using Web gardens if your application uses STA objects heavily or if your
application accesses a pool of resources that are bound by the number of processes.

To determine the effectiveness of Web gardens for your application, run performance
tests, and then compare the results with and without Web gardens.

Consider Using HTTP Compression
HTTP compression is supported by most modern browsers and by IIS. HTTP
compression is likely to improve performance when the client accesses the Web
server over a low bandwidth connection.

More Information

For more information and to learn how to enable IIS so that it supports compression,
see “Utilizing HTTP Compression” on MSDN at http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs
/standard/qos_utilbandwdth.asp?frame=true.

Consider Using Perimeter Caching
A perimeter network protects your intranet from intrusion by controlling access from
the Internet or from other large networks. It consists of a combination of systems such
as proxy servers, packet filtering, gateways, and other systems that enforce a
boundary between two or more networks.

If your perimeter network includes a proxy server, consider enabling caching on your
proxy server to improve performance.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/qos_utilbandwdth.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/qos_utilbandwdth.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/standard/qos_utilbandwdth.asp?frame=true

342 Improving .NET Application Performance and Scalability

Summary
This chapter discusses the common pitfalls and bottlenecks that can occur during
ASP.NET application development. It shows you the steps you need to take to avoid
and overcome these issues. By following the guidance and advice in this chapter, you
can build extremely high performance ASP.NET applications.

Building high performance applications of any type requires you to consider
performance from the outset. You have to create a sound architecture and design
that takes into account any restrictions that might be imposed by your physical
deployment environment. During development, you need to ensure that you adopt
best practice coding techniques. You have to continually measure performance to
ensure that your application operates within the boundaries determined by your
performance objectives. Measuring should continue throughout the life cycle. Finally,
at deployment time you have to consider the configuration of the environment that
your application will run in.

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: ASP.NET Performance” in the

“Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the “ASP.NET”

section.
● Chapter 15, “Measuring .NET Application Performance.” See the “ASP.NET”

section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “ASP.NET Tuning”

section.

For more information about IIS 6.0, see the following resource:
● “Web and Application Server Infrastructure — Performance and Scalability” at

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp
/iis/iis6perf.mspx

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp/iis/iis6perf.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp/iis/iis6perf.mspx

7
Improving Interop Performance

Objectives
● Choose which type of interop to use.
● Marshal data efficiently.
● Release COM objects in a timely manner.
● Release unmanaged resources in a timely manner.
● Avoid unnecessary thread switches.
● Monitor interop performance.

Overview
When you build applications and components for the Microsoft® .NET Framework
version 1.1, sometimes you need to write code that calls unmanaged libraries, such
as the Microsoft Win32® API and COM components. The common language runtime
(CLR) provides several options for interoperability (referred to as interop) between
managed code and unmanaged code.

This chapter presents proven strategies and best practices for designing and writing
high-performance interop that increases your application’s potential to scale. The
chapter begins with an overview of interop architecture that highlights the various
forms of interop. Next, it describes the main performance and scalability issues
associated with interop. An awareness of these issues increases your chances of
avoiding common pitfalls. The chapter then provides a set of design guidelines along
with specific coding techniques that you can use to optimize your code’s interop
performance.

Note: Calling managed objects from unmanaged COM clients is outside the scope of this chapter.

344 Improving .NET Application Performance and Scalability

How to Use This Chapter
Use this chapter to apply proven strategies and best practices for designing and
writing high-performance interop code. To get the most out of this chapter, do the
following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Use the checklist. Use the “Checklist: Interop Performance” checklist in the
“Checklists” section of this guide to quickly view and evaluate the guidelines
presented in this chapter.

● Use the “Architecture” section of this chapter to understand how interop works.
By understanding the architecture, you can make better design and
implementation choices.

● Use the “Design Considerations” section of this chapter to understand the
higher level decisions that will affect implementation choices for interop code.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the
“Interop” section for specific guidance.

● Measure your application performance. Read the “Interop” and “.NET
Framework Technologies” sections of Chapter 15, “Measuring .NET Application
Performance,” to learn about the key metrics that can be used to measure
application performance. It is important that you be able to measure application
performance so that performance issues can be accurately targeted.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important that you apply a coherent testing process and that you be able to
analyze the results.

● Tune your application performance. Read Chapter 17, “Tuning .NET Application
Performance,” to learn how to resolve performance issues identified through the
use of tuning metrics.

 Chapter 7: Improving Interop Performance 345

Architecture
The .NET Framework provides three forms of interop:
● Platform Invoke (P/Invoke). This feature allows users of managed languages,

such as C# and Microsoft Visual Basic® .NET, to call libraries within standard
Microsoft Windows® DLLs, such as the Win32 API, or custom DLLs.

● It Just Works (IJW). This feature allows users of Managed Extensions for C++
to directly call libraries within standard Windows DLLs.

● COM Interop. This feature allows users of managed languages to activate and
interact with COM objects through COM interfaces.

Platform Invoke (P/Invoke)
To call a function in a standard Windows DLL by using P/Invoke, you must add a
declaration to map a callable managed method to the target unmanaged function. In
C#, you use the [DllImport] attribute to make a P/Invoke declaration; in Visual Basic
.NET, you use the Declare statement. For example:

// in C#
[DllImport("kernel32.dll")]
public static extern bool Beep(int frequency, int duration);

' *** in Visual Basic .NET
Declare Function Beep Lib "kernel32" (ByVal frequency As Integer, _
 ByVal duration As Integer) As Boolean

After you have written the declaration, you invoke the unmanaged function by
calling the managed method defined within the declaration. After the CLR
determines that it must dispatch the call to an unmanaged function, the process
shown in Figure 7.1 occurs.

Client

Managed Code

A

Unmanaged Code

Runtime

Export
Name
Table

W ...

1
2

3 4

Figure 7.1
Calling unmanaged code by using P/Invoke

346 Improving .NET Application Performance and Scalability

The process consists of the following steps shown in Figure 7.1.
1. The runtime intercepts the call to unmanaged code and identifies the target

method in the Export Name Table. If a matching method name is found, the
method is invoked. For methods that accept ANSI string parameters, the runtime
searches for “methodName” and “methodNameA.” For methods that accept
Unicode string parameters, it searches for “methodName” and “methodNameW.”

2. Parameters are marshaled. These parameters can be marked as [in], [out], or
ref. Blittable types (such as System.Byte and System.Int32) do not need to be
marshaled and are passed directly across to the unmanaged code. Non-blittable
types (such as System.Array) are marshaled (converted), based on default
marshaling rules and marshaling hints that you can specify by using attributes
such as [MarshalAs(UnmanagedType.LPStr)].

3. The native code is executed.
4. Return values are marshaled back. This includes any parameters marked

as ByRef, [out], or [in][out] together with a return value, if there is one.

More Information

For more information about using P/Invoke, see “Platform Invoke Tutorial”
in C# Programmer’s Reference on MSDN® at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/csref/html/vcwlkPlatformInvokeTutorial.asp and
“Interoperating with Unmanaged Code” in .NET Framework Developer’s Guide
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconinteroperatingwithunmanagedcode.asp.

IJW and Managed Extensions for C++
IJW provides C++ programmers with a more straightforward way to call functions
in standard Windows DLLs. When you use IJW, you do not need to use [DllImport]
attribute declarations for the unmanaged APIs. Instead, you just include the
appropriate header file and then link to the associated import library. For example:

#include "stdafx.h"
#using <mscorlib.dll>
using namespace System;
using namespace System::Runtime::InteropServices;
#include <stdio.h>

int main() {
 String * pStr = S"Hello World!";
 char* pChars = (char*)Marshal::StringToHGlobalAnsi(pStr).ToPointer();
 puts(pChars);
 Marshal::FreeHGlobal(pChars);
}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkPlatformInvokeTutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkPlatformInvokeTutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinteroperatingwithunmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinteroperatingwithunmanagedcode.asp

 Chapter 7: Improving Interop Performance 347

IJW gives you more control and more potential to optimize the way that parameters
are marshaled as calls transition back and forth between managed and unmanaged
code. You must implement IJW in code rather than through the use of attributes.
Although this requirement adds complexity to interop code, it allows you to work
with the IntPtr type and to marshal data manually for maximum efficiency.

More Information

For more information about using IJW, see “Platform Invocation Services” in the
Managed Extensions for C++ Migration Guide on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/vcmxspec/html/vcmg_PlatformInvocationServices.asp.

COM Interop
COM interop allows you to easily create and instantiate COM components. To use
COM interop and to be able to make early-bound calls to COM components, you
must generate (or acquire) an interop assembly. (An interop assembly is not required
for late binding.) Figure 7.2 shows the COM interop process.

App.exe

Managed
Application

Interop.COM.Library1.dll

Wrapper Types

_Customer

CustomerClass

Customer

COM Type Library

_Customer
Interface

_Customer
CoClass

Executable Code

Self Registration
Code

Customer CoClass
Implementation

Interop Assembly COM DLL

ComLibrary1.dll

Figure 7.2
COM interop

An interop assembly is an assembly that contains managed types that allow you to
program indirectly against unmanaged COM types. You must compile your managed
application with a reference to an interop assembly in order to program against COM
objects and to interact with them by using early binding.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmg_PlatformInvocationServices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmg_PlatformInvocationServices.asp

348 Improving .NET Application Performance and Scalability

Primary Interop Assemblies (PIAs)
The company that produces a COM DLL can produce a primary interop assembly
(PIA) to make the DLL accessible from managed applications. Only the publisher can
produce a PIA, which is digitally signed with a strong name. A PIA offers two major
advantages over a standard interop assembly:
● It ensures type compatibility by providing unique type identity, because it is

signed by its publisher and is labeled with the PrimaryInteropAssembly attribute.
● The PIA can be registered so that it is recognized by Microsoft Visual Studio®

.NET. Once you have registered a PIA on a development workstation, Visual
Studio .NET uses the preexisting PIA instead of generating a new interop
assembly when you add a reference to the COM DLL with which it is associated.
For more information, see MSDN article, “Primary Interop Assemblies (PIAs),”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/whypriinterop.asp.

Runtime Callable Wrapper
A managed reference is never directly bound to a COM object. Instead, the COM
interop layer of the CLR inserts a special proxy, known as the runtime callable
wrapper (RCW), between the caller and the object. All calls made to a COM object
must go through the RCW. Depending on the apartment models of the .NET thread
and the COM object, the RCW can point to a proxy, or it can point directly to the
COM object as shown in Figure 7.3.

Managed
Reference

COM Object

RCW

Figure 7.3
The runtime callable wrapper (RCW)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/whypriinterop.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/whypriinterop.asp

 Chapter 7: Improving Interop Performance 349

The RCW is responsible for marshaling parameters as execution flow transitions
between managed code and unmanaged code. Calling into unmanaged COM code
from managed code is made easy by the CLR; however, it carries a performance cost.
The following steps are performed:
● Perform data marshaling.
● Fix the calling convention.
● Protect callee-saved registers.
● Switch thread mode to ensure that the garbage collector does not block

unmanaged threads.
● Erect an exception-handling frame on calls into unmanaged code.
● Optionally take control of the thread.

More Information

For more information about using COM interop, see the following resources
on MSDN:
● “Exposing COM Components to the .NET Framework” in .NET Framework

Developer’s Guide at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/cpguide/html/cpconExposingCOMComponentsToNETFramework.asp.

● “COM Interop Part 1: C# Client Tutorial” in C# Programmer’s Reference at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html
/vcwlkcominteroppart1cclienttutorial.asp.

● “COM Interop Part 2: C# Server Tutorial” in C# Programmer’s Reference at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html
/vcwlkcominteroppart2cservertutorial.asp.

Performance and Scalability Issues
The main issues that can adversely affect the performance and scalability of your
application’s interop code are summarized in the list that follows. Most apply to
server-side Web applications that call COM components on a per-request basis under
load. Subsequent sections of this chapter provide strategies and technical information
to help prevent or resolve these issues:
● Marshaling parameter types inefficiently. As interop calls transition between

managed code and unmanaged code, parameters that are marshaled inefficiently
or unnecessarily waste system processing cycles.

● Not disposing COM objects for server applications under load. The lifetime
of a COM object is managed through reference counting. If your Web application
calls COM components on a per-request basis under load, then failure to call
Marshal.ReleaseComObject at the appropriate time prolongs the lifetime of the
COM object. This adversely affects your server’s resource (including memory)
utilization, particularly if you use single-threaded apartment (STA) COM objects.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconExposingCOMComponentsToNETFramework.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconExposingCOMComponentsToNETFramework.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkcominteroppart1cclienttutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkcominteroppart1cclienttutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkcominteroppart2cservertutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkcominteroppart2cservertutorial.asp

350 Improving .NET Application Performance and Scalability

● Using chatty interfaces that require excessive round trips. It is inefficient
to write managed code against COM objects that expose interfaces requiring
multiple round trips to perform a single logical operation. The classic example
is a COM object that requires the caller to assign multiple property values before
executing a method.

● Not disposing of unmanaged resources in a timely manner. The CLR garbage
collector executes an object’s Finalize method at a time that is not predictable. If
time-critical resources are released in a Finalize method, your code can hold on to
these resources much longer than it should.

● Aggressively pinning short-lived objects. If you unnecessarily extend the
life of a buffer beyond the duration of the P/Invoke call, you can fragment the
managed heap.

● Incurring overhead due to late binding and reflection. Late binding is based
on reflection and requires many more processing cycles for a caller to execute a
method than does early binding.

● Incurring overhead due to unnecessary thread switching. The majority of COM
objects are apartment-threaded and can run only under the COM STA model.
Failure to match threading models between the calling thread and the COM object
can result in cross-apartment calls. Cross-apartment calls usually require a thread
switch, which further degrades performance.

● Overhead of Unicode to ANSI string conversions. Interop calls to older functions
in the Win32 API can result in the conversion of string data between the Unicode
format used by the CLR and the older ANSI format. This conversion is costly in
terms of processing cycles and should be avoided or reduced as much as possible.

Design Considerations
To help ensure that your application’s interop code is optimized for performance,
consider the following best practice design guidelines:
● Design chunky interfaces to avoid round trips.
● Reduce round trips with a facade.
● Implement IDisposable if you hold unmanaged resources across client calls.
● Reduce or avoid the use of late binding and reflection.

Design Chunky Interfaces to Avoid Round Trips
When you design code that is to be called through P/Invoke or COM interop, design
interfaces that reduce the number of calls required to complete a logical unit of work.
This guideline is particularly important for interfaces that handle calls to COM
components located on a remote server, where the performance impact of using
chatty interfaces is significant.

 Chapter 7: Improving Interop Performance 351

The following code fragment illustrates a chatty component interface that uses
property getters and setters and requires the caller to cross the managed/unmanaged
code boundary three times, performing data marshaling, security checks, and thread
switches each time.

MyComponent.Firstname = "bob";
MyComponent.LastName = "smith";
MyComponent.SaveCustomer();

The following code fragment shows a chunky interface designed to perform the same
tasks. The number of round trips between managed and unmanaged code is reduced
to one, which significantly reduces the overhead required to complete the logical
operation.

MyComponent.SaveCustomer("bob", "smith");

Reduce Round Trips with a Facade
Often, you cannot design the interfaces of the unmanaged libraries that you use
because they are provided for you. If you must use a preexisting unmanaged library
with a chatty interface, consider wrapping the calls in a facade. Implement the facade
on the boundary side that exposes the chatty interface. For example, given a chatty
Win32 API, you would create a Win32 facade. Creating a .NET facade would still
incur the same number of managed/unmanaged boundary crossings. The following
is an example of a chatty unmanaged interface wrapped with an unmanaged facade.

public bool MyWrapper(string first, string last)
{
 ChattyComponent myComponent = new ChattyComponent();
 myComponent.Firstname = first;
 myComponent.LastName = last;
 return myComponent.SaveCustomer();
}

Performance is improved because the facade reduces the required number of round
trips crossing the managed/unmanaged boundary. You can apply the same principle
to calling a chatty interface within a COM DLL created with Microsoft Visual Basic 6.
You can create a facade DLL in Visual Basic 6 to reduce the required number of round
trips, as shown in the following example.

Function MyWrapper(first As String, last As String) As Boolean
 Dim myComponent As ChattyComponent
 Set myComponent = New ChattyComponent
 myComponent.Firstname = first
 myComponent.LastName = last
 MyWrapper = myComponent.SaveCustomer
End Function

352 Improving .NET Application Performance and Scalability

Implement IDisposable if You Hold Unmanaged Resources Across
Client Calls
Holding shared server resources across remote client calls generally reduces
scalability. When you build managed objects, you should acquire and release
shared unmanaged resources on a per-request basis whenever possible. The platform
can then provide optimizations, such as connection pooling, to reduce the resource-
intensive operations for per-request calls.

If you acquire and release resources within a single request, you do not need to
explicitly implement IDisposable and provide a Dispose method. However, if you
hold on to server resources across client calls, you should implement IDisposable
to allow callers to release the resources as soon as they are finished with them.

More Information

For more information, see “Finalize and Dispose Guidelines” in Chapter 5,
“Improving Managed Code Performance.”

Reduce or Avoid the Use of Late Binding and Reflection
COM objects support two styles of binding: early binding and late binding. You
use early binding when you program against the types defined within an interop
assembly. You can use late binding to program against a COM object from managed
code by using reflection.

To use late binding in C# or C++, you must explicitly program against types defined
inside the System.Reflection namespace. In Visual Basic .NET, the compiler adds in
automatic support for late binding.

To use late binding from Visual Basic .NET, you must disable the Option Strict
compile-time setting and program against the Object type. The following code
activates a COM object, by using a string-based ProgID, and calls methods by
using late binding.

Option Strict Off
Imports System
Imports System.Runtime.InteropServices
Class MyApp
 Shared Sub Main()
 Dim ComType1 As Type = Type.GetTypeFromProgID("ComLibrary1.Customer")
 Dim obj As Object = Activator.CreateInstance(ComType1)
 '*** call to COM object through late binding
 obj.Load("C123")
 Dim result As String = obj.GetInfo()
 End Sub
End Class

 Chapter 7: Improving Interop Performance 353

Late binding provides significantly poorer performance than early binding because
it requires that a caller discover method bindings at run time by using the IDispatch
interface. In addition, it requires the conversion of parameters and return values to
the COM VARIANT data type as they are passed between caller and object. For these
reasons, you should avoid late binding where possible. However, it does provide a
few noteworthy advantages.

When you use late binding from managed code, you eliminate the need to generate
and deploy an interop assembly. You also avoid dependencies on GUIDs, such as
the CLSID and the default interface identifier (IID) for a COM CoClass. This can be
useful if you are working with several different versions of a Visual Basic 6 DLL that
has been rebuilt without using the binary compatibility mode of Visual Basic 6. Code
that uses late binding works with different builds of a COM DLL, even when the
value for the default IID has changed.

ASP.NET and Late Binding
If you have an ASP.NET client, calls such as Server.CreateObject and
Server.CreateObjectFromClsid use reflection, which slows performance. If you use
the <object> tag to create a COM object, calls to that object are serviced by using late
binding as well.

The use of late binding always involves tradeoffs. You gain code that is more
flexible and adaptable, but at the expense of type safety, run-time performance,
and scalability.

Implementation Considerations
When moving from application design to development, you must consider
interoperability between managed and unmanaged code. Key interop performance
measures include response times, speed of throughput, and resource management.

Response times can be improved by marshaling parameter types efficiently between
managed and unmanaged code. By using blittable parameter types and reducing
unnecessary data transfer, interop calls use fewer processing cycles.

Pinning short-lived objects results in inefficient memory management. Garbage
collection can be improved by pinning only long-lived objects.

Throughput can be increased by using an appropriate COM threading model, and
by eliminating unnecessary thread switches.

By following best practice implementation guidelines, you can increase the
performance of code interop. The following sections highlight performance
considerations when developing interop code.

354 Improving .NET Application Performance and Scalability

Marshaling
Parameters that you pass to and from Win32 APIs and COM interfaces are marshaled
between managed and unmanaged code. For certain types, referred to as blittable
types, the memory representation of the type is the same for managed and
unmanaged code. As a result, blittable types are extremely efficient types for
marshaling, because no conversion is required. Non-blittable types require more
effort. The degree of effort varies according to the type and size of data.

Marshaling is a potential performance bottleneck for interop. To optimize your code’s
marshaling performance, follow these guidelines:
● Explicitly name the target method you call.
● Use blittable types where possible.
● Avoid Unicode to ANSI conversions where possible.
● Use IntPtr for manual marshaling.
● Use [in] and [out] to avoid unnecessary marshaling.
● Avoid aggressive pinning of short-lived objects.

Explicitly Name the Target Method You Call
If you call a method and the CLR does not find an exact match, the CLR searches
for a suitable match. This search slows performance. Be explicit with the name of
the function you want to call. When you use the DllImport attribute, you can set
the ExactSpelling attribute to true to prevent the CLR from searching for a different
function name.

Use Blittable Types Where Possible
Instances of certain types are represented differently in managed code than they
are in unmanaged code. These types are known as non-blittable types and require
marshaling as they are passed back and forth between managed and unmanaged
code. Instances of other types have the same in-memory representation in both
managed code and unmanaged code. These types are known as blittable types and
do not require conversion as they are passed back and forth. Therefore, the use of
blittable parameter types in interop calls requires fewer processing cycles for types
conversion than the use of non-blittable parameter types.

If you have the option of choosing what types will be used in an interface, use
blittable types. For example, when you are designing interfaces for code that will
be called through P/Invoke, try to use blittable data types, such as Byte, SByte, Int32,
Int64, and IntPtr.

 Chapter 7: Improving Interop Performance 355

Tables 7.1 and 7.2 list commonly used blittable and non-blittable types.

Table 7.1: Blittable Types

Single

Double

SByte

Int16

Uint16

Int32

Uint32

Int64

Uint64

IntPtr

UintPtr

Formatted types containing only blittable types

Single-dimensional array of blittable types

Table 7.2: Non-Blittable Types

Char

String

Object

Boolean

Single-dimensional array of non-blittable types

Multi-dimensional array of non-blittable types

More Information

For more information about using blittable versus non-blittable types, see
“Blittable and Non-Blittable Types” in the .NET Framework Developer’s Guide
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconblittablenon-blittabletypes.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconblittablenon-blittabletypes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconblittablenon-blittabletypes.asp

356 Improving .NET Application Performance and Scalability

Avoid Unicode to ANSI Conversions Where Possible
Converting strings from Unicode to ANSI and vice versa is an expensive operation.
The CLR stores string characters in Unicode format. When you call functions in the
Win32 API, you should call the Unicode version of the API (for example,
GetModuleNameW) instead of the ANSI version (for example, GetModuleNameA).

When you cannot avoid Unicode to ANSI conversion, you may be able to use IJW
and marshal strings manually by using the IntPtr type. For example, if you need to
make several calls to a Win32 API function, you may not need to convert a string
value between Unicode and ANSI with each call. IJW and manual marshaling allows
you to convert the string once and then to make several calls with the string in the
ANSI form.

Use IntPtr for Manual Marshaling
By declaring parameters and fields as IntPtr, you can boost performance, albeit at
the expense of ease of use, type safety, and maintainability. Sometimes it is faster to
perform manual marshaling by using methods available on the Marshal class rather
than to rely on default interop marshaling. For example, if large arrays of strings
need to be passed across an interop boundary, but the managed code needs only a
few of those elements, you can declare the array as IntPtr and manually access only
those few elements that are required.

Use [in] and [out] to Avoid Unnecessary Marshaling
Use the [in] and [out] attributes carefully to reduce unnecessary marshaling. The
COM interop layer of the CLR uses default rules to decide if some parameter needs
to be marshaled in before the call and out after the call. These rules are based on the
level of indirection and type of the parameter. Some of these operations may not be
necessary depending on the method’s semantics.

Parameters that are passed by reference are marked as [in][out] and are marshaled
in both directions. For example:

instance string marshal(bstr) FormatNameByRef(
 [in][out] string& marshal(bstr) First,
 [in][out] string& marshal(bstr) Middle,
 [in][out] string& marshal(bstr) Last)
runtime managed internalcall

If you have control over the design of your COM components, modify the calling
convention to marshal data only in the direction that it is needed.

 Chapter 7: Improving Interop Performance 357

Avoid Aggressive Pinning of Short-Lived Objects
Pinning short-lived objects unnecessarily extends the life of a memory buffer
beyond the duration of the P/Invoke call. Pinning prevents the garbage collector
from relocating the bytes of the object in the managed heap, or relocating the address
of a managed delegate.

The garbage collector often relocates managed objects when it compacts the managed
heap. Because the garbage collector cannot move any pinned object, the heap can
quickly become fragmented, reducing the available memory.

There is often no need to explicitly pin objects. For example, there is no need to
explicitly pin a managed array of primitive types, such as char and int, or to pin
strings, StringBuilder objects, or delegate instances before making P/Invoke calls,
because the P/Invoke marshaling layer ensures that they are pinned for the duration
of the call.

It is acceptable to pin long-lived objects, which are ideally created during application
initialization, because they are not moved relative to short-lived objects. It is costly to
pin short-lived objects for a long period of time, because compacting occurs most in
Generation 0 and the garbage collector cannot relocate pinned objects. This results in
inefficient memory management that can adversely affect performance.

More Information

For more information, see “Copying and Pinning” in the .NET Framework Developer’s
Guide on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconcopyingpinning.asp.

Marshal.ReleaseComObject
COM object lifetime is managed by reference counting. When an object’s reference
count reaches zero, its destructor code is executed and then the object’s memory is
freed. Because you do not know when the garbage collector will run, managed RCW
objects that hold references to COM objects can prolong the lifetime of the COM
object, and can delay the release of unmanaged resources. In server applications,
particularly those under heavy load, this can place unwanted resource pressures on
your server. To address this issue:
● Consider calling ReleaseComObject in server applications.
● Do not force garbage collections with GC.Collect.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcopyingpinning.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcopyingpinning.asp

358 Improving .NET Application Performance and Scalability

Consider Calling ReleaseComObject in Server Applications
When you reference a COM object, you actually maintain a reference to an RCW.
The RCW holds an internal pointer to the COM object’s IUnknown interface. During
finalization of the RCW, the CLR finalizer thread calls the RCW’s finalizer, which in
turn calls IUnknown::Release to decrement the COM object’s reference count. When
the reference count reaches zero, the COM object is released from the memory.

.NET memory management is nondeterministic, which can cause problems when
you need to deterministically release COM objects in server applications, such as
ASP.NET applications. You can use Marshal.ReleaseComObject to help solve this
problem.

Note You should only call ReleaseComObject when you absolutely have to.

How ReleaseComObject Works
An RCW maintains an internal marshaling count, which is completely separate
from the COM object reference count. When you call ReleaseComObject, the
RCW’s internal marshaling count is decremented. When the internal marshaling
count reaches zero, the RCW’s single reference count on the underlying COM object
is decremented. At this point, the unmanaged COM object is released and its memory
is freed, and the RCW becomes eligible for garbage collection.

The CLR creates exactly one RCW for each COM object. The RCW maintains a single
reference count on its associated COM object, irrespective of how many interfaces
from that COM object have been marshaled into the managed process in which the
RCW is located. Figure 7.4 shows the relationship between the RCW, its clients in a
managed process, and the associated COM object.

 Chapter 7: Improving Interop Performance 359

RCW

COM Object

Internal Marshaling Count = 3

Single reference count

Ref Count = 1

`

Nondeterministic lifetime
(follows Garbage
Collector rules)

Deterministic lifetime
(follows COM rules)

Multiple Managed Clients

Managed Process Boundary

Managed Code

Unmanaged Code

Figure 7.4
RCW’s relationship to managed code and an unmanaged COM object

If multiple interface pointers have been marshaled, or if the same interface has been
marshaled multiple times by multiple threads, the internal marshaling count in the
RCW will be greater than one. In this situation, you need to call ReleaseComObject
in a loop. For more information, see “How to Call ReleaseComObject” later in this
chapter.

When to Call ReleaseComObject
Client code that uses a managed object that exposes a Dispose method should call
the Dispose method as soon as it is finished with the object to ensure that resources
are released as quickly as possible. Knowing when to call ReleaseComObject is
trickier. You should call ReleaseComObject when:
● You create and destroy COM objects under load from managed code. If there is

sufficient load on your application to necessitate quick COM object disposal and
recovery of resources, consider ReleaseComObject. This is generally the case for
server workloads. For example, you may need to call ReleaseComObject if your
ASP.NET page creates and destroys COM objects on a per-request basis.

● Your ASP.NET code calls a serviced component that wraps and internally calls a
COM component. In this case, you should implement Dispose in your serviced
component and your Dispose method should call ReleaseComObject. The
ASP.NET code should call your serviced component's Dispose method.

360 Improving .NET Application Performance and Scalability

● Your COM component relies on an eager release of its interface pointers to
IUnknown. One approach is to assume that eager release is unnecessary. Then, if
you find that you have scaling problems because a specific COM component must
be eagerly released, come back and add the ReleaseComObject for it. In general,
if you are calling COM from managed code under load (for example, in server
scenarios), you need to consider ReleaseComObject.

When Not to Call ReleaseComObject
You should not call ReleaseComObject in the following circumstances:
● If you use the COM object across client calls, do not call ReleaseComObject unless

you are completely done. An exception is generated if you try to access an object
that is already released.

● If you use the COM object from multiple threads (such as when you cache or pool
the object), do not call ReleaseComObject until you are completely done. An
exception is generated if you try to access an object that is released.

If you do not call ReleaseComObject, the RCWs are cleaned up in one of two ways:
● When a garbage collection happens, the finalizer thread releases RCWs that are

not in use.
● When a COM object is activated or when an interface pointer enters the runtime

for the first time. If this occurs on an MTA thread, the runtime will clean up all of
the RCWs no longer in use in the current context. If this occurs on an STA thread,
the runtime will clean up all of the RCWs no longer in use in all contexts in that
STA apartment.

How to Call ReleaseComObject
When you call ReleaseComObject, follow these guidelines:
● Evaluate whether you need a loop to release all interfaces. In most cases, you can

simply call ReleaseComObject once. For example, in cases where you acquire a
COM object interface pointer, work with it, and then release it, you should not
implement a loop. This usage pattern is typical in server applications.
In cases where you have a marshaling count greater than one, you need to use a
loop. This is the case when the marshaling count is incremented every time the
pointer to IUnknown is marshaled into managed code from unmanaged code and
ends up with the same RCW. Therefore you need to call ReleaseComObject in a
loop until the returned marshaling count equals zero.
For example, if you call an unmanaged method ten times in a loop on the same
thread, and the method returns the same object ten times, the underlying wrapper
will have a marshaling count of ten. In this case, you must call ReleaseComObject
ten times in a loop. This can occur in cases where you use ActiveX controls, where
your code might query a contained property multiple times.

 Chapter 7: Improving Interop Performance 361

A simple approach is to call ReleaseComObject in a loop until its return value
(the unmanaged reference count) reaches zero as shown below.

while(Marshal.ReleaseComObject(yourComObject)!=0);

If any thread subsequently attempts to access the released COM object through the
RCW, a NullReferenceException exception is generated.

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) provides a
method named FinalReleaseComObject that will bypass the marshaling count logic. This means
that you will not need to use a loop to repeatedly call ReleaseComObject.

● Use a finally block. It is good practice to place calls to ReleaseComObject in a
finally block as shown in the following example to ensure that it is called, even
in the event of an exception.

// Create the COM object
Account act = new Account();
try
{

 // Post money into the account
 act.Post(5, 100);
}
finally
{
 // Make sure that the underlying COM object is immediately freed
 System.Runtime.InteropServices.Marshal.ReleaseComObject(act);
}

● Setting objects to null or Nothing. It is common practice for Visual Basic 6
developers to set an object reference to Nothing as follows.

Set comObject = Nothing

If you would set a reference to null or Nothing to make a graph of objects
unreachable in a pure managed scenario, you would use the same technique with
graphs that contain managed objects and/or references to unmanaged objects.

More Information
For more information about when to call ReleaseComObject when you use serviced
components, see Chapter 8, “Improving Enterprise Services Performance.”

362 Improving .NET Application Performance and Scalability

Do Not Force Garbage Collections with GC.Collect
A common approach for releasing unmanaged objects is to set the
RCW reference to null, and call System.GC.Collect followed by
System.GC.WaitForPendingFinalizers. This is not recommended for performance
reasons, because in many situations it can trigger the garbage collector to run too
often. Code written by using this approach significantly compromises the
performance and scalability of server applications. You should let the garbage
collector determine the appropriate time to perform a collection.

Code Access Security (CAS)
The CLR provides code access security (CAS) as a defensive measure against
malicious code. CAS helps to ensure that assemblies have been granted sufficient
permissions to be able to perform their work. For example, when code within an
assembly attempts to call unmanaged code, CAS runs a security check to ensure
that the assembly has been granted the UnmanagedCode permission.

CAS carries out security checks at run time. The checks involve a stack walk to
ensure that each method in the current call stack has sufficient rights to perform
the requested operation. The stack-walking procedure involves an expensive set of
operations. However, the stack walk is important because it protects against luring
attacks, in which malicious code in an untrusted assembly coerces code in a trusted
assembly to perform sensitive operations on its behalf.

Consider the following measures to improve the performance of calling
unmanaged code:
● Consider using SuppressUnmanagedCode for performance-critical trusted

scenarios
● Consider using TLBIMP /unsafe for performance-critical trusted scenarios

Caution: These performance optimizations introduce a security risk. To reduce risk, review your APIs.
Make sure that you do not expose unmanaged resources to third-party callers and that your code is
not susceptible to luring attacks.

 Chapter 7: Improving Interop Performance 363

Consider Using SuppressUnmanagedCode for Performance-Critical
Trusted Scenarios
When designing APIs that do not expose sensitive resources or do not perform
security-sensitive operations based on user input, use the SuppressUnmanagedCode
attribute to eliminate the stack walk associated with the method call. For example:

// in C#
[DllImport("kernel32.dll"), SuppressUnmanagedCodeSecurity]
public static extern bool Beep(int frequency, int duration);

Use this technique only for performance-critical code in trusted scenarios. Perform
thorough code reviews of such APIs to ensure that they are not susceptible to luring
attacks.

More Information

For more information, see “Use SuppressUnmanagedCodeSecurity with Caution” in
Chapter 8, “Code Access Security in Practice,” in Improving Web Application Security:
Threats and Countermeasures on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp.

Consider Using TLBIMP /unsafe for Performance-Critical Trusted
Scenarios
You can disable the full CAS stack walk for the unmanaged code permission
by building interop assemblies with the TLBIMP /unsafe switch. This switch
instructs TLBIMP to generate RCW code that performs link demands, rather
than full demands for the unmanaged code permission. The /unsafe switch
causes native method declarations to be decorated with
SuppressUnmanagedCodeSecurityAttribute, which checks only the
immediate caller when an interop call is made.

This technique results in faster calls between managed code and the COM
objects created from the associated COM DLL. Use of this command-line switch
is shown here.

C:\>tlbimp mycomponent.dll /out:UnSafe_MyComponent.dll /unsafe

Note: If your assembly causes stack walks for other types of permission, such stack walks are not
suppressed by using the /unsafe switch. Using this switch only suppresses the full stack walk for
the unmanaged code permission.

Perform thorough code reviews of such APIs to ensure that they are not susceptible
to luring attacks.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

364 Improving .NET Application Performance and Scalability

Threading
When you call a COM object from managed code, if the COM object’s apartment
model is incompatible with that of the calling thread, a thread switch occurs and
the call is marshaled to the correct apartment. To optimize performance, you need
to ensure that the apartment model of the calling thread is compatible.

To keep the overhead of thread switches to a minimum, follow these guidelines:
● Reduce or avoid cross-apartment calls.
● Use ASPCOMPAT when you call STA objects from ASP.NET.
● Use MTAThread when you call free-threaded objects.
● Avoid thread switches by using Neutral apartment COM components.

Reduce or Avoid Cross-Apartment Calls
When you call a COM object from a managed application, make sure that the
managed code’s apartment matches the COM object’s apartment type. By using
matching apartments, you avoid the thread switch associated with cross-apartment
calls.

You should create apartment-threaded objects on a managed thread with an
apartment type of STA. You should create free-threaded objects on a managed thread
with an apartment type of multithreaded apartment (MTA). Objects marked Both can
run on either STA or MTA without penalty. Table 7.3 shows the relationship between
the component threading model and an unmanaged thread’s apartment type.

Table 7.3: Threading Model and Thread Apartment Type

Component Threading Model Unmanaged Thread’s Apartment Type

Single* STA

Apartment STA

Both Either**

Neutral Either**

Free MTA

*Avoid this where possible. A thread switch may still be necessary if your STA thread is not the Main STA
(the first STA thread in the process). In addition, you create contention problems if multiple client threads
use single-threaded objects in the same process, because the client threads all share this main STA.

**MTA is recommended. Otherwise, problems may occur. For example, an object’s finalizer can block while
it waits for STA threads, deadlocks can occur, and so on.

The way in which you set the managed thread’s apartment type depends on the type
of managed application.

 Chapter 7: Improving Interop Performance 365

Use ASPCOMPAT When You Call STA Objects from ASP.NET
All .NET threads are MTA threads by default. Therefore, cross-apartment calls
and thread switches do not occur when you create and call COM objects with an
apartment type of Free, Both, or Neutral. However, cross-apartment calls and
thread switches occur when you create and call apartment-threaded COM objects.
All objects created with Visual Basic 6 and earlier are apartment-threaded. To call
an apartment-threaded COM object from an ASP.NET application without a
cross-apartment call and a thread switch, mark your ASP.NET pages with the
ASPCOMPAT attribute as follows so that the ASP.NET runtime will process your
pages using STA threads.

<%@Page language="vb" aspcompat="true" %>

Note that you should not instantiate components in the page constructor, because
they are executed on an MTA thread before the request is scheduled to use a thread
from the STA thread pool. Therefore, instantiating components in the page
constructor still incurs an apartment switch along with a thread switch. Instead,
you should instantiate them in event handlers such as Page_Load or Page_Init.
The components will then be executed on a thread from the STA thread pool.

More Information

For more information, see Knowledge Base article 308095, “PRB: Creating STA
Components in the Constructor in ASP.NET ASPCOMPAT Mode Negatively Affects
Performance,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;308095.

Calling Apartment-Model Objects from Web Services
Web services created using ASP.NET use MTA threads exclusively, and you cannot
change that behavior. That means that using apartment-threaded COM objects, such
as Visual Basic 6 components, from an ASP.NET Web service always involves cross-
apartment calls and thread-switching. Therefore, if possible, you should avoid using
apartment-threaded COM objects from Web services created using ASP.NET. The
runtime has been optimized in case you must make cross-apartment calls, but they
incur significantly more processing overhead than intra-apartment calls.

http://support.microsoft.com/default.aspx?scid=kb;en-us;308095

366 Improving .NET Application Performance and Scalability

Use MTAThread When You Call Free-Threaded Objects
WinForm applications use STA threads by default. Therefore, no thread switches
occur when you create and call methods on apartment-threaded COM objects.
However, a thread switch occurs when you call free-threaded COM objects. To
address this problem, you can switch the default thread type for a WinForm
application by using the MTAThread attribute on the entry point method Main
as follows.

[System.MTAThread]
static void Main()
{
 Application.Run(new Form1());
}

Avoid Thread Switches by Using Neutral Apartment COM Components
If you are developing a COM component with C++ that you plan to call from
managed code, you should try to create a COM component marked as Neutral.
Thread-neutral COM objects always use the caller’s thread to execute. A lightweight
proxy is used, and no thread switching occurs.

Monitoring Interop Performance
You should monitor interop performance to determine the exact impact it has on the
performance of your application. To monitor performance, you can use performance
counters and the CLR Spy tool.
● Use performance counters for P/Invoke and COM Interop.
● Use CLRSpy to identify Interop problems.

Use Performance Counters for P/Invoke and COM Interop
You can use the following performance counters from the .NET CLR Interop
performance object:
● # of CCWs. Indicates the number of COM callable wrappers (CCWs) that are

referenced by unmanaged COM code. CCWs are used as proxy objects when
unmanaged COM code calls managed .NET objects.

 Chapter 7: Improving Interop Performance 367

● # of marshalling. Indicates how many times P/Invoke and COM interop data
marshaling has occurred and counts boundary crossings that occur in both
directions. This counter does not count occurrences of marshaling that become
inlined. Stubs perform the marshaling, and at times the code is short enough to
be inlined.

● # of Stubs. Indicates the current number of stubs created by the CLR. Stubs
perform data marshaling for P/Invoke and COM+ interop calls.

Use CLR Spy to Identify Interop Problems
The CLR Spy tool is also useful for monitoring the performance of your interop code
in a managed application. You can download CLR Spy from the GotDotNet site at
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=c7b955c7
-231a-406c-9fa5-ad09ef3bb37f.

Summary
Your choices for writing interop code include P/Invoke, IJW, and COM interop.
P/Invoke provides a way to access functions within standard Windows DLLs from
managed languages such as C# and Visual Basic .NET. IJW allows C++ programmers
to access functions within standard Windows DLLs with a greater degree of control.
Although IJW requires more code due to the need for manual marshaling, it also
provides the greatest opportunities for optimizing marshaling in more complex
scenarios. COM interop allows you to access COM components for managed code.

This chapter has introduced you to the major areas that you need to consider to
optimize your application’s use of interop. It has also shown you specific coding
techniques that you should use to boost the performance of your interop code.

Additional Resources
For more information about interop performance, see the following resources:
● For a printable checklist, see “Checklist: Interop Performance” in the “Checklists”

section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the “Interop”

section.
● Chapter 15, “Measuring .NET Application Performance.” See the “Interop”

section.
● Chapter 16, “Testing .NET Application Performance.”

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=c7b955c7-231a-406c-9fa5-ad09ef3bb37f
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=c7b955c7-231a-406c-9fa5-ad09ef3bb37f

368 Improving .NET Application Performance and Scalability

● Chapter 17, “Tuning .NET Application Performance.”
● MSDN article, “An Overview of Managed/Unmanaged Code Interoperability,”

at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/manunmancode.asp.

● “Interoperating with Unmanaged Code” in .NET Framework Developer’s Guide
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconinteroperatingwithunmanagedcode.asp.

● Microsoft .NET/COM Migration and Interoperability on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/cominterop.asp?frame=true.

● Knowledge Base article 816152, “HOW TO: Use COM Components in
Visual Studio .NET with Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;816152.

● Knowledge Base article 306801, “HOW TO: Interoperate with a COM
Server That Returns Conformant Arrays by using Visual Basic.NET,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;306801.

● For more information on performing a code review of your interop code,
see “Interop” Chapter 13, “Code Review: .NET Application Performance.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/manunmancode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/manunmancode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinteroperatingwithunmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconinteroperatingwithunmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cominterop.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cominterop.asp?frame=true
http://support.microsoft.com/default.aspx?scid=kb;en-us;816152
http://support.microsoft.com/default.aspx?scid=kb;en-us;816152
http://support.microsoft.com/default.aspx?scid=kb;en-us;306801

8
Improving Enterprise Services
Performance

Objectives
● Design serviced components for optimum performance.
● Monitor and tune object pooling.
● Combine object pooling and just-in-time (JIT) activation for optimum

performance.
● Use a trusted identity and avoid impersonation to improve scalability.
● Manage resources efficiently.
● Choose an appropriate transaction model.
● Avoid threading bottlenecks.

Overview
The Microsoft .NET Framework provides access to COM+ services from managed
code through Enterprise Services (ES). To use Enterprise Services, create components
by deriving managed classes from the ServicedComponent-based class. Enterprise
Services provides a broad range of important infrastructure-level features for middle
tier components, including distributed transaction management, object pooling, and
role-based security.

370 Improving .NET Application Performance and Scalability

If your application requires COM+ service features, you need to know how to
use them efficiently. When used properly, features such as object pooling and JIT
activation can improve your application’s performance. When used improperly,
your application’s performance can suffer. This chapter describes how to optimize the
performance of your application’s Enterprise Service middle tier and how to develop
efficient serviced components.

How to Use This Chapter
Use this chapter to apply proven strategies and best practices for designing and
writing high-performance Enterprise Services code. To get the most out of this
chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Use the “Architecture” section of this chapter to understand how Enterprise
Services works. By understanding the architecture, you can make better design
and implementation choices.

● Use the “Design Considerations” section of this chapter to understand the
higher-level decisions that will affect implementation choices for Enterprise
Services code.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the
“Enterprise Services” section for specific guidance.

● Measure your application performance. Read the “Enterprise Services” and
“.NET Framework Technologies” sections of Chapter 15, “Measuring .NET
Application Performance,” to learn about the key metrics that can be used to
measure application performance. It is important that you be able to measure
application performance so that performance issues can be accurately targeted.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important that you apply a coherent testing process and that you be able to
analyze the results.

● Tune your application performance. Read the “Enterprise Services” section of
Chapter 17, “Tuning .NET Application Performance,” to learn how to resolve
performance issues identified through the use of tuning metrics.

● Use the accompanying checklist in the “Checklists” section of this guide. Use
the “Checklist: Enterprise Services Performance” checklist to quickly view and
evaluate the guidelines presented in this chapter.

 Chapter 8: Improving Enterprise Services Performance 371

Component Services Provided By Enterprise Services
Table 8.1 summarizes the COM+ services that are available to managed classes that
derive from ServicedComponent.

Table 8.1: COM+ Services

Service Description

Automatic Transactions Supports declarative transaction-processing features

BYOT(Bring Your Own Transaction) Enables a form of transaction inheritance.

Compensating Resource
Managers (CRMs)

Applies atomicity and durability properties to nontransactional
resources.

Just-In-Time Activation Activates an object on a method call and deactivates when
the call returns.

Loosely Coupled Events (LCE) Provides a loosely coupled publisher/subscriber notification
service.

Object Construction Passes a persistent string value to a class instance on
construction of the instance.

Object Pooling Provides a pool of ready-made objects.

Queued Components Provides component-based asynchronous message queuing.

Role-based Security Applies security permissions based on role membership.

Shared Property Manager Shares state among multiple objects within a server process

SOAP Services Publishes serviced components as (Extensible Markup
Language (XML) Web services to support Simple Object
Access Protocol (SOAP)-based interaction over Hypertext
Transfer Protocol (HTTP).

Synchronization (Activity) Manages concurrency using declarative attributes.

XS Interoperability Supports the X/Open transaction-processing model.

More Information

For more information about the component services provided by Enterprise
Services, see “.NET Enterprise Services and COM+ 1.5 Architecture” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnentsrv/html
/netenterpriseandcomplus.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnentsrv/html/netenterpriseandcomplus.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnentsrv/html/netenterpriseandcomplus.asp

372 Improving .NET Application Performance and Scalability

Architecture
Serviced components run inside COM+ applications, which could be library
applications or server applications. Library applications run inside the caller process
address space, and server applications run inside a separate process (Dllhost.exe) on
either the local or a remote computer.

Each call to a component in a server application requires an interprocess
communication (IPC) call and marshaling, together with additional security checks.
Server applications also use COM interop. A runtime callable wrapper (RCW) is
created when calling unmanaged COM+ components. Calls are dispatched through
the RCW to the remote object using DCOM. Library applications run inside the
caller’s process address space, so they do not incur cross-process marshaling
overhead.

The general architecture of an Enterprise Services solution is shown in Figure 8.1.

Client Process
(for example, ASP.NET)

Server Application
(Dllhost.exe)

IPC and Marshaling
(DCOM)

= Serviced Component

Library
Application

Runtime
Callable
Wrapper
(RCW)

Figure 8.1
Enterprise Services architecture

 Chapter 8: Improving Enterprise Services Performance 373

Boundary Considerations
A call to a serviced component crosses a number of boundaries. Each time a
boundary is crossed, a performance hit occurs. Sometimes this is necessary and
unavoidable. Table 8.2 shows common boundaries that a call traverses.

Table 8.2: Boundaries and Associated Performance Hits

Boundary Main reasons for performance hit

Machine Marshaling, network latency, security

Process Marshaling, IPC, security

Apartment Thread switch and marshaling, security

Application domain Marshaling context, security

Context Interception services provided by lightweight proxy, security

Reducing the number of boundaries that a call must traverse can optimize the
performance of calling your components. Within an Enterprise Services application,
the main boundary performance hit occurs when a call needs to be marshaled from
one apartment to another because this can entail a thread switch, marshaling, and
serialization. Crossing application domains may require less overhead than crossing
apartments because application domains do not require a thread switch. By using a
consistent threading model for all components, you can avoid cross-apartment calls
and the associated overhead. Cross-apartment calls use a heavyweight proxy that
performs the thread switch and marshaling, while cross-context (intra-apartment)
calls use a lightweight proxy that does not perform a thread switch. The purpose
of the lightweight proxy is to provide interception services, add services to the
component, and handle the marshaling of interface pointers. If you avoid
cross-apartment thread switches, you avoid the overhead.

374 Improving .NET Application Performance and Scalability

Figure 8.2 summarizes the main boundaries. The thread in Process A initially calls a
serviced component inside a library application (at point (A)), and then a call is made
to a serviced component inside a server application (at point (B)).

Security
Check

Context

Apartment

Library Application

Possible
Thread Switch

Interception
Services

Security
Check

Context

Apartment

Server Application

Possible
Thread Switch

Interception
Services

Process A

Dllhost.exe

A

B

IPC and
Marshaling

Figure 8.2
Enterprise Services architecture showing boundaries

Figure 8.2 shows that two security checks occur when a call enters a server
application running in Dllhost.exe. The first check occurs when the COM service
control manager (SCM) determines whether to launch the process. If the process is
already running, the only part of this check that still occurs is a process boundary
security check. Whether the call succeeds and passes the process boundary check is
determined by whether the caller is a member of any role defined within the server
application. If the caller is a member of any role, the process can be launched (if
necessary) and the call can proceed to a component inside the server application. The
second security check occurs when the call enters the server application. If
component-level access checks are enabled, the caller must be a member of at least
one role assigned to the target method, or its interface or class. Note that this second
level of checking also applies to library applications. Within an application, no
further security checks are performed.

 Chapter 8: Improving Enterprise Services Performance 375

Prescriptive Guidance for Web Services, Enterprise Services,
and .NET Remoting

Services are the preferred communication technique to use across application
boundaries, including platform, deployment, and trust boundaries. You can
implement services today by using Web services or Web Services Enhancements
(WSE). Although WSE provides a rich set of features, you should evaluate whether or
not you can accept the WSE support policy. Enterprise Services provides component
services such as object pooling, queued components, a role-based security model and
distributed transactions, and should be used as an implementation detail within your
service when you need those features. .NET remoting is preferred for cross-
application communication within the same process.

Object Orientation and Service Orientation
When you design distributed applications, use the services approach whenever
possible. Although object orientation provides a pure view of what a system should
look like and is effective for producing logical models, an object-based approach can
fail to consider real-world factors, such as physical distribution, trust boundaries, and
network communication, as well as nonfunctional requirements, such as performance
and security.

Table 8.3 summarizes some key differences between object orientation and service
orientation.

Table 8.3: Object Orientation vs. Service Orientation

Object Orientation Service Orientation

Assumes a homogeneous platform and
execution environment.

Assumes a heterogeneous platform and
execution environment.

Shares types, not schemas. Shares schemas, not types.
Assumes cheap, transparent
communication.

Assumes variable cost, explicit communication.

Objects are linked: object identity and
lifetime are maintained by the infrastructure.

Services are autonomous: security and failure
isolation are a must.

Typically requires synchronized deployment
of both client and server.

Allows continuous, separate deployment of client
and server.

Is easy to conceptualize and thus provides
a natural model to follow.

Builds on ideas from component software and
distributed objects. Dominant theme is to
manage/reduce sharing between services.

Provides no explicit guidelines for state
management and ownership.

Owns and maintains state or uses the reference
state.

Assumes a predictable sequence,
timeframe, and outcome of invocations.

Assumes message-oriented, potentially
asynchronous, and long-running communications.

Goal is to transparently use functions and
types remotely.

Goal is to provide inter-service isolation and wire
interoperability based on standards.

376 Improving .NET Application Performance and Scalability

Application Boundaries
Common application boundaries include platform, deployment, trust, and evolution.
(Evolution refers to whether or not you develop and upgrade applications together.)
When you evaluate architecture and design decisions that affect your application
boundaries, consider the following:
● Objects and remote procedure calls (RPC) are appropriate within boundaries.
● Services are appropriate across and within boundaries.

Recommendations for Web Services, Enterprise Services, and .NET
Remoting
When you are working with ASP.NET Web services, Enterprise Services, and .NET
remoting, Microsoft recommends that you:
● Build services by using ASP.NET Web Services.
● Enhance your ASP.NET Web services with WSE if you need the WSE feature set

and you can accept the support policy.
● Use object technology, such as Enterprise Services or .NET remoting, within a

service implementation.
● Use Enterprise Services inside your service boundaries in the following scenarios:

● You need the Enterprise Services feature set (such as object pooling; declarative,
distributed transactions; role-based security; and queued components).

● You are communicating between components on a local server and you have
performance issues with ASP.NET Web services or WSE.

● Use .NET remoting inside your service boundaries in the following scenarios:
● You need in-process, cross-application domain communication. Remoting has

been optimized to pass calls between application domains extremely efficiently.
● You need to support custom wire protocols. Understand, however, that this

customization will not port cleanly to future Microsoft implementations.

Caveats
When you work with ASP.NET Web services, Enterprise Services, or .NET remoting,
consider the following caveats:
● If you use ASP.NET Web services, avoid or abstract your use of low-level

extensibility features such as the HTTP Context object.

 Chapter 8: Improving Enterprise Services Performance 377

● If you use .NET remoting, avoid or abstract your use of low-level extensibility
such as .NET remoting sinks and custom channels.

● If you use Enterprise Services, avoid passing object references inside Enterprise
Services. Also, do not use COM+ APIs. Instead, use types from the
System.EnterpriseServices namespace.

More Information
● For guidelines to make .NET Enterprise Services components execute just as

quickly as Microsoft Visual C++ COM components, see “.NET Enterprise Services
Performance” at http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp.

● For more information on Web services, see Chapter 10, “Improving Web Services
Performance.”

● For more information on Remoting, see Chapter 11, “Improving Remoting
Performance.”

Performance and Scalability Issues
This section lists high-level factors that can affect the performance and scalability of
your applications. Details about how to overcome these issues are provided later in
the chapter.
● Impersonating clients. If you impersonate the original caller to access a backend

database, a connection pool is created per unique user identity. This consumes
resources and reduces scalability. Connection pooling is most effective if you use a
trusted subsystem model and access the database using a fixed service account
such as the application’s process identity. For more information, see the “Security”
section in this chapter.

● Calling single-threaded apartment (STA) components. All calls to and from the
STA component can only be serviced by the thread that created or instantiated it.
All callers sharing an STA object instance are serialized onto the same thread and
there is also a thread switch from the calling thread to the apartment’s single
thread. For more information, see “Avoid STA Components” later in this chapter.

● Performing long running transactions. Long running transactions retain locks
and hold expensive resources such as database connections for prolonged periods.
This reduces throughput and impacts scalability. Alternative approaches such as
compensating transactions can be appropriate for scenarios where you cannot
avoid long running transactions. For more information see “Transactions” later in
this chapter.

http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp

378 Improving .NET Application Performance and Scalability

● Using inappropriate isolation levels. High isolation levels increase database
integrity but reduce concurrency. Using inappropriate isolation levels can
unnecessarily hinder performance. Choose an appropriate isolation level for your
components depending on the type of create, read, update, and delete operation
you need to perform. For more information, see “Transactions” later in this
chapter.

● Using stateful components. Use a stateless programming model with Enterprise
Services. You can achieve far greater scalability by designing components to be
stateless.

● Using encryption unnecessarily. Encrypting your data twice Is unnecessary from
a security standpoint and unnecessarily impacts performance. For example, there
is no point using packet privacy authentication to encrypt communication to and
from serviced components if your application is deployed inside a secure data
center that already protects its inter-server communication channels, for example,
by using Internet Protocol Security (IPSec) encryption. For more information, see
“Security” later in this chapter.

● Failing to release resources quickly enough. Failing to release shared resources
such as database connections and unmanaged COM objects promptly, impacts
application scalability. For more information, see “Resource Management” later in
this chapter.

● Failing to pool resources. If you do not use pooling for objects that take a long
time to initialize for example because they need to access resources such as a
network or database connections, these objects are destroyed and recreated for
each request. This reduces application performance. For more information, see
“Object Pooling” later in this chapter.

● Specifying too large a minimum pool size. If you set the minimum pool size to a
large number, the initial call request can take a long time to populate the pool with
the minimum number of objects. Set the pool size based on the type of resource
that your objects maintain. Also consider manually starting the application to
initialize the pool prior to the first live request.

● Using inappropriate synchronization techniques. If you are building a high-
performance multithreaded application to access your serviced components,
deadlocks and race conditions can cause significant problems. Use the declarative
COM+ synchronization attribute to manage concurrency and threading
complexities. For more information, see “Synchronization Attribute” later in this
chapter.

● Using unneeded services. Each additional service your component is configured
for affects performance. Make sure each component is configured only for those
specific services it requires.

● Clients failing to release reference quickly enough. Clients that bind early and
release late can increase server resource utilization and quickly create performance
and scalability problems.

● Clients failing to call Dispose. Clients that do not call Dispose on service
components create significant performance bottlenecks.

 Chapter 8: Improving Enterprise Services Performance 379

Design Considerations
To help ensure your Enterprise Services applications are optimized for performance,
there are a number of issues that you must consider and a number of decisions that
you must make at design time.

This section summarizes the major considerations:
● Use Enterprise Services only if you need to.
● Use library applications if possible.
● Consider DLL and class relationships.
● Use distributed transactions only if you need to.
● Use object pooling to reduce object creation overhead.
● Design pooled objects based on calling patterns.
● Use explicit interfaces.
● Design less chatty interfaces.
● Design stateless components.

Use Enterprise Services Only if You Need To
Use Enterprise Services inside your service implementation when you need the
component services that Enterprise Services provides. Enterprise Services provides a
broad range of important infrastructure-level features for middle tier components,
including distributed transaction management, object pooling, and role-based
security.

Each service means more infrastructure code to execute. As a result, there is a
performance overhead with using Enterprise Services so you should build serviced
components and host them in Enterprise Services only if you specifically need to use
the features it provides. If you need those services, more code needs to be executed
anyway, so using Enterprise Services is the right choice.

Use Library Applications if Possible
Enterprise Services provides server and library applications. Server applications run
in their own process (Dllhost.exe) and use a process identity that you configure.
Library applications run in their creator’s process using the client’s identity. Library
applications offer performance benefits because they do not incur the significant
marshaling overhead associated with an IPC (or cross network) call to a server
application.

380 Improving .NET Application Performance and Scalability

As such, you should use library applications whenever possible. Use server
applications only if you need your components to run under a different security
context from the client, or if you need them to be isolated from the client to provide
additional fault tolerance.

The following code shows how to declaratively specify the activation type using an
assembly level attribute.

using System.EnterpriseServices;
[assembly: ApplicationActivation(ActivationOption.Library)]
public class Account : ServicedComponent
{
 void DoSomeWork() {}
}

Consider DLL and Class Relationships
If your solution includes serviced components in multiple DLLs, and there is heavy
interaction between two components in separate DLLs, make sure they are located in
the same Enterprise Services application. This minimizes the marshaling and security
overhead associated with crossing application boundaries.

Use Distributed Transactions Only if You Need To
Enterprise Services and COM+ transactions use the services of the Microsoft
Distributed Transaction Coordinator (DTC). Use DTC-based transactions if you need
your transaction to span multiple remote databases or a mixture of resource manager
types, such as a Microsoft SQL Server database and a Windows message queue. Also,
if you need to flow transactions in a distributed application scenario, for example,
across components even against a single database, consider Enterprise Services
transactions.

Use Object Pooling to Reduce Object Creation Overhead
Object pooling helps minimize component activations and disposal, which can be
costly compared to method calls. Consider the following recommendations:
● Use object pooling if you have a component that callers use briefly and in rapid

succession, and where a significant portion of the object’s initialization time is
spent acquiring resources or performing other initialization prior to performing
specific work for the caller, configure the component to use COM+ object pooling.

● Use object pooling to control the maximum number of objects running at any
given time. This allows you to throttle server resources because when optimum
maximum value is set (best decided by trying various values and testing your
application scenario), object pooling ensures that server resources are not all
consumed.

 Chapter 8: Improving Enterprise Services Performance 381

● Avoid object pooling if you need only one object in your pool. Instead, investigate
the singleton object model supported by .NET remoting.

● Note that object pooling is less beneficial for objects that take a very small amount
of time to initialize.

For more information, see “Object Pooling” later in this chapter.

Design Pooled Objects Based on Calling Patterns
If you adopt a stateless component design and use JIT Activation, you minimize the
number of active objects on the server at any given time, which means that you use
the least amount of resources possible at any given time. However, this is at the
expense of many activations and deactivations.

For objects that are expensive to initialize, it is best to initialize them as little as
possible and enable clients to reference them between calls. For objects that retain
limited, shared resources, such as database connections, it is best to free them up as
soon as possible and use a stateless model with JIT Activation.

Therefore for some objects, it may be worth the cost of repetitive activations and
deactivations to keep them freed up as much as possible, and for other objects it may
be best to limit the activations and deactivations and keep them around.

Pooling provides a compromise for objects that are expensive to create/destroy, or for
objects whose resources are expensive to acquire/release.

Use Explicit Interfaces
You should implement explicit interfaces for any serviced component that is hosted
in a server application and is called from another process or computer. This allows
clients to call methods on these interfaces instead of calling class methods on the
default class interface. Consider the following example:

// When you create a class that is a service component,
// it has a default interface
public class CustomClass : ServicedComponent
{
 public void DoSomething();
}

// instead explicitly create an interface
public interface ICustomInterface
{
 void DoSomething();
}
public class CustomClass : ServicedComponent, ICustomInterface
{
 public void DoSomething();
}

382 Improving .NET Application Performance and Scalability

Explicit interfaces result in improved performance because there are fewer
serialization costs involved. When you call an explicit interface, DCOM serialization
occurs. When you call a class member directly, an additional .NET remoting
serialization cost is incurred.

Design Less Chatty Interfaces
When you design interfaces, provide methods that batch arguments together to help
minimize round trips. Reduce round trips by avoiding properties. For each property
access, the call is marshaled to the remote object; it is intercepted for providing the
services which can be relatively slow compared to grouping them into a single
method call. For more information, see “Design Chunky Interfaces” in Chapter 3,
“Design Guidelines for Application Performance.”

Design Stateless Components
A design that avoids holding state inside components is easy to scale. Conversely,
components that hold user-specific state across caller method calls cause server
affinity, which limits your scalability options.

Even if your serviced component resides on the same server as your presentation
layer, consider using a stateless design and take advantage of services such as JIT
activation and object pooling to strike a balance between performance and scalability.
This also helps if your future workload requires you to scale out.

When used correctly, object pooling can help maintain some state (such as a
connection) and scale as well. Use object pooling for objects that retain connections
so they can be shared by multiple clients.

Object Pooling
To reduce the performance overhead of object creation and destruction on a per
method call basis you can use object pooling. Components whose initialization code
contains resource intensive operations (for example, creating multiple subobjects that
aggregate data from multiple database tables) are well suited to object pooling. When
a caller creates an instance of a pooled object, a previously constructed object is
retrieved from the object pool, if available. Otherwise, a new object is created (subject
to the maximum pool size) within the pool and the new instance is used. This can
minimize the number of new objects created and initialized, and it can significantly
improve performance.

 Chapter 8: Improving Enterprise Services Performance 383

To configure an object for pooling, use either a declarative attribute, as shown in the
following code sample, or use the Component Services administration tool to directly
manipulate the object’s configuration in the COM+ catalog.

[ObjectPooling(Enabled=true, MinPoolSize=2, MaxPoolSize=10)]
public class YourClass : ServicedComponent
{
 // your other methods
 public override void YourClass(string constructString)
 { // your resource intensive or long running code }

 public override void Activate()
 { // your activate code }
 public override void Deactivate()
 { // your deactivate code }
 protected override bool CanBePooled()
 {
 return true;
 }
 }

Object Pooling Explained
Figure 8.3 illustrates object pooling mechanics.

Object
Pool

Server Application

Context
new

Call Method

Client

2

4

6

3

Dispose 5

1

Figure 8.3
Object pooling

384 Improving .NET Application Performance and Scalability

The sequence of events shown in Figure 8.3 is as follows:
1. When the application starts, COM+ populates the object pool with enough objects

to reach the configured minimum pool size. At this point, objects are created and
their language-specific constructors are called. Pooled objects typically acquire
expensive resources, such as network or database connections, at this point and
perform any other time-consuming initialization.

2. The client requests the creation of a new object by calling new.
3. Rather than creating a new object, COM+ takes an existing object from the pool

and places it in a context. If there are no more available objects in the pool and the
configured maximum pool size has been reached, the object creation request is
queued and the caller blocks. When an object is released by another client and
becomes available, the queued creation request can be satisfied.

4. The client makes a method call.
5. When the method call returns and the client no longer requires the object, the

client must call Dispose to ensure the object is swiftly returned to the pool.
6. The object returns to the pool and is available for subsequent requests from the

same or different clients.

Object Pooling with JIT Activation
Object pooling is often used with JIT activation. This has the advantage of completely
disassociating the lifetime of the object from the client. You can also ensure that
objects are returned to the pool promptly, and with JIT activation you are no longer
reliant on the client calling Dispose.

Note: Client code should always call Dispose on any object that implements IDisposable including
serviced components.

 Chapter 8: Improving Enterprise Services Performance 385

Figure 8.4 shows the sequence of events that occur for an object configured for object
pooling and JIT activation.

Done Flag

4

Object
Pool

Server Application

Context

Activate

Method

Deactivate

CanBePooled

5

7

8

new

Call Method

Client

1

3

9

2

6

Figure 8.4
Object pooling with JIT activation

Note that Figure 8.4 does not show a pre-started COM+ application, so the pool is not
initialized until after the first call to new.

The sequence of events in Figure 8.4 is as follows:
1. The client calls new.
2. An object is retrieved from the pool and placed in a context. At this point the

context’s Done flag is set to false.

Note: Two important flags maintained by the object context are the Done flag and the
Consistent flag. The Done flag is used by COM+ to detect when to deactivate an object.
The Consistent flag determines transaction outcome for transactional components. If this flag
is set to false (for example, by the object calling SetAbort), the transaction rolls back. If the flag
is set to true (for example, with SetComplete), the transaction commits.

3. The client calls a method.
4. COM+ calls the object’s Activate method to allow it to perform second phase

initialization. For example, it might need to reassociate a database connection
obtained during first phase initialization (when the object was constructed) with
a transaction. If you need to perform specific second phase initialization, override
the virtual Activate method exposed by the ServicedComponent base class.

5. The method executes and performs work for the client.

386 Improving .NET Application Performance and Scalability

6. At the end of the method, the object should set the Done flag in its context to true
to make sure the object is swiftly returned to the pool. There are a number of ways
to set the Done flag. For more information, see “Return Objects to the Pool
Promptly” later in this chapter.

7. When the object is deactivated, COM+ calls the object’s Deactivate method.
8. COM+ finally calls the object’s CanBePooled method. You can override the

method for your objects to provide the custom implementation. If you override
and return false the object is not returned into the pool and awaits garbage
collection instead (this may be the case if the object’s retained resources have
been lost or irreparably corrupted).

9. If you returned true from CanBePooled or you do not override this method and
rely on the base class implementation, the object is always returned to the pool at
this point until the maximum pool size is reached.

To use object pooling efficiently, follow these guidelines:
● Return objects to the pool promptly.
● Monitor and tune pool size.
● Preload applications that have large minimum pool sizes.

Return Objects to the Pool Promptly
Unmanaged COM+ objects return to the pool when their reference counts return
to zero. Managed objects return to the pool only when garbage collected. There are
several ways you can ensure an object is immediately returned to the pool and these
vary depending on whether the object is configured for JIT activation:
● With JIT activation, use ASAP deactivation.
● Without JIT activation, the caller controls lifetime.

With JIT Activation, Use ASAP Deactivation
The context-maintained Done flag is initialized to false each time COM+ creates a
new object in a context. If the Done flag is set to true when a method returns, COM+
deactivates and either destroys the object, or if object pooling is enabled, returns the
object to the pool.

You can set the Done flag to true and force an object back to the pool in the following
three ways:
● Use the AutoComplete attribute.

Upon completion of a method marked with this attribute, the COM+ runtime
either calls SetComplete or SetAbort, depending on whether the method
generates an exception. Both methods set the Done flag in the object’s context
to true, which ensures that the object is returned to the pool. Use of the
AutoComplete attribute is shown in the following code sample.

 Chapter 8: Improving Enterprise Services Performance 387

[ObjectPooling(MinPoolSize=0, MaxPoolSize=1)]
[JustInTimeActivation()]
public class YourClass : ServicedComponent
{
 [AutoComplete]
 public void SomeMethod()
 {
 ...
 }
 ...
}

Note: Using this attribute is equivalent to selecting the Automatically deactivate this object
when this method returns check box on a method’s Properties dialog box in Component
Services.

● Set ContextUtil.DeactivateOnReturn=true at the end of your method as shown in
the following code sample.

public void SomeMethod()
{
 // Do some work
 . . .
 // Make sure the object returns to the pool by setting DeacivateOnReturn
 ContextUtil.DeactivateOnReturn = true;
}

● Call ContextUtil.SetComplete or ContextUtil.SetAbort at the end of your
method. Both methods set the Done flag to true. Transactional components also
use these methods to vote for the outcome of a transaction. SetComplete
represents a vote for the transaction to commit while SetAbort votes for a
transaction rollback.

Note: Transaction outcome is dependent on the voting of all objects participating in the current
transaction.

public void SomeMethod()
{
 // Do some work
 . . .
 // Calling SetComplete (or SetAbort) sets the Done flag to true
 // which ensures the object is returned to the pool.
 ContextUtil.SetComplete();
}

388 Improving .NET Application Performance and Scalability

Without JIT Activation, the Caller Controls Lifetime
If your pooled object is not configured for JIT activation, the object’s caller must call
Dispose and therefore controls the lifetime of the object. This is the only way
Enterprise Services can know when it is safe to return the object to the pool.

Note: Clients should always call Dispose on a disposable object regardless of the JIT activation
setting. For more information, see “Resource Management” later in this chapter.

In C#, you can use the using keyword to ensure that Dispose is called.

// your pooled object's client code
public void ClientMethodCallingPooledObject()
{
 using (YourPooledType pooledObject = new YourPooledType())
 {
 pooledObject.SomeMethod();
 } // Dispose is automatically called here
}

Monitor and Tune Pool Size
COM+ automatically adjusts the pool size to meet changing client loads. This
behavior is automatic, but you can fine tune the behavior to optimize performance
for your particular application. If the pool size is too large, you incur the overhead of
populating the pool with an initialized set of objects, many of which remain
redundant. Depending on the nature of the object, these objects might unnecessarily
consume resources. Also, unless you manually start the application before the first
client request is received, the first client takes the associated performance hit as the
pool is populated with objects.

For more information about how to monitor object pooling, see Chapter 15,
“Measuring .NET Application Performance.”

Preload Applications That Have Large Minimum Pool Sizes
When an application is started, it initializes the object pool and creates enough objects
to satisfy the configured minimum pool size. By manually starting an application
before the first client request is received, you eliminate the initial performance hit that
the initial request would otherwise entail.

 Chapter 8: Improving Enterprise Services Performance 389

To automate application startup, you can use the following script code.

Dim oApplications 'As COMAdminCatalogCollection
Dim oCatalog 'As COMAdminCatalog
Dim oApp 'As COMAdminCatalogObject

Set oCatalog = CreateObject("ComAdmin.COMAdminCatalog")
Set oApplications = oCatalog.GetCollection("Applications")
oApplications.Populate

For Each oApp In oApplications
 If oApp.Name = "<Provide Your Server Application Name>" Then
 Call oCatalog.StartApplication(oApp.Name)
 Wscript.Echo oApp.Name + "Started..."
 End If
Next

Note: The automation script code applies only for server applications and not for library applications.

More Information

For more information about object pooling, see Microsoft Knowledge Base article
317336, “HOW TO: Use Enterprise Services Object Pooling in Visual Basic .NET,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;317336.

State Management
Improper state management results in poor application scalability. For improved
scalability, COM+ components should be stateless or they should store and retrieve
state from a common store. Consider the following guidelines:
● Prefer stateless objects. Ideally, you should avoid holding state to maximize

scalability. If state is needed, store and retrieve the state information from a
common store like a database.

● Avoid using the Shared Property Manager (SPM). The SPM is designed for
storing small pieces of information (simple strings, integers) and not complex or
large amounts of data. It uses ReaderWriterlock to synchronize single-write and
multiple-reads; therefore, storing large amounts of data can cause throughput
bottlenecks and high CPU. Using this feature causes server affinity, so you cannot
use it in applications that will be deployed in a Web farm or application cluster.
Even for single machine scenarios, do not use it as a cache or as a placeholder for
complex data.

http://support.microsoft.com/default.aspx?scid=kb;en-us;317336

390 Improving .NET Application Performance and Scalability

More Information
For more information, see “Design Stateless Components” and “Object Pooling” in
this chapter. Also see “State Management” in Chapter 3, “Design Guidelines for
Application Performance.”

Resource Management
Inefficient resource management is a common cause of performance and scalability
issues in Enterprise Services applications. The most common types of resources you
need to manage in Enterprise Services applications are database connections,
memory, and COM objects (although Enterprise Services hides the fact that there can
be unmanaged COM objects beneath the managed components that you usually deal
with).

For more information, see “Resource Management” in Chapter 3, “Design Guidelines
for Application Performance.” To ensure that your serviced components manage
resources as efficiently as possible, use the following the guidelines:
● Optimize idle time management for server applications.
● Always call Dispose.
● If you call COM components, consider calling ReleaseComObject.

Optimize Idle Time Management for Server Applications
COM+ shuts down the host process (Dllhost.exe) after a configured period of
inactivity (the idle time) from any client. By default, the process stays in memory for
three minutes if there are no clients using the application. To optimize idle time
management:
● Consider increasing the idle time if clients tend to access components in short,

sharp intervals in between lengthy periods of idle time. This will reduce the
number of process restarts.

● If your application contains a pool of objects, leave the process running idle to
avoid having to repopulate the object pool. If you expect your component to be
called every ten minutes, increase the idle time to a slightly longer time. For
example, set it to twelve minutes..

To configure the idle time, use the Advanced page of the application’s Properties
dialog box in Component Services. Values in the range 1–1440 minutes are supported.

 Chapter 8: Improving Enterprise Services Performance 391

Always Call Dispose
Client code that calls serviced components must always call the object’s Dispose
method as soon as it is finished using it. Setting the object reference to null or
Nothing is not adequate. If you do not call Dispose, unmanaged resources must go
through finalization which is less efficient and more resource intensive. Clients that
do not call Dispose can cause activity deadlock in multithreaded applications due to
the asynchronous cleanup of object references. If you do not call Dispose on pooled
objects that do not use JIT activation, the pooled objects are not returned to the pool
until they go through finalization and garbage collection. By calling Dispose, you
efficiently release the unmanaged resources (such as COM objects) used by the
serviced component and reduce memory utilization.

Calling Dispose
For class methods, you can simply call Dispose as shown in the following sample.

ComPlusLibrary comLib = new ComPlusLibrary();
comLib.Dispose();

For interface methods, you need to cast to IDisposable as shown in the following
sample:

ServicedComp.ICom comLib = new ServicedComp.ComPlusLibrary();
// comLib.Dispose(); // Dispose not available when using the interface
((IDisposable)comlib).Dispose(); // Cast to IDisposable

If your client code does not call Dispose, one workaround is to use the
DisableAsyncFinalization registry setting, but with negative consequences as
described later in this chapter.

More Information

For more information about calling Dispose and releasing serviced components,
see the following Knowledge Base articles:
● 327443, “BUG: Multithreaded Applications Can Deadlock Because of

Asynchronous Cleanup,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;327443

● 312118, “The system memory usage and the handle counts increase more than
you may expect when your application contains components that are derived
from the System.EnterpriseServices.ServicedComponent class,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;312118

● 318000, “FIX: Various Problems When You Call Transactional COM+ Components
from ASP.NET,”at http://support.microsoft.com/default.aspx?scid=kb;en-us;318000

http://support.microsoft.com/default.aspx?scid=kb;en-us;327443
http://support.microsoft.com/default.aspx?scid=kb;en-us;327443
http://support.microsoft.com/default.aspx?scid=kb;en-us;312118
http://support.microsoft.com/default.aspx?scid=kb;en-us;318000

392 Improving .NET Application Performance and Scalability

DisableAsyncFinalization Registry Setting
If your managed client code does not call Dispose to release managed serviced
components and you cannot change the client source code, as a last resort you can
consider using the DisableAsyncFinalization registry key. This key prevents the
serviced component infrastructure from co-opting user threads to help out with
cleanup (leaving all the work to the finalizer thread).

To enable this feature, create the following registry key.

HKLM\Software\Microsoft\COM3\System.EnterpriseServices
DisableAsyncFinalization = DWORD(0x1)

If You Call COM Components, Consider Calling ReleaseComObject
Consider calling ReleaseComObject if you call COM components. Examples include
hosting COM objects in COM+ and calling them from Enterprise Services or calling
them directly from a managed client, such as ASP.NET. Marshal.ReleaseComObject
helps release the COM object as soon as possible. Under load, garbage collection
(and finalization) might not occur soon enough and performance might suffer.

ReleaseComObject decrements the reference count of the RCW, which itself
maintains a reference count on the underlying COM object. When the RCW’s
internal reference count goes to zero, the underlying COM object is released.

Calling ReleaseComObject
Consider the following scenarios where you might need to call ReleaseComObject:
● ASP.NET calling a COM component hosted in unmanaged COM+. The ASP.NET

code should call ReleaseComObject when it has finished using the component.
● ASP.NET calling a serviced component that wraps and internally calls a COM

component. In this case, you should implement Dispose in your serviced
component and your Dispose method should call ReleaseComObject. The
ASP.NET code should call your serviced component’s Dispose method.

● Using a Queued Component recorder proxy or an LCE event class. In both cases,
you are invoking unmanaged COM+ code.

Note: If you call ReleaseComObject before all clients have finished using the COM object, an
exception will be generated, if the object is subsequently accessed.

 Chapter 8: Improving Enterprise Services Performance 393

Marshal.Release
Calling the Marshal.Release method is unnecessary unless you manually manage
object lifetime using Marshal.AddRef. It is also applicable when you call
Marshal.GetComInterfaceForObject, Marshal.GetIUnknownForObject, or
Marshal.GetIDispatchForObject to obtain an IUnknown interface pointer.

More Information

For more information about calling ReleaseComObject when you reference regular
COM components (nonserviced) through COM interop, see
“Marshal.ReleaseComObject” in Chapter 7, “Improving Interop Performance.”

Summary of Dispose, ReleaseComObject, and Release Guidelines
You should only call ReleaseComObject where your managed code references an
unmanaged COM+ component. In this instance, the unmanaged COM+ component
will not provide a Dispose method. In cases where managed client code references a
managed serviced component, the client code can and should call Dispose to force
the release of unmanaged resources because all managed serviced components
implement IDisposable.

Table 8.4 summarizes when you need to call ReleaseComObject.

Table 8.4: When to Call Dispose, ReleaseComObject, and IUnknown.Release

Client

Server

Call Dispose

Call
ReleaseComObject

Call
IUnknown.Release

Managed Managed
component using ES

Yes No No

Managed Unmanaged
component
using COM+

No Yes No

Unmanaged Managed
component using ES

Yes No Yes

Unmanaged Unmanaged
component
using COM+

No No Yes

Note that unmanaged code should always call IUnknown.Release. If unmanaged
code references a managed component using Enterprise Services, it should also first
call Dispose on the COM Callable Wrapper (CCW) through which it communicates
with the managed object. If unmanaged code references an unmanaged COM+
component, it simply calls IUnknown.Release.

394 Improving .NET Application Performance and Scalability

The following are general guidelines:
● Cast to IDisposable. If the call is successful, call Dispose.
● Cast to Marshal. If the call is successful, call ReleaseComObject.

Queued Components
Enterprise Services provides a queuing feature for applications that require
asynchronous and offline processing. Components that support this feature are
referred to as Queued Components (QC). When your code calls a method on a
queued component, the method calls are not directly executed; they are “recorded”
on the client and then dispatched transparently by Microsoft Windows Message
Queuing (also known as MSMQ) to the server. Subsequently on the server, they are
“replayed” to the target object and the appropriate method implementation is
executed.

Queued Components completely abstract the underlying Message Queuing details.
The basic QC architecture is shown in Figure 8.5.

Client Process

Recorder Proxy

Message
Queuing

Server Process (Dllhost.exe)

Target
Object

Message
Queuing

Listener

Player
Thread Pool

Public Message
Queue

Reliable Delivery

Figure 8.5
Basic queued component architecture

 Chapter 8: Improving Enterprise Services Performance 395

The core elements of the QC architecture are as follows:
● Recorder proxy. This object provides an implementation of those interfaces that

are marked in the COM+ catalog as queued interfaces. The recorder uses the
Message Queuing API to send a message containing recorded method calls to the
server.

● Message Queuing. This is used to provide a reliable delivery mechanism to
transport the recorded method calls to the server application. It also supports
transactions.

● Listener. The listener is an extension of Dllhost.exe. It uses the Message Queuing
API to receive messages from the process’s public message queue.

● Player. The system-provided player component creates the target object instance
and forwards method calls to the target object, using the unpackaged contents of
the message.

If you plan to or are using Queued Components, consider the following guidelines:
● Use Queued Components to decouple client and server lifetimes.
● Do not wait for a response from a queued component.

Use Queued Component to Decouple Client and Server Lifetimes
Queued Components enable you to decouple your application’s front end from
back-end systems. This has a number of key benefits:
● Improves performance. Clients become more responsive because they are not

awaiting back-end system processing. Synchronous communications force the
client to wait for a server response whether or not one is required. This can cause
significant delays on slow networks.

● Improves availability. In a synchronous system, no part of a business transaction
can complete successfully unless all components are available. In a queued
message-based system, the user interaction portion of the transaction can be
separated from the availability of the back-end system. Later, when the back-end
system becomes available, messages are moved for processing and subsequent
transactions complete the business process.

● Facilitates server scheduling. An application using asynchronous messaging is
well-suited to deferring noncritical work to an off-peak period. Messages can be
queued and processed in batch mode during off-peak periods to reduce demands
on servers and CPUs.

396 Improving .NET Application Performance and Scalability

Do Not Wait for a Response from a Queued Component
Method calls made to a queued component return immediately. QC is a “fire and
forget” model and COM+ does not allow you to return values from a queued
component. One of the ways to address this issue is to send a response back from the
server using a separate message to a queued component that resides in the client
process. However, the client should not wait for a response before proceeding
because it cannot guarantee when the server will read and process the call from its
queue. The target server may be offline or unreachable due to network issues, or the
client might be disconnected.

If you need to ensure that a dispatched message is processed in a particular amount
of time, include an expiration time in the message. The target component can check
this before processing the message. If the message expires, it can log the message
details. Even with this solution, synchronizing time between disparate systems is
challenging. If the client absolutely has to have a response from the server before
moving on to its next operation, do not use Queued Components.

Loosely Coupled Events
The COM+ loosely coupled event (LCE) service provides a distributed publisher-
subscriber model. You define and register an “event” class that implements an
interface that you also define. Subscriber components implement this interface and
register themselves with COM+. When a publisher calls a method on the event class,
the method call is forwarded by COM+ to all registered subscriber objects. You can
add subscribers administratively or at run time, and the lifetime of the publisher and
subscriber can be completely decoupled by combining queued components with the
LCE service. The basic LCE service architecture is shown in Figure 8.6.

 Chapter 8: Improving Enterprise Services Performance 397

Publisher

Event Class
Optional
Message
Queuing

COM+ Event
Service

Subscribers
Optional
Message
Queuing

COM+
Catalog

Subscription List

Figure 8.6
LCE service architecture

For more information about the architecture of LCE, see “COM+ Technical Series:
Loosely Coupled Events,” on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dncomser/html/compluscouple.asp.

The .NET Framework provides a number of event models including delegate-based
events for in-process event notification. The advantage of COM+ LCE is that it works
cross-process and cross-machine in a distributed environment. Some of the benefits of
LCE are the following:
● You benefit from a loosely coupled system design.
● Server resources are not blocked and therefore concurrency and synchronization

issues are avoided.
● Server and client lifetimes are decoupled.
● Scalability is high, especially when used along with Queued Components.

If you need to implement a distributed publisher-subscriber model, consider the
following guidelines:
● Consider the fire in parallel option.
● Avoid LCE for multicast scenarios.
● Use Queued Components with LCE from ASP.NET.
● Do not subscribe to LCE events from ASP.NET.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/compluscouple.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/compluscouple.asp

398 Improving .NET Application Performance and Scalability

Consider the Fire in Parallel Option
When a publisher raises an event, the method call does not return until all subscriber
components are activated and contacted. With large numbers of subscribers, this can
severely affect performance. You can use the FireInParallel property to instruct the
event system to use multiple threads to deliver events to subscribers.

public interface ICustomInterface
{
 void OnEventA();
 void OnEventB();
}
[EventClass(FireInParallel = true)]
public class CustomClass : ServicedComponent, ICustomInterface
{
 public void OnEventA();
 public void OnEventB();
}

This approach can increase performance in certain circumstances, particularly when
one or more of the subscribers take a long time to process the notification.

Note: Selecting Fire in parallel does not guarantee that the event is delivered at the same time to
multiple subscribers, but it instructs COM+ to permit it to happen.

You can set the Fire in parallel option on the Advanced tab of the event class
component’s Properties dialog box.

Potential Pitfalls
Fire in parallel might mean that the subscribers gain concurrent access to the same
objects. For example, if you use a DataSet as a parameter, you might end up with
many threads accessing it. As a result, observe the following:
● Do not use STA objects as parameters to LCE events.
● Make your LCE subscribers read only the data. Otherwise, you might run into

synchronization issues where subscriber A writes to the same object at the same
time as subscriber B reads from it.

Avoid LCE for Multicast Scenarios
Evaluate whether you have too many subscribers for an event, because LCE is not
designed for large multicast scenarios where large numbers of subscribers need to be
notified. For this scenario, you usually do not know or do not care whether
notifications are received, and you do not want to block awaiting a response from
each subscriber.

 Chapter 8: Improving Enterprise Services Performance 399

When you have large numbers of subscribers, a good alternative is to use User
Datagram Protocol (UDP) to deliver messages over the network; for example, by
using the Socket class.

Use Queued Components with LCE from ASP.NET
If you want to publish events from an ASP.NET application, configure the event class
as a queued component. This causes the event to be published asynchronously and
does not block the main thread servicing the current ASP.NET request.

Do Not Subscribe to LCE Events from ASP.NET
The transient nature of the page class makes it difficult to subscribe to loosely
coupled events from an ASP.NET application without blocking and waiting for the
event to occur. This approach is not recommended.

More Information

For more information, see Microsoft Knowledge Base article 318185, “HOW TO:
Use Loosely Coupled Events from Visual Studio .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;318185.

Transactions
Transactions enable you to perform multiple tasks together or fail as a unit. You can
perform transactions on a single resource or span multiple resources with distributed
transactions. Enterprise Services and COM+ use the Microsoft Distributed
Transaction Coordinator (DTC) to manage distributed transactions. You can quickly
and easily add transaction support to your components by configuring the necessary
attributes and adding a few lines of code. However, before you configure your
components to use transactions, consider the following guidelines:
● Choose the right transaction mechanism.
● Choose the right isolation level.
● Use compensating transactions to reduce lock times.

Choose the Right Transaction Mechanism
Avoid configuring your components to use transactions unless you really need them.
If your component reads data from a database only to display a report, there is no
need for any type of transaction. If you do need transactions because you are
performing update operations, choose the right transaction mechanism.

http://support.microsoft.com/default.aspx?scid=kb;en-us;318185
http://support.microsoft.com/default.aspx?scid=kb;en-us;318185

400 Improving .NET Application Performance and Scalability

Use Enterprise Services transactions for the following:
● You need to flow a transaction in a distributed application scenario. For example,

you need to flow transactions across components.
● You require a single transaction to span multiple remote databases.
● You require a single transaction to encompass multiple resource managers; for

example, a database and Message Queuing resource manager.

Choose the Right Isolation Level
Transaction isolation levels determine the degree to which transactions are protected
from the effects of other concurrent transactions in a multiuser system. A fully
isolated transaction offers complete isolation and guarantees data consistency;
however, it does so at the expense of server resources and performance. When
choosing an isolation level, consider the following guidelines:
● Use Serializable if data read by your current transaction cannot by changed by

another transaction until the current transaction is finished. This also prevents
insertion of new records that would affect the outcome of the current transaction.
This offers the highest level of data consistency and least concurrency compared to
other isolation levels.

● Use Repeatable Read if data read by your current transaction cannot by changed
by another transaction until the current transaction is finished; however, insertion
of new data is acceptable.

● Use Read Committed if you do not want to read data that is modified and
uncommitted by another transaction. This is the default isolation level of
SQL Server.

● Use Read Uncommitted if you do not care about reading data modified by others
(dirty reads) which could be committed or uncommitted by another transaction.
Choose this when you need highest concurrency and do not care about dirty
reads.

● Use Any for downstream components that need to use the same isolation level as
an upstream component (transactions flowing across components). If the root
component uses Any, the isolation level used is Serializable.

When you flow transactions across components, ensure that the isolation level for
downstream components is set to Any, the same value as the upstream component or
a lower isolation level. Otherwise, a run-time error occurs and the transaction is
canceled.

 Chapter 8: Improving Enterprise Services Performance 401

Configuring the Isolation Level
On Microsoft Windows 2000 Server, it is not possible to change the isolation level
when you use automated transactions. Consider using manual transactions such as
ADO.NET transactions, using T-SQL hints, or adding the following line to your
stored procedures.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

On Microsoft Windows Server 2003, you can configure the isolation level either
administratively, by using Component Services, or programmatically, by setting the
Transaction attribute for your component as shown in the following code sample.

[Transaction(Isolation=TransactionIsolationLevel.ReadCommitted)]

More Information
● For more information about isolations levels and how to change them, see

Microsoft Knowledge Base article 295570, “INFO: Transactions and Isolation
Levels in COM+,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;295570.

● For more information about how to choose an appropriate isolation level,
see “Transactions” in Chapter 12, “Improving ADO.NET Performance.”

● For more information about how to trace DTC transactions, see “DTC Tracing” in
Platform SDK: COM+ (Component Services) on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cossdk/htm/pgdtc_admin_04pz.asp.

Use Compensating Transactions to Reduce Lock Times
A compensating transaction is a separate transaction that undoes the work of a
previous transaction. Compensating transactions are a great way to reduce lock times
and to avoid long running synchronous transactions. To reduce the length of a
transaction, consider the following:
● Do only work directly related to the transaction in the scope of the transaction.
● Reduce the number of participants in the transaction by breaking the transaction

into smaller transactions.

Consider an example where a Web application has to update three different databases
when processing a request. When the system is under load, transactions might begin
to time out frequently. The problem here is that all three databases have to hold locks
until all three complete the work and report back to the transaction coordinator. By
using compensating transactions, you can break the work into three logical pieces —
each of which can complete faster, releasing locks sooner — and therefore increase
concurrency. The trade-off here is that you will have to create code that coordinates a
“logical” transaction and deal with failure conditions if one of the updates fails. In
this event, you need to execute a compensating transaction on the other two
databases to keep data consistent across all three.

http://support.microsoft.com/default.aspx?scid=kb;en-us;295570
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgdtc_admin_04pz.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgdtc_admin_04pz.asp

402 Improving .NET Application Performance and Scalability

More Information
For more information about performing distributed transaction with a .NET
Framework provider, see the following Knowledge Base articles:
● 316247, “HOW TO: Perform a Distributed Transaction with a .NET Provider by

Using ServicedComponent in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;316247

● 316627, “HOW TO: Perform a Distributed Transaction with a .NET Provider by
Using ServicedComponent in Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;316627

Security
Security and performance is a trade-off. The trick is to develop high performance
systems that are still secure. A common pitfall is to reduce security measures to
improve performance. The following recommendations help you to build secure
solutions while maximizing performance and scalability:
● Use a trusted server model if possible.
● Avoid impersonation in the middle tier.
● Use packet privacy authentication only if you need encryption.

Use a Trusted Server Model if Possible
With the trusted server model, a serviced component uses its fixed process identity to
access downstream resources instead of flowing the security context of the original
caller with impersonation. Since all database calls from the middle tier use the same
process identity, you gain the maximum benefit from connection pooling. For a server
application, you configure the process run as identity, using the Component Services
tool. For a library application, the identity is determined by the account used to run
the client process. With the trusted server model, the downstream resources
authenticate and authorize the process identity.

More Information

For more information, see “The Trusted Subsystem Model” in Chapter 3,
“Authentication and Authorization,” of Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch03.asp.

http://support.microsoft.com/default.aspx?scid=kb;en-us;316247
http://support.microsoft.com/default.aspx?scid=kb;en-us;316247
http://support.microsoft.com/default.aspx?scid=kb;en-us;316627
http://support.microsoft.com/default.aspx?scid=kb;en-us;316627
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp

 Chapter 8: Improving Enterprise Services Performance 403

Avoid Impersonation in the Middle Tier
Middle tier impersonation is generally performed to flow the original caller’s identity
to the back-end resource. It allows the back-end resource to authorize the caller
directly because the caller’s identity is used for access. You should generally avoid
this approach because it prevents the efficient use of connection pooling and it does
not scale.

If you need to audit the caller at the back end, pass the original caller’s identity
through a stored procedure parameter. Authorize the original caller in the
application’s middle tier using Enterprise Service roles.

More Information

For more information, see “Choosing a Resource Access Model” in Chapter 3,
“Authentication and Authorization,” of Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch03.asp.

Use Packet Privacy Authentication Only if You Need Encryption
If you need to ensure that packets have not been tampered with in transit between
the caller and serviced component, and you do not need encryption, then use
AuthenticationOption.Integrity. If you need to ensure the privacy of data sent to
and from a serviced component, you should consider using
AuthenticationOption.Privacy.

However, do not use this option if your application is located in a secure network
that uses IPSec encryption to protect the communication channels between servers.
You can configure the packet privacy authentication level using the following
assembly-level attribute.

[assembly: ApplicationAccessControl(Authentication =
 AuthenticationOption.Privacy)]

More Information

For more information, see the following resources:
● “RPC Encryption” in Chapter 4, “Secure Communication,” of Building Secure

ASP.NET Applications: Authentication, Authorization, and Secure Communication
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/SecNetch04.asp

● “AuthenticationLevel Enumeration” in the .NET Framework Class
Library on MSDN at http://msdn.microsoft.com/library/en-us/cpref/html
/frlrfsystemmanagementauthenticationlevelclasstopic.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch04.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemmanagementauthenticationlevelclasstopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemmanagementauthenticationlevelclasstopic.asp

404 Improving .NET Application Performance and Scalability

Threading
Enterprise Services-serviced components built using Microsoft Visual C# or Microsoft
Visual Basic .NET do not exhibit thread affinity because their threading model is set
to Both. This setting indicates that the component can be activated in a STA or MTA
depending on the caller. The component will be created in the same apartment as its
caller.

Avoid STA Components
STA components such as Visual Basic 6.0 components with the Single threading
model serialize all callers onto a single STA thread. As a result, an expensive thread
switch and cross apartment marshaling occurs every time the object is called.

In addition to the costly thread switches, using STA components creates problems
due to the fact that multiple requests made for STA objects are queued until the
thread servicing the STA object is free to serve the queued requests. The required STA
thread might already be busy or blocked servicing another request for another
component in the same STA. This in turn blocks the caller and creates a significant
bottleneck.

More Information

For more information about reducing threading bottlenecks, see “Reduce or
Avoid Cross-Apartment Calls” in Chapter 7, “Improving Interop Performance.”

For more information about threads and apartments, see “Marshaling and
COM Apartments” in “Interop Marshaling Overview” of the .NET Framework
Developer’s Guide on MSDN at http://msdn.microsoft.com/library/en-us/cpguide/html
/cpconinteropmarshalingoverview.asp.

Synchronization Attribute
You use the Synchronization attribute to synchronize access to a class and guarantee
that it can be called by only one caller at a time. Serviced components that are
configured for transactions and JIT activation are automatically synchronized.
Generally, in a server application, you do not need to worry about synchronizing
access to a serviced component’s class members because by default each component
services a single client request and concurrent access does not occur.

If you use a serviced component in a library application from a multithreaded client,
you might need synchronized access due to the potential of multiple threads
accessing components simultaneously. Also, global variables require separate
synchronization.

http://msdn.microsoft.com/library/en-us/cpguide/html/cpconinteropmarshalingoverview.asp
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconinteropmarshalingoverview.asp

 Chapter 8: Improving Enterprise Services Performance 405

Use Locks or Mutexes for Granular Synchronization
You can use the Synchronization attribute only at the class level. This means that all
access to an object instance is synchronized. Consider the following example.

public interface ICustomInterface
{
 void DoSomething();
}
[Transaction(TransactionOption.Required)]
[Synchronization(SynchronizationOption.Required)]
[JustInTimeActivation(true)]
public class CustomClass : ServicedComponent, ICustomInterface
{
 public void DoSomething();
}

If you need to synchronize only a small part of your object’s code; for example, to
ensure that a file or global variable is not accessed concurrently, use the C# Lock
keyword instead.

More Information

For more information about .NET Framework synchronization classes, see “Locking
and Synchronization Explained,” in Chapter 5, “Improving Managed Code
Performance.”

Summary
Enterprise Services (COM+) provides a broad range of important infrastructure-level
features for middle tier components, including distributed transaction management,
object pooling, and role-based security.

Start by considering whether you need services. If you do, consider whether you
can use a highly efficient library application or whether you need the added fault
tolerance and security benefits provided by server applications. Physical deployment
considerations might determine that you need server applications. Remember that
server applications incur the added overhead of IPC, marshaling, and additional
security checks.

After you decide to use Enterprise Services, use the guidance in this chapter to ensure
that you use each service as efficiently as possible.

406 Improving .NET Application Performance and Scalability

Additional Resources
For more information about Enterprise Services performance, see the following
resources in this guide:
● For a printable checklist, see “Checklist: Enterprise Services Performance”

in the “Checklists” section of this guide.
● Chapter 4 “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the “Enterprise

Services” section.
● Chapter 15, “Measuring .NET Application Performance.” See the “Enterprise

Services” section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “Enterprise Services

Tuning” section.
● For key recommendations to help you create high-performance .NET Enterprise

Service components, ,see “.NET Enterprise Services Performance” on MSDN at
http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp.

● For more information about Web services, see Chapter 10, “Improving Web
Services Performance.”

● For more information about remoting, see Chapter 11, “Improving Remoting
Performance.”

For related resources, see the following Microsoft Knowledge Base articles:
● 315707, “HOW TO: Use COM+ Transactions in a Visual Basic .NET Component,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;315707
● 312902, “HOW TO: Create a Serviced .NET Component in Visual Basic .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;312902
● 816141, “HOW TO: Use COM+ Transactions in a Visual C# .NET Component,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;816141
● 324813, “Support WebCast: Microsoft COM+ and the Microsoft .NET Framework,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;324813
● 820459, “PRB: Application Center CLB and COM+ Replication Only Support Some

.NET Assemblies,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;820459
● 327782, “FIX: Performance Degrades When You Call Methods of a

ServicedComponent,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;327782

http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;315707
http://support.microsoft.com/default.aspx?scid=kb;en-us;312902
http://support.microsoft.com/default.aspx?scid=kb;en-us;816141
http://support.microsoft.com/default.aspx?scid=kb;en-us;324813
http://support.microsoft.com/default.aspx?scid=kb;en-us;820459
http://support.microsoft.com/default.aspx?scid=kb;en-us;327782
http://support.microsoft.com/default.aspx?scid=kb;en-us;327782

 Chapter 8: Improving Enterprise Services Performance 407

● 327443, “BUG: Multithreaded Applications Can Deadlock Because of
Asynchronous Cleanup,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;327443

● 318000, “FIX: Various Problems When You Call Transactional COM+ Components
from ASP.NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;318000

● 312118, “The system memory usage and the handle counts increase more than
you may expect when your application contains components that are derived
from the System.EnterpriseServices.ServicedComponent class,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;312118

For further reading, see the following resource:
● For Enterprise Services frequently asked questions (FAQ), see the “Enterprise

Services FAQ,” at http://www.gotdotnet.com/team/xmlentsvcs/esfaq.aspx.

http://support.microsoft.com/default.aspx?scid=kb;en-us;327443
http://support.microsoft.com/default.aspx?scid=kb;en-us;327443
http://support.microsoft.com/default.aspx?scid=kb;en-us;318000
http://support.microsoft.com/default.aspx?scid=kb;en-us;312118
http://www.gotdotnet.com/team/xmlentsvcs/esfaq.aspx

9
Improving XML Performance

Objectives
● Optimize XML processing design.
● Parse XML documents efficiently.
● Validate XML documents efficiently.
● Optimize your XML Path Language (XPath) queries.
● Write efficient XSL Transformations (XSLT).

Overview
When you build .NET applications, you use XML extensively. It is used to represent
the message payload for Web services, and it is used by many Web applications to
pass data across application layers. XML is platform-neutral, making it one of the best
technologies for interoperability between disparate systems such as UNIX or
mainframes integration with Windows.

While XML is extremely flexible and relatively easy to use, for some applications it
may not be the best data representation. The text-based and verbose nature of XML,
and the fact that it includes metadata (element and attribute names), means that it is
not a compact data format. XML can require substantial processing effort.

The precise performance impact associated with processing XML depends on several
factors that include the size of the data, the parsing effort required to process the
data, the nature of any transformations that might be required, and the potential
impact of validation. You should analyze the way your application processes XML
because this area often accounts for a sizable portion of your application’s per-request
processing effort.

410 Improving .NET Application Performance and Scalability

This chapter starts by providing a brief overview of XML in the Microsoft .NET
Framework. It then highlights the main performance and scalability issues that tend
to arise as a result of inefficient XML processing. The chapter then presents guidelines
and recommendations that help you optimize the way you parse, validate, write, and
transform XML.

How to Use This Chapter
Use this chapter to help design and implement effective XML processing in your
applications. To get the most out of this chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of the issues that are
related to designing for performance and scalability.

● Use the checklist. Use the “Checklist: XML Performance” checklist in the
“Checklist” section of this guide to quickly view and evaluate the guidelines
presented in this chapter.

● Use the “Architecture” section of this chapter to understand how XML works.
By understanding the architecture, you can make better design and
implementation choices.

● Use the “Design Considerations” section of this chapter to understand the
high-level decisions that affect implementation choices for XML performance.

● Read Chapter 13, “Code Review: .NET Application Performance.”
● Measure your application performance. Read the “.NET Framework

Technologies” section of Chapter 15, “Measuring .NET Application Performance,”
to learn about the key metrics that you can use to measure application
performance. It is important for you to measure application performance so that
performance issues can be accurately identified and resolved.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important to apply a coherent testing process and to analyze the results.

● Tune your application performance. Read Chapter 17, “Tuning .NET Application
Performance,” to learn how to resolve performance issues identified through the
use of tuning metrics.

 Chapter 9: Improving XML Performance 411

Architecture
The .NET Framework provides a comprehensive set of classes for XML manipulation.
In addition to XML parsing and creation, these classes also support the World Wide
Web Consortium (W3C) XML standards. These W3C XML standards include
Document Object Model (DOM), XSLT, XPath 1.0, and XML Schema. The top-level
namespace that contains XML-related classes is System.Xml.

The following list briefly describes the major XML-related classes:
● XmlReader. The XmlReader abstract base class provides an API for fast,

forward-only, read-only parsing of an XML data stream. XmlReader is similar to
Simple API for XML (SAX), although the SAX model is a “push” model where the
parser pushes events to the application and notifies the application every time a
new node is read. Applications that use XmlReader can pull nodes from the
reader at will. The following are the three concrete implementations of
XmlReader:
● XmlTextReader. You use this class to read XML streams.
● XmlNodeReader. You use this class to provide a reader over a given

DOM-node subtree. It reads and then returns nodes from the subtree.
● XmlValidatingReader. You use this class to read and validate XML data,

according to predefined schemas that include document type definitions (DTD)
and W3C XML schemas.

● XmlWriter. The XmlWriter abstract base class is used to generate a stream of XML.
The .NET Framework provides an implementation in the form of the
XmlTextWriter class. You use this class as a fast, noncached, forward-only way
to generate streams or files that contain XML data.

● XmlDocument. The XmlDocument class is an in-memory or cached tree
representation of an XML document. You can use it to edit and navigate the
document. While XmlDocument is easy to use, it is very resource-intensive.
You should generally use XmlReader and XmlWriter for better performance.
XmlDocument implements the W3C DOM Level 1 and Level 2 recommendations,
although it has been tailored to the .NET Framework. For example, in the .NET
Framework, method names are capitalized, and common language runtime (CLR)
types are used.

● XslTransform. You use the XslTransform class to perform XSLT transformations.
It is located in the System.Xml.Xsl namespace.

412 Improving .NET Application Performance and Scalability

● XPathNavigator. The XPathNavigator abstract base class provides random
read-only access to data through XPath queries over any data store. Data stores
include the XmlDocument, DataSet, and XmlDataDocument classes. To create
an XPathNavigator object, use the CreateNavigator method. XPathNavigator also
provides a cursor API for navigating a document. The XPathNavigator class is
located in the System.Xml.XPath namespace.

● XPathDocument. The XPathDocument class is optimized for XSLT processing and
for the XPath data model. You should always use XPathDocument with the
XslTransform class. The XPathDocument class is located in the
System.Xml.XPath namespace.

● XmlSerializer. You use the XmlSerializer class to perform object-to-XML
serialization and vice versa. It is located in the System.Xml.Serialization
namespace. You can use this class to convert the public properties and fields of
a .NET Framework object to XML format.

● XmlDataDocument. The XmlDataDocument class extends XmlDocument.
It provides both relational data representation of DataSet and hierarchical data
representation of DOM. Data can be manipulated by using DOM or DataSet
object. To load a DataSet with XML data, use the ReadXmlSchema class to build
a relational mapping. The XML data can then be loaded by using the ReadXml
method. To load a DataSet with relational data, specify the DataSet that contains
the relational data as the parameter in the XmlDataDocument constructor.

● XmlSchema. The XmlSchema class contains the definition of a schema. All XML
schema definition language (XSD) elements are children of the schema element.
XmlSchema represents the W3C schema element.

● XmlSchemaCollection. The XmlSchemaCollection class is a library of
XmlSchema objects that can be used with XmlValidatingReader to validate XML
documents. Typically, this is loaded once at application startup and then reused
across components.

 Chapter 9: Improving XML Performance 413

The main XML namespaces and principal types are shown in Figure 9.1.

System.Xml

System.Xml.Xsl

System.Xml.Xpath

XmlReader
XmlWriter

XmlDocument

XmlTextWriter

XmlNodeReader

XslTransform

XPathNavigatorXmlValidatingReader

XPathDocument

XmlTextReader

Figure 9.1
XML namespaces and principal types

Performance and Scalability Issues
The main XML-related issues that affect the performance and scalability of your
application are summarized in the following list. Subsequent sections in this chapter
provide strategies and technical implementation details to prevent or resolve each of
these issues.
● Resource consumption. Processing large XML documents can cause high CPU,

memory, and bandwidth utilization. XML is a verbose and text-based
representation. Therefore, XML documents are larger than binary representations
of the same data. These issues are magnified if users access your application over
low-bandwidth networks, or if many users connect to the application at the same
time.

● Extreme memory consumption. Using the DOM-model and the XmlDocument
or XPathDocument classes to parse large XML documents can place significant
demands on memory. These demands may severely limit the scalability of
server-side Web applications.

414 Improving .NET Application Performance and Scalability

● Inefficient transformations. Choosing the wrong transformation approach,
building inefficient XPath queries, or processing large and poorly-structured
source XML files can affect the performance of your application’s transformation
logic. You should transform application data to XML just before the data leaves
the boundaries of the application. Keeping the data in binary format is the most
efficient way to perform data manipulations.

● Inappropriate use of the DataSet. It is a common misconception that the DataSet
is an XML store. It is not designed to be an XML store, although it does provide
XML functionality. You cannot perform efficient XPath queries by using a DataSet,
and it cannot represent all forms of XML. The DataSet provides a disconnected
cache of data and is useful in some scenarios where you want to pass data across
application layers. However, it should not be used for general-purpose XML
manipulation of data.

● Failure to cache and to precompile schemas, style sheets, and XPath queries.
XML schemas, XSLT, and XPath must be interpreted before the .NET Framework
classes can process them. The .NET Framework classes that represent each of
these items provide a mechanism for preprocessing and caching the resources.
Preprocessing is also called compilation in some cases. For example, XSLT style
sheets should be precompiled and cached for repeated use, as should XML
schemas.

● Inefficient data retrieval. Retrieving XML data from a data source on a
per-request basis, rather than caching the data, can cause performance bottlenecks.

Design Considerations
Appropriate design decisions can help you address many XML-related performance
issues early in the application life cycle. The following recommendations help to
ensure that XML processing in your application does not lead to performance and
scalability issues:
● Choose the appropriate XML class for the job.
● Consider validating large documents.
● Process large documents in chunks if possible.
● Use streaming interfaces.
● Consider hard-coded transformations.
● Consider element and attribute name lengths.
● Consider sharing the XmlNameTable.

 Chapter 9: Improving XML Performance 415

Choose the Appropriate XML Class for the Job
To help you choose the appropriate .NET Framework class to process XML, consider
the following guidelines:
● Use XmlTextReader to process XML data quickly in a forward, read-only manner

without using validation, XPath, and XSLT services.
● Use XmlValidatingReader to process and to validate XML data. Process and

validate the XML data in a forward, read-only manner according to an XML
schema or a DTD.

● Use XPathNavigator to obtain read-only, random access to XML data and to use
XPath queries. To create an XPathNavigator object over an XML document, you
must call the XPathDocument.CreateNavigator method.

● Use XmlTextWriter to write XML documents. You cannot use XmlTextWriter
to update XML documents.

● Use the XmlTextReader and XmlTextWriter, in combination, for simple
transformations rather than resorting to loading an XmlDocument or using XSLT.
For example, updating all the price element values in a document can be achieved
by reading with the XmlTextReader, updating the value and then writing to the
XmlTextWriter, typically by using the WriteNode method.

● Use the XmlDocument class to update existing XML documents, or to perform
XPath queries and updates in combination. To use XPath queries on the
XmlDocument, use the Select method.

● If possible, use client-side XML processing to improve performance and to reduce
bandwidth.

Consider Validating Large Documents
When you use the XmlDocument class to load a large document that contains errors
because the format is not correct, you waste memory and CPU resources. Consider
validating the input XML if there is a reasonable chance that the XML is invalid. In a
closed environment, you might consider validation an unnecessary overhead, but the
decision to use or not use validation is a design decision you need to consider.

You can perform the validation process and other operations at the same time
because the validation class derives from XmlReader. For example, you can use
XmlValidatingReader with XmlSerializer to deserialize and validate XML at the
same time. The following code fragment shows how to use XmlValidatingReader.

// payload is the Xml data
StringReader stringReader = new StringReader(payload);
XmlReader xmlReader = new XmlTextReader(stringReader);
XmlValidatingReader vreader = new XmlValidatingReader(xmlReader);
vreader.Schemas.Add(XmlSchema.Read(
 new XmlTextReader("xyz.xsd"), null));
vreader.ValidationType = ValidationType.Schema;
vreader.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);

416 Improving .NET Application Performance and Scalability

You can also use a validating read with XmlDocument by passing the validating
reader instance to the XmlDocument.Load method, as shown in the following code
fragment.

XmlDocument doc = new XmlDocument();
doc.Load(xmlValidatingReaderInstance);

Validation comes at a performance cost and there is a tradeoff here between
validating the XML documents early to catch invalid content as opposed to the
additional processing time that validation takes even in a streaming scenario.
Typically, using the XmlValidatingReader to validate an XML document is two to
three times slower than using the XmlTextReader without validation and deciding
on whether to perform validation depends on your particular application scenario.

Process Large Documents in Chunks If Possible
If you have very large XML documents to process, evaluate whether you can divide
the documents and then process them in chunks. Dividing the documents makes
processing them, by using XLST, more efficient.

Use Streaming Interfaces
Streaming interfaces, like the one provided by XmlTextReader, give better
performance and scalability, compared to loading large XML documents into the
XmlDocument or XPathDocument classes and then using DOM manipulation.

The DOM creates an in-memory representation of the entire XML document.
The XmlTextReader is different from the DOM because XmlTextReader only loads
4-kilobyte (KB) buffers into memory. If you use the DOM to process large XML files,
you can typically consume memory equivalent to three or four times the XML
document size on disk.

Consider Hard-Coded Transformations
Using XSLT may be overly complicated for certain simple transformations such
as changing a particular attribute value, replacing one node with another node,
or appending or removing nodes from a document.

If using XSLT appears to be an overly-complicated approach for a simple
transformation, you can use XmlReader and XmlWriter together to copy the
document from XmlReader to XmlWriter and then modify the document while
copying. The XmlWriter.WriteNode and XmlWriter.WriteAttributes methods receive
an XmlReader instance, and the method copies the node and its child nodes to
XmlWriter.

 Chapter 9: Improving XML Performance 417

The disadvantage of using the classes to perform the transformation is that you can
modify XSLT without having to recompile the code. However, in some situations,
it might be better to hard code a transformation. A simple example of a hard-coded
approach is shown in the following code fragment.

while(reader.Read())
{
 if(reader.LocalName == "somethingToChange")
 {
 writer.WriteStartElement("somethingChanged");
 writer.WriteAttributes(reader, false);
 //
 }
 else
 {
 writer.WriteNode(reader, false);
 }
}

Consider Element and Attribute Name Lengths
Consider the length of the element names and the length of the attribute names that
you use. These names are included as metadata in your XML documents. Therefore,
the length of an element or attribute name affects the document size. You need to
balance size issues with ease of human interpretation and future maintenance.
Try to use names that are short and meaningful.

Consider Sharing the XmlNameTable
Share the XmlNameTable class that is used to store element and attribute names
across multiple XML documents of the same type to improve performance.

XML classes like XmlTextReader and XmlDocument use the XmlNameTable class
to store elements and attribute names. When elements, attributes, or prefixes occur
multiple times in the document, they are stored only once in the XmlNameTable and
an atomized string is returned. When an element, attribute, or prefix is looked up,
an object comparison of the strings is performed instead of a more expensive string
operation.

The following code shows how to obtain access to and store the XmlNameTable
object.

System.Xml.XmlTextReader reader = new System.Xml.XmlTextReader("small.xml");
System.Xml.XmlNameTable nt = reader.NameTable;
// Store XmlNameTable in Application scope and reuse it
System.Xml.XmlTextReader reader2 = new System.Xml.XmlTextReader("Test.xml", nt);

418 Improving .NET Application Performance and Scalability

More Information

For more information about object comparisons, see MSDN article,
“Object Comparison Using XmlNameTable,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp.

Implementation Considerations
When you move from application design to development, you must carefully
consider the implementation details of your XML code.

When you write XML processing code, it is important for you to use the most
relevant .NET Framework classes. Do not use DataSet objects for general-purpose
XML manipulation of data.

When you are working with large XML documents, consider validating them first if
the cost of validation is less than the cost of redundant downstream processing. Also,
consider working with large XML documents in chunks. Consider caching schema
for repeated XML validation.

By following best-practice implementation guidelines, you can increase the
performance of your XML processing code. The following sections highlight
performance considerations for XML features and scenarios.

Parsing XML
The .NET Framework provides several ways to parse XML. The best approach
depends on your scenario:
● If you want to read the document once, use XmlTextReader. This provides

forward-only, read-only, and non-cached access to XML data. This model provides
optimized performance and memory conservation.

● If you need to edit and to query the document, use XmlDocument with the
Select command. This approach consumes large amounts of memory.

● If you want faster, read-only XPath query-based access to data, use
XPathDocument and XPathNavigator.

The .NET Framework does not provide a SAX model. The XmlReader approach
is similar and offers a number of advantages.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp

 Chapter 9: Improving XML Performance 419

The following recommendations help you to ensure that XML parsing in your
application is as efficient as possible:
● Use XmlTextReader to parse large XML documents.
● Use XmlValidatingReader for validation.
● Consider combining XmlReader and XmlDocument.
● On the XmlReader use the MoveToContent and Skip methods to skip

unwanted items.

Use XmlTextReader to Parse Large XML Documents
Use the XmlTextReader class to process large XML documents in an efficient,
forward-only manner. XmlTextReader uses small amounts of memory. Avoid using
the DOM because the DOM reads the entire XML document into memory. If the
entire XML document is read into memory, the scalability of your application is
limited. Using XmlTextReader in combination with an XmlTextWriter class permits
you to handle much larger documents than a DOM-based XmlDocument class.

The following code fragment shows how to use XmlTextReader to process large
XML documents.

while (reader.Read())
{
 switch (reader.NodeType)
 {
 case System.Xml.XmlNodeType.Element :
 {
 if(reader.Name.Equals("patient")
 && reader.GetAttribute("number").Equals("25"))
 {
 doc = new System.Xml.XmlDocument();
 XmlNode node = doc.ReadNode(reader);
 doc.AppendChild(node);
 }
 break;
 }
 }
}

You can only use XmlTextReader and XmlValidatingReader to process files that are
up to 2 gigabytes (GB) in size. If you need to process larger files, divide the source file
into multiple smaller files or streams.

Use XmlValidatingReader for Validation
If you need to validate an XML document, use XmlValidatingReader. The
XmlValidatingReader class adds XML Schema and DTD validation support to
XmlReader. For more information, see “Validating XML” later in this chapter.

420 Improving .NET Application Performance and Scalability

Consider Combining XmlReader and XmlDocument
In certain circumstances, the best solution may be to combine the pull model and the
DOM model. For example, if you only need to manipulate part of a very large XML
document, you can use XmlReader to read the document, and then you can construct
a DOM that has only the data required for additional modification. This approach is
shown in the following code fragment.

while (reader.Read())
{
 switch (reader.NodeType)
 {
 case System.Xml.XmlNodeType.Element :
 {
 if(reader.Name.Equals("patient")
 && reader.GetAttribute("number").Equals("25"))
 {
 doc = new System.Xml.XmlDocument();
 XmlNode node = doc.ReadNode(reader);
 doc.AppendChild(node);
 }
 break;
 }
 }
}

On the XmlReader, Use the MoveToContent and Skip Methods to Skip
Unwanted Items
Use the XmlReader.MoveToContent method to skip white space, comments, and
processing instructions, and to move to the next content element. MoveToContent
skips to the next Text, CDATA, Element, EndElement, EntityReference, or
EndEntity node. You can also skip the current element by using the XmlReader.Skip
method.

For example, consider the following XML input.

<?xml version="1.0">
<!DOCTYPE price SYSTEM "abc">
<!--the price of the book -->
<price>123</price>

The following code finds the price element “123.4” and then converts the text content
to a double:

if (readr.MoveToContent() == XmlNodeType.Element && readr.Name =="price")
{
 _price = XmlConvert.ToDouble(readr.ReadString());
}

 Chapter 9: Improving XML Performance 421

For more information about how to use the MoveToContent method, see MSDN
article, “Skipping Content with XmlReader” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp.

More Information
For more information about XMLReader, see MSDN article “Comparing XmlReader
to SAX Reader,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconcomparingxmlreadertosaxreader.asp.

For more information about how to parse XML, see the following Microsoft
Knowledge Base articles:
● 301228, “HOW TO: Read XML Data from a Stream in .NET Framework SDK,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;301228
● 301233, “HOW TO: Modify and Save XML with the XmlDocument Class in .NET

Framework SDK” at http://support.microsoft.com/default.aspx?scid=kb;en-us;301233

Validating XML
You can validate XML to ensure that a document conforms to a schema definition.
This involves verifying that the document includes the necessary elements and
attributes in the correct sequence. This is often referred to as validating the content
model of the document. Validating XML can also involve data type checking. The
preferred approach is to validate XML documents against XML schema definitions
(XSD schemas). However, you can also validate XML against Document Type
Definitions (DTD) and XML-Data Reduced Schemas (XDR) schemas.

Validation introduces additional performance overhead. If there is a strong likelihood
that clients will pass invalid XML to your application, you should validate and reject
bad data early to minimize redundant processing effort. In a closed environment
where you can make certain guarantees about the validity of input data, you might
consider validation to be unnecessary overhead.

If you do use validation, consider the following to help minimize the validation
overhead:
● Use XmlValidatingReader.
● Do not validate the same document more than once.
● Consider caching the schema.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcomparingxmlreadertosaxreader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcomparingxmlreadertosaxreader.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;301228
http://support.microsoft.com/default.aspx?scid=kb;en-us;301233

422 Improving .NET Application Performance and Scalability

Use XmlValidatingReader
A lot of specialized code is required to validate an XML document to ensure
that the document matches the rules defined in a schema or a DTD. By using
XmlValidatingReader, you avoid writing this code by hand. It also means that after
validation, your application can make assumptions about the condition of the data.
Permitting your application to make assumptions about the data can reduce the
quantity of error-handling code that you would otherwise have to write.

Do Not Validate the Same Document More Than Once
Make sure that you do not waste processor cycles by validating the same source
document multiple times.

Consider Caching the Schema
If you repeatedly validate input XML against the same schema on a per-request basis,
consider loading the schema once and retaining it in memory for later requests. This
avoids the overhead of parsing, loading, and compiling the schema multiple times.
The following code fragment shows how to cache a schema in an
XmlSchemaCollection object.

XmlTextReader tr = new XmlTextReader("Books.xml");
XmlValidatingReader vr = new XmlValidatingReader(tr);
XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.Add("urn:bookstore-schema", "Books.xsd");
vr.Schemas.Add(xsc);

Validation comes at a cost. Typically, using the XmlValidatingReader to validate a
document is two to three times slower than using the XmlTextReader to simply parse
the XML, so ensure that this is worth the cost in your particular application scenario.

More Information
For more information about XML validation, see Microsoft Knowledge Base article
307379, “HOW TO: Validate an XML Document by Using DTD, XDR, or XSD in
Visual C# .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;307379.

Writing XML
If your application needs to generate XML, you can write XML by using the
XmlDocument or the XmlTextWriter classes. The XmlTextWriter class performs
better, but you should use XmlDocument if you need to manipulate the XML in
memory before you write the XML to a byte stream.

http://support.microsoft.com/default.aspx?scid=kb;en-us;307379

 Chapter 9: Improving XML Performance 423

Use XmlTextWriter
Using XmlTextWriter is the preferred way to write XML. The XmlTextWriter class
creates XML in a forward-only cursor style. It also takes care of XML encoding,
handling of special characters, adding quotes to attribute values, namespace
declarations, and insertion of end tags. By performing these tasks, XmlTextWriter
helps ensure the output is well-formed. The following code fragment shows how to
use XmlTextWriter to create XML.

static void WriteQuote(XmlWriter writer, string symbol,
 double price, double change, long volume)
{
 writer.WriteStartElement("Stock");
 writer.WriteAttributeString("Symbol", symbol);
 writer.WriteElementString("Price", XmlConvert.ToString(price));
 writer.WriteElementString("Change", XmlConvert.ToString(change));
 writer.WriteElementString("Volume", XmlConvert.ToString(volume));
 writer.WriteEndElement();
}

public static void Main(){
 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;
 WriteQuote(writer, "MSFT", 74.125, 5.89, 69020000);
 writer.Close();
}

The previous code produces the following output.
<Stock Symbol="MSFT">
 <Price>74.125</Price>
 <Change>5.89</Change>
 <Volume>69020000</Volume>
</Stock>

XPath Queries
XML Path Language (XPath) provides a general-purpose query notation that you
can use to search and to filter the elements and the text in an XML document. Query
performance varies depending on the complexity of the query and the size of the
source XML document. Use the following guidelines to optimize the way your
application uses XPath:
● Use XPathDocument to process XPath statements.
● Avoid the // operator by reducing the search scope.
● Compile both dynamic and static XPath expressions.

424 Improving .NET Application Performance and Scalability

Use XPathDocument to Process XPath Statements
If your application contains large amounts of intensive XPath or XSLT code, use
XPathDocument, instead of XmlDataDocument or XmlDocument, to process XPath
statements. However, a common scenario is to use XSLT to transform the default
XML representation of a DataSet, in which case you can use the XmlDataDocument
class for small-sized DataSet objects.

The XPathDocument class provides a fast, read-only cache for XML document
processing by using XSLT. It provides an optimized in-memory tree structure that
you can view by using the XPathNavigator interface. To move between a selected set
of nodes by using an XPath query, use the XPathNodeIterator as shown in the
following code.

XPathDocument Doc = new XPathDocument(FileName);
XPathNavigator nav = Doc.CreateNavigator();
XPathNodeIterator Iterator = nav.Select("/bookstore/book");
while (Iterator.MoveNext())
{
 Console.WriteLine(Iterator.Current.Name);
}

Avoid the // Operator by Reducing the Search Scope
Use path-specific XPath expressions, instead of the // operator, because the // operator
performs a recursive descent and then searches the entire subtree for matches. Look
for opportunities to reduce the search scope by restricting the search to specific
portions of the XML subtree.

For example, if you know that a particular item only exists beneath a specific parent
element, begin the search from that parent element and not from the root element.
The following code fragment shows how to search an entire XML document and
how to search beneath a specific element.

XPathDocument doc = new XPathDocument("books.xml");
XPathNavigator nav = doc.CreateNavigator();
// this will search entire XML for matches
XPathExpression Expr = nav.Compile("//price");
// this will reduce the search scope
XPathExpression Expr2 = nav.Compile("books/book/price");

 Chapter 9: Improving XML Performance 425

Compile Both Dynamic and Static XPath Expressions
The XPathNavigator class provides a Compile method that you can use to compile
a string that represents an XPath expression. If you use the Select method repeatedly
instead of passing a string each time, use the Compile method to compile and then
reuse the XPath expression. The Compile method returns an XPathExpression object.
The following code fragment shows how to use the Compile method.

XPathDocument doc = new XPathDocument("one.xml");
XPathNavigator nav = doc.CreateNavigator();
XPathExpression Expr = nav.Compile("/invoices/invoice[number>20]");
// Save Expr in application scope and reuse it
XPathNodeIterator iterator = nav.Select(Expr);
while (iterator.MoveNext())
{
 str = iterator.Current.Name;
}

You can also compile dynamic expressions. For more information, see MSDN
article, “Adding Custom Functions to XPath,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp.

More Information
For more information about using XPath expressions, see the following Microsoft
Knowledge Base articles:
● 308333, “HOW TO: Query XML with an XPath Expression by Using Visual C#

.NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;308333
● 301111, “HOW TO: Navigate XML with the XPathNavigator Class by Using

Visual Basic .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;301111
● 317069, “HOW TO: Execute XPath Queries by Using the System.Xml.XPath

Classes,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;317069.

XSLT Processing
Extensible Stylesheet Language Transformation (XSLT) specifies a transformation
language for XML documents. You can use XSLT to transform the content of an XML
document into another XML document that has a different structure. Or, you can use
XSLT to transform an XML document into a different document format, such as
HTML or comma-separated text.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;308333
http://support.microsoft.com/default.aspx?scid=kb;en-us;301111
http://support.microsoft.com/default.aspx?scid=kb;en-us;317069

426 Improving .NET Application Performance and Scalability

The .NET Framework XSLT processor is implemented by the XslTransform class
in the System.Xml.Xsl namespace. You typically perform XSLT processing by using
either the DOM or the XPathDocument class. The XPathDocument class offers
superior performance. Typically, transformations that use the XPathDocument class
are 20 to 30 percent faster than transformations that use the XmlDocument class once
the documents have been loaded. Actual percentages depend on your XSLT, input
document, and computer.

The following recommendations help you optimize XSLT processing in your
application. XSLT frequently uses XPath queries to select parts of an XML document.
Therefore, the efficiency of your XPath queries directly affects XSLT performance.
● Use XPathDocument for faster XSLT transformations.
● Consider caching compiled style sheets.
● Split complex transformations into several stages.
● Minimize the size of the output document.
● Write efficient XSLT.

Use XPathDocument for Faster XSLT Transformations
The XPathDocument class provides a fast, read-only cache for XML document
processing by using XSLT. Use this class for optimum performance. The following
code fragment shows how to use this class.

XslTransform xslt = new XslTransform();
xslt.Load(someStylesheet);
XPathDocument doc = new XPathDocument("books.xml");
StringWriter fs = new StringWriter();
xslt.Transform(doc, null, fs, null);

Consider Caching Compiled Style Sheets
If your application performs a common transformation by using the same style sheet
on a per-request basis, consider caching the style sheet between requests. This is a
strong recommendation because it saves you having to recompile the style sheet
every time you perform a transformation. In a .NET application, you compile the
.NET application once into an executable file and then run it many times. The same
applies to XSLT.

 Chapter 9: Improving XML Performance 427

The following code fragment shows the XslTransform class being cached in the
ASP.NET application state. Note that the XslTransform class is thread-safe.

protected void Application_Start(Object sender, EventArgs e)
{
 //Create the XslTransform and load the style sheet.
 XslTransform xslt = new XslTransform();
 xslt.Load(stylesheet);
 //Save it to ASP.NET application scope
 Application["XSLT"] = xslt;
}
private void Page_Load(object sender, System.EventArgs e)
{
 // Re-use the XslTransform stored in the application scope
 XslTransform xslt = Application["XSLT"];
}

Caching Extension Objects
You can use Extension objects to implement custom functions that are referenced
in XPath query expressions that are used in an XSLT style sheet. The XSLT processor
does not automatically cache Extension objects. However, you can cache
XsltArgumentList objects that are used to supply Extension objects. This approach
is shown in the following code fragment.

// Create the XslTransform and load the style sheet.
XslTransform xslt = new XslTransform();
xslt.Load(stylesheet);
// Load the XML data file.
XPathDocument doc = new XPathDocument(filename);
// Create an XsltArgumentList.
XsltArgumentList xslArgCache = new XsltArgumentList();
// Add an object to calculate the circumference of the circle.
Calculate obj = new Calculate();
xslArgCache.AddExtensionObject("urn:myObj", obj);
// Create an XmlTextWriter to output to the console.
XmlTextWriter writer = new XmlTextWriter(Console.Out);
// Transform the file.
xslt.Transform(doc, xslArgCache, writer);
writer.Close();
// Reuse xslArgCache
........
xslt.Transform(doc2, xslArgCache, writer2);

428 Improving .NET Application Performance and Scalability

Split Complex Transformations into Several Stages
You can incrementally transform an XML document by using multiple XSLT style
sheets to generate the final required output. This process is referred to as pipelining
and is particularly beneficial for complex transformations over large XML
documents.

More Information

For more information about how to split complex transformations into several
stages, see Microsoft Knowledge Base article 320847, “HOW TO: Pipeline XSLT
Transformations in .NET Applications,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;320847.

Minimize the Size of the Output Document
Try to keep the output document size to a minimum. If you are generating HTML,
there are a couple of ways to do this.

First, use cascading style sheets to apply formatting instead of embedding formatting
metadata in the HTML. Second, consider how your HTML is indented, and avoid
unnecessary white space. To do so, set the indent setting to no as shown in the
following XSLT fragment.

<xsl:output method="html" indent="no"/>

By default, the value of the indent attribute is yes.

Write Efficient XSLT
When you develop XLST style sheets, start by making sure that your XPath queries
are efficient. For more information, see “XPath Queries” earlier in this chapter. Here
are some common guidelines for writing efficient XSLT style sheets:
● Do not evaluate the same node set more than once. Save the node set in a

<xsl:variable> declaration.
● Avoid using the <xsl:number> tag if you can. For example, use the Position

method instead.
● Use the <xsl:key> tag to solve grouping problems.
● Avoid complex patterns in template rules. Instead, use the <xsl:choose> tag in

the rule.
● Be careful when you use the preceding[-sibling] or the following[-sibling] axes.

Use of these axes often involves algorithms that significantly affect performance.
● Do not sort the same node set more than once. If necessary, save it as a result tree

fragment, and then access it by using the node-set() extension function.

http://support.microsoft.com/default.aspx?scid=kb;en-us;320847
http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

 Chapter 9: Improving XML Performance 429

● To output the text value of a simple #PCDATA element, use the <xsl:value-of> tag
in preference to the <xsl:apply-templates> tag.

● Avoid using inline script. Use extensions written in Microsoft Visual C# or
Microsoft Visual Basic .NET to pass it as a parameter to the Transform call, and
then bind to it by using the <xsl:param> tag. However, if you cache the style sheet
in your application as described earlier, this achieves the same result. It then is
perfectly acceptable to use script in the style sheet. In other words, this is just a
compile-time issue.

● Factor common queries into nested templates. For example, if you have two
templates that match on “a/b/c” and “a/b/d,” factor the templates into one
common template that matches on “a/b.” Have the common template call
templates that match on “c” and “d.”

More Information
For more information about XSLT processing, see the following Microsoft Knowledge
Base articles:
● 325689, “INFO: Performance of XSLT Transformations in the .NET Framework,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;325689
● 313997, “INFO: Roadmap for Executing XSLT Transformations in .NET

Applications,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;313997
● 307322, “HOW TO: Apply an XSL Transformation to an XML Document by Using

Visual C# .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;307322
● 300929, “HOW TO: Apply an XSL Transformation from an XML Document to an

XML Document by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;300929

● 320847, “HOW TO: Pipeline XSLT Transformations in .NET Applications,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

Summary
When you build .NET applications, you use XML extensively. Whether you read XML
from a simple configuration file, retrieve XML from a database, or access a Web
service, knowing how to work with XML in the .NET Framework is essential. The
performance guidelines presented in this chapter help you understand the necessary
tradeoffs when you use System.Xml.

While the flexibility and power of XML are well documented, the text-based nature of
XML and the metadata that is conveyed in an XML document mean that XML is not a
compact data format. XML may require substantial processing effort. It is important
for you to analyze how your application uses XML to ensure that XML processing
does not create performance bottlenecks. The key factors that affect performance are
parsing effort, XLST processing, and schema validation.

http://support.microsoft.com/default.aspx?scid=kb;en-us;325689
http://support.microsoft.com/default.aspx?scid=kb;en-us;313997
http://support.microsoft.com/default.aspx?scid=kb;en-us;307322
http://support.microsoft.com/default.aspx?scid=kb;en-us;300929
http://support.microsoft.com/default.aspx?scid=kb;en-us;300929
http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

430 Improving .NET Application Performance and Scalability

Additional Resources
For more information about XML performance, see the following resources:
● For a printable checklist, see the “Checklist: XML Performance” checklist in the

“Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.”
● Chapter 15, “Measuring .NET Application Performance.”
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.”
● For more information about XML, see the “Microsoft XML Developer Center”

at http://msdn.microsoft.com/xml. This site regularly publishes articles on XML and
the .NET Framework, including best practices for application development.

http://msdn.microsoft.com/xml

10
Improving Web Services
Performance

Objectives
● Identify top Web services performance issues.
● Design scalable Web services that meet your performance objectives.
● Improve serialization performance.
● Configure the HTTP runtime for optimum performance.
● Improve threading efficiency.
● Evaluate and choose the most appropriate caching mechanism.
● Decide when to maintain state.
● Evaluate and choose the most appropriate bulk data transfer mechanism.

Overview
Services are the ideal communication medium for distributed applications. You
should build all of your services using Web services and then, if necessary, use
Enterprise Services or Microsoft® .NET remoting within the boundaries of your
service implementation. For example, you might need to use Enterprise Services
for distributed transaction support or object pooling.

Web services are ideal for cross-platform communication in heterogeneous
environments because of their use of open standards such as XML and Simple Object
Access Protocol (SOAP). However, even in a closed environment where both client
and server systems use the .NET Framework, ease of deployment and maintenance
make Web services a very attractive approach.

432 Improving .NET Application Performance and Scalability

This chapter begins by examining the architecture of ASP.NET Web services, and then
explains the anatomy of a Web services request from both the client and server-side
perspectives. You need a solid understanding of both client and server to help you
identify and address typical Web services performance issues. An understanding of
Web services architecture will also help you when you configure the HTTP runtime to
optimize Web services performance. The chapter then presents a set of important Web
services design considerations, followed by a series of sections that address the top
Web services performance issues.

How to Use This Chapter
To get the most out of this chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you to locate the topics that interest you. Alternatively, you can read the
chapter from beginning to end to gain a thorough appreciation of performance
and scalability design issues.

● Use the checklist. Use “Checklist: Web Services Performance” in the “Checklists”
section of this guide to quickly view and evaluate the guidelines presented in this
chapter.

● Use the “Architecture” section of this chapter to learn how Web services work.
By understanding Web services architecture, you can make better design and
implementation choices.

● Use the “Design Considerations” section of this chapter. This section helps you
to understand the higher-level decisions that affect implementation choices for
Web services code.

● Read Chapter 6, “Improving ASP.NET Performance.” Many of the performance
optimizations described in Chapter 6, “Improving ASP.NET Performance” — such
as tuning the thread pool and designing and implementing efficient caching —
also apply to ASP.NET Web services development.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the
“Web Services” section of Chapter 13 for specific guidance.

● Measure your application performance. Read the “Web Services” and “.NET
Framework Technologies” sections of Chapter 15, “Measuring .NET Application
Performance,” to learn about key metrics that you can use to measure application
performance. It is important that you are able to measure application performance
so that you can target performance issues accurately.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important that you apply a coherent testing process and that you are able to
analyze the results.

 Chapter 10: Improving Web Services Performance 433

● Tune your application performance. Read the “Web Services” section of
Chapter 17, “Tuning .NET Application Performance,” to learn how to resolve
performance issues identified through the use of tuning metrics.

Architecture
The server-side infrastructure is based on ASP.NET and uses XML serialization.
When the Web server processes an HTTP request for a Web service, Internet
Information Services (IIS) maps the requested extension (.asmx) to the ASP.NET
Internet server application programming interface (ISAPI) extension
(Aspnet_isapi.dll). The ASP.NET ISAPI extension then forwards the request to the
ASP.NET worker process, where it enters the request processing pipeline, which is
controlled by the HttpRuntime object. See Figure 10.1 for an illustration of the Web
services architecture and request flow.

IIS

ISAPI Filters

HTTP Module

HTTP Module

SOAP Extension

SOAP Extension

Web Services Request Handler

ASP.NET Runtime

Figure 10.1
ASP.NET Web services architecture and request flow

The request is initially passed to the HttpApplication object, followed by the series
of registered HttpModule objects. HttpModule objects are registered in the system-
wide Machine.config file or in the <httpModules> section of an application-specific
Web.config file. HttpModule objects handle authentication, authorization, caching,
and other services.

434 Improving .NET Application Performance and Scalability

After passing through the HTTP modules in the pipeline, HttpRuntime verifies
that the .asmx extension is registered with the WebServiceHandlerFactory
handler. This creates an HTTP handler, an instance of a type that derives from
WebServiceHandler, which is responsible for processing the Web services request.
The HTTP handler uses reflection to translate SOAP messages into method
invocations. WebServiceHandler is located in the System.Web.Services.Protocols
namespace.

Client-Side Proxy Classes
On the client side, proxy classes provide access to Web services. Proxy classes
use XML serialization to serialize the request into a SOAP message, which is then
transported using functionality provided by the System.Net namespace.

You can use the Wsdl.exe tool to automatically generate the proxy class from the
Web Services Description Language (WSDL) contract file. Depending on the bindings
specified in the WSDL, the request issued by the proxy may use the HTTP GET,
HTTP POST, or HTTP SOAP protocols.

The proxy class is derived from one of the following base classes:
● System.Web.Services.Protocols.HttpGetClientProtocol
● System.Web.Services.Protocols.HttpPostClientProtocol
● System.Web.Services.Protocols.SoapHttpClientProtocol

These all derive from System.Web.Services.Protocols.HttpWebClientProtocol,
which in turn derives from the System.Web.Services.Protocols.WebClientProtocol
base class in the inheritance chain. WebClientProtocol is the base class for all
automatically generated client proxies for ASP.NET Web services, and, as a result,
your proxy class inherits many of its methods and properties.

Prescriptive Guidance for Web Services, Enterprise Services,
and .NET Remoting

Services are the preferred communication technique to use across application
boundaries, including platform, deployment, and trust boundaries. You can
implement services today by using Web services or Web Services Enhancements
(WSE). Although WSE provides a rich set of features, you should evaluate whether
or not you can accept the WSE support policy. Enterprise Services provides
component services such as object pooling, queued components, a role-based security
model and distributed transactions, and should be used as an implementation detail
within your service when you need those features. .NET remoting is preferred for
cross-application communication within the same process.

 Chapter 10: Improving Web Services Performance 435

Object Orientation and Service Orientation
When you design distributed applications, use the services approach whenever
possible. Although object orientation provides a pure view of what a system should
look like and is effective for producing logical models, an object-based approach can
fail to consider real-world factors, such as physical distribution, trust boundaries, and
network communication, as well as nonfunctional requirements, such as performance
and security.

Table 10.1 summarizes some key differences between object orientation and service
orientation.

Table 10.1: Object Orientation vs. Service Orientation

Object Orientation Service Orientation

Assumes a homogeneous platform and
execution environment.

Assumes a heterogeneous platform and execution
environment.

Shares types, not schemas. Shares schemas, not types.

Assumes cheap, transparent communication. Assumes variable cost, explicit communication.

Objects are linked: object identity and
lifetime are maintained by the infrastructure.

Services are autonomous: security and failure
isolation are a must.

Typically requires synchronized deployment of
both client and server.

Allows continuous, separate deployment of client
and server.

Is easy to conceptualize and thus provides a
natural model to follow.

Builds on ideas from component software and
distributed objects. Dominant theme is to
manage/reduce sharing between services.

Provides no explicit guidelines for state
management and ownership.

Owns and maintains state or uses the reference
state.

Assumes a predictable sequence, timeframe,
and outcome of invocations.

Assumes message-oriented, potentially
asynchronous, and long-running communications.

Goal is to transparently use functions and
types remotely.

Goal is to provide inter-service isolation and wire
interoperability based on standards.

Application Boundaries
Common application boundaries include platform, deployment, trust, and evolution.
(Evolution refers to whether or not you develop and upgrade applications together.)
When you evaluate architecture and design decisions that affect your application
boundaries, consider the following:
● Objects and remote procedure calls (RPC) are appropriate within boundaries.
● Services are appropriate across and within boundaries.

436 Improving .NET Application Performance and Scalability

Recommendations for Web Services, Enterprise Services,
and .NET Remoting
When you are working with ASP.NET Web services, Enterprise Services, and
.NET remoting, Microsoft recommends that you:
● Build services by using ASP.NET Web Services.
● Enhance your ASP.NET Web services with WSE if you need the WSE feature set

and you can accept the support policy.
● Use object technology, such as Enterprise Services or .NET remoting, within a

service implementation.
● Use Enterprise Services inside your service boundaries in the following scenarios:

● You need the Enterprise Services feature set (such as object pooling; declarative,
distributed transactions; role-based security; and queued components).

● You are communicating between components on a local server and you have
performance issues with ASP.NET Web services or WSE.

● Use .NET remoting inside your service boundaries in the following scenarios:
● You need in-process, cross-application domain communication. Remoting has

been optimized to pass calls between application domains extremely efficiently.
● You need to support custom wire protocols. Understand, however, that this

customization will not port cleanly to future Microsoft implementations.

Caveats
When you work with ASP.NET Web services, Enterprise Services, or .NET remoting,
consider the following caveats:
● If you use ASP.NET Web services, avoid or abstract your use of low-level

extensibility features such as the HTTP Context object.
● If you use .NET remoting, avoid or abstract your use of low-level extensibility

such as .NET remoting sinks and custom channels.
● If you use Enterprise Services, avoid passing object references inside

Enterprise Services. Also, do not use COM+ APIs. Instead, use types from
the System.EnterpriseServices namespace.

More Information
● For guidelines on how to make .NET Enterprise Services components execute

as quickly as C++ COM components, see the MSDN® article, “.NET Enterprise
Services Performance,” at http://msdn.microsoft.com/library/en-us/dncomser/html
/entsvcperf.asp.

● For more information on Enterprise Services, see Chapter 8, “Improving
Enterprise Services Performance.”

● For more information on remoting, see Chapter 11, “Improving Remoting
Performance.”

http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp

 Chapter 10: Improving Web Services Performance 437

Performance and Scalability Issues
The main issues that can adversely affect the performance and scalability of
your Web services are summarized in the following list. Subsequent sections in
this chapter provide strategies and technical information to prevent or resolve each
of these issues.
● Incorrect communication mechanism. Currently, there are three main

technologies for remoting a method call: Enterprise Services, .NET remoting,
and ASP.NET Web services. The best choice depends upon various factors,
including the source and target platforms, whether you need to communicate
across an intranet or the Internet, whether you require additional services such as
distributed transactions, your security requirements, deployment considerations
(such as whether your communication must pass through a firewall), other port
limitations, and so on.
● Web services. Use Web services to build your services.
● Enterprise Services. If you use Web services to build your services, you may

still need to use Enterprise Services within your service implementation. For
example, you may need it to support distributed transactions or if you want
to use object pooling.

● .NET remoting. Use remoting for same-process, cross-application domain
communication or for remote communication if you need to integrate with a
legacy protocol. If you use remoting, avoid custom proxies, custom sinks, and
using contexts. This helps to avoid compatibility issues with future
communication technologies.

● Chatty calls. Network round trips to and from a Web service can be expensive.
This issue is magnified if clients need to issue multiple requests to a Web service
to complete a single logical operation.

● Improper choice of parameters. Your choice of parameters depends upon
various factors, such as interoperability, the varying platforms used by the clients,
maintainability, the type of encoding format used, and so on. Improper choice of
parameters can lead to a number of issues, including increased serialization costs
and potential versioning problems for the Web service (for example where a
custom type is updated). Where possible, you should use primitive types. If
interoperability is an issue, consider using the XmlElement and XmlDocument
types and choose types specific to your application, such as an Employee or
Person class.

438 Improving .NET Application Performance and Scalability

● Serialization. Serializing large amounts of data and passing it to and from Web
services can cause performance-related issues, including network congestion and
excessive memory and processor overhead.
Other issues that affect the amount of data passed across the wire include
improper data transfer strategies for large amounts of data. Selecting an
appropriate data transfer strategy — such as using a SOAP extension that
performs compression and decompression or offloading data transfer to other
services — is critical to the performance of your Web services solution.

● Improper choice of encoding format. You can use either literal or SOAP encoding.
SOAP encoding involves more SOAP-processing overhead as compared to literal
encoding.

● Lack of caching or inefficient caching. In many situations, application or
perimeter caching can improve Web services performance. Caching-related
issues that can significantly affect Web services performance include failure to use
caching for Web methods, caching too much data, caching inappropriate data, and
using inappropriate expiration settings.

● Inefficient state management. Inefficient state management design in Web
services can lead to scalability bottlenecks because the server becomes overloaded
with state information that it must maintain on a per-user basis. Common pitfalls
for Web services state management include using stateful Web methods, using
cookie container-based state management, and choosing an inappropriate state
store. The most scalable Web services maintain no state.

● Misuse of threads. It is easy to misuse threads. For example, you might create
threads on a per-request basis or you might write code that misuses the thread
pool. Also, unnecessarily implementing a Web method asynchronously can cause
more worker threads to be used and blocked, which affects the performance of the
Web server.
On the client side, consumers of Web services have the option of calling Web
services asynchronously or synchronously. Your code should call a Web service
asynchronously only when you want to avoid blocking the client while a Web
service call is in progress. If you are not careful, you can use a greater number of
worker and I/O threads, which negatively affects performance. It is also slower
to call a service asynchronously; therefore, you should avoid doing so unless
your client application needs to do something else while the service is invoked.

● Inefficient Web method processing. A common example of inefficient processing
is not using a schema to validate input upfront. This issue can be significant
because the Web method may de-serialize the incoming message and then throw
exceptions later on while processing the input data.

 Chapter 10: Improving Web Services Performance 439

Design Considerations
To help ensure that you create efficient Web services, there are a number of issues that
you must consider and a number of decisions that you must make at design time. The
following are major considerations:
● Design chunky interfaces to reduce round trips.
● Prefer message-based programming over RPC style.
● Use literal message encoding for parameter formatting.
● Prefer primitive types for Web services parameters.
● Avoid maintaining server state between calls.
● Consider input validation for costly Web methods.
● Consider your approach to caching.
● Consider approaches for bulk data transfer and attachments.
● Avoid calling local Web services.

Design Chunky Interfaces to Reduce Round Trips
Design chunky interfaces by exposing Web methods that allow your clients to
perform single logical operations by calling a single Web method. Avoid exposing
properties. Instead, provide methods that accept multiple parameters to reduce
roundtrips.

Do not create a Web service for each of your business objects. A Web service should
wrap a set of business objects. Use Web services to abstract these objects and increase
the chunkiness of your calls.

Prefer Message-Based Programming Over RPC Style
You can design Web services by using either of two programming models: messaging
style and RPC style. The RPC style is based on the use of objects and methods. Web
methods take object parameters to do the processing, and then return the results. This
style generally relies on making multiple Web method calls to complete a single
logical operation, as shown in the following code snippet.

//client calling a Web service
Serv.SendItemsToBePurchased(Array[] items);
Serv.ShippingAddress(string Address);
Serv.CheckOut();

440 Improving .NET Application Performance and Scalability

The messaging style does not focus on objects as parameters. It is based on a data
contract (schema) between the Web service and its clients. The Web service expects
the message to be XML that conforms to the published data contract.

//Client
string msg = "<Items>...</Items>";
MyMethod(msg);

//Server
[WebMethod]
void MyMethod(string msg){ . . . }

This approach allows you to package and send all parameters in a single message
payload and complete the operation with a single call, thus reducing chatty
communication. The Web service may or may not return results immediately;
therefore, the clients do not need to wait for results.

Use Literal Message Encoding for Parameter Formatting
The encoded formatting of the parameters in messages creates larger messages
than literal message encoding (literal message encoding is the default). In general,
you should use literal format unless you are forced to switch to SOAP encoding for
interoperability with a Web services platform that does not support the literal format.

Prefer Primitive Types for Web Services Parameters
There are two broad categories of parameter types that you can pass to Web services:
● Strongly typed. These include .NET types such as double and int, and custom

objects such as Employee, Person, and so on. The advantage of using strongly
typed parameters is that .NET automatically generates the schema for these types
and validates the incoming values for you. Clients use the schema to construct
appropriately formatted XML messages before sending them.

● Loosely typed. These parameters use the string type. Note that you should not
pass XML documents as string parameters because the entire string then needs
to be XML encoded. For example, < and > needs to be converted to < and >
and so on. Instead, you should use either an XmlElement parameter or implement
IXmlSerializable. The latter is the most efficient and works well for large data
sizes, regardless of which encoding style you use, you should prefer simple
primitive types like int, double, and string for Web services parameters. Use of
primitive types leads to reduced serialization and automatic and efficient
validation by the .NET Framework.

 Chapter 10: Improving Web Services Performance 441

Avoid Maintaining Server State Between Calls
Maintaining per-caller state in memory on the server limits scalability because the
state consumes server resources. As an alternative, you can pass state back and forth
between the client and Web service. Although this approach enables you to scale your
service, it does add performance overhead — including the time taken to serialize,
transmit, parse, and de-serialize the state with each call.

Consider Input Validation for Costly Web Methods
If you have a Web method that performs costly and time-consuming processing,
consider validating the Web method input before processing it. It can be more
efficient to accept the validation overhead to eliminate unnecessary downstream
processing. However, unless you are likely to receive invalid input frequently, you
should probably avoid schema validation due to the significant overhead that it
introduces. You need to assess your specific situation to determine whether or not
schema validation is appropriate.

You can validate input data either by using SOAP extensions or by using separate
internal helper methods that your Web methods call. The advantage of using SOAP
extensions is that they permit you to separate your validation code from your
business logic. If there is any schema change in the future, the extension can change
independently of the Web method.

Another option is to use the XmlValidatingReader class to perform schema-based
validation, as shown in the following code snippet.

[WebMethod]
public void ValidateCreditCard(string xmlCardInfo){
 try
 {
 // Create and load a validating reader
 XmlValidatingReader reader = new XmlValidatingReader(xmlCardInfo,
 XmlNodeType.Element, null);

 // Attach the XSD schema to the reader
 reader.Schemas.Add(
 "urn:CardInfo-schema",@"http://localhost/Card/Cardschema.xsd");

 // Set the validation type for XSD schema.
 // XDR schemas and DTDs are also supported
 reader.ValidationType = ValidationType.Schema;

 // Create and register an event handler to handle validation errors
 reader.ValidationEventHandler += new ValidationEventHandler(
 ValidationErrors);

(continued)

442 Improving .NET Application Performance and Scalability

(continued)

 // Process the input data
 while (reader.Read())
 {
 . . .
 }

 // Validation completed successfully
 }
 catch

 { . . .}
}
// Validation error event handler
private static void ValidationErrors(object sender, ValidationEventArgs args)
{
 // Error details available from args.Message
 . . .
}

Consider Your Approach to Caching
You can greatly enhance Web services performance by caching data. With ASP.NET
Web services, you can use many of the same caching features that are available to
ASP.NET applications. These include ASP.NET output caching, HTTP response
caching, and ASP.NET application caching.

In common with any caching solution, your caching design for a Web service must
consider issues such as how frequently the cached data needs to be updated, whether
or not the data is user-specific or application-wide, what mechanism to use to
indicate that the cache needs updating, and so on. For more information about
caching with Web services, see the “Caching” section later in this chapter.

Consider Approaches for Bulk Data Transfer and Attachments
You can use the following approaches to optimize the performance of bulk data
transfer:
● Chunking. With this approach, you use fixed-size byte arrays to send the data

one chunk at a time.
● Offloading the transfer. With this approach, you return a URL from your

Web service which points to the file to be downloaded.
● Compression. You can use a SOAP extension to compress the SOAP messages

before transmitting them. This helps when you are constrained primarily by
network bandwidth or latency.

 Chapter 10: Improving Web Services Performance 443

To handle attachments, your options include:
● WS-Attachments
● Base 64 encoding
● SOAP Message Transmission Optimization Mechanism (MTOM)

More Information

For more information about these approaches, see the “Bulk Data Transfer” and
“Attachments” sections later in this chapter.

Avoid Calling Local Web Services
Web services located on the same computer as a client ASP.NET application share the
same thread pool with the ASP.NET application. Therefore, the client application and
the Web service share the same threads and other related resources, such as CPU for
request processing. Calling a local Web service also means that your request travels
through the entire processing pipeline and incurs overhead, including serialization,
thread switching, request queuing, and de-serialization.

In addition, the maxconnection attribute of Machine.config has no affect on the
connection limit for making calls to local Web services. Therefore, local Web services
always tend to give preference to the requests that come from the local computer
over requests that come from other machines. This degrades the throughput of the
Web service for remote clients.

There are two main approaches to solving this problem:
● Factor out the Web services business logic into a separate assembly, and call the

assembly from the client application as well as the Web service.
● Load the Web services assembly directly and call its methods. This approach is

not as intuitive as the first.

More Information
● For IIS 6.0–specific deployment mitigation, refer to “ASP.NET Tuning” in

Chapter 17, “Tuning .NET Application Performance.”
● For more information about how to structure your application properly, refer

to “Application Architecture for .NET: Designing Applications and Services”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda
/html/distapp.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

444 Improving .NET Application Performance and Scalability

Implementation Considerations
When you move from application design to development, consider the
implementation details of your Web services. Important Web services performance
measures include response times, speed of throughput, and resource management:
● You can reduce request times and reduce server load by caching frequently used

data and SOAP responses.
● You can improve throughput by making effective use of threads and connections,

by optimizing Web method serialization, and by designing more efficient service
interfaces. Tune thread pooling to reduce contention and increase CPU utilization.
To improve connection performance, configure the maximum limit of concurrent
outbound calls to a level appropriate for the CPU performance.

● You can improve resource management by ensuring that shared resources, such as
connections, are opened as late as possible and closed as soon as possible, and also
by not maintaining server state between calls.

By following best practice implementation guidelines, you can increase the
performance of Web services. The following sections highlight performance
considerations for Web services features and scenarios.

Connections
When you call Web services, transmission control protocol (TCP) connections are
pooled by default. If a connection is available from the pool, that connection is used.
If no connection is available, a new connection is created, up to a configurable limit.
There is always a default unnamed connection pool. However, you can use
connection groups to isolate specific connection pools used by a given set of HTTP
requests. To use a separate pool, specify a ConnectionGroupName when you make
requests. If you don’t specify a connection group, the default connection pool is used.
To use connections efficiently, you need to set an appropriate number of connections,
determine whether connections will be reused, and factor in security implications.

The following recommendations improve connection performance:
● Configure the maxconnection attribute.
● Prioritize and allocate connections across discrete Web services.
● Use a single identity for outbound calls.
● Consider UnsafeAuthenticatedConnectionSharing with Windows Integrated

Authentication.
● Use PreAuthenticate with Basic authentication.

 Chapter 10: Improving Web Services Performance 445

Configure The maxconnection Attribute
The maxconnection attribute in Machine.config limits the number of concurrent
outbound calls.

Note: This setting does not apply to local requests (requests that originate from ASP.NET
applications on the same server as the Web service). The setting applies to outbound connections
from the current computer, for example, to ASP.NET applications and Web services calling other
remote Web services.

The default setting for maxconnection is two per connection group. For desktop
applications that call Web services, two connections may be sufficient. For ASP.NET
applications that call Web services, two is generally not enough. Change the
maxconnection attribute from the default of 2 to (12 times the number of CPUs)
as a starting point.

<connectionManagement>
 <add address="*" maxconnection="12"/>
</connectionManagement>

Note that 12 connections per CPU is an arbitrary number, but empirical evidence has
shown that it is optimal for a variety of scenarios when you also limit ASP.NET to 12
concurrent requests (see the “Threading” section later in this chapter). However, you
should validate the appropriate number of connections for your situation.

Increasing the maxconnection attribute results in increased thread pool and
processor utilization. With the increase in the maxconnection value, a higher number
of I/O threads will be available to make outbound concurrent calls to the Web
service. As a result, you process incoming HTTP requests more quickly.

Before Making the Change
You should consider increasing the connections only if you have available CPU.
You should always check processor utilization before increasing the attribute because
increasing the attribute results in more work for the processor, as described above.
For this reason, increasing this attribute makes sense only when your processor
utilization is below the threshold limits (usually less than 75 percent utilization).

For more information, see the “Threading” section later in this chapter.

Evaluating the Change
Changing the attribute may involve multiple iterations for tuning and involves
various trade-offs with respect to thread pool utilization. Therefore, the changes
in the maxconnection attribute may require changes to other thread pool-related
configuration attributes, such as maxWorkerThreads and maxIoThreads.

446 Improving .NET Application Performance and Scalability

When you load test your application after making the configuration changes, you
should monitor CPU utilization and watch the ASP.NET Applications\Requests/Sec
and ASP.NET Applications\Requests in Application Queue performance counters.
Requests in Application Queue should decrease while Requests/Sec and CPU
utilization should increase.

Prioritize and Allocate Connections Across Discrete Web Services
Enumerate and prioritize the Web services you call. Allocate more connections
to your critical Web services. You specify each Web service by using the address
attribute as follows.

<connectionManagement>
 <add address="WebServiceA" maxconnection="8">
 <add address="WebServiceB" maxconnection="4">
</connectionManagement>

For example, if your application typically makes more requests to WebServiceA than
WebServiceB, you can dedicate more connections, as shown in the example above.

Use a Single Identity for Outbound Calls
Use a single trusted identity for making Web services calls where you can. This helps
limit the number of separate connection pools. Although you may need to create
separate pools of connections for different discrete Web services, avoid creating pools
per user. If you need to create pools per user, then specify a ConnectionGroupName
when you call the Web service, but be aware that this hurts performance and leads to
a large number of pools.

The connection pool your call uses is not determined by the identity of the caller.
The ConnectionGroupName determines which connection pool is used. If separate
identities use the same ConnectionGroupName, they use the same pool of
connections, as shown in the following code snippet.

// Create a secure group name.
....
serv = new WebService1();

// Set the PreAuthenticate property to send the authenticate request in first go
serv.PreAuthenticate=true;

// Set the client side credentials
ICredentials conCredentials =
 new NetworkCredential("UserId","Password","NPSTest");
serv.Credentials = conCredentials;

// Do not allow the server to auto redirect as this may compromise security
serv.AllowAutoRedirect=false;
// Use the same connectionGroup Name for all the calls
serv.ConnectionGroupName = "SameForAllUsers";

 Chapter 10: Improving Web Services Performance 447

You may need to create separate pools of connections for different discrete Web
services or if you flow the identity of the original caller.

If ASP.NET calls Web services that allow anonymous callers, connections from the
default connection pool are used. This is the default behavior unless you specify a
ConnectionGroupName, as shown in above example.

Consider UnsafeAuthenticatedConnectionSharing with Windows
Integrated Authentication
If your ASP.NET application calls a Web service that uses Microsoft Windows®
integrated authentication, consider enabling
UnsafeAuthenticatedConnectionSharing. By default, when you connect using
Windows Integrated authentication, connections are opened and closed per
request. This means that connections are not pooled by default. By enabling
UnsafeAuthenticatedConnectionSharing, you keep connections open so they can
be reused.

Consider the following guidelines:
● If you are in a trusted environment and you connect using a single trusted

identity, consider improving performance by setting
UnsafeAuthenticatedConnectionSharing to true.

//set the UnsafeAuthenticatedConnectionSharing to true
myWebService.UnsafeAuthenticatedConnectionSharing = true;
NetworkCredential myCred = new
NetworkCredential("UserA","PasswordA","DomainA");
CredentialCache myCache = new CredentialCache();
myCache.Add(new Uri("http://Someserver/WS/service1.asmx"), "NTLM",
myCred);
myWebService.Credentials = myCache;
myWebService.ConnectionGroupName = "SameName";
string result = myWebService.HelloWorld();

//as the ConnectionGroupName property is same for different client requests
//only the first connection from above gets authenticated
// the request below reuses the connection from above
myCred = new NetworkCredential("UserB","PasswordB","DomainB");
CredentialCache myCache = new CredentialCache();
myCache.Add(new Uri("http://Someserver/WS/service1.asmx"), "NTLM",
myCred);
myWebService.Credentials = myCache;
myWebService.ConnectionGroupName = "SameName";
result = myWebService.HelloWorld();

448 Improving .NET Application Performance and Scalability

● If you call a Web service by using the ASP.NET application original caller’s
identity, then you should avoid enabling
UnsafeAuthenticatedConnectionSharing because connections would be shared
across calls. Alternatively, you can enable
UnsafeAuthenticatedConnectionSharing, and then assign users to individual
connection groups by using a ConnectionGroupName. Either option is inefficient
and results in a high number of pools.

● If you need to connect to separate discrete Web services, assign calls to separate
pools using ConnectionGroupName.

● If you need to connect to a server that uses AuthPersistence (it authenticates
a whole connection and not a single request), then you should set
UnsafeAuthenticatedConnectionSharing to true, and specify some random
connection group name. You will need to determine which application requests
will go to that connection group because the server will no longer challenge for
authentication on that connection.

More Information
● For more information about AuthPersistence, see Microsoft Knowledge Base

article 318863, “HOW TO: Modify the AuthPersistence Metabase Entry Controls
When Clients Are Authenticated,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;318863.

● For more information on UnsafeAuthenticatedConnectionSharing, see the
.NET Framework documentation.

Use PreAuthenticate with Basic Authentication
If you use Basic authentication, the proxy’s PreAuthenticate property can be set to
true or false. Set it to true to supply specific authentication credentials to cause a
WWWauthenticate HTTP header to be passed with the Web request. This prevents
the Web server from denying access to the request and performing authentication on
the subsequent retry request.

Note: Pre-authentication only applies after the Web service successfully authenticates the first time.
Pre-authentication has no impact on the first Web request.

http://support.microsoft.com/default.aspx?scid=kb;en-us;318863
http://support.microsoft.com/default.aspx?scid=kb;en-us;318863

 Chapter 10: Improving Web Services Performance 449

private void ConfigureProxy(WebClientProtocol proxy,
 string domain, string username,
 string password)
{
 // To improve performance, force pre-authentication
 proxy.PreAuthenticate = true;
 // Set the credentials
 CredentialCache cache = new CredentialCache();
 cache.Add(new Uri(proxy.Url),
 "Negotiate",
 new NetworkCredential(username, password, domain));
 proxy.Credentials = cache;
 proxy.ConnectionGroupName = username;
}

Threading
Web Services use ASP.NET thread pooling to process requests. To ensure that your
Web Services use the thread pool most effectively, consider the following guidelines:
● Tune the thread pool using the Formula for Reducing Contention.
● Consider minIoThreads and minWorkerThreads for intermittent burst load.

Tune the Thread Pool by Using the Formula for Reducing Contention
The Formula for Reducing Contention can give you a good starting point for tuning
the ASP.NET thread pool. Consider using the Microsoft product group recommended
settings (shown in Table 10.2) if you have available CPU, your application performs
I/O bound operations (such as calling a Web method or accessing the file system),
and you have queued requests as indicated by the ASP.NET Applications/Requests
in Application Queue performance counter.

Table 10.2: Recommended Threading Settings for Reducing Contention

Configuration setting Default (.NET 1.1) Recommended value

maxconnection 2 12 * #CPUs

maxIoThreads 20 100

maxWorkerThreads 20 100

minFreeThreads 8 88 * #CPUs

minLocalRequestFreeThreads 4 76 * #CPUs

450 Improving .NET Application Performance and Scalability

To address this issue, you need to configure the following items in Machine.config.
The changes described in the following list should be applied across the settings and
not in isolation. For a detailed description of each of these settings, see “Thread Pool
Attributes” in Chapter 17, “Tuning .NET Application Performance.”
● Set maxconnection to 12 * # of CPUs. This setting controls the maximum number

of outgoing HTTP connections allowed by the client, which in this case is
ASP.NET. The recommendation is to set this to 12 times the number of CPUs.

● Set maxIoThreads to 100. This setting controls the maximum number of I/0
threads in the common language runtime (CLR) thread pool. This number is then
automatically multiplied by the number of available CPUs. The recommendation
is to set this to 100.

● Set maxWorkerThreads to 100. This setting controls the maximum number
of worker threads in the CLR thread pool. This number is then automatically
multiplied by the number of available CPUs. The recommendation is to set this
to 100.

● Set minFreeThreads to 88 * # of CPUs. The worker process uses this setting to
queue up all the incoming requests if the number of available threads in the thread
pool falls below the value for this setting. This setting effectively limits the number
of concurrently executing requests to maxWorkerThreads — minFreeThreads.
The recommendation is to set this to 88 times the number of CPUs. This limits the
number of concurrent requests to 12 (assuming maxWorkerThreads is 100).

● Set minLocalRequestFreeThreads to 76 * # of CPUs. This worker process uses
this setting to queue up requests from localhost (where a Web application calls a
Web service on the same server) if the number of available threads in the thread
pool falls below this number. This setting is similar to minFreeThreads, but it
only applies to requests that use localhost. The recommendation is to set this to
76 times the number of CPUs.

Note: The above recommendations are starting points rather than strict rules. You should perform
appropriate testing to determine the correct settings for your environment.

If the formula has worked, you should see improved throughput and less idle
CPU time:
● CPU utilization should go up.
● Throughput should increase (ASP.NET Applications\Requests/Sec should

go up),
● Requests in the application queue (ASP.NET Applications\Requests in

Application Queue) should go down.

 Chapter 10: Improving Web Services Performance 451

If this does not improve your performance, you may have a CPU-bound situation.
If this is the case, by adding more threads you increase thread context switching. For
more information, see “ASP.NET Tuning” in Chapter 17, “Tuning .NET Application
Performance.”

More Information

For more information, see Microsoft Knowledge Base article 821268, “PRB:
Contention, Poor Performance, and Deadlocks When You Make Web Service
Requests from ASP.NET Applications,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;821268.

Consider minIoThreads and minWorkerThreads for
Intermittent Burst Load
If you have burst load scenarios that are intermittent and short (0 to 10 minutes),
then the thread pool may not have enough time to reach the optimal level of
threads. The use of minIoThreads and minWorkerThreads allows you to configure
a minimum number of worker and I/O threads for load conditions.

At the time of this writing, you need a supported fix to configure the settings.
For more information, see the following Microsoft Knowledge Base articles:
● 810259, “FIX: SetMinThreads and GetMinThreads API Added to Common

Language Runtime ThreadPool Class,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;810259

● 827419, “PRB: Sudden Requirement for a Larger Number of Threads from
the ThreadPool Class May Result in Slow Computer Response Time,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;827419

More Information
For more information about threading and Web services, see:
● “ASP.NET Tuning” in Chapter 17, “Tuning .NET Application Performance”
● Microsoft Knowledge Base article 821268, “PRB: Contention, Poor Performance,

and Deadlocks When You Make Web Service Requests from ASP.NET
Applications,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;821268

One-Way (Fire-and-Forget) Communication
Consider using the OneWay attribute if you do not require a response. Using
the OneWay property of SoapDocumentMethod and SoapRpcMethod in the
System.Web.Services.Protocols namespace frees the client immediately instead
of forcing it to wait for a response.

http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259
http://support.microsoft.com/default.aspx?scid=kb;en-us;827419
http://support.microsoft.com/default.aspx?scid=kb;en-us;821268

452 Improving .NET Application Performance and Scalability

For a method to support fire-and-forget invocation, you must decorate it with the
OneWay attribute, as shown in the following code snippet.

[SoapDocumentMethod(OneWay=true)]
[WebMethod(Description="Returns control immediately")]
public void SomeMethod()
{...}

This is useful if the client needs to send a message, but does not expect anything as
return values or output parameters. Methods marked as OneWay cannot have output
parameters or return values.

Asynchronous Web Methods
You can call a Web service asynchronously regardless of whether or not the Web
service has been implemented synchronously or asynchronously. Similarly, you
can implement a synchronous or asynchronous Web service, but allow either style
of caller. Client-side and server-side asynchronous processing is generally performed
to free up the current worker thread to perform additional work in parallel.

The asynchronous implementation of a Web method frees up the worker thread to
handle other parallel tasks that can be performed by the Web method. This ensures
optimal utilization of the thread pool, resulting in throughput gains.

For normal synchronous operations, the Web services asmx handler uses reflection
on the assembly to find out which methods have the WebMethod attribute associated
with them. The handler simply calls the appropriate method based on the value of
the SOAP-Action HTTP header.

However, the Web services asmx handler treats asynchronous Web methods
differently. It looks for methods that adhere to the following rules:
● Methods adhere to the asynchronous design pattern:

● There are BeginXXX and EndXXX methods for the actual XXX method that
you need to expose.

● The BeginXXX method returns an IAsyncResult interface, takes whatever
arguments the Web method needs, and also takes two additional parameters
of type AsyncCallback and System.Object, respectively.

● The EndXXX method takes an IAsyncResult as a parameter and returns the
return type of your Web method.

● Both methods are decorated with the WebMethod attribute.

 Chapter 10: Improving Web Services Performance 453

The Web services asmx handler then exposes the method, as shown in the following
code snippet.

[WebMethod]
IAsyncResult BeginMyProc(...)

[WebMethod]
EndMyProc(...)

//the WSDL will show the method as
MyProc(...)

The Web services asmx handler processes incoming requests for asynchronous
methods as follows:
● Call the BeginXXX method.
● Pass the reference to an internal callback function as a parameter to the BeginXXX

method, along with the other in parameters. This frees up the worker thread
processing the request, allowing it to handle other incoming requests. The asmx
handler holds on to the HttpContext of the request until processing of the request
is complete and a response has been sent to the client.

● Once the callback is called, call the EndXXX function to complete the processing
of the method call and return the response as a SOAP response.

● Release the HttpContext for the request.

Consider the following guidelines for asynchronous Web methods:
● Use asynchronous Web methods for I/O operations.
● Do not use asynchronous Web methods when you depend on worker threads.

Use Asynchronous Web Methods for I/O Operations
Consider using asynchronous Web methods if you perform I/O-bound operations
such as:
● Accessing streams
● File I/O operations
● Calling another Web service

The .NET Framework provides the necessary infrastructure to handle these
operations asynchronously, and you can return an IAsyncResult interface from these
types of operations. The .NET Framework exposes asynchronous methods for I/O-
bound operations using the asynchronous design pattern. The libraries that use this
pattern have BeginXXX and EndXXX methods.

454 Improving .NET Application Performance and Scalability

The following code snippet shows the implementation of an asynchronous Web
method calling another Web service.

// The client W/S
public class AsynchWSToWS
{
 WebServ asyncWs = null;
 public AsynchWSToWS(){
 asyncWs = new WebServ();
 }

 [System.Web.Services.WebMethod]
 public IAsyncResult BeginSlowProcedure(int milliseconds,AsyncCallback cb,
 object s){
 // make call to other web service and return the IAsyncResult
 return asyncWs.BeginLengthyCall(milliseconds,cb,s);
 }

 [System.Web.Services.WebMethod]
 public string EndSlowProcedure(IAsyncResult call) {
 return asyncWs.EndLengthyCall(call);
 }
}

// The server W/S
public class WebServ
{
 [WebMethod]
 public string LengthyCall(int milliseconds){
 Thread.Sleep(milliseconds);
 return "Hello World";
 }
}

Asynchronous implementation helps when you want to free up the worker thread
instead of waiting on the results to return from a potentially long-running task. For
this reason, you should avoid asynchronous implementation whenever your work is
CPU bound because you do not have idle CPU to service more threads. In this case,
an asynchronous implementation results in increased utilization and thread
switching on an already busy processor. This is likely to hurt performance and
overall throughput of the processor.

Note: You should not use asynchronous Web methods when accessing a database. ADO.NET does
not provide asynchronous implementation for handling database calls. Wrapping the operation in a
delegate is not an option either because you still block a worker thread.

You should only consider using an asynchronous Web method if you are wrapping an asynchronous
operation that hands back an IAsyncResult reference.

 Chapter 10: Improving Web Services Performance 455

Do Not Use Asynchronous Web Methods When You Depend
on Worker Threads
You should not implement Web methods when your asynchronous implementation
depends upon callbacks or delegates because they use worker threads internally.
Although the delegate frees the worker thread processing the request, it uses another
worker thread from the process thread pool to execute the method. This is a thread
that can be used for processing other incoming requests to the Web service. The result
is that you consume a worker thread for the delegate-based operation and you
increase context switching.

Alternatively, you can use synchronous Web methods and decrease the
minFreeThreads setting so that the worker threads can take requests and execute
them directly.

In this scenario, you could block the original worker thread by implementing
the Web method to run synchronously. An example of the delegate-based
implementation is shown in the following code snippet.

// delegate
public delegate string LengthyProcedureAsyncStub(int milliseconds);

//actual method which is exposed as a web service
[WebMethod]
public string LengthyCall(int milliseconds) {
 System.Threading.Thread.Sleep(milliseconds);
 return "Hello World";
}

[WebMethod]
public IAsyncResult BeginLengthyCall(int milliseconds,AsyncCallback cb, object s)
{
 LengthyProcedureAsyncStub stub = new LengthyProcedureAsyncStub(LengthyCall);
 //using delegate for asynchronous implementation
 return stub.BeginInvoke(milliseconds, cb, null); }

[System.Web.Services.WebMethod]
public string EndLengthyCall(IAsyncResult call) {
 return ms.asyncStub.EndInvoke(call);
}

456 Improving .NET Application Performance and Scalability

Asynchronous Invocation
Web services clients can call a Web service either synchronously or asynchronously,
independently of the way the Web service is implemented.

For server applications, using asynchronous calls to a remote Web service is a good
approach if the Web service client can either free the worker thread to handle other
incoming requests or perform additional parallel work before blocking for the results.
Generally, Windows Forms client applications call Web services asynchronously to
avoid blocking the user interface.

Note: The HTTP protocol allows at most two simultaneous outbound calls from one client to one
Web service.

The WSDL-generated proxy contains support for both types of invocation. The
proxy supports the asynchronous call by exposing BeginXXX and EndXXX methods.

The following guidelines help you decide whether or not calling a Web service
asynchronously is appropriate:
● Consider calling Web services asynchronously when you have additional

parallel work.
● Use asynchronous invocation to call multiple unrelated Web services.
● Call Web services asynchronously for UI responsiveness.

Consider Calling Web Services Asynchronously When You Have
Additional Parallel Work
Asynchronous invocation is the most useful when the client has additional work that
it can perform while the Web method executes. Asynchronous calls to Web services
result in performance and throughput gains because you free the executing worker
thread to do parallel work before it is blocked by the Web services call and waits for
the results. This lets you concurrently process any work that is not dependent on the
results of the Web services call. The following code snippet shows the approach.

private void Page_Load(object sender, System.EventArgs e)
{
 serv = new localhost.WebService1();
 IAsyncResult result = serv.BeginLengthyProcedure(5000,null,null);
 // perform some additional processing here before blocking

 // wait for the asynchronous operation to complete
 result.AsyncWaitHandle.WaitOne();
 string retStr = serv.EndLengthyProcedure(result);
}

 Chapter 10: Improving Web Services Performance 457

Use Asynchronous Invocation to Call Multiple Unrelated Web Services
Consider asynchronous invocation if you need to call multiple Web services that
do not depend on each other’s results. Asynchronous invocation lets you call the
services concurrently. This tends to reduce response time and improve throughput.
The following code snippet shows the approach.

private void Page_Load(object sender, System.EventArgs e){
 serv1 = new WebService1();
 serv2 = new WebService2();

 IAsyncResult result1 = serv1.BeginLengthyProcedure(1000,null,null);
 IAsyncResult result2 = serv2.BeginSlowProcedure(1000,null,null);

 //wait for the asynchronous operation to complete
 WaitHandle[] waitHandles = new WaitHandle[2];

 waitHandles[0] = result1.AsyncWaitHandle;
 waitHandles[1] = result2.AsyncWaitHandle;

 WaitHandle.WaitAll(waitHandles); //depending upon the scenario you can
 //choose between WaitAny and WaitAll
 string retStr1 = serv1.EndLengthyProcedure(result1);
 string retStr2 = serv2.EndSlowProcedure(result2);
}

Call Web Services Asynchronously for UI Responsiveness
By calling a Web service asynchronously from a Windows Forms application, you
free the main user interface thread. You can also consider displaying a progress bar
while the call progresses. This helps improve perceived performance.

However, you need to perform some additional work to resynchronize the results
with the user interface thread because the Web service call is handled by a separate
thread. You need to call the Invoke method for the control on which you need to
display the results.

More Information

For more information, see the MSDN article, “At Your Service: Performance
Considerations for Making Web Service Calls from ASPX Pages,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html
/service07222003.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07222003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07222003.asp

458 Improving .NET Application Performance and Scalability

Timeouts
It is very common for an ASP.NET application to call a Web service. If your
application’s Web page times out before the call to the Web service times out, this
causes an unmanaged resource leak and a ThreadAbortException. This is because
I/O completion threads and sockets are used to service the calls. As a result of the
exception, the socket connection to the Web service is not closed and cannot be
reused by other outbound requests to the Web service. The I/O thread continues to
process the Web service response.

To avoid these issues, set timeouts appropriately as follows:
● Set your proxy timeout appropriately.
● Set your ASP.NET timeout greater than your Web service timeout.
● Abort connections for ASP.NET pages that timeout before a Web services call

completes.
● Consider the responseDeadlockInterval attribute.

Set Your Proxy Timeout Appropriately
When you call a Web service synchronously, set the Timeout property of the Web
service proxy. The default value is 100 seconds. You can programmatically set the
value before making the call, as shown in the following code snippet.

MyWebServ obj = new MyWebServ();
obj.Timeout = 15000; // in milliseconds

For ASP.NET applications, the Timeout property value should always be less than
the executionTimeout attribute of the httpRuntime element in Machine.config. The
default value of executionTimeout is 90 seconds. This property determines the time
ASP.NET continues to process the request before it returns a timed out error. The
value of executionTimeout should be the proxy Timeout, plus processing time for
the page, plus buffer time for queues.
● Consider reducing the Proxy Timeout value from its default of 100 seconds if you

do not expect clients to wait for such a long time. You should do this even under
high load conditions when the outbound requests to the Web service could be
queued on the Web server. As a second step, reduce the executionTimeout also.

● You might need to increase the value if you expect the synchronous call to take
more time than the default value before completing the operation. If you send or
receive large files, you may need to increase the attribute value. As a second step,
increase the executionTimeout attribute to an appropriate value.

 Chapter 10: Improving Web Services Performance 459

Set Your ASP.NET Timeout Greater Than Your Web Service Timeout
The Web service timeout needs to be handled differently, depending upon whether
you call the Web service synchronously or asynchronously. In either case, you should
ensure that the timeouts are set to a value less than the executionTimeout attribute of
the httpRuntime element in Machine.config. The following approaches describe the
options for setting the timeouts appropriately:
● Synchronous calls to a Web service. Set the proxy Timeout to an appropriate

value, as shown in the following code snippet.

MyWebServ obj = new MyWebServ();
obj.Timeout = 15000; // in milliseconds

You can also set the value in the proxy class generated by the WSDL for the Web
service. You can set it in the class constructor, as shown in the following code
snippet.

public MyWebServ() {
 this.Url = "http://someMachine/mywebserv/myserv.asmx";
 this.Timeout = 10000; //10 seconds
}

Or you can set it at the method level for a long-running call.

public string LengthyProc(int sleepTime) {
 this.Timeout = 10000; //10 seconds
 object[] results = this.Invoke("LengthyProc", new object[] {sleepTime});
 return ((string)(results[0]));
}

● Asynchronous calls to a Web service. In this case, you should decide on the
number of seconds you can wait for the Web service call to return the results.
When using a WaitHandle, you can pass the number of milliseconds the executing
thread is blocked on the WaitHandle before it aborts the request to the Web
service. This is shown in the following code snippet.

MyWebServ obj = new MyWebServ();
IAsyncResult ar = obj.BeginFunCall(5,5,null,null);

// wait for not more than 2 seconds
ar.AsyncWaitHandle.WaitOne(2000,false);
if (!ar.IsCompleted) //if the request is not completed {
 WebClientAsyncResult wcar = (WebClientAsyncResult)ar;
 wcar.Abort();//abort the call to web service
}
else
{ //continue processing the results from web service }

460 Improving .NET Application Performance and Scalability

Abort Connections for ASP.NET Pages That Timeout Before a
Web Services Call Completes
After you make the configuration changes described in the previous section, if your
Web pages time out while Web services calls are in progress, you need to ensure that
you abort the Web services calls. This ensures that the underlying connections for the
Web services calls are destroyed.

To abort a Web services call, you need a reference to the WebRequest object used to
make the Web services call. You can obtain this by overriding the GetWebRequest
method in your proxy class and assigning it to a private member of the class before
returning the WebRequest. This approach is shown in the following code snippet.

private WebRequest _request;
protected override WebRequest GetWebRequest(Uri uri){
 _request = base.GetWebRequest(uri);
 return _request;
}

Then, in the method that invokes the Web service, you should implement a finally
block that aborts the request if a ThreadAbortException is thrown.

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(...)]
public string GoToSleep(int sleepTime) {
 bool timeout = true;
 try {
 object[] results = this.Invoke("GoToSleep", new object[] {sleepTime});
 timeout = false;
 return ((string)(results[0]));
 }
 finally {
 if(timeout && _request!=null)
 _request.Abort();
 }
}

Note: Modifying generated proxy code is not recommended because the changes are lost as soon as
the proxy is regenerated. Instead, derive from the proxy class and implement new functionality in the
subclass whenever possible.

 Chapter 10: Improving Web Services Performance 461

Consider the responseDeadlockInterval Attribute
When you make Web services calls from an ASP.NET application, if you are
increasing the value of both the proxy timeout and the executionTimeout to greater
than 180 seconds, consider changing the responseDeadlockInterval attribute for the
processModel element in the Machine.config file. The default value of this attribute
is 180 seconds. If there is no response for an executing request for 180 seconds, the
ASP.NET worker process will recycle.

You must reconsider your design if it warrants changing the attributes to a higher
value.

WebMethods
You add the WebMethod attribute to those public methods in your Web services
.asmx file that you want to be exposed to remote clients. Consider the following Web
method guidelines:
● Prefer primitive parameter types. When you define your Web method, try to use

primitive types for the parameters. Using primitive types means that you benefit
from reduced serialization, in addition to automatic validation by the .NET
Framework.

● Consider buffering. By default, the BufferResponse configuration setting is set
to true, to ensure that the response is completely buffered before returning to the
client. This default setting is good for small amounts of data. For large amounts
of data, consider disabling buffering, as shown in the following code snippet.

[WebMethod(BufferResponse=false)]
public string GetTextFile() {
 // return large amount of data
}

To determine whether or not to enable or disable buffering for your application,
measure performance with and without buffering.

● Consider caching responses. For applications that deal with relatively static
data, consider caching the responses to avoid accessing the database for every
client request. You can use the CacheDuration attribute to specify the number
of seconds the response should be cached in server memory, as shown in the
following code snippet.

[WebMethod(CacheDuration=60)]
public string GetSomeDetails() {
 // return large amount of data
}

Note that because caching consumes server memory, it might not be appropriate if
your Web method returns large amounts of data or data that frequently changes

462 Improving .NET Application Performance and Scalability

● Enable session state only for Web methods that need it. Session state is disabled
by default. If your Web service needs to maintain state, then you can set the
EnableSession attribute to true for a specific Web method, as shown in the
following code snippet.

[WebMethod(EnableSession=true)]
public string GetSomeDetails() {
 // return large amount of data
}

Note that clients must also maintain an HTTP cookie to identify the state between
successive calls to the Web method.
For more information, see “WebMethodAttribute.EnableSession Property” on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref
/html/frlrfSystemWebServicesWebMethodAttributeClassEnableSessionTopic.asp.

Serialization
The amount of serialization that is required for your Web method requests and
responses is a significant factor for overall Web services performance. Serialization
overhead affects network congestion, memory consumption, and processor
utilization. To help keep the serialization overhead to a minimum:
● Reduce serialization with XmlIgnore.
● Reduce round trips.
● Consider XML compression.

Reduce Serialization with XmlIgnore
To limit which fields of an object are serialized when you pass the object to or from a
Web method and to reduce the amount of data sent over the wire, use the XmlIgnore
attribute as shown in the following code snippet. The XmlSerializer class ignores any
field annotated with this attribute.

Note: Unlike the formatters derived from the IFormatter interface, XmlSerializer serializes only
public members.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebServicesWebMethodAttributeClassEnableSessionTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebServicesWebMethodAttributeClassEnableSessionTopic.asp

 Chapter 10: Improving Web Services Performance 463

// This is the class that will be serialized.
public class MyClass
{
 // The str1 value will be serialized.
 public string str1;

 /* This field will be ignored when serialized--
 unless it's overridden. */
 [XmlIgnoreAttribute]
 public string str2;
}

Reduce Round Trips
Reducing round trips to a Web service reduces the number of times that messages
need to cross serialization boundaries. This helps reduce the overall serialization
cost incurred. Design options that help to reduce round trips include the following:
● Use message-based interaction with a message-based programming model, rather

than an RPC style that requires multiple object interactions to complete a single
logical unit of work.

● In some cases, split a large payload into multiple calls to the Web service.
Consider making the calls in parallel using asynchronous invocation instead of
in series. This does not technically reduce the total number of round trips, but in
essence the client waits for only a single round trip.

Consider XML Compression
Compressing the XML payload sent over the wire helps reduce the network traffic
significantly. You can implement XML compression by using one of the following
techniques:
● Use SOAP extensions on the server and client for the compression and

decompression of requests and responses.
● Use a custom HTTP module on the server and override the proxy for the

Web service on the client.
● Use HTTP compression features available in IIS 5.0 and later versions for

compressing the response from the Web services. Note that you need a
decompression mechanism on the client.

464 Improving .NET Application Performance and Scalability

More Information
For more information about serialization, see:
● “XmlSerializer Architecture” in the November 2001 edition of MSDN magazine,

at http://msdn.microsoft.com/msdnmag/issues/01/11/webserv/default.aspx
● Microsoft Knowledge Base article 314150, “INFO: Roadmap for XML

Serialization in the .NET Framework,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;314150

● Microsoft Knowledge Base article 313651, “INFO: Roadmap for XML in the .NET
Framework,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;313651

● Microsoft Knowledge Base article 317463, “HOW TO: Validate XML Fragments
Against an XML Schema in Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;317463

Caching
Caching is a great way to improve Web services performance. By reducing the
average request time and easing server load, caching also helps scalability. You can
cache frequently used data applicable to all users, or you can cache SOAP response
output. You can cache application data by using ASP.NET caching features. You can
cache SOAP output by using either the ASP.NET output cache or by employing
perimeter caching. When designing a caching strategy for your Web services,
consider the following guidelines:
● Consider output caching for less volatile data.
● Consider providing cache-related information to clients.
● Consider perimeter caching.

Consider Output Caching for Less Volatile Data
If portions of your output are static or nearly static, use ASP.NET output caching.
To use ASP.NET output caching with Web services, configure the CacheDuration
property of the WebMethod attribute. The following code snippet shows the cache
duration set to 30 seconds.

[WebMethod(CacheDuration=30)]
public string SomeMethod() { }

For more information, see Microsoft Knowledge Base article 318299,
“HOW TO: Perform Output Caching with Web Services in Visual C# .NET,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;318299.

http://msdn.microsoft.com/msdnmag/issues/01/11/webserv/default.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;314150
http://support.microsoft.com/default.aspx?scid=kb;en-us;314150
http://support.microsoft.com/default.aspx?scid=kb;en-us;313651
http://support.microsoft.com/default.aspx?scid=kb;en-us;317463
http://support.microsoft.com/default.aspx?scid=kb;en-us;317463
http://support.microsoft.com/default.aspx?scid=kb;en-us;318299

 Chapter 10: Improving Web Services Performance 465

Consider Providing Cache-Related Information to Clients
Web services clients can implement custom caching solutions to cache the response
from Web services. If you intend that clients of your Web services should cache
responses, consider providing cache expiration-related information to the clients
so that they send new requests to the Web service only after their cached data has
expired. You can add an additional field in the Web service response that specifies
the cache expiration time.

Consider Perimeter Caching
If the output from your Web services changes infrequently, use hardware or software
to cache the response at the perimeter network. For example, consider ISA firewall-
based caching. Perimeter caching means that a response is returned before the
request even reaches the Web server, which reduces the number of requests that need
to be serviced.

For more information about ISA caching, see the white paper, “Scale-Out
Caching with ISA,” at http://www.microsoft.com/isaserver/techinfo/deployment
/ScaleOutCachingwithISA.asp.

State Management
Web services state can be specific to a user or to an application. Web services use
ASP.NET session state to manage per-user data and application state to manage
application-wide data. You access session state from a Web service in the same
way you do from an ASP.NET application — by using the Session object or
System.Web.HttpContext.Current. You access application state using the
Application object, and the System.Web.HttpApplicationState class provides
the functionality.

Maintaining session state has an impact on concurrency. If you keep data in session
state, Web services calls made by one client are serialized by the ASP.NET runtime.
Two concurrent requests from the same client are queued up on the same thread in
the Web service — the second request waits until the first request is processed. If
you do not use session data in a Web method, you should disable sessions for that
method.

Maintaining state also affects scalability. First, keeping per-client state in-process
or in a state service consumes memory and limits the number of clients your Web
service can serve. Second, maintaining in-process state limits your options because
in-process state is not shared by servers in a Web farm.

http://www.microsoft.com/isaserver/techinfo/deployment/ScaleOutCachingwithISA.asp
http://www.microsoft.com/isaserver/techinfo/deployment/ScaleOutCachingwithISA.asp

466 Improving .NET Application Performance and Scalability

If your Web service needs to maintain state between client requests, you need to
choose a design strategy that offers optimum performance and at the same time does
not adversely affect the ability of your Web service to scale. The following guidelines
help you to ensure efficient state management:
● Use session state only where it is needed.
● Avoid server affinity.

Use Session State Only Where It Is Needed
To maintain state between requests, you can use session state in your Web services by
setting the EnableSession property of the WebMethod attribute to true, as shown in
the following code snippet. By default, session state is disabled.

[WebMethod(EnableSession=true)]
YourWebMethod() { ... }

Since you can enable session state at the Web method level, apply this attribute only
to those Web methods that need it.

Note: Enabling session state pins each session to one thread (to protect session data). Concurrent
calls from the same session are serialized once they reach the server, so they have to wait for each
other, regardless of the number of CPUs.

Avoid Server Affinity
If you do use session state, in-process session state offers the best performance, but
it prevents you from scaling out your solution and operating your Web services in a
Web farm. If you need to scale out your Web services, use a remote session state store
that can be accessed by all Web servers in the farm.

Bulk Data Transfer
You have the following basic options for passing large amounts of data including
binary data to and from Web methods:
● Using a byte array Web method parameter.
● Returning a URL from the Web service.
● Using streaming.

 Chapter 10: Improving Web Services Performance 467

Using a Byte Array Web Method Parameter
With this approach, you pass a byte array as a method parameter. An additional
parameter typically specifies the transfer data size. This is the easiest approach, and
it supports cross-platform interoperability. However, it has the following issues:
● If a failure occurs midway through the transfer, you need to start again from the

beginning.
● If the client passes an arbitrary amount of data that exceeds your design

limitations, you run the risk of running out of memory or exceeding your CPU
thresholds on the server. Your Web service is also susceptible to denial of service
attacks.

Note that you can limit the maximum SOAP message size for a Web service by using
the maxRequestLength setting in the <httpRuntime> section of the Web.config file.
In the following example, the limit is set to 8 KB.

<configuration>
 <system.web>
 <httpRuntime maxRequestLength="8096"
 useFullyQualifiedRedirectUrl="true"
 executionTimeout="45"/>
 </system.web>
</configuration>

Base 64 Encoding
For binary data transfer, you can use Base 64 to encode the data. Base 64 encoding is
suitable for cross-platform interoperability if your Web service has a heterogeneous
client audience.

This approach is more suitable if your data isn’t large and the encoding/decoding
overhead and size of the payload are not of significant concern. For large-sized data,
you can implement a WSE filter and various compression tools to compress the
message before sending it over the wire.

For more information about Base 64 encoding and decoding, see:
● Microsoft Knowledge Base article 191239, “Sample Base 64 Encoding and

Decoding,” at http://support.microsoft.com/default.aspx?scid=kb;EN-US;q191239.
● MSDN article, “Web Methods Make It Easy to Publish Your App’s Interface over

the Internet” by Paula Paul, at http://msdn.microsoft.com/msdnmag/issues/02/03
/WebMethods/.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q191239
http://msdn.microsoft.com/msdnmag/issues/02/03/WebMethods/
http://msdn.microsoft.com/msdnmag/issues/02/03/WebMethods/

468 Improving .NET Application Performance and Scalability

Returning a URL from the Web Service
Returning a URL from the Web service is the preferred option for large file
downloads. With this approach, you return a URL to the client, and the client then
uses HTTP to download the file.

You can consider using the Background Intelligent Transfer Service (BITS), a
Windows service, for this purpose. For more information about BITS, see the
MSDN article, “Write Auto-Updating Apps with .NET and the Background
Intelligent Transfer Service API” by Jason Clark, at http://msdn.microsoft.com
/msdnmag/issues/03/02/BITS/.

If you need to use BITS for your .NET application for uploading and downloading
of files, you can use the Updater Application Block. For more information, see the
MSDN article “Updater Application Block for .NET” at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/updater.asp.

Although returning a URL works for downloads, it is of limited use for uploads. For
uploads, you must call the Web service from an HTTP server on the Internet, or the
Web service will be unable to resolve the supplied URL.

Using Streaming
 If you need to transfer large amounts of data (several megabytes, for example) from
a Web method, consider using streaming. If you use streaming, you do not need to
buffer all of the data in memory on the client or server. In addition, streaming allows
you to send progress updates from a long-running Web service operation to a client
that is blocked waiting for the operation to return.

In most cases, data is buffered on both the server and client. On the server side,
serialization begins after the Web method has returned, which means that all of the
data is usually buffered in the return value object. On the client side, the
deserialization of the entire response occurs before the returned object is handed back
to the client application, again buffering data in memory.

You can stream data from a Web service in two ways:
● Implementing IList
● Implementing IXmlSerializable

Implementing IList
The XmlSerializer has special support for types that implement IList whereby it
obtains and serializes one list item at a time. To benefit from this streaming behavior,
you can implement IList on your return type, and stream out the data one list item at
a time without first buffering it.

http://msdn.microsoft.com/msdnmag/issues/03/02/BITS/
http://msdn.microsoft.com/msdnmag/issues/03/02/BITS/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/updater.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/updater.asp

 Chapter 10: Improving Web Services Performance 469

While this approach provides streaming and the ability to send progress updates, it
forces you to work with types that implement IList and to break data down into list
items.

Note: The serializer is still responsible for serializing and deserializing each individual list item.

Another disadvantage is that the progress is reported from the returned type. This
means that the instance of your type that implements IList used on the client side
must be able to communicate progress to the client application while the serializer
calls IList.Add. While this is achievable, it is not ideal.

The following server and client code samples show how to implement this approach.
The server code is shown below.

// Server code
// If the server wants to return progress information, the IList indexer would
// have to know the current progress and return a value indicating that progress
// when it is called.
public class MyList : IList
{
 int progress=0;
 public object this[int index]
 {
 get
 {
 // Pretend to do something that takes .5 seconds
 System.Threading.Thread.Sleep(500);
 if (progress <= 90)
 return progress+=10;
 else
 return "Some data goes here";
 }
 set
 {
 // TODO: Add setter implementation
 }
 }
 ... other members omitted
}

[WebMethod]
public MyList DoLongOperation()
{
 // To prevent ASP.NET from buffering the response, the WebMethod must set
 // the BufferOutput property to false
 HttpContext.Current.Response.BufferOutput=false;

 return new MyList();
}

470 Improving .NET Application Performance and Scalability

By using the above code, the Web service response is streamed out and consists of
10 progress data points (10 to 100), followed by a string of data.

The corresponding method on the client proxy class must return a type that
implements IList. This type must know how to stream items as they are added to
the list, and, if required, how to report progress information as it is retrieved from
the stream. The relevant MyList member on the client is the Add method:

Note: With .NET Framework 1.1 you must manually edit the generated proxy code because Wsdl.exe
and the Add Web Reference option in Visual Studio.NET generate a proxy class with a method that
returns an object array. You need to modify this to return a type that implements IList.

The client code is shown below.

// Client code
public class MyList : IList
{
 public int Add(object value)
 {
 if (progress < 100)
 {
 progress = Convert.ToInt32(value);
 Console.WriteLine("Progress is {0}",progress);
 }
 else
 {
 Console.WriteLine("Received data: {0}",value);
 }
 return 0;
 }
}

The client’s proxy class then contains a method that returns MyList as shown below:

public ProgressTestClient.MyList DoLongOperation()
{
 ... code omitted
}

Implementing IXmlSerializable
Another possible approach is to create a type that implements IXmlSerializable,
and return an instance of this type from your Web method and the client proxy’s
method. This gives you full control of the streaming process. On the server side,
the IXmlSerializable type uses the WriteXml method to stream data out:

 Chapter 10: Improving Web Services Performance 471

This solution is slightly cleaner than the previous approach because it removes
the arbitrary restriction that the returned type must implement IList. However, the
programming model is still a bit awkward because progress must be reported from
the returned type. Once again, in.NET Framework 1.1, you must also modify the
generated proxy code to set the correct method return type.

The following code sample shows how to implement this approach.

public class ProgressTest : IXmlSerializable
{
 public void WriteXml(System.Xml.XmlWriter writer)
 {
 int progress=0;
 while(progress <= 100)
 {
 writer.WriteElementString("Progress",
 "http://progresstest.com", progress.ToString());
 writer.Flush();
 progress += 10;
 // Pretend to do something that takes 0.5 second
 System.Threading.Thread.Sleep(500);
 }
 writer.WriteElementString("TheData",
 "http://progresstest.com","Some data goes here");
 }
}

The Web method must disable response buffering and return an instance of the
ProgressTest type, as shown below.

[WebMethod]
public ProgressTest DoLongOperation2()
{
 HttpContext.Current.Response.BufferOutput=false;
 return new ProgressTest();
}

More Information
For more information about bulk data transfer, see:
● Microsoft Knowledge Base article 318425, “HOW TO: Send and Receive

Binary Documents by Using an ASP.NET Web Service and Visual C# .NET,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;318425

● MSDN article, “Large Data Strategies,” at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnservice/html/service11072001.asp

● MSDN article, “XML,SOAP, and Binary Data,” at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp

http://support.microsoft.com/default.aspx?scid=kb;en-us;318425
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service11072001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service11072001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp

472 Improving .NET Application Performance and Scalability

Attachments
You have various options when handling attachments with Web services. When
choosing your option, consider the following:
● WS-Attachments. WSE versions 1.0 and 2.0 provide support for WS-Attachments,

which uses Direct Internet Message Encapsulation (DIME) as an encoding format.
Although DIME is a supported part of WSE, Microsoft is not investing in this
approach long term. DIME is limited because the attachments are outside the
SOAP envelope.

● Base 64 encoding. Use Base 64 encoding. At this time, you should use Base 64
encoding rather than WS-Attachments when you have advanced Web service
requirements, such as security. Base 64 encoding results in a larger message
payload (up to two times that of WS-Attachments). You can implement a WSE
filter to compress the message with tools such as GZIP before sending it over the
network for large amounts of binary data. If you cannot afford the message size
that Base 64 introduces and you can rely on the transport for security (for example,
you rely on SSL or IPSec), then consider the WSE WS-Attachments
implementation. Securing the message is preferable to securing the transport so
that messages can be routed securely, whereas transport only addresses point-to-
point communication.

● SOAP Message Transmission Optimization Mechanism (MTOM). MTOM,
which is a derivative work of SOAP messages with attachments (SwA), is likely to
be the future interop technology. MTOM is being standardized by the World Wide
Web Consortium (W3C) and is much more composition-friendly than SwA.

SOAP Messages with Attachments (SwA)
SwA (also known as WS-I Attachments Profile 1.0) is not supported. This is because
you cannot model a MIME message as an XML Infoset, which introduces a
non-SOAP processing model and makes it difficult to compose SwA with the rest
of the WS-* protocols, including WS-Security. The W3C MTOM work was specifically
chartered to fix this problem with SwA, and Microsoft is planning to support MTOM
in WSE 3.0.

COM Interop
Calling single-threaded apartment (STA) objects from Web services is neither tested
nor supported. The ASPCOMPAT attribute that you would normally use in ASP.NET
pages when calling Apartment threaded objects is not supported in Web services.

 Chapter 10: Improving Web Services Performance 473

More Information
For more information, see Microsoft Knowledge Base article 303375, “INFO:
XML Web Services and Apartment Objects,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;303375.

Measuring and Analyzing Web Services Performance
The quickest way to measure the performance of a Web services call is to use
the Microsoft Win32® QueryPerformanceCounter API, which can be used with
QueryPerformanceFrequency to determine the precise number of seconds that
the call consumed.

Note: You can also use the ASP.NET\Request Execution Time performance counter on the server
hosting the Web service.

More Information
● For more information, see “How To: Time Managed Code Using

QueryPerformanceCounter and QueryPerformanceFrequency,” in the “How To”
section of this guide.

● For more information about measuring Web services performance, see
“Web Services” in Chapter 15, “Measuring .NET Application Performance.”

Web Service Enhancements
Web Service Enhancements (WSE) is an implementation provided to support
emerging Web services standards. This section briefly explains WSE, its role in
Web services, and sources of additional information.

WSE 2.0 provides a set of classes implemented in the Microsoft.Web.Services.dll to
support the following Web services standards:
● WS-Security
● WS-SecureConversation
● WS-Trust
● WS-Policy
● WS-Addressing
● WS-Referrals
● WS-Attachments
.

http://support.microsoft.com/default.aspx?scid=kb;en-us;303375
http://support.microsoft.com/default.aspx?scid=kb;en-us;303375

474 Improving .NET Application Performance and Scalability

Figure 10.2 shows how WSE extends the .NET Framework to provide this
functionality.

Trace Input/Output Filter

Policy Verification Input/
Output Filter

Security Input/Output Filter

Custom Input/Output Filter

SOAP
WSE Pipeline Filters

WSE Runtime

ASP.NET Runtime

SOAP Web Request

SOAP Context

Figure 10.2
WSE runtime

The WSE runtime consists of a pipeline of filters that intercepts inbound SOAP
requests and outgoing SOAP response messages. WSE provides a programming
model to manage the SOAP headers and messages using the SoapContext class.
This gives you the ability to implement various specifications that it supports.

More Information
For more information about WSE, see the MSDN article, “Web Services
Enhancements (WSE),” at http://msdn.microsoft.com/webservices/building
/wse/default.aspx.

Summary
Web services are the recommended communication mechanism for distributed .NET
applications. It is likely that large portions of your application are depending on them
or will depend on them. For this reason, it is essential that you spend time optimizing
Web services performance and that you design and implement your Web services
with knowledge of the important factors that affect their performance and scalability.

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx

 Chapter 10: Improving Web Services Performance 475

This chapter has presented the primary Web services performance and scalability
issues that you must address. It has also provided a series of implementation
techniques that enable you to tackle these issues and build highly efficient Web
services solutions.

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Web Services Performance,” in the

“Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the

“Web Services” and “ASP.NET” sections.
● Chapter 15, “Measuring .NET Application Performance.” See the “Web Services”

and “ASP.NET” sections.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “Web Services

Tuning” and “ASP.NET Tuning” sections.
● For key recommendations to help you create high-performance .NET Enterprise

Services components, see “.NET Enterprise Services Performance” by Richard
Turner, on MSDN at http://msdn.microsoft.com/library/en-us/dncomser/html
/entsvcperf.asp.

● For more information on using Microsoft WSE, see Microsoft Knowledge Base
article 821377, “Support WebCast: Introduction to Microsoft Web Services
Enhancements,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;821377.

http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;821377

11
Improving Remoting Performance

Objectives
● Identify remoting performance issues.
● Optimize .NET remoting solutions for performance.
● Choose the appropriate host, channel, and formatter combination.
● Choose an appropriate activation model.
● Evaluate and choose the most appropriate object lifetime strategy.
● Evaluate and choose the most appropriate state management strategy.
● Improve serialization performance.

Overview
.NET remoting is the preferred communication mechanism for single process,
cross application domain communication. For crossing process or server boundaries
or where communication is required across deployment or trust boundaries, Web
services are the recommended option.

Factors that have a significant impact on .NET remoting performance include the
choice of channel and formatter, interface design, marshaling, the object activation
model, and state management. This chapter discusses these and other remoting
performance issues, and provides recommendations that will help you use remoting
efficiently.

478 Improving .NET Application Performance and Scalability

This chapter starts by providing a brief overview of .NET remoting architecture
and introducing the main concepts and terminology. It then provides prescriptive
guidance to help you choose the appropriate communication technology for your
particular scenario. This chapter then presents a series of design considerations,
followed by implementation considerations and recommendations that will help
you build efficient .NET remoting solutions.

How to Use This Chapter
Use this chapter to identify remoting performance issues and to learn key design
considerations for .NET remoting solutions. To get the most out of this chapter,
do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read this
chapter from beginning to end to gain a thorough appreciation of performance
and scalability design issues.

● Use the checklist. Use the “Checklist: Remoting Performance” checklist in the
“Checklists” section of this guide to quickly view and evaluate the guidelines
presented in this chapter.

● Use the “Architecture” section of this chapter. This section helps you understand
how remoting works. By understanding the architecture, you can make better
design and implementation choices.

● Use the “Design Considerations” section of this chapter. This section helps you
understand the higher level decisions that will affect implementation choices for
remoting code.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the
“Remoting” section for specific guidance.

● Measure your application performance. Read the “Remoting” and “.NET
Framework Technologies” sections of Chapter 15, “Measuring .NET Application
Performance,” to learn about the key metrics that can be used to measure
application performance. It is important for you to measure application
performance so that you can accurately identify and resolve performance issues.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important to apply a coherent testing process and to analyze the results.

● Tune your application performance. Read Chapter 17, “Tuning .NET Application
Performance,” to learn how to resolve performance issues identified through the
use of tuning metrics.

 Chapter 11: Improving Remoting Performance 479

Architecture
.NET remoting uses channels to communicate method calls between two objects in
different application domains (AppDomains). Channels rely on formatters to create
a wire representation of the data being exchanged. The following list briefly outlines
the main components of the .NET remoting infrastructure:
● Channels. .NET remoting provides two channel implementations:

● HttpChannel
● TcpChannel

● Formatters. Each channel uses a different formatter to encode data on the wire.
Two formatters are supplied:
● BinaryFormatter. This uses a native binary representation.
● SoapFormatter. This uses XML-encoded SOAP as the message format.

● Sinks. The .NET remoting infrastructure supports an extensibility point
called a sink. The BinaryFormatter and SoapFormatter classes are examples of
system-provided sinks. You can create custom sinks to perform tasks such as
data compression or encryption.

● Proxy. Clients communicate with remote objects through a reference to a proxy
object. The proxy is the representation of the remote object in the local application
domain. The proxy shields the client from the underlying complexity of
marshaling and remote communication protocols.

● Host. This is the process that hosts the remoting endpoint. Possible hosts include
Internet Information Services (IIS) or custom executables such as a Windows
service. The choice of host affects the type of channel that can be used to
communicate with the remote object. Possible hosts include:
● A Windows service application.
● IIS and ASP.NET.
● A Windows application.
● A console application.

480 Improving .NET Application Performance and Scalability

Figure 11.1 shows the main elements of the .NET remoting infrastructure.

Proxy

Formatter Sink

Custom Sink

Sink

Transport Sink

Client Object

Formatter Sink

Custom Sink

Sink

Transport Sink
Channel

Host Process

Channel Channel

Figure 11.1
.NET remoting architecture

Activation
A remotable type must be created and initialized before it can be accessed. This
process is referred to as activation. .NET remoting supports two types of activation:
server activation and client activation.

Server-Activated Objects
Server-activated objects (SAOs) are created at the server by one of two activation
models:
● Singleton. A single object instance services all client requests. Singletons

guarantee that only one object instance is in memory at any time per application
domain.

● Single call. Each client call is serviced by a new object instance. No state
management is provided by this model. This model is well suited for load
balancing and increased scalability.

 Chapter 11: Improving Remoting Performance 481

Client-Activated Objects
Client-activated objects (CAOs) are created on the server and initiated by the client.
A new instance is created for each client call to new or Activator.CreateInstance.
CAOs can be stateful.

Object Lifetime
Regardless of activation type, all remotable objects can be destroyed and freed from
memory by the server. This is by design and allows the server to reclaim resources
that are no longer in use or active. You can fine-tune the object lifetime semantics to
meet the needs of your application and prevent the server from destroying or freeing
an object from memory. For more information, see “Lifetime Considerations” later in
this chapter.

Prescriptive Guidance for Web Services, Enterprise Services,
and .NET Remoting

Services are the preferred communication technique to use across application
boundaries, including platform, deployment, and trust boundaries. You can
implement services today by using Web services or Web Services Enhancements
(WSE). Although WSE provides a rich set of features, you should evaluate whether or
not you can accept the WSE support policy. Enterprise Services provides component
services such as object pooling, queued components, a role-based security model and
distributed transactions, and should be used as an implementation detail within your
service when you need those features. .NET remoting is preferred for cross-
application communication within the same process.

Object Orientation and Service Orientation
When you design distributed applications, use the services approach whenever
possible. Although object orientation provides a pure view of what a system should
look like and is effective for producing logical models, an object-based approach can
fail to consider real-world factors, such as physical distribution, trust boundaries, and
network communication, as well as nonfunctional requirements, such as performance
and security.

482 Improving .NET Application Performance and Scalability

Table 11.1 summarizes some key differences between object orientation and service
orientation.

Table 11.1: Object Orientation vs. Service Orientation

Object Orientation Service Orientation

Assumes a homogeneous platform and
execution environment.

Assumes a heterogeneous platform and
execution environment.

Shares types, not schemas. Shares schemas, not types.
Assumes cheap, transparent
communication.

Assumes variable cost, explicit communication.

Objects are linked: object identity and
lifetime are maintained by the infrastructure.

Services are autonomous: security and failure
isolation are a must.

Typically requires synchronized deployment
of both client and server.

Allows continuous, separate deployment of client
and server.

Is easy to conceptualize and thus provides
a natural model to follow.

Builds on ideas from component software and
distributed objects. Dominant theme is to
manage/reduce sharing between services.

Provides no explicit guidelines for state
management and ownership.

Owns and maintains state or uses the reference
state.

Assumes a predictable sequence,
timeframe, and outcome of invocations.

Assumes message-oriented, potentially
asynchronous, and long-running communications.

Goal is to transparently use functions and
types remotely.

Goal is to provide inter-service isolation and wire
interoperability based on standards.

Application Boundaries
Common application boundaries include platform, deployment, trust, and evolution.
(Evolution refers to whether or not you develop and upgrade applications together.)
When you evaluate architecture and design decisions that affect your application
boundaries, consider the following:
● Objects and remote procedure calls (RPC) are appropriate within boundaries.
● Services are appropriate across and within boundaries.

Recommendations for Web Services, Enterprise Services, and .NET
Remoting
When you are working with ASP.NET Web services, Enterprise Services, and .NET
remoting, Microsoft recommends that you:
● Build services by using ASP.NET Web Services.
● Enhance your ASP.NET Web services with WSE if you need the WSE feature set

and you can accept the support policy.

 Chapter 11: Improving Remoting Performance 483

● Use object technology, such as Enterprise Services or .NET remoting, within a
service implementation.

● Use Enterprise Services inside your service boundaries in the following scenarios:
● You need the Enterprise Services feature set (such as object pooling; declarative,

distributed transactions; role-based security; and queued components).
● You are communicating between components on a local server and you have

performance issues with ASP.NET Web services or WSE.
● Use .NET remoting inside your service boundaries in the following scenarios:

● You need in-process, cross-application domain communication. Remoting has
been optimized to pass calls between application domains extremely efficiently.

● You need to support custom wire protocols. Understand, however, that this
customization will not port cleanly to future Microsoft implementations.

Caveats
When you work with ASP.NET Web services, Enterprise Services, or .NET remoting,
consider the following caveats:
● If you use ASP.NET Web services, avoid or abstract your use of low-level

extensibility features such as the HTTP Context object.
● If you use .NET remoting, avoid or abstract your use of low-level extensibility

such as .NET remoting sinks and custom channels.
● If you use Enterprise Services, avoid passing object references inside Enterprise

Services. Also, do not use COM+ APIs. Instead, use types from the
System.EnterpriseServices namespace.

More Information

For more information, see the following resources:
● For guidelines to make .NET Enterprise Services components execute just as

quickly as C++ COM components, see “.NET Enterprise Services Performance,”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser
/html/entsvcperf.asp.

● For more information about Enterprise Services, see Chapter 8, “Improving
Enterprise Services Performance.”

● For more information about Web services, see Chapter 10, “Improving Web
Services Performance.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/entsvcperf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/entsvcperf.asp

484 Improving .NET Application Performance and Scalability

Performance and Scalability Issues
This section summarizes the main issues that can adversely affect the performance
and scalability of .NET remoting. Subsequent sections in this chapter provide
strategies and technical information to prevent or resolve each of these issues. There
are several main performance and scalability issues:
● Wrong channel type. If you select the wrong channel, you limit the type of host

that can service method calls. The wrong channel can also limit the ability to load
balance requests across a group of servers.

● Incorrect formatter. Parameter data and return values must be converted by the
formatter so they can be passed across the remoting boundary. If you select the
wrong formatter, you can increase the amount of data being transmitted and
seriously decrease performance and scalability.

● Wrong activation type. Remote objects can be activated by the server or by the
client. The activation method affects the lifetime, concurrency, state management,
scalability, and performance of the system.

● Chatty interfaces. Chatty interfaces result in multiple round trips to perform a
single, logical operation. You can significantly improve performance by reducing
round trips.

● Resource affinity. Anything that causes a method call to be serviced by a specific
computer, process, CPU, thread, or object reduces your application’s ability to
scale up or out.

● Object lifetime. Objects that live for long periods of time on the server can be
useful for state management scenarios. However, these objects often cause
resource affinity and adversely affect scalability. Accurately controlling object
lifetime can increase performance and scalability.

● State management. Implementing state in remote components can introduce
affinity issues, increase the latency of request execution, and contribute to resource
pressure on the server. Generally, you should prefer stateless components and
store state in a database for reasons of scalability, security, and design simplicity.

● Inefficient data types. Returning a DataSet object that contains a single row with
a single column value is very expensive when a value type is all that is needed. It
is important that you use the most efficient data type with remoting.

● Blocking operations. The thread that handles a remoting request is blocked from
servicing additional requests while the thread is waiting for a downstream call to
return. Calls to stored procedures and other network calls can block the thread for
a significant amount of time.

 Chapter 11: Improving Remoting Performance 485

Design Considerations
To help ensure that .NET remoting is optimized for performance, there are a number
of issues that you must consider, and a number of decisions that you must make at
design time. This section summarizes the major considerations:
● Use .NET remoting for communicating between application domains in the

same process.
● Choose the right host.
● Choose the right activation model.
● Choose the right channel.
● Choose the right formatter.
● Choose between synchronous or asynchronous communication.
● Minimize round trips and avoid chatty interfaces.
● Avoid holding state in memory.

Use .NET Remoting for Communicating between Application
Domains in the Same Process
.NET remoting is appropriate for communicating between application
domains within the same process, and it supports a wide range of data format and
communication channel combinations. However, it does not provide the same degree
of interoperability and support for Web Services Description Language (WSDL) and
SOAP over HTTP as Web services.

Choose the Right Host
Choosing the right host can improve the ability to scale out the server infrastructure.
You can use IIS and ASP.NET, a Windows service, or any Windows executable as a
remoting host. The primary advantage of using IIS is that you can use IIS security
features, such as authentication and Secure Sockets Layer (SSL). You should only
consider a custom process in a trusted server environment. If you do build a custom
process, use the TcpChannel for optimum performance. For more information, see
“Hosts” later in this chapter.

486 Improving .NET Application Performance and Scalability

Choose the Right Activation Model
The way an object is activated has a large impact on affinity, state management, load
balancing, performance, and scalability. .NET remoting supports server-activated and
client-activated objects.
● Server-Activated Objects (SAOs). Server-activated objects (SAOs) are usually

preferred, because they allow the method call from the client to be serviced by
any available server that receives the request. There are two types of SAOs:
● Singleton. In the singleton case, an object is instantiated at the server and this

instance serves requests for all clients. The common language runtime (CLR)
provides a thread pool to service incoming client calls. As a result, singletons
that maintain shared state require synchronization code to ensure valid state
management.

Note: Singletons do not guarantee that the same instance is always available in memory to
serve client requests. They do guarantee that there is only a single instance of that type
available, at any one time, to service client requests. For ways to control a singleton’s
lifetime, see “Lifetime Considerations” later in this chapter.

● SingleCall. SingleCall objects live only for the life of the method call. They
cannot maintain any state because they are destroyed after servicing the
method. SingleCall objects are free from synchronization code because they
serve requests for only a single client before being destroyed.

● Client-Activated Objects (CAOs). Client-activated objects (CAOs) have the
benefit of making state management in the object easier to maintain. However,
CAOs limit the scalability of the system. CAOs are beneficial when you are using
a single server approach and opting for stateful components.

Choose the Right Channel
Choosing a channel can impact the speed of message transfer and interoperability.
There are two channel types to choose from:
● TCPChannel. This produces maximum performance for a remoting solution using

the BinaryFormatter.
● HttpChannel. Uses SOAP by default to encode payloads. Use when interoperation

is important, or when communicating through a firewall.

 Chapter 11: Improving Remoting Performance 487

Choose the Right Formatter
Both channels, TcpChannel and HttpChannel, can work with both the
BinaryFormatter and the SoapFormatter. If speed is your primary concern, use the
BinaryFormatter. The following describes both formatters:
● BinaryFormatter. The HttpChannel defaults to the SoapFormatter. To change this

default, change the following configuration information in the configuration files
for your server and client application.
● Server configuration:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="8080">
 <serverProviders>
 <formatter ref="binary"/>
 </serverProviders>
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

● Client configuration:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="8080">
 <clientProviders>
 <formatter ref="binary"/>
 </clientProviders>
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

● SoapFormatter. This is primarily used for interoperability. If you need to use
SOAP for message communication, consider using Web services.

Note: The SOAP format used by the SoapFormatter is not entirely interoperable and should not
be considered a truly interoperable approach for cross-platform communication. Interoperability
is best achieved with Web services.

488 Improving .NET Application Performance and Scalability

Choose Between Synchronous or Asynchronous Communication
Remote calls can be invoked by using synchronous or asynchronous calls. By
choosing the most appropriate remote calling method, you can increase the
responsiveness of your application. When making a decision, consider the following:
● Consider asynchronous client calls when you perform parallel tasks. If client

responsiveness is an issue for Windows Forms applications, consider invoking
remote method calls asynchronously rather than performing synchronous
blocking calls. However, if your client is an ASP.NET application, you should be
aware that invoking methods asynchronously and then blocking the calling thread
to pick up return values can have a detrimental impact on the Web application
and can quickly lead to thread starvation. You should use asynchronous calls in
the following scenarios:
● When you have some useful work to do after making the remote call before

blocking on the main worker thread processing the requests.

MyRemoteObj obj = new MyRemoteObj();

IASyncReult ar= obj.BeginLongCall(...);

//Do some useful work before blocking here

Ar.AsynchWaitHandle.WaitOne();

● When you need to make discrete remote calls that are not dependent on
each other.

MyRemoteObj1 obj1 = new MyRemoteObj1();
MyRemoteObj2 obj2 = new MyRemoteObj2();

IASyncReult ar1= obj1.BeginLongCall1(...);
IASyncReult ar2 = obj2.BeginLongCall2(...);

WaitHandle[] wh = {ar1.AsynchWaitHandle, ar2.AsynchWaitHandle}

WaitHandle.WaitAll(wh);

For more information, see “Threading Guidelines” in Chapter 6, “Improving
ASP.NET Performance.”
● Asynchronous remoting limitations. There are no bidirectional channels in

remoting. This means that you have to configure a separate channel for callbacks.
Having a firewall between the object and client leads to the opening of more ports
and configuration issues.

Note: Events and delegates also require the typeFilterLevel to be set to Full when using
.NET Framework 1.1.

 Chapter 11: Improving Remoting Performance 489

● Consider using the OneWay attribute when you do not need return values.
You can mark server object methods with the OneWay attribute. Clients that call
methods marked with this attribute do not wait for the method to execute before
control is returned. This can improve client performance by not having to wait for
method completion at the server. OneWay methods can be called synchronously
or asynchronously. In either case, the calling thread does not wait. One-way
methods must not have any return values, out parameters, or raise any errors.
The client cannot assume that the server successfully completed an operation.
The following is an example of the OneWay attribute.

public class HelloServer : MarshalByRefObject {

 public HelloServer() {}

 [OneWay()]
 public void SayHello() {
 Console.WriteLine(" Hello World");
 }
}

● Consider message queuing. Many applications can benefit from asynchronous
message queuing. Microsoft Windows Message Queuing (also known as MSMQ)
is available to .NET Framework applications. Alternatively, for object-based
message queuing, Enterprise Services provides Queued Components, which also
uses message queuing. Message queuing allows you to queue requests for
processing when server processes are not available for processing. Clients can still
receive notifications about the success or failure of an asynchronous message by
processing reply messages from the server through a second notification queue.
Message queuing is available to managed applications through the types in the
System.Messaging namespace, while Queued Components are available through
the System.EnterpriseServices namespace.

Minimize Round Trips and Avoid Chatty Interfaces
Design chunky, not chatty, interfaces to minimize round trips. Each time a remote
method is invoked, this incurs data marshaling, security checks, and thread switches.
All of these impact performance.

Try to reduce the number of calls used to complete a logical unit of work. The
following code shows an example of calling a component, by using a chatty interface.
Notice how the inefficient (chatty) interface design forces the caller to traverse the
remoting boundary three times to perform the single task of saving customer details.

MyComponent.Firstname = "bob";
MyComponent.LastName = "smith";
MyComponent.SaveCustomer();

490 Improving .NET Application Performance and Scalability

The following code shows how the same functionality should be implemented to
reduce the operations and boundary crossings required to complete the single logical
operation.

MyComponent.SaveCustomer("bob", "smith");

More Information

For more information, see Knowledge Base article 322975, “BUG: Passing Large
Quantities of Data in .NET Remoting Calls Causes an Unexpected Exception to
Occur,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;322975.

Avoid Holding State in Memory
State management is a big concern for distributed application design. Poor state
management choices can limit the ability to scale out the server farm, provide failover
support, and limit performance.

You should use stateless components where possible. Where state must be held in
memory, choose data that remains constant, such as country codes and city names.

If you activate components as singletons, they are bound to the server that they
are created on. In a server farm, this presents problems because each server has a
different object with its own state. This affects your application’s ability to scale out
and failover. By designing stateless components, you can use singleton-activated
components in a farm; this may outperform single-call activated objects because
there is no creation and destruction associated with each call.

If you need state information across calls in a farm, make your classes state-aware by
implementing methods to read and write the caller’s state information. The method
call must include a parameter that uniquely identifies the caller. Use this unique
identifier to retrieve the associated state before the method performs work and then
to write the state afterward. The storage for the state information should be
persistent, available to all servers in the farm, and it should support synchronization.
A database table is a great option.

The following code demonstrates this pattern in your single-call or singleton-
activated classes. This allows you to have state information accessible, but still
maintain the ability to place your remote objects in a server farm.

public class YourSingleCallClass
{
 public bool DoSomeWork (int callIdentifier, int customerNo)
 {
 stateStruct = retrivestateInfo(callIdentifier);
 // Do some operations here on state and parameter(s)
 // potentially update stateStruct
 storeStateInfo(stateStruct);
 }
}

http://support.microsoft.com/default.aspx?scid=kb;en-us;322975

 Chapter 11: Improving Remoting Performance 491

Implementation Considerations
In moving from application design to development, consideration must be given
to the implementation details of your remoting code. The performance of
cross-application communication can be improved through efficient marshaling
and appropriate choice of channel and formatter.

Marshal data efficiently by preferring primitive types. The amount of object data
being passed can be reduced by using the NonSerialized attribute. You should also
pay particular attention to DataSet serialization and aim to minimize the amount of
data serialized from the DataSet. The BinaryFormatter usually produces a more
compact representation than the SoapFormatter, although DataSets are still
serialized as XML, by default.

By following best practice implementation guidelines, you can increase the
performance of your remoting code. The following sections highlight performance
considerations for Remoting features and scenarios.

Activation
A remotable type must be created and initialized before it can be accessed. .NET
remoting supports server activation and client activation.

Client-Activated Objects (CAOs)
When choosing to use CAOs, consider the following:
● Use CAOs only where you need to control the lifetime. The lifetime of the CAOs

can be controlled by the calling application domain, just as if they are local to the
client. Each time a client creates an instance of a client-activated type, that instance
services only that particular reference in that particular client until its lease expires
and its memory is recycled. If a calling application domain creates two new
instances of the remote type, each of the client references invokes only the
particular instance in the server application domain from which the reference was
returned. For more information, see “Lifetime Considerations.”

● Consider the limited scalability offered by CAOs. CAOs are not generally
recommended, due to scalability limitations. Objects activated at the client cause
the client proxy reference to be bound to a specific server where the server object
was activated. This server affinity reduces the ability of your application to scale,
and it negatively impacts performance because load on the individual server
increases. When the server load increases, there is no way to offload the calls from
the client to another server in the farm that has less load. If you have a single
server solution, this is not an issue. However, if you need to scale out and use a
server cluster, CAOs significantly limit scalability. CAOs do provide the benefit of
allowing the server object to maintain state across method calls. Generally, it is
better to design stateless objects for performance and scalability.

492 Improving .NET Application Performance and Scalability

Note: Any Marshal by Reference Objects (MBROs) returned by the remote object will be treated like
CAOs and will suffer this issue as well. Therefore, it is not recommended to return MBRO objects
from remoting calls.

Server-Activated Objects (SAOs)
Activation for SAOs is determined by the server. There are two types of SAOs:
singleton and single call.

Singleton
Use the following guidelines with singleton SAOs:
● Use singleton where you need to access a synchronized resource. Singleton is

the preferred solution if you need to have a synchronized access to any resource;
for example, a read/write operation being performed on a file. Using singletons
ensures that there is only a single instance serving the requests from the clients.

● Use singleton where you need to control lifetime of server objects. Singletons
are subject to lifetime leases that are specified for the objects. However, they can
be recycled even if clients hold references to the objects after the lease time expires.
Therefore, if you need to control the lifetime of server-activated objects, use
singletons.

● Use appropriate state management to scale the solution. The difference between
the CAOs and singletons is that of affinity. Singletons can be scaled if they are
stateless. Singletons can be used for serving calls from multiple clients, whereas
CAOs can be used only for serving calls from the same client for a particular
reference. The CLR provides a thread pool to service incoming client calls. As a
result, singleton SAOs that maintain shared state require synchronization code to
ensure valid state management.

SingleCall
Use the following guideline with single call SAOs:
● Use SingleCall SAOs for high scalability. Single call objects live only for the life

of the method call. They cannot maintain state, because they are destroyed after
servicing the method. Single call objects are free from synchronization code,
because they serve only requests for a single client before being destroyed. Using
single call objects, combined with the HttpChannel and IIS as the host, gives
maximum scalability for a .NET remoting solution.

 Chapter 11: Improving Remoting Performance 493

Lifetime Considerations
There are different approaches to determine server object lifetime and specifically
when the object should be destroyed. This is because there are many circumstances
that can arise that should lead to the server object being released. For example, the
client might release its object reference, the network connection might be
unexpectedly broken, or the client computer or client process might crash.

With the DCOM protocol, the client computer pings the server every two minutes for
each object reference, to indicate to the server that it is still running and connected. If
the server fails to receive a ping or a method request within a six-minute interval, the
server process automatically releases the object.

.NET Remoting Leases
To reduce network communication, .NET applications no longer use a ping-based
approach for distributed garbage collection. Instead, .NET remoting uses a lease-
based system to determine the lifetime of a distributed object.

When an object is created, a lease is established that determines the life of the object.
The default lifetime for a remote object is five minutes. If the object is not used for a
five-minute period, the lease manager releases the object, which makes it available
for garbage collection. When an object is called within the five-minute threshold, the
following “renewal on call” process occurs:
● When the call is made, the lifetime of the lease is checked.
● If the lifetime of the lease is longer than two minutes, nothing is done.
● If the lifetime remaining on the lease is less than two minutes, the lease is reset to

two-minute duration.

Note: Both the default lifetime and the renewal on call time can be configured for precise control.

Object Release
When a lease expires, the lease manager in the host process looks at the object whose
lease has expired and determines if there is an available sponsor for the object. If a
sponsor has been registered, the lease manager calls the sponsor to determine if the
object should remain alive and, if so, for how long.

494 Improving .NET Application Performance and Scalability

Tune Default Timeouts Based on Need
The general guidelines are as follows:
● Consider using a longer lease time for objects that are expensive to create. If you

use objects that are expensive to create, consider modifying the lease timeouts to
allow the object to remain longer than the default 5-minute timeout. For example,
if you use a singleton object that incurs an expensive startup process, consider
changing the timeout to a longer, more appropriate, period of time, or change the
timeout to infinite. The code in the next section shows the changing of the lifetime
lease to infinite.

● Consider shorter lease times for objects that consume lots of shared or
important resources. If you create objects that consume shared or important
resources, consider using a shorter lease timeout. Setting a timeout of less than
5 minutes will force the cleanup of resources to happen faster, which can help
avoid stranded resources and resource pressure.

Tuning the Lease Time
To determine appropriate lifetime timeouts for your application, you need to strike a
balance between resource utilization on the server and the performance implications
of frequently destroying and recreating objects. Increasing an object’s lifetime
increases your server’s memory and resource utilization, while decreasing the
lifetime can lead to objects being destroyed too frequently and prematurely.

Note: If a client makes a method call to a remote object whose lifetime lease has expired,
an exception is thrown.

You can fine-tune both the lease timeout and the “renew on call” time, either
programmatically or declaratively. To alter application-wide initial lease times,
use the following code.

public override Object InitializeLifetimeService()
{
 ILease lease = (ILease)base.InitializeLifetimeService();
 if (lease.CurrentState == LeaseState.Initial)
 {
 lease.InitialLeaseTime = TimeSpan.FromMinutes(1);
 lease.SponsorshipTimeout = TimeSpan.FromMinutes(2);
 lease.RenewOnCallTime = TimeSpan.FromSeconds(2);
 }
 return lease;
}

 Chapter 11: Improving Remoting Performance 495

A better approach is to use the following configuration file settings.

<configuration>
 <system.runtime.remoting>
 <application>
 <lifetime leaseTime="1M"
 renewOnCallTime="30S"
 leaseManagerPollTime="2M" />
 </application>
 </system.runtime.remoting>
</configuration>

Note that the preceding approach changes all remote objects published by the server.

Hosts
Choosing the right host can improve the ability to scale out the server infrastructure.
There are basically three host types to choose from:
● IIS and ASP.NET. There are a couple of advantages to using IIS and ASP.NET

as the remote host:
● Security. IIS authenticates client calls. IIS also provides SSL.
● Scalability. You can create a server farm with multiple servers in a network

load balancing (NLB) configuration.
● Performance. There are two implementations of the CLR and its garbage

collection mechanism. One implementation is designed for single-CPU
computers. This is Mscorwks.dll, known as Workstation GC. The other
implementation is designed to handle multiple-CPU computers. This is
Mscorsvr.dll, known as Server GC. ASP.NET uses the Server GC on
multiprocessor servers. The Server GC is optimized to maximize throughput
and scalability.

● Windows service. You can create a Windows service to host your remote
objects. Doing so does not allow you to load Server GC, so you are limited
to the Workstation GC. Services provide a better means of ensuring that your
server process is always available, because it can be configured to start when the
computer starts in the case of failure. You can also configure Windows services to
run under different security contexts.

● Custom application. You can use either a Windows-based application or a console
application to host remote objects. However, in both cases, you have to go to a lot
of effort to ensure that the process starts when your computer restarts. Also,
configuration of the process to run under a different security context is not as
simple as a Windows service. Outside of the development and test environment,
this is a less desirable solution.

496 Improving .NET Application Performance and Scalability

Choosing whether to host remote components in a custom process, console
application, Windows service, or IIS is an important decision. Any host other than
IIS is not able to easily provide a secure communication channel. You should consider
only a custom process in a trusted server environment. If you do build a custom
process, use the TcpChannel for optimum performance.

Recommendations
The following guidelines help you to choose an appropriate host and channel:
● Use IIS to authenticate calls.
● Turn off HTTP keep-alives when using IIS.
● Host in IIS if you need to load balance using NLB.

Use IIS to Authenticate Calls
IIS is the only surrogate that provides secure authentication for .NET remoting
solutions. You must use the HttpChannel with the IIS host. You configure your
application’s authentication type by using the standard IIS Properties dialog box.
When you host .NET components in IIS, a virtual directory is created and you should
place a Web.config file in the root of the virtual directory. You use this Web.config file
to expose the remote server objects. Generally, you should place your remote object
assemblies in the \bin subfolder, beneath your application’s virtual directory,
although you can also place them in the server’s global assembly cache.

The following code fragment shows a sample Web.config file. Note that the object
Uniform Resource Identifier (URI) that clients bind to must include the “.soap”
extension for IIS to know how to route calls to your objects.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <service>
 <wellknown mode="Singleton" type="Namespace.ClassName,AssemblyName"
 objectUri="EndpointURI.soap"/>
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

 Chapter 11: Improving Remoting Performance 497

Turn Off HTTP Keep-Alives When Using IIS
The HTTP protocol provides a mechanism to prevent browsers from having to open
several connections, just to bring back all the data for a page. HTTP keep-alives
enable the browser to open one connection with the server and maintain that
connection for the life of the communication. This can greatly increase the browser’s
performance because it can make multiple requests for several different graphics to
render a page.

A .NET remote method call does not require the connection to remain open across
requests. Instead, each method call is a self-contained request. By turning off HTTP
keep-alives, the server is allowed to free unneeded connections as soon as a method
call completes.

� To turn off HTTP keep-alives in IIS

1. Open the Internet Information Services Microsoft Management Console (MMC)
snap-in.

2. Right-click your Web site (not the application’s virtual directory), and then click
Properties.

3. Clear the HTTP Keep-Alives Enabled checkbox.

Host in IIS if You Need to Load Balance Using NLB
You cannot load balance across a server farm with the TcpChannel, due to the
machine affinity of the underlying Transmission Control Protocol (TCP) connection.
This severely limits your application’s ability to scale out. To provide an architecture
that can scale out, use IIS as the host, combined with the HttpChannel. This
configuration provides for the greatest scale out ability, because each method call
over the HttpChannel only lives for the life of the method call and maintains no
machine affinity.

Use a Custom Host Only in Trusted Server Scenarios
A custom host does not have any built-in mechanism to authenticate calls. Therefore,
you should use custom hosts only in trusted server scenarios. The combination of
using a custom application with the TcpChannel and Binaryformatter is the fastest
approach, in comparison to other remoting or Web service options, although security
is the main tradeoff.

With additional development effort, you can develop custom security mechanisms by
developing custom sinks, although this is not recommended because it will make
porting your solutions to future Microsoft remote communication technologies more
difficult.

498 Improving .NET Application Performance and Scalability

More Information

For more information about developing custom security solutions for .NET remoting,
see “.NET Remoting Authentication and Authorization Sample — Part II” on MSDN
at http://msdn.microsoft.com/library/en-us/dndotnet/html/remsec.asp?frame=true.

For more information about how to secure .NET remoting solutions, see Chapter 13,
“Building Secure Remoted Components,” in Improving Web Application Security:
Threats and Countermeasures on MSDN at http://msdn.microsoft.com/library/en-us
/dnnetsec/html/THCMCh13.asp.

Channels
.NET remoting uses channels to communicate method calls between two objects
in different application domains. Channels rely on formatters to create a wire
representation of the data being exchanged. The.NET remoting infrastructure
provides the HttpChannel and TcpChannel.

The HttpChannel is used when you use IIS and ASP.NET. While it provides slower
performance in comparison to the TcpChannel used with a custom host process,
you benefit from the security features provided by IIS:

Consider the following recommendations when choosing a channel type.
● Use TcpChannel for optimum performance. The TcpChannel in combination

with the BinaryFormatter for serializing data provides the best performance
remoting solution.

● Use the TcpChannel in trusted server scenarios. If you choose the TcpChannel
for performance reasons, be aware of the security tradeoff. Use this approach
only in trusted server scenarios. For more information about how to secure .NET
remoting solutions, see Chapter 13, “Building Secure Remoted Components,”
in Improving Web Application Security: Threats and Countermeasures on MSDN at
http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh13.asp.

Formatters
A formatter is responsible for taking an object and converting it into a form that
can be passed over the communication channel. The .NET Framework supplies
two formatters:
● The SoapFormatter uses XML-encoded SOAP as the message format.
● The BinaryFormatter uses a native binary representation.

http://msdn.microsoft.com/library/en-us/dndotnet/html/remsec.asp?frame=true
http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh13.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh13.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh13.asp

 Chapter 11: Improving Remoting Performance 499

You can use either formatter with both TCP and HTTP channels. Consider the
following when choosing a formatter:
● Use the BinaryFormatter for optimized performance. Use the BinaryFormatter

for optimum performance. The BinaryFormatter creates a compact binary wire
representation for the data passed across the boundary. This reduces the amount
of data that needs to be passed.

● Consider Web services before using the SoapFormatter. If you need SOAP for
interoperability reasons, consider using Web services ahead of the SoapFormatter
with .NET remoting. Web services outperform .NET remoting, when using
SOAP-based communication.

MarshalByRef vs. MarshalByValue
This section describes the two kinds of remotable objects:
● Marshal-by-reference (MBR). The state in an MBR object remains where it is and

an object reference is passed across the remoting boundary. A proxy is created and
used by the client to access the object.

● Marshal-by-value (MBV). The state in an MBV object is copied and passed
across the remoting boundary. A new object with identical state is created at
the recipient end.

Marshal-by-Reference
Marshal-by-reference (MBR) objects are accessed by using a proxy object in the source
application domain. The .NET remoting infrastructure marshals the calls, sends them
to the remote application domain, and invokes the call on the actual object.

MBR can result in chatty calls over the network if the object’s interface has not been
designed efficiently for remote access. Also, the client proxy may throw exceptions if
the network connection breaks.

Marshal-by-reference is appropriate in the following situations:
● Use MBR when the object state should stay in the host application domain.

If the state of the object is relevant only in the host’s application domain, use MBR.
For example, if the object is referencing a handle to a file or other source such as
a database network connection, use MBR.
You may also want to use MBR when you do not want to serialize and send
sensitive data over the network.

● Use MBR when you need to update data frequently on the server. If the data
needs to be frequently updated on the server, using a MBV may serve as a costly
option. Use MBR to reduce the cost of serializing the whole of the object. The
proxy marshals the data to the server’s application domain.

500 Improving .NET Application Performance and Scalability

● Use MBR when the size of the object is prohibitively large. If the size of the
object is prohibitively large, it makes sense to use MBR. In this way, the client can
access the object’s resource directly from the server with only the most relevant
data getting passed over the network.

Marshal-by-Value
Marshal-by-value (MBV) objects declare their marshaling rules, either by
implementing their own serialization by implementing the ISerializable interface,
or by being marked with the Serializable attribute: Consider the following
recommendations for using MBV:
● Use MBV when you need to pass object state to the target application domain.

When the state of the object is very lightweight and can easily be passed across
application boundaries, use MBV objects. This reduces the lengthy, resource
consuming round trips across processes, and application domain boundaries.

● Use MBV when you do not need to update data on the server. MBV objects are
appropriate when the data does not need to be updated on the server and needs
only to be passed to the client. This can save server resources, network latency,
and network bandwidth.

● Use small MBV objects when you need to update data frequently on the server.
If you frequently need to update data on the server, use small MBV objects where
the complete state of the object is passed to the server. Using MBV reduces the
marshaling and unmarshaling overhead associated with MBR, especially where
non-blittable types are passed.

Serialization and Marshaling
When you use MBV, the object’s state must be serialized into a byte stream and
be marshaled from source to destination application domain. Serialization and
marshaling costs represent a significant proportion of any .NET remoting
communication overhead. Use the following recommendations to reduce this impact:
● Consider using a data facade.
● Marshal data efficiently and prefer primitive types.
● Reduce serialized data by using NonSerialized.
● Prefer the BinaryFormatter.

Consider Using a Data Facade
Consider using a data facade to wrap the most relevant data needed by the client.
You can develop a wrapper object, with a coarse-grained interface, to encapsulate
and coordinate the functionality of one or more objects that have not been designed
for efficient remote access. It provides clients with single interface functionality for
multiple business objects.

 Chapter 11: Improving Remoting Performance 501

Alternatively, instead of making a remote call to fetch individual data items, you can
fetch a data object by value in a single remote call. When you do that, you operate
locally against the locally cached data. This might be sufficient for many scenarios.

In other scenarios, where you need to ultimately update the data on the server, the
wrapper object exposes a single method which you call to send the data back to the
server.

Marshal Data Efficiently and Prefer Primitive Types
A method call across a remoting boundary is expensive and slow, in comparison to
in-process method calls. Make sure that you pass only the data that you need. Avoid
passing data that can be simply recalculated.

.NET serialization support makes serializing an object graph very easy by using the
Serializable attribute. However, if you overuse this attribute, you ensure that a large
amount of extra data is passed when simpler data types would frequently suffice. Try
to return value types, such as simple primitive types or structures, first. You should
consider using more complex types only if these simple types are not sufficient. A
classic example of extreme inefficiency is to return a DataSet that has been populated
with a single row, single column value when an integer would do.

Reduce Serialized Data by Using NonSerialized
Serialize only the required data. You can reduce the amount of object state that
is serialized by marking specific fields that you do not need to serialize with the
NonSerialized attribute as follows.

[Serializable]
Class MyObject: MarshalByRefObject
{
 [NonSerialized]
 Private DataSet dt;
}

Note: You need to use the NonSerialized attribute on both public and private fields.

Prefer the BinaryFormatter
The BinaryFormatter produces a compact data representation and should be
preferred, unless you have a specific requirement for SOAP, in which case you should
use Web services. You can use the BinaryFormatter with both the TcpChannel and
HttpChannel.

More Information

For more information about improving the serialization performance, see “How To:
Improve Serialization Performance” in the “How To” section of this guide.

502 Improving .NET Application Performance and Scalability

DataSets and Remoting
DataSets serialize as XML, even if you use the BinaryFormatter. Passing large
DataSets over a remoting channel can consume large amounts of processor and
network resources.

To improve DataSet serialization efficiency, start by using column name aliasing to
reduce the size of column names, avoid serializing the original and new values for
DataSet fields if you do not need to, and serialize only those DataTables in the
DataSet that you require.

More Information

For more information about how to improve the performance of dataset serialization,
see “How To: Improve Serialization Performance” in the “How To” section of this
guide.

To implement binary serialization, see Knowledge Base article 829740, “Improving
DataSet Serialization and Remoting Performance” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;829740.

For more information about serializing ADO.NET objects, see “Binary Serialization
of ADO.NET Objects” on MSDN at http://msdn.microsoft.com/msdnmag/issues/02/12
/CuttingEdge/default.aspx.

Summary
This chapter has covered the main architectural and design considerations for
.NET remoting. Considerations, such as choosing an appropriate host, channel,
and formatter, can impact both the performance and potential scalability of your
.NET remoting solutions.

This chapter has also shown specific coding techniques, such as how to improve
serialization performance, how to control object lifetime, and how to synchronize
multithreaded servers.

http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx

 Chapter 11: Improving Remoting Performance 503

Additional Resources
For more information, see the following resources:
● For a printable checklist, see the “Checklist: Remoting Performance” checklist

in the “Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the “Remoting”

section.
● Chapter 15, “Measuring .NET Application Performance.” See the “Remoting”

section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.”
● For key recommendations to help you create high-performance .NET Enterprise

Service components, see “.NET Enterprise Services Performance” by Richard
Turner on MSDN at http://msdn.microsoft.com/library/en-us/dncomser/html
/entsvcperf.asp.

● For more information on Enterprise Services, see Chapter 8, “Improving
Enterprise Services Performance.”

● For more information on Web Services, see Chapter 10, “Improving Web Services
Performance.”

● For more information about load balancing support for remoting, see Knowledge
Base article 830217, “INFO: Configurations That Microsoft Supports for Microsoft
.NET Remoting with Network Load Balancing” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;830217.

● For more information about improving dataset serialization and remoting
performance, see Knowledge Base article 829740, “Improving DataSet Serialization
and Remoting Performance” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;829740.

● For more information about Web services, Enterprise Services, and remoting
direction, see the “Indigo: Connected Application Technology Roadmap”
PowerPoint presentation at http://microsoft.sitestream.com/PDC2003/WSV
/WSV203_files/Botto_files/WSV203_Mills_Long.ppt.

http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://msdn.microsoft.com/library/en-us/dncomser/html/entsvcperf.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;830217
http://support.microsoft.com/default.aspx?scid=kb;en-us;830217
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://microsoft.sitestream.com/PDC2003/WSV/WSV203_files/Botto_files/WSV203_Mills_Long.ppt
http://microsoft.sitestream.com/PDC2003/WSV/WSV203_files/Botto_files/WSV203_Mills_Long.ppt

12
Improving ADO.NET Performance

Objectives
● Optimize your data access design.
● Choose between DataSets and DataReaders.
● Run efficient database commands.
● Pass data between layers efficiently.
● Perform efficient transactions.
● Optimize connection management.
● Evaluate the cost of paging through records.
● Evaluate criteria for analyzing data access performance.
● Apply performance considerations to binary large object (BLOB) manipulation.

Overview
Well-designed data access code and data processing commands are essential elements
for application performance and scalability. Typically, the database is a focal point for
application load because the majority of application requests require data that comes
from a database.

This chapter provides proven strategies for designing and implementing data access
code for performance and scalability.

506 Improving .NET Application Performance and Scalability

How to Use This Chapter
Use this chapter to improve the implementation of your data access code for
performance and scalability. To get the most out of this chapter, consider the
following:
● Jump to topics or read beginning to end. The main headings in this chapter help

you to quickly identify and then locate the topic that interests you. Alternatively,
you can read the chapter beginning to end to gain a thorough appreciation of the
issues that affect ADO.NET performance.

● Use the checklist. Use “Checklist: ADO.NET Performance” in the “Checklists”
section of this guide to quickly view and evaluate the guidelines presented in this
chapter.

● Use the “Architecture” section of this chapter to understand how ADO.NET
works. By understanding the architecture, you can make better design and
implementation choices. Understand core ADO.NET components, such as data
provider objects and the DataSet object.

● Use the “Design Considerations” section of this chapter to understand the high-
level decisions that will affect implementation choices for ADO.NET code.

● Read Chapter 13, “Code Review: .NET Application Performance.” See the “Data
Access” section for specific guidance.

● Measure your application performance. Read the “ADO.NET/Data Access”
and “.NET Framework Technologies” sections of Chapter 15, “Measuring .NET
Application Performance,” to learn about the key metrics that you can use to
measure application performance. You have to measure application performance
so that you can identify and resolve performance issues.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application.
You have to apply a coherent testing process and analyze the results.

● Tune your application performance. Read the “ADO.NET Tuning” section of
Chapter 17, “Tuning .NET Application Performance,” to learn how to resolve
performance issues that you identify through the use of tuning metrics.

● Tune SQL Server. Read Chapter 14, “Improving SQL Server Performance,” to
ensure that your Microsoft® SQL Server™ database is appropriately configured.

 Chapter 12: Improving ADO.NET Performance 507

Architecture
ADO.NET relies on data providers to provide access to the underlying data source.
Each data provider exposes a set of objects that you use to manage connections,
retrieve data, and update data. The core objects are the following:
● Connection
● Command
● DataReader
● DataAdapter

In addition, ADO.NET provides the DataSet object, which provides a disconnected
cache of data. The DataSet object does not require a specific type of data source and
is not tied to the underlying data source that the data was obtained from.

The basic ADO.NET architecture is shown in Figure 12.1.

Connection

Provider Specific
Implementations

Command

DataReader D
at

a
A

d
ap

te
r

Provider and Data Source
Agnostic

DataSet

DataTable (s)

DataColumn(s)

Constraint(s)

Data Source

Native
Providers

Bridge
Providers

OLE DB ODBC

XML

DataRelation(s)

DataRow(s)

Figure 12.1
ADO.NET architecture

508 Improving .NET Application Performance and Scalability

The following list outlines the purpose of each of the main ADO.NET objects:
● Connection. This object represents a connection to a database.
● Command. This object represents an SQL statement that is run while connected

to a data source. This object can be a stored procedure or a direct SQL statement.
● DataReader. This object retrieves a read-only, forward-only stream of data from

a database. The DataReader object is designed for connected scenarios and offers
better performance than reading data into a DataSet object at the expense of
functionality. For more information about how to use DataReader objects and
DataSet objects, see “DataSet vs. DataReader” later in this chapter.

● DataAdapter. This object channels data to and from a DataSet object and the
underlying data source. The DataAdapter object also provides enhanced batch
update features that were previously associated with the ADO Recordset object.

● DataSet. The DataSet object represents a disconnected, cached set of data. The
DataSet is independent of the provider and is not tied to the underlying data
source that might have been used to populate it. DataSet can easily be passed
from component to component through the various layers of an application, and
it can be serialized as XML.
You should be aware of the way a DataSet is internally constructed because the
DataSet contains a potentially large number of internal objects. This means that a
large number of memory allocations are required to construct a typical DataSet.
A DataSet consists of one or more DataTable objects together with DataRelation
objects that maintain table relationship information. Each DataTable contains
DataRow objects and DataColumn objects. Constraint objects are used to
represent a constraint that can be enforced on one or more DataColumn objects.

Note: You can also use typed datasets that derive from the basic DataSet class. Typed datasets
provide benefits at build time and at run time. For more information, see “Typed DataSets” later
in this chapter.

● DataView. Although the DataView object is not shown in Figure 12.1, you can use
a DataView to sort and filter data in a DataTable. This capability is often used for
data binding.

Abstracting Data Access
ADO.NET is designed around a set of generic interfaces that abstract the underlying
data processing functionality. You can use these interfaces directly to abstract your
data access layer so that you can minimize the impact of changing the type of data
source that you use. Abstracting data access is extremely helpful when you are
designing systems where your customer chooses the database server.

 Chapter 12: Improving ADO.NET Performance 509

The core interfaces provided by ADO.NET are found in the System.Data namespace:
● IDbConnection. This is an interface for managing database connections.
● IDbCommand. This is an interface for running SQL commands.
● IDbTransaction. This is an interface for managing transactions.
● IDataReader. This is an interface for reading data returned by a command.
● IDataAdapter. This is an interface for channeling data to and from datasets.

The various provider objects, such as SqlConnection and OleDbConnection,
implement these generic ADO.NET data access interfaces. If you decide to
program against the generic interfaces, be aware of the following issues:
● There is some small cost associated with a virtual call through an interface.
● Certain expanded functionality is lost when you use the generic interfaces. For

example, the ExecuteXmlReader method is implemented by the SqlCommand
object but not by the IDbCommand interface.

● There is no generic base exception type, so you must catch provider-specific
exception types, such as SqlException, OleDbException, or OdbcException.

● When you use the generic interfaces, you cannot take advantage of database-
specific types that are defined for the managed providers; for example, you cannot
take advantage of SqlDbType in SqlClient and Oracle-specific types in the Oracle
provider. Using specific database types is helpful for type checking and parameter
binding.

More Information
For more information about how to use the generic interfaces to abstract your data
access, see the following resources:
● Knowledge Base article 313304, “HOW TO: Use Base Classes to Reduce Code

Forking with Managed Providers in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;313304. This article includes sample code.

● Use MSDN® to look at the interfaces that are described earlier in this section
to identify the providers that implement each of the interfaces.

Performance and Scalability Issues
The following is a list of the main issues that can adversely affect the performance
and scalability of data access in your application.
● Inefficient queries. Queries that process and then return more columns or rows

than necessary waste processing cycles that could best be used for servicing other
requests. Queries that do not take advantage of indexes may also cause poor
performance.

http://support.microsoft.com/default.aspx?scid=kb;en-us;313304
http://support.microsoft.com/default.aspx?scid=kb;en-us;313304

510 Improving .NET Application Performance and Scalability

● Retrieving too much data. Too much data in your results is usually the result
of inefficient queries. The SELECT * query often causes this problem. You do not
usually need to return all the columns in a row. Also, analyze the WHERE clause
in your queries to ensure that you are not returning too many rows. Try to make
the WHERE clause as specific as possible to ensure that the least number of rows
are returned.

● Inefficient or missing indexes. Query efficiency decreases when indexes are
missing because a full table scan must be performed. Also, as your data grows,
tables may become fragmented. Failure to periodically rebuild indexes may also
result in poor query performance.

● Unnecessary round trips. Round trips significantly affect performance. They are
subject to network latency and to downstream server latency. Many data-driven
Web sites heavily access the database for every user request. While connection
pooling helps, the increased network traffic and processing load on the database
server can adversely affect performance. Keep round trips to an absolute
minimum.

● Too many open connections. Connections are an expensive and scarce resource,
which should be shared between callers by using connection pooling. Opening
a connection for each caller limits scalability. To ensure the efficient use of
connection pooling, avoid keeping connections open and avoid varying
connection strings.

● Failure to release resources. Failing to release resources can prevent them from
being reused efficiently. If you fail to close connections before the connections
fall out of scope, they are not reclaimed until garbage collection occurs for the
connection. Failing to release resources can cause serious resource pressure and
lead to shortages and timeouts.

● Transaction misuse. If you select the wrong type of transaction management,
you may add latency to each operation. Additionally, if you keep transactions
active for long periods of time, the active transactions may cause resource
pressure. Transactions are necessary to ensure the integrity of your data, but
you need to ensure that you use the appropriate type of transaction for the
shortest duration possible and only where necessary.

● Overnormalized tables. Overnormalized tables may require excessive joins for
simple operations. These additional steps may significantly affect the performance
and scalability of your application, especially as the number of users and requests
increases.

Subsequent sections in this chapter provide strategies and technical information to
prevent or resolve each of these issues.

 Chapter 12: Improving ADO.NET Performance 511

Design Considerations
To help ensure that data access in your application is optimized for performance,
there are several issues that you must consider and a number of decisions that
you must make at design time:
● Design your data access layer based on how the data is used.
● Cache data to avoid unnecessary work.
● Connect by using service accounts.
● Acquire late, release early.
● Close disposable resources.
● Reduce round trips.
● Return only the data you need.
● Use Windows authentication.
● Choose the appropriate transaction type.
● Use stored procedures.
● Prioritize performance, maintainability, and productivity when you choose

how to pass data across layers.
● Consider how to handle exceptions.
● Use appropriate normalization.

Design Your Data Access Layer Based on How the Data Is Used
If you choose to access tables directly from your application without an intermediate
data access layer, you may improve the performance of your application at the
expense of maintainability. The data access logic layer provides a level of abstraction
from the underlying data store. A well-designed data access layer exposes data and
functionality based on how the data is used and abstracts the underlying data store
complexity.

Do not arbitrarily map objects to tables and columns, and avoid deep object
hierarchies. For example, if you want to display a subset of data, and your design
retrieves an entire object graph instead of the necessary portions, there is unnecessary
object creation overhead. Evaluate the data you need and how you want to use the
data against your underlying data store.

Cache Data to Avoid Unnecessary Work
Caching data can substantially reduce the load on your database server. By caching
data, you avoid the overhead of connecting to your database, searching, processing,
and transmitting data from your database server. By caching data, you directly
improve performance and scalability in your application.

512 Improving .NET Application Performance and Scalability

When you define your caching strategy, consider the following:
● Is the data used application-wide and shared by all users, or is the data specific

to each user? Data that is used across the application, such as a list of products,
is a better caching candidate than data that is specific to each user.

● How frequently do you need to update the cache? Even though the source data
may change frequently, your application may not need to update the cache as
often. If your data changes too frequently, it may not be a good caching candidate.
You need to evaluate the expense of updating the cache compared to the cost of
fetching the data as needed.

● Where should you cache data? You can cache data throughout the application
layers. By caching data as close as possible to the consumer of the data, you can
reduce the impact of network latency.

● What form of the data should you cache? The best form of data to cache is usually
determined by the form that your clients require the data to be in. Try to reduce
the number of times that you need to transform data.

● How do you expire items in the cache? Consider the mechanism that you will use
to expire old items in the cache and the best expiration time for your application.

Connect by Using Service Accounts
There are several ways to authenticate and to open a connection to the database. You
can use SQL authentication that has an identity specified in the connection string. Or,
you can use Windows authentication by using the process identity, by using a specific
service identity, or by impersonating the original caller’s identity.

From a security perspective, you should use Windows authentication. From a
performance perspective, you should use a fixed service account and avoid
impersonation. The fixed service account is typically the process account of the
application. By using a fixed service account and a consistent connection string, you
help ensure that database connections are pooled efficiently. You also help ensure that
the database connections are shared by multiple clients. Using a fixed service account
and a consistent connection string is a major factor in helping application scalability.

More Information

For more information, see “The Trusted Subsystem Model” in the “Authentication
and Authorization” chapter of “Building Secure ASP.NET Applications:
Authentication, Authorization and Secure Communication” on MSDN at
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch03.asp. This chapter
explains how to use service accounts or process identity to connect to a database.
You can also use the chapter to learn about the advantages and disadvantages of
Windows and SQL authentication.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch03.asp

 Chapter 12: Improving ADO.NET Performance 513

Acquire Late, Release Early
Your application should share expensive resources efficiently by acquiring
the resources late, and then releasing them as early as possible. To do so:
● Open database connections right when you need them. Close the database

connections as soon as you are finished. Do not open them early, and do not
hold them open across calls.

● Acquire locks late, and release them early.

Close Disposable Resources
Usually, disposable resources are represented by objects that provide a Dispose
method or a Close method. Make sure that you call one of these methods as soon as
you are finished with the resource. For more information about closing Connection
objects and DataReader objects, see “Connections” later in this chapter.

Reduce Round Trips
Network round trips are expensive and affect performance. Minimize round trips by
using the following techniques:
● If possible, batch SQL statements together. Failure to batch work creates additional

and often unnecessary trips to the database. You can batch text SQL statements by
separating them with a semicolon or by using a stored procedure. If you need to
read multiple result sets, use the NextResult method of the DataReader object to
access subsequent result sets.

● Use connection pooling to help avoid extra round trips. By reusing connections
from a connection pool, you avoid the round trips that are associated with
connection establishment and authentication. For more information, see
“Connections” later in this chapter.

● Do not return results if you do not need them. If you only need to retrieve a
single value, use the ExecuteScalar method to avoid the operations that are
required to create a result set. You can also use the ExecuteNonQuery method
when you perform data definition language (DDL) operations such as the create
table operation. This also avoids the expense of creating a result set.

● Use caching to bring nearly static data close to the consumer instead of
performing round trips for each request.

514 Improving .NET Application Performance and Scalability

Implicit Round Trips
Be aware that certain operations can cause implicit round trips. Typically, any
operation that extracts metadata from the database causes an implicit round
trip. For example, avoid calling DeriveParameters if you know the parameter
information in advance. It is more efficient to fill the parameters collection by setting
the information explicitly. The following code sample illustrates a call that causes an
implicit round trip.

// This causes an implicit round trip to the database
SqlCommandBuilder.DeriveParameters(cmd);

Return Only the Data You Need
Evaluate the data that your application actually requires. Minimize the data
that is sent over the network to minimize bandwidth consumption. The following
approaches help reduce data over the network:
● Return only the columns and rows that you need.
● Cache data where possible.
● Provide data paging for large results. For more information about paging, see

“Paging Records” later in this chapter.

Use Windows Authentication
From a security perspective, you should use Windows authentication to connect to
Microsoft SQL Server. There are several advantages to using Windows authentication.
For example, credentials are not passed over the network, database connection
strings do not contain credentials, and you can apply standard Windows security
policies to accounts. For example, you can enforce use of strong passwords and apply
password expiration periods.

From a performance perspective, SQL authentication is slightly faster than Windows
authentication, but connection pooling helps minimize the difference. You also need
to help protect the credentials in the connection string and in transit between your
application and the database. Helping to protect the credentials adds to the overhead
and minimizes the performance difference.

Note: Generally, local accounts are faster than domain accounts when you use Windows
authentication. However, the performance saving needs to be balanced with the administration
benefits of using domain accounts.

 Chapter 12: Improving ADO.NET Performance 515

Choose the Appropriate Transaction Type
Proper transaction management minimizes locking and contention, and provides
data integrity. The three transaction types and their usage considerations include the
following:
● Native database support. Native database support for transactions permits you to

control the transaction from a stored procedure. In SQL Server, use BEGIN TRAN,
COMMIT TRAN, and ROLLBACK to control the transaction’s outcome. This type
of transaction is limited to a single call from your code to the database, although
the SQL query or stored procedure can make use of multiple stored procedures.

● ADO.NET transactions. Manual transactions in ADO.NET enable you to span a
transaction across multiple calls to a single data store. Both the SQL Server .NET
Data Provider and the OLE DB .NET Data Provider implement the
IDbTransaction interface and expose BeginTransaction on their respective
connection object. This permits you to begin a transaction and to run multiple
SQL calls using that connection instance and control the transaction outcome
from your data access code.

● Enterprise Services distributed transactions. Use declarative, distributed
transactions when you need transactions to span multiple data stores or resource
managers or where you need to flow transaction context between components.
Also consider Enterprise Services transaction support for compensating
transactions that permit you to enlist nontransactional resources in a transaction.
For example, you can use the Compensating Resource Manager to combine a file
system update and a database update into a single atomic transaction.
Enterprise Services distributed transactions use the services of the Microsoft
Distributed Transaction Coordinator (DTC). The DTC introduces additional
performance overhead. The DTC requires several round trips to the server and
performs complex interactions to complete a transaction.

Use Stored Procedures
Avoid embedded SQL statements. Generally, well-designed stored procedures
outperform embedded SQL statements. However, performance is not the only
consideration. When you choose whether to store your SQL commands on the server
by using stored procedures or to embed commands in your application by using
embedded SQL statements, consider the following issues:
● Logic separation. When you design your data access strategy, separate business

logic from data manipulation logic for performance, maintainability, and flexibility
benefits. Validate business rules before you send the data to the database to help
reduce network round trips. Separate your business logic from data manipulation
logic to isolate the impact of database changes or business rule changes. Use
stored procedures to clarify the separation by moving the data manipulation logic
away from the business logic so that the two do not become intertwined.

516 Improving .NET Application Performance and Scalability

● SQL optimizations. Some databases provide optimizations to stored procedures
that do not apply to dynamic SQL. For example, Microsoft SQL Server™ versions
prior to SQL Server 2000 kept a cached execution plan for stored procedures. The
cached execution plan for stored procedures reduced the need to compile each
stored procedure request. SQL Server 2000 is optimized to cache query plans for
both stored procedure and for dynamic SQL query plans.

● Tuning/deployment. Stored procedure code is stored in the database and permits
database administrators to review data access code. Database administrators can
tune both the stored procedures and the database, independent of the deployed
application. The application does not always need to be redeployed when stored
procedures change.
Embedded SQL is deployed as part of the application code and requires database
administrators to profile the application to identify the SQL actually used.
Profiling the application complicates tuning, because the application must be
redeployed if any changes are made.

● Network traffic sent to the server. Source code for stored procedures is stored
on the server. Only the name and parameters are sent across the network to the
server. Conversely, when you use embedded SQL, the full source of the commands
must be transmitted each time the commands are run. When you use stored
procedures, you can reduce the amount of data that is sent to the server when
large SQL operations are frequently run.

● Simplified batching of commands. Stored procedures make it easy to batch work
and provide simpler maintenance.

● Data security and integrity. With stored procedures, administrators can secure
tables against direct access or manipulation, and they can only permit the
execution of selected stored procedures. Both users and applications are granted
access to the stored procedures that enforce data integrity rules. Embedded SQL
usually requires advanced permissions on tables. Using advanced permissions on
tables is a more complex security model to maintain.

● SQL Injection. Avoid using dynamically generated SQL with user input.
SQL injection occurs when input from a malicious user is used to perform
unauthorized actions, such as retrieving too much data or destructively modifying
data. Parameterized stored procedures and parameterized SQL statements can
help reduce the likelihood of SQL injection. Parameter collections force parameters
to be treated as literal values so that the parameters are not treated as executable
code. You should also constrain all user input to reduce the likelihood that a
malicious user could use SQL injection to perform unauthorized actions.

 Chapter 12: Improving ADO.NET Performance 517

More Information
For more information about how to prevent SQL injection, see Chapter 14,
“Building Secure Data Access,” in Improving Web Application Security: Threats
and Countermeasures on MSDN at http://msdn.microsoft.com/library/en-us/dnnetsec
/html/THCMCh14.asp.

Prioritize Performance, Maintainability, and Productivity when
You Choose How to Pass Data Across Layers
You should consider several factors when you choose an approach for passing data
across layers:
● Maintainability. Consider how hard it is to build and keep up with changes.
● Productivity. Consider how hard it is to implement the solution.
● Programmability. Consider how hard it is to code.
● Performance. Consider how efficient it is for collections, browsing, and serializing.

This section summarizes the main approaches for passing data across application
layers and the relative tradeoffs that exist:
● DataSets. With this approach, you use a generic DataSet object. This approach

offers great flexibility because of the extensive functionality of the DataSet. This
includes serialization, XML support, ability to handle complex relationships,
support for optimistic concurrency, and others. However, DataSet objects are
expensive to create because of their internal object hierarchy, and clients must
access them through collections.
The DataSet contains collections of many subobjects, such as the DataTable,
DataRow, DataColumn, DataRelation and Constraint objects. Most of these
objects are passed with the DataSet between the layers. This is a lot of objects
and a lot of data to be passed between the layers. It also takes time to fill a
DataSet, because there are many objects that need to be instantiated and
populated. All of this affects performance. Generally, the DataSet is most useful
for caching when you want to create an in-memory representation of your
database, when you want to work with relations between tables, and when you
want to perform sorting and filtering operations.

● Typed DataSets. Instantiation and marshaling performance of the typed DataSet
is roughly equivalent to the DataSet. The main performance advantage of the
typed DataSet is that clients can access methods and properties directly, without
having to use collections.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh14.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/THCMCh14.asp

518 Improving .NET Application Performance and Scalability

● DataReaders. This approach offers the optimum performance when you need to
render data as quickly as possible. You should close DataReader objects as soon
as possible and make sure that client applications cannot affect the amount of time
the DataReader and, hence, the database connection is held open.
The DataReader is very fast compared to a DataSet, but you should avoid passing
DataReader objects between layers, because they require an open connection.

● XML. This is a loosely coupled approach that natively supports serialization and
collections of data. For example, an XML document can contain data for multiple
business entities. It also supports a wide range of client types. Performance issues
to consider include the fact that XML strings can require substantial parsing effort,
and large and verbose strings can consume large amounts of memory.

● Custom Classes. With this approach, you use private data members to maintain
the object’s state and provide public accessor methods. For simple types, you can
use structures instead of classes, which means you avoid having to implement
your own serialization. The main performance benefit of custom classes is that
they enable you to create your own optimized serialization. You should avoid
complex object hierarchies and optimize your class design to minimize memory
consumption and reduce the amount of data that needs to be serialized when the
object is passed between layers.

More Information

For more information about how to pass data across the layers, see “Designing Data
Tier Components and Passing Data Through Tiers” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/BOAGag.asp.

Consider How to Handle Exceptions
In data access code in particular, you can use try/finally blocks to ensure that
connections and other resources are closed, regardless of whether exceptions are
generated. However, be aware of the following considerations:
● Exceptions are expensive. Do not catch exceptions and then throw them again if

your data access logic cannot add any value. A less costly approach is to permit
the exception to propagate from the database to the caller. Similarly, do not wrap
transaction attempts with try/catch blocks unless you plan to implement retry
mechanisms.

● If you want to completely abstract your caller from the data-specific details, you
have to catch the exception, you have to log detailed information to a log store,
and then you have to return an enumerated value from a list of application-
specific error codes. The log store could be a file or the Windows event log.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/BOAGag.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/BOAGag.asp

 Chapter 12: Improving ADO.NET Performance 519

Use Appropriate Normalization
Overnormalization of a database schema can affect performance and scalability. For
example, if you program against a fully normalized database, you are often forced to
use cross-table joins, subqueries, and data views as data sources. Obtaining the right
degree of normalization involves tradeoffs.

On one hand, you want a normalized database to minimize data duplication, to
ensure that data is logically organized, and to help maintain data integrity. On the
other hand, it may be harder to program against fully normalized databases, and
performance can suffer. Consider the following techniques:
● Start with a normalized model. Start with a normalized model and then de-

normalize later.
● Reduce the cost of joins by repeating certain columns. Deep joins may result

in the creation of temporary tables and table scans. To reduce the cost of joining
across multiple tables, consider repeating certain columns.

● Store precomputed results. Consider storing precomputed results, such
as subtotals, instead of computing them dynamically for each request.

Implementation Considerations
When you move from application design to application development, consider
the implementation details of your ADO.NET code. You can improve resource
management by acquiring connections late, by releasing them early, and by using
connection pooling.

When you run code on the server, prefer stored procedures. Stored procedures
are optimized by the database and use provider-specific types when they pass
parameters, to reduce processing. Choose the best transaction management
mechanism, and then choose an appropriate isolation level. Keep transactions as
short as possible, and avoid code that can lead to deadlocks. You can improve
responsiveness by employing the correct paging strategy. Employing the correct
paging strategy can also reduce server load.

By following best practice implementation guidelines, you can increase the
performance of your ADO.NET code. The following sections summarize performance
considerations for ADO.NET features and scenarios.

520 Improving .NET Application Performance and Scalability

.NET Framework Data Providers
Microsoft .NET Framework Data Providers are divided into two categories: bridge
providers and native providers. Bridge providers permit you to use data access
libraries, such as OLE DB and Open Database Connectivity (ODBC). The bridge
provider wraps the underlying data access library. Native providers, such as those for
SQL Server and Oracle, typically offer performance improvements due, in part, to the
fact that there is less abstraction. It is important to choose the correct data provider
for your specific data source as described below:
● Use System.Data.SqlClient for SQL Server 7.0 and later.
● Use System.Data.OleDb for SQL Server 6.5 or OLE DB providers.
● Use System.Data.ODBC for ODBC data sources.
● Use System.Data.OracleClient for Oracle.
● Use SQLXML managed classes for XML data and for SQL Server 2000.

Use System.Data.SqlClient for SQL Server 7.0 and Later
For SQL Server 7.0 or later, use the .NET Framework Data Provider for SQL Server,
System.Data.SqlClient. It is optimized for accessing SQL Server and communicates
directly by using the Tabular Data Stream (TDS) protocol. TDS is the native data
transfer protocol of SQL Server.

The commonly used classes in System.Data.SqlClient are SqlConnection,
SqlCommand, SqlDataAdapter, and SqlDataReader.

Use System.Data.OleDb for SQL Server 6.5 or OLE DB Providers
For SQL Server 6.5 or OLE DB data sources, use the .NET Framework Data Provider
for OLE DB, System.Data.OleDb. For example, in SQL Server 6.5 or earlier, you
would use the OLE DB Provider for SQL Server (SQLOLEDB) with the .NET
Framework Data Provider for OLE DB. Using the OLE DB provider is less efficient
than using the .NET Framework Data Provider for SQL Server, because it calls
through the OLE DB layer by using COM interop when communicating with the
database.

The commonly used classes in System.Data.OleDb are OleDbConnection,
OleDbCommand, OleDbDataAdapter, and OleDbDataReader.

Note: The .NET Framework Data Provider for OLE DB does not support the Microsoft OLE DB
Provider for ODBC (MSDASQL). For ODBC data sources, use the .NET Framework Data Provider
for ODBC instead.

 Chapter 12: Improving ADO.NET Performance 521

Use System.Data.ODBC for ODBC Data Sources
For ODBC data sources, use the .NET Framework Data Provider for ODBC,
System.Data.ODBC. This provider uses the native ODBC Driver Manager through
COM interop.

If you are using .NET Framework 1.0, you must download the .NET Framework Data
Provider for ODBC from the Microsoft .NET Framework Developer Center on MSDN
at http://msdn.microsoft.com/netframework/downloads/updates/default.aspx. Note that the
namespace is Microsoft.Data.Odbc. If you are using .NET Framework 1.1, it is
included in the System.Data.Odbc namespace.

The commonly used classes in System.Data.Odbc are OdbcConnection,
OdbcCommand, OdbcDataAdapter, and OdbcDataReader.

Use System.Data.OracleClient for Oracle
For Oracle data sources, use the .NET Framework Data Provider for Oracle,
System.Data.OracleClient. This provider enables data access to Oracle data sources
through Oracle client connectivity software. The data provider supports Oracle client
software version 8.1.7 and later.

If you are using .NET Framework 1.0, you must download the .NET Framework
Data provider for Oracle from the Microsoft .NET Framework Developer Center on
MSDN at http://msdn.microsoft.com/netframework/downloads/updates/default.aspx. If you
are using .NET Framework 1.1 or later, the .NET Framework Data provider for Oracle
is included in the System.Data.OracleClient namespace in
System.Data.OracleClient.dll.

The commonly used classes in System.Data.OracleClient are OracleConnection,
OracleCommand, OracleDataAdapter, and OracleDataReader.

Use SQLXML Managed Classes for XML Data and SQL Server 2000
To manipulate data in a SQL Server database as XML, use SQLXML Managed
Classes. You can download SQLXML 3.0 from the Data Access and Storage Developer
Center on MSDN at http://msdn.microsoft.com/data/downloads/default.aspx.

More Information
For more information about .NET Framework Data Providers, see the following:
● Knowledge Base article 313480, “INFO: Roadmap for .NET Data Providers,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;313480
● MSDN article, “Using .NET Framework Data Provider for Oracle to Improve

.NET Application Performance,” at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dndotnet/html/manprooracperf.asp

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://msdn.microsoft.com/data/downloads/default.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;313480
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/manprooracperf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/manprooracperf.asp

522 Improving .NET Application Performance and Scalability

● “Implementing a .NET Framework Data Provider” in .NET Framework Developer’s
Guide at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconimplementingnetdataprovider.asp

Connections
Database connections are an expensive and limited resource. Your approach
to connection management can significantly affect the overall performance and
scalability of your application. Issues to consider include acquiring and releasing
connections, pooling, and authentication. To improve database connection
performance and scalability, apply the following strategies to your connection
management policy:
● Open and close the connection in the method.
● Explicitly close connections.
● When using DataReaders, specify CommandBehavior.CloseConnection.
● Do not explicitly open a connection if you use Fill or Update for a single

operation.
● Avoid checking the State property of OleDbConnection.
● Pool connections.

Open and Close the Connection in the Method
Acquire connections late and release them early. Opening connections before they
are needed reduces the number of connections that are available and increases
resource pressure. Close connections quickly to ensure that they can be reused as
soon as possible. Do not hold on to connections. Holding on to connections reduces
the connections that are available to other code and increases resource pressure. The
general pattern is to open and close connections on a per-method basis.

Explicitly Close Connections
Explicitly call the Close or Dispose methods on SqlConnection objects as soon
as you finish using them to release the resources that they use. Do not wait for the
connection to fall out of scope. The connection is not returned to the pool until
garbage collection occurs. This delays the reuse of the connection and negatively
affects performance and scalability. The following are guidelines to consider. These
guidelines are specific to SqlConnection because of the way it is implemented. These
guidelines are not universal for all classes that have Close and Dispose functionality.
● Using either the Close method or the Dispose method is sufficient. You do not

have to call one method after the other. There is no benefit to calling one method
after the other.

● Dispose internally calls Close. In addition, Dispose clears the connection string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconimplementingnetdataprovider.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconimplementingnetdataprovider.asp

 Chapter 12: Improving ADO.NET Performance 523

● If you do not call Dispose or Close, and if you do not use the using statement,
you are reliant upon the finalization of the inner object to free the physical
connection.

● Use the using statement, instead of Dispose or Close, when you are working with
a single type, and you are coding in Visual C#®. Dispose is automatically called for
you when you use the using statement, even when an exception occurs.

● If you do not use the using statement, close connections inside a finally block.
Code in the finally block always runs, regardless of whether an exception occurs.

● You do not have to set the SqlConnection reference to null or Nothing because
there is no complex object graph. Setting object references to null or to Nothing is
usually done to make a graph of objects unreachable.

Note: Closing a connection automatically closes any active DataReader objects that are associated
with the connection.

Closing Connections in Visual Basic .NET
The following Visual Basic® .NET code snippet shows how to explicitly close a
connection as soon as the connection is no longer needed.

Try
 conn.Open()
 cmd.ExecuteNonQuery()
 customerCount = paramCustCount.Value
Catch ex As Exception
 ' ... handle exception
Finally
 ' This is guaranteed to run regardless of whether an exception occurs
 ' in the Try block.
 If Not(conn is Nothing) Then
 conn.Close()
 End If
End Try

524 Improving .NET Application Performance and Scalability

Closing Connections in C#
The following example shows how to close connections in C#.

public void DoSomeWork()
{
 SqlConnection conn = new SqlConnection(connectionString);
 ...
 try
 {
 conn.Open();
 // Do Work
 }
 catch (Exception e)
 {
 // Handle and log error
 }
 finally
 {
 if(null!=conn)
 conn.Close();
 }
}

Closing Connections with the Using Statement in C#
The using statement simplifies code for C# developers by automatically generating
a try and finally block when the code is compiled. This ensures that the Dispose
method is called even if an exception occurs. The following code fragment shows
how to use the using statement.

using (SqlConnection conn = new SqlConnection(connString))
{
 conn.Open();
 . . .
} // Dispose is automatically called on the conn variable here

The C# compiler converts this code into the following equivalent code, which has a
try and finally block to ensure that the Dispose method on the SqlConnection object
is called, regardless of whether an exception occurs.

SqlConnection conn = new SqlConnection(connString);
try
{
 conn.Open();
}
finally
{
 conn.Dispose();
}

 Chapter 12: Improving ADO.NET Performance 525

One limitation of the using statement is that you can only put a single type in the
parentheses. If you want to ensure that Dispose is called on additional resources,
you must nest the using statements as shown in the following example.

using (SqlConnection conn = new SqlConnection(connString))
{
 SqlCommand cmd = new SqlCommand("CustomerRead");

 conn.Open();
 using (SqlDataReader dr = cmd.ExecuteReader())
 {
 while (dr.Read())
 Console.WriteLine(dr.GetString(0));
 }
}

Note: Using a nested using statement on the DataReader object is useful only if you need to
perform further operations with the same connection after the inner using block. If you close
the connection right away, this approach is of limited value because any active DataReader
objects are closed automatically when the connection closes.

When Using DataReaders, Specify CommandBehavior.CloseConnection
When you create a DataReader object, specify the
CommandBehavior.CloseConnection enumeration in your call to ExecuteReader.
This ensures that when you close the DataReader, the connection is also closed. The
following code fragment shows how to use the CommandBehavior enumeration.

// Create connection and command. Open connection.
. . .
SqlDataReader myReader= myCommand.ExecuteReader(CommandBehavior.CloseConnection);
// read some data
. . .
myReader.Close(); // The connection and reader are closed.

The CommandBehavior.CloseConnection is especially helpful when you return a
DataReader from a function, and you do not have control over the calling code. If the
caller forgets to close the connection but closes the reader, both are closed when the
DataReader is created by using CommandBehavior.CloseConnection. This is shown
in the following code fragment.

526 Improving .NET Application Performance and Scalability

public SqlDataReader CustomerRead(int CustomerID)
{
 //... create connection and command, open connection
 return myCommand.ExecuteReader(CommandBehavior.CloseConnection);
}

//... client code
SqlDataReader myReader = CustomerRead(10248);
//... read some data
myReader.Close(); // reader and connection are closed

Do Not Explicitly Open a Connection if You Use Fill or Update for
a Single Operation
If you perform a single Fill or Update operation, do not open the connection
before you call the Fill method, because the DataAdapter automatically opens and
closes the connection for you. The following code fragment shows how to call Fill.

DataSet dSet = new DataSet("test");
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(sqlQuery,conn);
SqlDataAdapter dAdapter = new SqlDataAdapter(cmd);
dAdapter.Fill(dSet); // The connection was not explicitly opened.
// The connection is opened and closed by the DataAdapter automatically.

The SqlDataAdapter automatically opens the connection, runs the selected
command, and then closes the connection when it is finished. This enables the
connection to be open for the shortest period of time.

Note that if you need to perform multiple file or update operations, you need to
open the connection before the first Fill or Update method and close it after the
last one. Alternatively, you could wrap multiple Fill or Update operations inside
a C# using block to ensure that the connection is closed after the last use.

Avoid Checking the State Property of OleDbConnection
If you need to monitor or check connection status and you are using an
OleDbConnection, consider handling the StateChange event, and avoid checking
the State property. This approach helps to minimize round trips.

Using the State property increases application overhead, because each call results in
a call to the OLE DB DBPROP_CONNECTIONSTATUS property (if the connection
is an OleDbConnection) for an open connection.

Note: The .NET Framework 2.0 (code named “Whidbey”), at the time of writing, provides an updated
OLE DB .NET Data Provider that resolves this problem.

 Chapter 12: Improving ADO.NET Performance 527

The following code fragment shows how to implement the StateChange event. This
event is raised when the state of the connection changes from open to closed or from
closed to open.

OleDbConnection conn = new OleDbConnection(connStr);

// Set up a connection state change handler.
conn.StateChange += new StateChangeEventHandler(OnStateChange);
. . .
// StateChange event handler.
protected static void OnStateChange(object sender, StateChangeEventArgs args)
{
 Console.WriteLine("The current Connection state has changed from {0} to {1}.",
 args.OriginalState, args.CurrentState);
}

Note: The ODBC provider also incurs similar overhead when using the State property.

Pool Connections
Creating database connections is expensive. You reduce overhead by pooling your
database connections. Make sure you call Close or Dispose on a connection as soon
as possible. When pooling is enabled, calling Close or Dispose returns the connection
to the pool instead of closing the underlying database connection.

You must account for the following issues when pooling is part of your design:
● Share connections. Use a per-application or per-group service account to connect

to the database. This creates a single pool or a small number of pools, and it
enables many client requests to share the same connections.

● Avoid per-user logons to the database. Each logon creates a separate pooled
connection. This means that you end up with a large number of small pools. If
you need a different user for each connection, disable pooling or set a small
maximum size for the pool.

● Do not vary connection strings. Different connection strings generate different
connection pools. For example, using different capitalization, extra spaces, or
different ordering of attributes causes connections to go to different pools. The
SQL Server .NET Data Provider performs a byte-by-byte comparison to determine
whether connection strings match.

528 Improving .NET Application Performance and Scalability

● Release connections. Do not cache connections. For example, do not put them in
session or application variables. Close connections as soon as you are finished
with them. Busy connections are not pooled.

● Passing connections. Do not pass connections between logical or physical
application layers.

● Consider tuning your pool size if needed. For example, in the case of the .NET
Framework Data Provider for SQL Server, the default minimum pool size is zero
and the maximum is 100. You might need to increase the minimum size to reduce
warm-up time. You might need to increase the maximum size if your application
needs more than 100 connections.

● Connection pools are managed by the specific database provider. SqlClient,
OleDB client, and third-party clients may provide different configuration and
monitoring options.

The following list details the pooling mechanisms that are available, and it
summarizes pooling behavior for the .NET Framework data providers:
● The .NET Framework Data Provider for SQL Server pools connections by using a

pooling mechanism implemented in managed code. You control pooling behaviors
such as lifetime and pool size through connection string arguments.

● The .NET Framework Data Provider for Oracle also pools connections by using a
managed code solution.

● The .NET Framework Data Provider for OLE DB automatically uses OLE DB
session pooling to pool connections. You control pooling behavior through
connection string arguments.

● The .NET Framework Data Provider for ODBC uses ODBC connection pooling.

Monitoring Pooling
You can monitor connection pooling to determine that it is working as expected and
to help you identify the best minimum and maximum pool sizes.

Monitoring Pooling on a Computer that is Running SQL Server

You can monitor the number of open connections to SQL Server by using the SQL
Server SQLServer:General Statistics performance counter object. This object is
available only on a computer that is running SQL Server.

 Chapter 12: Improving ADO.NET Performance 529

The connections are not specific to one particular application. If there are multiple
applications accessing the server, this object reflects the total number of open
connections for every application. Figure 12.2 shows the SQLServer:General
Statistics object in the Performance Monitor tool.

Figure 12.2
Performance monitor showing the SQLServer:General Statistics counter

When monitoring SQLServer:General Statistics, you should observe the following:
● The number of logins per second increases during application startup when the

connection pool is established. The number of logins per second should then drop
to zero and stay there. Repeated logins and logouts per second indicate that the
connection pool is not being used because a different security context is being
used to establish the connection.

● The User Connections value should stabilize and remain constant. If this value
increases and you see a jagged pattern in the number of logins per second, you
may be experiencing a connection leak in the connection pool.

Monitoring Pooling Using the .NET Framework

The .NET Framework Data Provider for SQL Server provides several counters.
The following counters are of particular significance:
● SqlClient: Current # connection pools
● SqlClient: Current # pooled and nonpooled connections
● SqlClient: Current # pooled connections
● SqlClient: Peak # pooled connections

The SqlClient: Current # connection pools counter indicates the number of
connection pools that are currently in use. A large number of pools indicates that
a pool is not being shared across clients. Using different connection strings creates
new pools.

530 Improving .NET Application Performance and Scalability

The SqlClient: Peak # pooled connections counter indicates the maximum number
of connections that are currently in use. If this value remains at its peak, consider
measuring the performance impact of increasing the Max Pool Size attribute in
your connection string. The default value is 100. If you see this value at its peak in
conjunction with a high number of failed connections in the SqlClient: Total # failed
connects counter, consider changing the value and monitoring performance.

Note: These SqlClient counters may not be reset in .NET Framework version 1.1 when you stop and
then restart an application. To reset the counters, stop the application and exit System Monitor, and
then start the application and System Monitor again.

More Information
For more information about pooling connections, see the following resources
on MSDN:
● “Connection Pooling for the .NET Framework Data Provider for SQL Server” in

.NET Framework Developer’s Guide at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconConnectionPoolingForSQLServerNETDataProvider.asp

For more information about pooling connections, see the following Knowledge Base
articles:
● 164221, “INFO: How to Enable Connection Pooling in an ODBC Application”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;164221
● 166083, “INFO: How to Enable Connection Pooling in an OLE DB Application”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;166083
● 169470, “INFO: Frequently Asked Questions About ODBC Connection Pooling”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;169470
● 216950, “How to Enable ODBC Connection Pooling Performance Counters”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;216950
● 237977, “INFO: OLE DB Session Pooling Timeout Configuration”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;237977
● 316757, “BUG: SqlClient Connection Pooling That Uses Integrated Security Is

Slower Than OleDb” at http://support.microsoft.com/default.aspx?scid=kb;en-us;316757

For more information about how to reset the .NET counters, see Knowledge Base
article 314429, “BUG: Performance Counters for SQL Server .NET Data Provider Are
Not Reset,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;314429.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConnectionPoolingForSQLServerNETDataProvider.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConnectionPoolingForSQLServerNETDataProvider.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;164221
http://support.microsoft.com/default.aspx?scid=kb;en-us;166083
http://support.microsoft.com/default.aspx?scid=kb;en-us;169470
http://support.microsoft.com/default.aspx?scid=kb;en-us;216950
http://support.microsoft.com/default.aspx?scid=kb;en-us;237977
http://support.microsoft.com/default.aspx?scid=kb;en-us;316757
http://support.microsoft.com/default.aspx?scid=kb;en-us;314429

 Chapter 12: Improving ADO.NET Performance 531

Commands
You use Command objects such as SqlCommand, OleDbCommand, or
OdbcCommand to run SQL commands against the database. You can run dynamic
SQL statements or stored procedures by setting the CommandType property. You can
set the CommandText property to contain the name of a stored procedure or the SQL
statement that you want to run.

You use command Parameter objects, such as SqlParameter, OleDbParameter, or
OdbcParameter, to specify the input and output parameters required by the current
command. The recommended approach for running commands is to call stored
procedures by using Parameter objects that provide parameter type checking. This
approach provides both performance and security benefits. When you run
commands against a database, consider the following recommendations:
● Validate SQL input and use Parameter objects.
● Retrieve only the columns and rows you need.
● Support paging over large result sets.
● Batch SQL statements to reduce round trips.
● Use ExecuteNonQuery for commands that do not return data.
● Use ExecuteScalar to return single values.
● Use CommandBehavior.SequentialAccess for very wide rows or for rows

with BLOBs.
● Do not use CommandBuilder at run time.

Validate SQL Input and Use Parameter Objects
Validate all the input data that you use in SQL commands. Do not permit the client to
retrieve more data than it should. Also, do not trust user input, and do not permit the
client to perform operations that it should not perform. Doing so helps to lower the
risk of SQL injection. By rejecting invalid data early before you issue a command that
has the invalid data, you can improve performance by eliminating unnecessary
database requests.

Use Parameter objects when you build database commands. When you use
Parameter objects, each parameter is automatically type checked. Checking the type
is another effective countermeasure you can use to help prevent SQL injection.
Ideally, use Parameter objects in conjunction with stored procedures to improve
performance. For more information about using parameters, see “Parameters” later
in this chapter.

532 Improving .NET Application Performance and Scalability

Using Parameters with Stored Procedures
The following code sample illustrates how to use the Parameters collection.

SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", conn);
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter parm = myCommand.SelectCommand.Parameters.Add(
 "@au_id", SqlDbType.VarChar, 11);
parm.Value = Login.Text;

In the code sample, the @au_id parameter is treated as a literal value and not as
code that can be run. Also, the parameter is checked for type and length. In the code
fragment, the input value cannot be longer than 11 characters. If the data does not
conform to the type or length that is defined by the parameter, an exception is
generated.

Using stored procedures alone does not necessarily prevent SQL injection. The
important thing to do is use parameters with stored procedures. If you do not use
parameters, your stored procedures may be susceptible to SQL injection if the stored
procedures use unfiltered input. For example, the following code fragment is
susceptible to SQL injection.

SqlDataAdapter myCommand = new SqlDataAdapter("LoginStoredProcedure '" +
 Login.Text + "'", conn);

Using Parameters with Dynamic SQL
If you cannot use stored procedures, you can still use parameters with dynamic
SQL as shown in the following code fragment.

SqlDataAdapter myCommand = new SqlDataAdapter(
"SELECT au_lname, au_fname FROM Authors WHERE au_id = @au_id", conn);
SqlParameter parm = myCommand.SelectCommand.Parameters.Add("@au_id",
 SqlDbType.VarChar, 11);
parm.Value = Login.Text;

Retrieve Only the Columns and Rows You Need
Reduce unnecessary processing and network traffic by retrieving only the columns
and the rows you need. Do not use the SELECT * query. This is poor practice because
you might not know the schema, or it might change. It is easy to retrieve more data
than you expect. Consider a scenario where you want four columns, but you perform
an operation by using the SELECT * query on a 400-column table. In that scenario,
you receive many more results than you expect. Instead, use WHERE clauses to filter
the rows.

 Chapter 12: Improving ADO.NET Performance 533

Support Paging Over Large Result Sets
If you have a large result set that contains many rows of data, consider whether
you can implement a paging technique to batch the retrieval of data. Batching the
retrieval of data helps to reduce database server load, to reduce network traffic, and
to put fewer memory requirements on the data access client. For more information,
see “Paging Records” later in this chapter.

Batch SQL Statements to Reduce Round Trips
Batching is the process of grouping several SQL statements in one trip to the server.
The syntax in the following code fragment calls a stored procedure (that groups
several queries) to return multiple result sets. The code uses the NextResult method
of the DataReader object to advance to the next result set. NextResult can be called
multiple times, and it returns true when another result set exists. It returns false when
there are no more result sets.

SqlCommand cmd = new SqlCommand();
cmd.CommandText = "ReadCustomerAndOrders";
// The stored procedure returns multiple result sets.
SqlDataReader myReader = cmd.ExecuteReader();

if (myReader.read())
//... read first result set

reader.NextResult();

if (myReader.read())
//... read

If you build complex SQL strings dynamically, you can use a StringBuilder object to
reduce the performance cost of building the strings.

More Information
You can also use stored procedures to batch SQL operations. For more
information, see Knowledge Base article 311274, “HOW TO: Handle Multiple
Results by Using the DataReader in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;311274.

http://support.microsoft.com/default.aspx?scid=kb;en-us;311274
http://support.microsoft.com/default.aspx?scid=kb;en-us;311274

534 Improving .NET Application Performance and Scalability

Use ExecuteNonQuery for Commands That Do Not Return Data
If you want to run commands that do not retrieve data, use the ExecuteNonQuery
method. For example, you would use ExecuteNonQuery for the following types of
commands:
● Data Definition Language commands such as CREATE and ALTER
● Data Modification Language commands such as INSERT, UPDATE, and DELETE
● Data Control Language commands such as GRANT and REVOKE.

The following code fragment shows an update to the customer table that uses
ExecuteNonQuery.

SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(
 "UPDATE Customer SET Freight = 45.44 WHERE CustomerID = 10248", conn);
cmd.ExecuteNonQuery();

Use ExecuteScalar to Return Single Values
If you want to retrieve a single value from your query by using a function such as
COUNT(*) or SUM(Price), you can use a stored procedure output parameter, and
then use the Command.ExecuteNonQuery method. This eliminates the overhead
that is associated with creating a result set.

The following stored procedure returns the number of rows in a Customers table.

CREATE PROCEDURE GetNumberOfCustomers(
@CustomerCount int OUTPUT)
AS
SELECT @CustomerCount = COUNT(*)
FROM Customers

To call the stored procedure, use the following code.

static int GetCustomerCount()
{
 int customerCount = 0;

 SqlConnection conn = new SqlConnection("server=(local);" +
 "Integrated Security=SSPI;database=northwind");
 SqlCommand cmd = new SqlCommand("GetNumberOfCustomers", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 SqlParameter paramCustCount =
 cmd.Parameters.Add("@CustomerCount", SqlDbType.Int);
 paramCustCount.Direction = ParameterDirection.Output;

(continued)

 Chapter 12: Improving ADO.NET Performance 535

(continued)

 try
 {
 conn.Open();
 cmd.ExecuteNonQuery();
 customerCount = (int)paramCustCount.Value;
 }
 finally
 {
 if(null!=conn)
 conn.Close();
 }
 return customerCount;
}

If you do not have control over the stored procedure, and if the stored
procedure returns the number of rows as a return value, then you can use
Command.ExecuteScalar as shown in the following code fragment. The
ExecuteScalar method returns the value of the first column of the first row
of the result set.

static int GetCustomerCountWithScalar()
{
 int customerCount = 0;

 SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind");
 SqlCommand cmd = new SqlCommand("GetCustomerCountWithScalar", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 try
 {
 conn.Open();
 customerCount = (int)cmd.ExecuteScalar();
 }
 finally
 {
 if(null!=conn)
 conn.Close();
 }
 return customerCount;
}

The previous code fragment requires the following stored procedure.

CREATE PROCEDURE GetCustomerCountWithScalar
AS
SELECT COUNT(*) FROM Customers

536 Improving .NET Application Performance and Scalability

Use CommandBehavior.SequentialAccess for Very Wide Rows or
for Rows with BLOBs
Use the CommandBehavior.SequentialAccess enumeration for very wide rows or
for rows that contain binary large object (BLOB) data. This permits you to return
specific bytes from the retrieved row instead of returning the entire row. Returning
the entire row may consume large amounts of memory because of the BLOB data.

When you use CommandBehavior.SequentialAccess, the BLOB data is retrieved
only when you reference it. For example, you can call the GetBytes method. The
GetBytes method permits you to control the precise number of bytes that are read.
The following code fragment shows how to use
CommandBehavior.SequentialAccess.

SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess)

Also, if you are performing optimistic locking against a table with very wide rows
or against rows that contain BLOB data, use timestamps. Use timestamps instead
of comparing all the fields in the table to the original versions. Using time stamps
reduces the number of arguments by a value that is equal to n/2+1.

More Information
For a complete sample, see “Obtaining BLOB Values from a Database” in
.NET Framework Developer’s Guide on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp.

Do Not Use CommandBuilder at Run Time
CommandBuilder objects such as SqlCommandBuilder and
OleDbCommandBuilder automatically generate the InsertCommand,
UpdateCommand, and DeleteCommand properties of a DataAdapter. The
CommandBuilder objects generate these properties based on the SelectCommand
property of the DataAdapter. CommandBuilder objects are useful when you are
designing and prototyping your application. However, you should not use them in
production applications. The processing required to generate the commands affects
performance. Manually create stored procedures for your commands, or use the
Visual Studio® .NET design-time wizard and customize them later if necessary.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp

 Chapter 12: Improving ADO.NET Performance 537

Stored Procedures
This section discusses how to write and to call stored procedures for maximum
performance. You should generally prefer stored procedures over direct SQL
statements, because stored procedures perform better. Stored procedures perform
better because the database can optimize the data access plan used by the procedure
and then cache it for subsequent reuse. In addition, stored procedures provide
security and maintenance benefits.
● Use stored procedures.
● Use CommandType.Text with OleDbCommand.
● Use CommandType.StoredProcedure with SqlCommand.
● Consider using Command.Prepare.
● Use output parameters where possible.
● Consider SET NOCOUNT ON for SQL Server.

Use Stored Procedures
Stored procedures generally provide improved performance in comparison to
SQL statements that are run directly. The following list explains the benefits of stored
procedures compared to running data access logic directly from the middle tier of
your application:
● The database can prepare, optimize, and cache the execution plan so that the

execution plan can be reused at a later time.
● Stored procedures pass less information over the network on the initial request,

because they only need to transmit the procedure name and the parameters.
Everything else is already at the server.

● Stored procedures abstract SQL statements from the client and business object
developers and put responsibility for their maintenance in the hands of SQL
experts.

● Stored procedures also provide maintenance and security benefits.

More Information
For more information about the security benefits of stored procedures and about
how you can use them as a countermeasure for SQL injection, see the following:
● Chapter 14, “Building Secure Data Access,” in “Improving Web Application

Security: Threats and Countermeasures” on MSDN at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch14.asp

● “Stored Procedure and Trigger Execution” in Microsoft SQL Server 2000: SQL Server
Architecture on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/architec/8_ar_sa_7cmm.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec/8_ar_sa_7cmm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec/8_ar_sa_7cmm.asp

538 Improving .NET Application Performance and Scalability

● MSDN article, “Query Recompilation in SQL Server 2000,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k
/html/sql_queryrecompilation.asp

● Knowledge Base article 243586, “INF: Troubleshooting Stored Procedure
Recompilation,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;243586

● SQL Server Magazine article, “Inside SQL Server: Stored Procedure Plans:
Improve performance through caching” at http://www.sqlmag.com/Articles
/Print.cfm?ArticleID=6113

Use CommandType.Text with OleDbCommand
If you use an OleDbCommand object to call a stored procedure, use the
CommandType.Text enumeration with the ODBC call syntax. If you use
CommandType.StoredProcedure, ODBC call syntax is generated by the provider
anyway. By using explicit call syntax, you reduce the work of the provider.

You should also set the type and length of any parameters that the stored procedure
requires. Set the type and length of the parameters to prevent the provider from
performing an additional round trip to obtain the parameter information from the
database. The following code fragment demonstrates how to use ODBC call syntax
and CommandType.Text, and how to explicitly set parameter information.

using (OleDbConnection conn = new OleDbConnection(connStr))
{
 OleDbCommand cmd = new OleDbCommand("call CustOrderHist(?)", conn);
 cmd.CommandType = CommandType.Text;
 OleDbParameter param = cmd.Parameters.Add("@CustomerID", OleDbType.Char, 5);
 param.Value = "ALFKI";
 conn.Open();
 OleDbDataReader reader = cmd.ExecuteReader();
 try
 {
 // List each product.
 while (reader.Read())
 Console.WriteLine(reader.GetString(0));
 }
 finally
 {
 reader.Close();
 }
} // Dispose is called on conn here

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;243586
http://www.sqlmag.com/Articles/Print.cfm?ArticleID=6113
http://www.sqlmag.com/Articles/Print.cfm?ArticleID=6113

 Chapter 12: Improving ADO.NET Performance 539

Use CommandType.StoredProcedure with SqlCommand
If you are using the SqlCommand object, use CommandType.StoredProcedure when
you call stored procedures. Do not use CommandType.Text because it requires extra
parsing. The following code fragment shows how to set the CommandType property
to avoid extra parsing on the server.

SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("UpdateCustomerProcedure", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(...

Consider Using Command.Prepare
If your application runs the same set of SQL queries multiple times, preparing those
queries by using the Command.Prepare method may give you better performance. In
ADO.NET, the SqlCommand.Prepare method calls the sp_prepare stored procedure
for SQL Server 7. The SqlCommand.Prepare method calls sp_prepexec for SQL
Server 2000 and later. SqlCommand.Prepare makes these calls instead of running a
regular batch remote procedure call (RPC). The following code fragment shows how
to use Command.Prepare.

cmd.CommandText =
 "insert into Region (RegionID, RegionDescription) values (@id, @desc)";

cmd.Parameters.Add ("@id", SqlDbType.Int, 4, "RegionID") ;
cmd.Parameters.Add ("@desc", SqlDbType.NChar, 50, "RegionDescription") ;

cmd.Parameters[0].Value = 5;
cmd.Parameters[1].Value = "North West";
cmd.Prepare();
cmd.ExecuteNonQuery();

cmd.Parameters[0].Value = 6;
cmd.Parameters[1].Value = "North East";
cmd.ExecuteNonQuery();

cmd.Parameters[0].Value = 7;
cmd.Parameters[1].Value = "South East";
cmd.ExecuteNonQuery();

cmd.Parameters[0].Value = 8;
cmd.Parameters[1].Value = "South West";
cmd.ExecuteNonQuery();

Using the Prepare method does not yield a benefit if you are only going to run the
statement one or two times. The next version of SQL Server will better leverage how
plans are cached, so using it would not make a difference. You should only use the
Prepare method for those statements that you run multiple times.

540 Improving .NET Application Performance and Scalability

Use Output Parameters Where Possible
Use output parameters and ExecuteNonQuery to return small amounts of data
instead of returning a result set that contains a single row. When you use output
parameters and ExecuteNonQuery to return small amounts of data, you avoid the
performance overhead that is associated with creating the result set on the server.

The following code fragment uses a stored procedure to retrieve the product name
and unit price for a specific product that is contained in the Products table in the
Northwind database.

void GetProductDetails(int ProductID,
 out string ProductName, out decimal UnitPrice)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=Northwind"))
 {
 // Set up the command object used to run the stored procedure.
 SqlCommand cmd = new SqlCommand("DATGetProductDetailsSPOutput", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 // Establish stored procedure parameters.
 // @ProductID int INPUT
 // @ProductName nvarchar(40) OUTPUT
 // @UnitPrice money OUTPUT

 // Must explicitly set the direction of the output parameters.
 SqlParameter paramProdID =
 cmd.Parameters.Add("@ProductID", ProductID);
 paramProdID.Direction = ParameterDirection.Input;
 SqlParameter paramProdName =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramProdName.Direction = ParameterDirection.Output;
 SqlParameter paramUnitPrice =
 cmd.Parameters.Add("@UnitPrice", SqlDbType.Money);
 paramUnitPrice.Direction = ParameterDirection.Output;

 conn.Open();
 // Use ExecuteNonQuery to run the command.
 // Although no rows are returned, any mapped output parameters
 // (and potential return values) are populated
 cmd.ExecuteNonQuery();
 // Return output parameters from stored procedure.
 ProductName = paramProdName.Value.ToString();
 UnitPrice = (decimal)paramUnitPrice.Value;
 }
}

 Chapter 12: Improving ADO.NET Performance 541

Consider SET NOCOUNT ON for SQL Server
When you use SET NOCOUNT ON, the message that indicates the number of rows
that are affected by the T-SQL statement is not returned as part of the results. When
you use SET NOCOUNT OFF, the count is returned. Using SET NOCOUNT ON can
improve performance because network traffic can be reduced. SET NOCOUNT ON
prevents SQL Server from sending the DONE_IN_PROC message for each statement
in a stored procedure or batch of SQL statements.

For example, if you have eight operations in a stored procedure, eight messages are
returned to the caller. Each message contains the number of rows affected by the
respective statement. When you use SET NOCOUNT ON, you reduce the processing
that SQL Server performs and the size of the response that is sent across the network.

Note: In Query Analyzer, the DONE_IN_PROC message is intercepted and displayed as “N rows
affected”.

Parameters
Most SQL commands require input or output parameters, regardless of whether they
are stored procedures or direct SQL statements. Each .NET Framework data provider
provides a Parameter object implementation. You can use a Parameter object
implementation in conjunction with a Command object. Some sample parameter
objects include SqlParameter, OleDbParameter, and OdbcParameter. When you use
parameters, consider the following recommendations:
● Use the Parameters collection when you call a stored procedure.
● Use the Parameters collection when you build SQL statements.
● Explicitly create stored procedure parameters.
● Specify parameter types.
● Cache stored procedure SqlParameter objects.

Use the Parameters Collection When You Call a Stored Procedure
Use the Parameters collection property of the SqlCommand object to pass
parameters to a stored procedure. By using strongly typed parameters, types do not
need to be discovered at run time. You can also save round trips by checking the data
type on the client; for example, you can save round trips by checking the Web server.
This prevents wasted cycles and wasted bandwidth that is caused by passing invalid
data to the database server. The following code fragment shows how to add a typed
parameter to the Parameters collection.

542 Improving .NET Application Performance and Scalability

SqlDataAdapter adapter = new SqlDataAdapter("GetProductDesc",
 conn);
adapter.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter parm = adapter.SelectCommand.Parameters.Add(
 "@ProdID", SqlDbType.Int);
parm.Value = 10;

Use the Parameters Collection When You Build SQL Statements
Even if you do not use stored procedures for data access, you should still use the
Parameters collection when you build your SQL statements in code. By using the
Parameter collection and by explicitly setting the data type, you reduce the likelihood
that the Parameter object could set an invalid type. The following code fragment
shows how to use the Parameters collection when you build your SQL statements
in code.

SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT ProductID, ProductName FROM Products WHERE ProductID = @ProdID", conn);
// Set the parameter including name and type.
SqlParameter parm = adapter.SelectCommand.Parameters.Add("@ProdID",
 SqlDbType.Int);
// Set the parameter value.
parm.Value = 10;

Explicitly Create Stored Procedure Parameters
Identifying parameters at run time requires a round trip to the server for each use
of a stored procedure. This is an expensive operation. Explicitly create parameters
for stored procedures. Explicitly supply the parameter type, size, precision, and
scale information to prevent the Command object from recreating them every time
a command is run. The following code demonstrates how to set the type, size, and
direction.

void GetProductDetails(int productID,
 out string productName, out decimal unitPrice)
{
 using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=Northwind"))
 {
 // Set up the command object used to run the stored procedure.
 SqlCommand cmd = new SqlCommand("GetProductDetails", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 // Establish stored procedure parameters.
 // @ProductID int INPUT
 // @ProductName nvarchar(40) OUTPUT
 // @UnitPrice money OUTPUT

(continued)

 Chapter 12: Improving ADO.NET Performance 543

(continued)

 // Must explicitly set the direction of output parameters.
 SqlParameter paramProdID =
 cmd.Parameters.Add("@ProductID", SqlDbType.Int);
 paramProdID.Direction = ParameterDirection.Input;
 SqlParameter paramProdName =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramProdName.Direction = ParameterDirection.Output;
 SqlParameter paramUnitPrice =
 cmd.Parameters.Add("@UnitPrice", SqlDbType.Money);
 paramUnitPrice.Direction = ParameterDirection.Output;

 conn.Open();
 cmd.ExecuteNonQuery();
 // Return output parameters from the stored procedure.
 productName = paramProdName.Value.ToString();
 unitPrice = (decimal)paramUnitPrice.Value;
 }
}

Specify Parameter Types
When you create a new parameter, use the relevant enumerated type to specify
the data type of the parameter. Use an enumerated type such as SqlDbType or
OleDbType. This prevents unnecessary type conversions that are otherwise
performed by the data provider.

Cache Stored Procedure SqlParameter Objects
Often, applications must run commands multiple times. To avoid recreating the
SqlParameter objects each time, cache them so that they can be reused later. A good
approach is to cache parameter arrays in a Hashtable object. Each parameter array
contains the parameters that are required by a particular stored procedure that is
used by a particular connection. The following code fragment shows this approach.

public static void CacheParameterSet(string connectionString,
 string commandText,
 params SqlParameter[] commandParameters)
{
 if(connectionString == null || connectionString.Length == 0)
 throw new ArgumentNullException("connectionString");
 if(commandText == null || commandText.Length == 0)
 throw new ArgumentNullException("commandText");

 string hashKey = connectionString + ":" + commandText;
 paramCache[hashKey] = commandParameters;
}

544 Improving .NET Application Performance and Scalability

The following function shows the equivalent parameter retrieval function

public static SqlParameter[] GetCachedParameterSet(string connectionString, string
commandText)
{
 if(connectionString == null || connectionString.Length == 0)
 throw new ArgumentNullException("connectionString");
 if(commandText == null || commandText.Length == 0)
 throw new ArgumentNullException("commandText");

 string hashKey = connectionString + ":" + commandText;

 SqlParameter[] cachedParameters = paramCache[hashKey] as SqlParameter[];
 if (cachedParameters == null)
 {
 return null;
 }
 else
 {
 return CloneParameters(cachedParameters);
 }
}

When parameters are retrieved from the cache, a cloned copy is created so that the
client application can change parameter values, without affecting the cached
parameters. The CloneParameters method is shown in the following code fragment.

private static SqlParameter[] CloneParameters(SqlParameter[] originalParameters)
{
 SqlParameter[] clonedParameters = new SqlParameter[originalParameters.Length];

 for (int i = 0, j = originalParameters.Length; i < j; i++)
 {
 clonedParameters[i] =
 (SqlParameter)((ICloneable)originalParameters[i]).Clone();
 }
 return clonedParameters;
}

More Information
The code samples for the parameter caching approach that is shown above are
based on samples from the Data Access Application Block. The Data Access
Application Block implements this functionality in a generic data access component.
For more information, see the Data Access Application Block on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daab-rm.asp

 Chapter 12: Improving ADO.NET Performance 545

DataSet vs. DataReader
When you need to retrieve multiple rows of data so that you can display or process
the data in some other way, you have two basic choices. You can use a DataSet object
or a DataReader object.

The DataReader approach is generally quicker because it avoids the overhead that
is associated with creating a DataSet object. The overhead that is associated with a
DataSet object includes creating DataSet subobjects such as DataTables, DataRows,
and DataColumns. However, the DataReader provides less flexibility, and is less
suited to situations where you have to cache data and pass the data to components
in an application that has multiple tiers.

Note: The DataAdapter used to fill the DataSet uses a DataReader internally.

Use a DataReader when the following conditions are true:
● You need forward-only, read-only access to data (the fire hose scenario), and you

want to access the data as quickly as possible, and you do not need to cache it.
● You have a data container such as a business component that you can put the

data in.

Use a DataSet when the following conditions are true:
● You have to cache or pass the data between layers.
● You require an in-memory relational view of the data for XML or non-XML

manipulation.
● You want to update some or all the retrieved rows, and you want to use the batch

update facilities of the SqlDataAdapter class.
● You have to bind data to a control type that the DataReader cannot be bound to.

Many Windows Forms controls capable of data binding require a data source that
implements the IList interface. The DataSet implements IList, but the DataReader
implements IEnumerable. IEnumerable supports data binding to most Web Form
controls but not to certain Windows Forms controls. Check the data source
requirements for the particular control type that you want to bind.

● You have to access multiple sets of data at the same time, and you do not want to
hold open server resources.

546 Improving .NET Application Performance and Scalability

DataReader
The DataReader provides a read-only, forward-only stream of data from a database.
When you use DataReader objects such as SqlDataReader or OleDbDataReader,
consider the following recommendations:
● Close DataReader objects.
● Consider using CommandBehavior.CloseConnection to close connections.
● Cancel pending data.
● Consider using CommandBehavior.SequentialAccess with ExecuteReader.
● Use GetOrdinal when using an index-based lookup.

Close DataReader Objects
Close your DataReader object as soon as you are finished with it, either by calling
its Close method or by calling its Dispose method. It is best to use a finally block
to ensure that the DataReader is closed as shown in the following code fragment.

using (SqlConnection conn = new SqlConnection(connString))
{
 SqlCommand cmd = new SqlCommand("CustomerRead",conn);

 conn.Open();
 SqlDataReader dr = cmd.ExecuteReader();
 try
 {
 while (dr.Read())
 Console.WriteLine(dr.GetString(0));
 }
 finally
 {
 dr.Close();
 }
}

Consider Using CommandBehavior.CloseConnection to
Close Connections
If you need to return a DataReader from a method, consider using the
CommandBehavior.CloseConnection method to ensure that the associated
connection is closed when the DataReader is closed. The following code
fragment shows this approach.

 Chapter 12: Improving ADO.NET Performance 547

public SqlDataReader RetrieveRowsWithDataReader()
{
 SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=northwind");
 SqlCommand cmd = new SqlCommand("RetrieveProducts", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 try
 {
 conn.Open();
 // Generate the reader. CommandBehavior.CloseConnection causes
 // the connection to be closed when the reader object is closed.
 return(cmd.ExecuteReader(CommandBehavior.CloseConnection));
 }
 finally
 {
 if(null!=conn)
 conn.Close();
 }
}

// Display the product list using the console.
private void DisplayProducts()
{
 SqlDataReader reader = RetrieveRowsWithDataReader();
 try
 {
 while (reader.Read())
 {
 Console.WriteLine("{0} {1}",
 reader.GetInt32(0).ToString(),
 reader.GetString(1));
 }
 }
 finally
 {
 if(null!= reader)
 reader.Close(); // Also closes the connection due to the CommandBehavior
 // enumerator used when generating the reader.
 }
}

Cancel Pending Data
When you call the Close method, the method does not return until all the remaining
data has been fetched. If you know you have pending data when you want to close
your DataReader, you can call the Cancel method before you call Close to tell the
server to stop sending data.

548 Improving .NET Application Performance and Scalability

This approach does not always result in a performance improvement, because Cancel
is not guaranteed to make the server stop sending data. Control information is still
exchanged after the call to Cancel, and the control information may or may not be
interleaved with leftover data. Therefore, before you restructure your code to call
Cancel before Close, test Cancel to learn if it actually helps in your particular
scenario and to learn if you really need the extra performance at the expense of
readability.

Note: If you need output parameters, do not call Close until you have retrieved the output
parameters. After you retrieve the output parameters, you can then call Close.

Consider Using CommandBehavior.SequentialAccess with
ExecuteReader
If you do not have to have random access to columns, use
CommandBehavior.SequentialAccess when you call the ExecuteReader method
of the Command object.

Use GetOrdinal When Using an Index-Based Lookup
Using an index or ordinal-based lookup is faster than using string-based column
names. However, using an index adds code maintenance overhead. Using an index
requires you to change the index when the query column-order changes or when
table columns are changed. Instead of hard coding the values, you can use
GetOrdinal to get the index as shown in the following code fragment.

cmd.CommandText = "Select RegionDescription, RegionId from Region";
SqlDataReader dr = cmd.ExecuteReader();

int RegionId = dr.GetOrdinal("RegionId");
int RegionDescription = dr.GetOrdinal("RegionDescription");

while(dr.Read())
{
 Console.WriteLine(dr[RegionId] + " - " + dr[RegionDescription]);
}

 Chapter 12: Improving ADO.NET Performance 549

DataSet
If you need to work with a disconnected, cached set of data, you usually create
a DataSet by using a DataAdapter. To help optimize the performance of DataSet
objects, consider the following recommendations:
● Reduce serialization.
● Use primary keys and Rows.Find for indexed searching.
● Use a DataView for repetitive non-primary key searches.
● Use the Optimistic concurrency model for datasets.

Reduce Serialization
DataSet serialization is more efficiently implemented in .NET Framework version 1.1
than in version 1.0. However, DataSet serialization often introduces performance
bottlenecks. You can reduce the performance impact in a number of ways:
● Use column name aliasing. The serialized data contains column names so that

you can use column name aliasing to reduce the size of the serialized data.
● Avoid serializing multiple versions of the same data. The DataSet maintains the

original data along with the changed values. If you do not need to serialize new
and old values, call AcceptChanges before you serialize a DataSet to reset the
internal buffers.

● Reduce the number of DataTable objects that are serialized. If you do not need
to send all the DataTable objects contained in a DataSet, consider copying the
DataTable objects you need to send into a separate DataSet.

More Information
For more information, see “How To: Improve Serialization Performance” in the
“How To” section of this guide.

Use Primary Keys and Rows.Find for Indexed Searching
If you need to search a DataSet by using a primary key, create the primary key on the
DataTable. This creates an index that the Rows.Find method can use to quickly find
the records that you want. Do not use DataTable.Select because DataTable.Select
does not use indices.

Use a DataView for Repetitive Non-Primary Key Searches
If you need to repetitively search by using non-primary key data, create a DataView
that has a sort order. This creates an index that can be used to perform the search.
This is best suited to repetitive searches because there is some cost to creating the
index.

550 Improving .NET Application Performance and Scalability

The DataView object exposes the Find and FindRows methods so that you can query
the data in the underlying DataTable. If you are only performing a single query, the
processing that is required to create the index reduces the performance that is gained
by using the index.

When you create a DataView object, use the DataView constructor that takes the
Sort, RowFilter, and RowStateFilter values as constructor arguments along with the
underlying DataTable. Using the DataView constructor ensures that the index is
built once. If you create an empty DataView and set the Sort, RowFilter, or
RowStateFilter properties afterwards, the index is built at least two times.

Use the Optimistic Concurrency Model for Datasets
There are two concurrency models that you can use when working with datasets in
an environment that has multiple users. These two models are the pessimistic and
optimistic models. When you read data and use the pessimistic model, locks are
established and held until updates are made and the locks are released. Holding locks
on server resources, in this case database tables, leads to contention issues. It is best to
use granular locks for very short durations.

The optimistic model does not lock the data when the data is read. The optimistic
model locks the data just before the data is updated and releases the lock afterwards.
There is less contention for data with the optimistic model, which is good for shared
server scenarios; however, you should take into account the scenarios for managing
the concurrency violations. A common technique you can use to manage concurrency
violations is to implement a timestamp column or to verify against the original copy
of data.

More Information
For more information about how to implement optimistic concurrency
solutions, see “Optimistic Concurrency” in .NET Framework Developer’s Guide
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconOptimisticConcurrency.asp.

XML and DataSet Objects
Data and schema information maintained within DataSet objects can be output
as XML. Also, you can populate a DataSet object from an XML data stream. If you
use XML and DataSets, consider the following recommendations:
● Do not infer schemas at run time.
● Perform bulk updates and inserts by using OpenXML.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconOptimisticConcurrency.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconOptimisticConcurrency.asp

 Chapter 12: Improving ADO.NET Performance 551

Do Not Infer Schemas at Run Time
Limit schema inference to design time. When you load a DataSet, ensure that your
schema is not inferred, which can happen by default. The inference process is costly.
To ensure that your existing schema is used and that no schema is inferred, pass
XmlReadMode.IgnoreSchema to the ReadXml method.

Perform Bulk Updates and Inserts by Using OpenXML
Different .NET Framework data providers enable you to do bulk updates and inserts
by using the OpenXML method. You can use OpenXML to minimize SQL Server
database calls, because you can use the OpenXML function to insert multiple rows of
data in a single database call. OpenXML enables you to effectively package data
together in a single call as XML, map it to a rowset view, and execute all of the inserts
within the same database call. This helps reduce calls and resource utilization. The
following code fragment shows you how to use OpenXML for updates and inserts.

--This code UPDATES data.
UPDATE Employee
SET
 Employee.FirstName = XMLEmployee.FirstName,
 Employee.LastName = XMLEmployee.LastName
 FROM OPENXML(@hDoc, 'NewDataSet/Employee')
 WITH (EmployeeId Integer, FirstName varchar(100), LastName varchar(100))
XMLEmployee
WHERE Employee.EmployeeId = XMLEmployee.EmployeeId

--This code inserts new data.
Insert Into Employee
SELECT EmployeeId, FirstName, LastName
 FROM OPENXML (@hdoc, '/NewDataSet/Employee',1)
WITH (EmployeeId Integer, FirstName varchar(100), LastName varchar(100))
XMLEmployee
Where XMLEmployee.EmployeeId Not IN (Select EmployeeID from Employee)

More Information
For a complete code sample that shows how to use the OpenXML method, see
Knowledge Base article 315968, “HOW TO: Perform Bulk Updates and Inserts Using
OpenXML with .NET Providers in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;315968.

For more information about XML and DataSet objects, see “Employing XML in the
.NET Framework” in .NET Framework Developer’s Guide at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconemployingxmlinnetframework.asp.

http://support.microsoft.com/default.aspx?scid=kb;en-us;315968
http://support.microsoft.com/default.aspx?scid=kb;en-us;315968
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconemployingxmlinnetframework.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconemployingxmlinnetframework.asp

552 Improving .NET Application Performance and Scalability

Typed DataSets
A typed DataSet is a custom object that derives from the DataSet base class.
It supports typed data access through an exposed set of properties specific to the
encapsulated data.

Use typed DataSet objects to avoid late-bound field access. The strongly typed
accessors are provided by the typed DataSet and are faster because they eliminate
column or table name lookups in a collection.

In addition to run-time performance benefits, typed datasets provide strong type
checking and IntelliSense® by using custom field names at design time.

More Information
For more information about typed DataSet objects, see the following Knowledge
Base articles:
● 320714, “HOW TO: Create and Use a Typed DataSet by Using Visual C# .NET,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;320714
● 313486, “INFO: Roadmap for Visual Database Tools and Typed DataSets,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;313486

Types
When you access a data source by using stored procedures or dynamic SQL
commands, make sure that you specify the precise data type for the input and output
parameters. By specifying the precise database type, you can help performance in the
following ways:
● You help prevent internal type conversions from being performed by the data

provider. Internal type conversions can lead to loss of precision.
● You help reduce round trips that the data provider might make to the database

to discover type information at run time.
● You enable the data provider to perform type checks at the client and fail early

with type exceptions. This helps avoid unnecessary round trips to the server.

Avoid Unnecessary Type Conversions
Type conversions can occur when you pass parameters to and from stored
procedures or other SQL statements. To avoid type conversions, make sure that you:
● Set the provider-specific type property of each Parameter object.
● Pass a consistent object type when you set the Value property of the Parameter

object.

http://support.microsoft.com/default.aspx?scid=kb;en-us;320714
http://support.microsoft.com/default.aspx?scid=kb;en-us;313486

 Chapter 12: Improving ADO.NET Performance 553

For example, the .NET Framework Data Provider for SQL Server defines the
System.Data.SqlTypes namespace. This namespace provides classes that represent
the native data types in SQL Server. This namespace also includes the SqlDbType
enumeration, which you use to specify the precise type of a parameter that is passed
through a SqlParameter object.

The following code demonstrates how to avoid type conversions for the .NET
Framework Data Provider for SQL Server.

// Set the provider-specific type for the parameter.
SqlParameter param = new SqlParameter("@Name", SqlDbType.NVarChar, 20);
// Use the right provider-specific type. In this case use SqlString, which
// corresponds to SqlDbType.NVarChar
param.Value = new SqlString("Frederick Smith");

The type namespaces and type enumerations for each data provider are summarized
in Table 12.1.

Table 12.1: Database Provider Types

Provider Type namespace Type enumeration

SQL Server System.Data.SqlTypes SqlDbType

OLE DB System.Data.OleDb OleDbType

ODBC System.Data.OdbcType OdbcType

Oracle System.Data.OracleClient OracleType

Exception Management
ADO.NET errors that are propagated through SqlException or OleDbException
objects use custom error handling for specific data access code. Consider the
following guidelines for exception handling in ADO.NET data access code:
● Use the ConnectionState property. Avoid relying on an error handler to detect

connection state availability. When you can, use the ConnectionState.Open or
ConnectionState.Close method to check the state before use.

● Use try/finally to clean up resources. Use try/finally more often than
try/catch/finally. Using finally gives you the option to close the connection,
even if an exception occurs. If you develop in C#, the using statement provides
this functionality with code that is easy to maintain, as shown in the following
code fragment.

using(SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=Northwind"))
{ . . . }

554 Improving .NET Application Performance and Scalability

● Use specific handlers to catch specific exceptions. If you know that there are
scenarios where specific errors could possibly occur, use specific handlers. For
example, if you want to know if a concurrency violation occurs when multiple
updates are occurring, look for exceptions of type DBConcurrencyException. The
specific exception classes SqlException and OleDbException provide a detailed
message when errors occur. Use this message to log the details. Ensure that
specific exceptions precede generic handlers, as shown in the following code
fragment.

try
{ ...
}
catch (SqlException sqlex) // specific handler
{ ...
}
catch (Exception ex) // Generic handler
{ ...
}

For more information about exception handling guidelines specific to performance,
see Chapter 5, “Improving Managed Code Performance.”

Transactions
Transactions are important for ensuring data integrity but come at an operational
cost. Selecting the right transaction management mechanism for your application
can significantly improve scalability and performance. Key considerations include
the type and quantity of resources involved and the isolation level required for the
transactions. When you determine how you should manage transactions in your
system, consider the following recommendations:
● Use SQL transactions for server-controlled transactions on a single data store.
● Use ADO.NET transactions for client-controlled transactions on a single

data store.
● Use DTC for transactions that span multiple data stores.
● Keep transactions as short as possible.
● Use the appropriate isolation level.
● Avoid code that can lead to deadlock.
● Set the connection string Enlist property to false.

 Chapter 12: Improving ADO.NET Performance 555

Use SQL Transactions for Server-Controlled Transactions on
a Single Data Store
If you need to write to a single data store, and if you can complete the operation in a
single call to the database, use the transaction control provided by the SQL language
on your database server. The transaction runs close to the data and reduces the cost
of the transaction. Running the transaction close to the data also permits database
administrators to tune the operation without changing the deployment of your
application code. The following code fragment shows a simple T-SQL transaction
performed in a stored procedure.

BEGIN TRAN

UPDATE Orders SET Freight=@Freight Where OrderID=@OrderID
UPDATE [Order Details] SET Quantity=@Quantity Where OrderID=@OrderID

IF (@@ERROR > 0)
ROLLBACK TRANSACTION
ELSE
COMMIT TRANSACTION

Note: If you need to control a transaction across multiple calls to a single data store, use ADO.NET
manual transactions.

Use ADO.NET Transactions for Client-Controlled Transactions on
a Single Data Store
If you need to make multiple calls to a single data store participate in a transaction,
use ADO.NET manual transactions. The .NET Data Provider for SQL Server and the
.NET Data Provider for Oracle use the appropriate transaction language to enforce
transactions on all subsequent SQL commands.

If you use SQL Profiler to monitor your use of ADO.NET manual transactions, you
see that BEGIN TRAN, COMMIT TRAN, or ROLLBACK TRAN is run against the
data store on your behalf by the provider. This enables you to control the transaction
from your .NET Framework code and to maintain performance at a level that is
similar to SQL transactions. The following code fragment shows how to use
ADO.NET transactions.

556 Improving .NET Application Performance and Scalability

SqlConnection conn = new SqlConnection(connString);
SqlTransaction trans = conn.BeginTransaction();
try
{
 SqlCommand cmd = new SqlCommand("MyWriteProc",conn, trans);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(....
 ...
 // additional transactioned writes to database
 trans.Commit();
}
catch
{
 trans.Rollback();
}

When you use ADO.NET manual transactions, you can set the desired isolation
level on the BeginTransacion method as shown in the following code fragment.

SqlConnection conn = new SqlConnection(connString);
SqlTransaction trans = conn.BeginTransaction(IsolationLevel.ReadCommitted);

More Information

For a more information about isolation levels, see “Use the Appropriate Isolation
Level” later in this chapter.

Use DTC for Transactions That Span Multiple Data Stores
Enterprise Services uses the Microsoft Distributed Transaction Coordinator (DTC)
to enforce transactions. If you have a transaction that spans multiple data stores or
resource manager types, it is best to use Enterprise Services to enlist the data sources
in a distributed transaction. Using Enterprise Services to enlist the data sources in this
scenario is simple to configure.

The DTC performs the inter-data source communication and ensures that either all
the data is committed or that none of the data is committed. This action creates an
operational cost. If you do not have transactions that span multiple data sources,
use SQL or ADO.NET manual transactions because they perform better.

Keep Transactions as Short as Possible
Design your code to keep transactions as short as possible to help minimize lock
contention and to increase throughput. Avoid selecting data or performing long
operations in the middle of a transaction.

 Chapter 12: Improving ADO.NET Performance 557

Use the Appropriate Isolation Level
Resource managers such as SQL Server and other database systems support various
levels of isolation for transactions. Isolation shields operations from the effect of other
concurrent transactions. Most resource managers support the four isolation levels
shown in Table 12.2. The isolation level determines the types of operation that can
occur. The types of operation that can occur include dirty reads, nonrepeatable reads,
or phantoms.

Table 12.2: Isolation Levels

Isolation level Dirty reads Nonrepeatable reads Phantoms

Read uncommitted Yes Yes Yes

Read committed No Yes Yes

Repeatable read No No Yes

Serializable No No No

The highest isolation level, serializable, protects a transaction completely from the
effects of other concurrent transactions. This is the most expensive isolation level in
terms of server resources and performance. By selecting a lower level of isolation and
writing the code for your transactions to deal with the effects of other concurrent
transactions, you can improve performance and scalability. However, this approach
may come at the expense of more complex code.

Avoid Code That Can Lead to Deadlock
Consider the following general guidelines when you use transactions so that you can
avoid causing deadlocks:
● Always access tables in the same order across transactions in your application. The

likelihood of a deadlock increases when you access tables in a different order each
time you access them.

● Keep transactions as short as possible. Do not make blocking or long-running calls
from a transaction. Keep the duration of the transactions short. One approach is to
run transactions close to the data source. For example, run a transaction from a
stored procedure instead of running the transaction from a different computer.

● Choose a level of isolation that balances concurrency and data integrity. The
highest isolation level, serializable, reduces concurrency and provides the highest
level of data integrity. The lowest isolation level, read uncommitted, gives the
opposite result. For more information, see “Use the Appropriate Isolation Level”
earlier in this chapter.

558 Improving .NET Application Performance and Scalability

Set the Connection String Enlist Property to False
A pooled transactional object must enlist its connection into the current transaction
manually. To enable it to do so, you must disable automatic transaction enlistment by
setting the connection string Enlist property to False.

Note: This applies to a SqlConnection. For an OleDbConnection, you need to set
OLE DB Services=–7 as a connection string parameter.

Pooled components that maintain database connections might be used in different
transactions by separate clients. A pooled transactional object must be able to
determine if it is activated in a new transaction that is different from the last time it
was activated.

Each time a pooled transactional object is activated, it should check for the presence
of a COM+ transaction in its context by examining ContextUtil.Transaction. If a
transaction is present and the connection is not already enlisted, the object should
enlist its connection manually by calling the EnlistDistributedTransaction method
of the Connection object.

More Information
For more information about transaction options and how to analyze transaction
performance, see the following resources on MSDN:
● “Performance Comparison: Transaction Control” at http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch13.asp
● “Implementing Database Transactions with Microsoft .NET” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/psent.asp

For more information about enlisting a pooled object in a distributed transaction,
see “Enlisting in a Distributed Transaction” in the .NET Framework Developer’s Guide
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconenlistingindistributedtransaction.asp.

Binary Large Objects
A binary large object (BLOB) is a binary resource such as an image, a sound or
video clip, or a document. Storing BLOBs in a database can cause significant resource
pressure. For example, large BLOBs can consume large amounts of memory, CPU,
and networking resources on both the client and the server.

You can choose to handle BLOBs as a whole or handle them in chunks.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch13.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch13.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/psent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconenlistingindistributedtransaction.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconenlistingindistributedtransaction.asp

 Chapter 12: Improving ADO.NET Performance 559

Handling BLOBs as a whole is useful when the BLOB is not very large in size, and
you require the complete BLOB to be in memory before you perform the operation.
This approach tends to put excessive memory pressure on the server as well as on
network bandwidth.

Compared to handling BLOBs as a whole, chunking does cause more round trips,
but chunking creates less load on the server and reduces network bandwidth use.
The network bandwidth is not excessively consumed because you transfer the data in
chunks rather than passing the BLOB all at one time. Therefore, the server only has to
take care of the immediate buffer passed to it. The server can either store the buffer to
the disk or redirect it as an output stream to the client.

ADO.NET data providers do not provide the GetChunk and AppendChunk
methods in the same way that Data Access Objects (DAO) and ActiveX Data Objects
(ADO) do with Recordset objects. However, this section describes the alternate
options that exist.

Consider the following when you are working with BLOBs:
● Use CommandBehavior.SequentialAccess and GetBytes to read data.
● Use READTEXT to read from SQL Server 2000.
● Use OracleLob.Read to read from Oracle databases.
● Use UpdateText to write to SQL Server databases.
● Use OracleLob.Write to write to Oracle databases.
● Avoid moving binary large objects repeatedly.

Use CommandBehavior.SequentialAccess and GetBytes to Read Data
The default behavior of the DataReader is to read an entire row into memory. All
columns are accessible in any order until the next row is read.

If you retrieve large BLOBs, reading the whole BLOB into memory may cause
excessive memory consumption. Using CommandBehavior.SequentialAccess
enables you to stream the data or to send the data in chunks from the column
containing the BLOB by using the GetBytes, GetChars, or GetString methods.

The following code fragment shows how to use the SequentialAccess and GetBytes
methods.

// Allocate a buffer to hold a BLOB chunk.
int bufferSize = 100; // the size of the buffer to hold interim chunks of the
BLOB
byte[] outbyte = new byte[bufferSize]; // The buffer to hold the BLOB

SqlDataReader myReader = empCmd.ExecuteReader(CommandBehavior.SequentialAccess);
while (myReader.Read())

(continued)

560 Improving .NET Application Performance and Scalability

(continued)

{
 // The BLOB data is in column two. Must get the first column
 // before the BLOB data.
 empID = myReader.GetInt32(0); // First column
 // Read the bytes into outbyte[] and retain the number of bytes returned.
 retval = myReader.GetBytes(1, startIndex, outbyte, 0, bufferSize);
 // Continue reading and writing while there are bytes beyond the
 // Size of the buffer.
 while (retval == bufferSize)
 {
 // Write data to a file or to a Web page (omitted for brevity).
 . . .
 // Reposition the start index to the end of the last buffer
 // and fill the buffer.
 startIndex += bufferSize;
 retval = myReader.GetBytes(1, startIndex, outbyte, 0, bufferSize);
 }
}

Note: When you use CommandBehavior.SequentialAccess, you must retrieve columns in sequence.
For example, if you have three columns, and the BLOB data is in the third column, you must retrieve
the data from the first and second columns, before you retrieve the data from the third column.

More Information
For more information, see “Obtaining BLOB Values from a Database” in
.NET Framework Developer’s Guide at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp.

Use READTEXT to Read from SQL Server 2000
The READTEXT command reads text, ntext, or image values from a text, ntext, or
image column. The READTEXT command starts reading from a specified offset and
reads the specified number of bytes. This command is available in SQL Server 2000
and later. This command enables you to read data in chunks by sending a fixed set
of bytes over the network for each iteration. The following are the steps you must
follow to use the READTEXT command:
1. Obtain a pointer to the BLOB by using the TEXTPTR command.
2. Read the BLOB, by using the READTEXT command, in the required chunk size,

with the help of the pointer that you obtained in step 1.
3. Send the data to the client.
4. Read the data on the client, and then store it in a buffer or a stream.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobtainingblobvaluesfromdatabase.asp

 Chapter 12: Improving ADO.NET Performance 561

The following code fragment shows how to use the READTEXT command.

int BUFFER_LENGTH = 32768; // chunk size
// Obtain a pointer to the BLOB using TEXTPTR.
SqlCommand cmdGetPointer = new SqlCommand(
 "SELECT @Pointer=TEXTPTR(Picture), @Length=DataLength(Picture)" +
 "FROM Categories WHERE CategoryName='Test'", conn);

// Set up the parameters.
SqlParameter PointerOutParam = cmdGetPointer.Parameters.Add("@Pointer",
SqlDbType.VarBinary, 100);

// Run the query.
// Set up the READTEXT command to read the BLOB by passing the following
// parameters: @Pointer – pointer to blob, @Offset – number of bytes to
// skip before starting the read, @Size – number of bytes to read.
SqlCommand cmdReadBinary = new SqlCommand(
 "READTEXT Categories.Picture @Pointer @Offset @Size HOLDLOCK", conn);
// Set up the parameters for the command.
SqlParameter SizeParam = cmdReadBinary.Parameters.Add("@Size", SqlDbType.Int);
SqlDataReader dr;
int Offset= 0;
Byte []Buffer = new Byte[BUFFER_LENGTH];
// Read buffer full of data.
do {
 // Add code for calculating the buffer size - may be less than
 // BUFFER LENGTH for the last block.
 dr = cmdReadBinary.ExecuteReader(CommandBehavior.SingleResult);
 dr.Read();
 dr.GetBytes(PictureCol, 0, Buffer, 0, System.Convert.ToInt32(SizeParam.Value));
 Offset += System.Convert.ToInt32(SizeParam.Value);
 OffsetParam.Value = Offset;
} while(//Check for the offset until it reaches the maximum size.);

More Information
For more information about the READTEXT command, see Knowledge Base
article 317043, “HOW TO: Read and Write a File to and from a BLOB Column by
Using Chunking in ADO.NET and Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;317043.

Use OracleLob.Read to Read from Oracle Databases
To read BLOBs from an Oracle database, use the .NET Framework Data Provider for
Oracle. This data provider provides the System.Data.OracleClient.OracleLob class
that can read BLOBs. The following code fragment shows how the OracleLob.Read
method enables you to read the data in chunks.

byte[] buffer = new byte[100];
 while((actual = blob.Read(buffer, 0/*buffer offset*/,
 buffer.Length/*count*/)) >0)
{ //write the buffer to some stream
}

http://support.microsoft.com/default.aspx?scid=kb;en-us;317043
http://support.microsoft.com/default.aspx?scid=kb;en-us;317043

562 Improving .NET Application Performance and Scalability

More Information
For more information about OracleLob.Read, see “OracleLob.Read Method” in
.NET Framework Class Library at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/cpref/html/frlrfsystemdataoracleclientoraclelobclassreadtopic.asp.

Use UpdateText to Write to SQL Server Databases
If you are using SQL Server, you can use the UpdateText function to write the data in
chunks, as shown in the following code fragment.

int BUFFER_LENGTH = 32768; // Chunk size.
// Set the existing BLOB to null and
// Obtain a pointer to the BLOB using TEXTPTR
SqlCommand cmdGetPointer = new SqlCommand(
 "SET NOCOUNT ON;UPDATE Categories SET Picture = 0x0 WHERE CategoryName='Test';" +
 "SELECT @Pointer=TEXTPTR(Picture) FROM Categories WHERE CategoryName='Test'",
 cn);

// Set up the parameters.
// Run the query.

// Set up the UPDATETEXT command to read the BLOB by passing the following
// parameters: @Pointer – pointer to blob, @Offset – number of bytes to
// skip before starting the read, @Size – number of bytes to read.
SqlCommand cmdUploadBinary = new SqlCommand(
 "UPDATETEXT Categories.Picture @Pointer @Offset @Delete WITH LOG @Bytes", cn);
// Set up the parameters.
// Read buffer full of data and then run the UPDATETEXT statement.
Byte [] Buffer = br.ReadBytes(BUFFER_LENGTH);
while(Buffer.Length > 0)
{
 PointerParam.Value = PointerOutParam.Value;
 BytesParam.Value = Buffer;
 cmdUploadBinary.ExecuteNonQuery();
 DeleteParam.Value = 0; //Do not delete any other data.
 Offset += Buffer.Length;
 OffsetParam.Value = Offset;
 Buffer = br.ReadBytes(BUFFER_LENGTH);
}

More Information
For more information about writing BLOB data to SQL Server, see “Conserving
Resources When Writing BLOB Values to SQL Server” in .NET Framework Developer’s
Guide at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconconservingresourceswhenwritingblobvaluestosqlserver.asp.

Or, see Knowledge Base article 317043, “HOW TO: Read and Write a File to and
from a BLOB Column by Using Chunking in ADO.NET and Visual C# .NET,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;317043.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdataoracleclientoraclelobclassreadtopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdataoracleclientoraclelobclassreadtopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconservingresourceswhenwritingblobvaluestosqlserver.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconservingresourceswhenwritingblobvaluestosqlserver.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;317043

 Chapter 12: Improving ADO.NET Performance 563

Use OracleLob.Write to Write to Oracle Databases
You can write BLOBs to an Oracle database by using the .NET Framework
data provider for Oracle. This data provider permits the
System.Data.OracleClient.OracleLob class to write BLOBs. The OracleLob.Write
method enables you to write data in chunks.

More Information
For more information, see “OracleLob.Write Method,” in .NET Framework Class
Library at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html
/frlrfsystemdataoracleclientoraclelobclasswritetopic.asp.

Avoid Moving Binary Large Objects Repeatedly
Avoid moving BLOB data more than one time. For example, if you build a Web
application that serves images, store the images on the file system and the file names
in the database instead of storing the images as BLOBs in the database.

Storing the images as BLOBs in the database means that you must read the BLOB
from the database to the Web server and then send the image from the Web server
to the browser. Reading the file name from the database and having the Web server
send the image to the browser reduces the load on the database server. It also reduces
the data that is sent between the database and the Web server. This can significantly
affect performance and scalability.

Paging Records
Paging records is a common application scenario. The records that you need to page
through can often be based on user input. For example, they can be based on a search
keyword entered through a search screen. Or, the records can be common to all users.
For example, a product catalogue is a record that is common to all users.

Paging costs can be divided into the following stages:
● Processing cost at the database. This includes processor and memory use, and

disk I/O.
● Network cost for the amount of data sent across the network.
● Processing cost at the client. This includes the memory required to store records,

and processor use for processing the records.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdataoracleclientoraclelobclasswritetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdataoracleclientoraclelobclasswritetopic.asp

564 Improving .NET Application Performance and Scalability

Paging records may be expensive for the following reasons:
● Inefficient queries may increase the processing cost in all the stages mentioned in

this section. The database has to process an increased number of rows, more data
than is required is sent over the network, and the client has to process additional
records to show the relevant ones to the user.

● Inappropriate caching of data to be paged. Some of the paging implementations
require the client to cache data and then page through it. These solutions can lead
to excessive memory pressure if the cache is maintained on a per-user basis.

There are two basic approaches to paging:
● You can return the whole result set from the database to the client. The client

caches the result set and then displays the most relevant results to the user by
using the correct filtering mechanism.

● You can have the database assume the additional role of a filter by making the
database return only the most relevant result set to the client.

More Information
For more information about how to choose and implement the best solution for your
scenario, see “How To: Page Records in .NET Applications” in the “How To” section
of this guide.

Analyzing Performance and Scalability of Data Access
When you evaluate the performance and scalability of your data access decisions,
you should examine the impact that your code has on the server, on the network,
and on the client. A good data access solution uses server resources in a timely and
efficient manner, transports only the data that is required, and permits the client to
quickly consume the data and then release resources.

Start by running simple logical operation tests, and then examine the key metrics and
related questions listed in Table 12.3. Review the results, and then use the information
in the table to improve performance and scalability.

Table 12.3: Metrics for Analyzing Data Access Performance

Metric Questions

Run time How long did the operation take on the server?

How long did the operation take on the client?

Network trips How many network trips were required to complete the operation?

Is there a way to reduce or consolidate the trips?

(continued)

 Chapter 12: Improving ADO.NET Performance 565

Table 12.3: Metrics for Analyzing Data Access Performance (continued)

Metric Questions

Index use Did the operation use indexes?

Was the index use efficient?

Records
processed/retrieved

Did the operation process more records than it returned?

Did the operation return more records than you wanted?

Can paging help reduce the records processed and returned?

CPU use Was CPU use on the server excessive?

Can it be reduced by different SQL language or by computing data
beforehand?

Memory use How much memory on the server was used to process the SQL operation?

How much memory on the client was used to process the data that was
retrieved?

Network bandwidth How much bandwidth did the operation use?

Is there a way to decrease that amount used by returning fewer rows or
fewer columns?

Transactions Are transactions creating a deadlock or failing?

Is there a way to commit the transaction faster?

After you examine single operations, run load tests. Monitor the following when you
run the load tests:
● Pooling. Monitor pooling to ensure that connections are returned efficiently to the

pool so that they can be reused. Ensure that you can close your connections early
in your code.

● Locks. Monitor locks to find out whether the locks are held as long as they could
be held. Find out if you can reduce the number of locks that you hold, and if you
can shorten the duration that you hold the existing locks.

Tool Support
Use the following tools to monitor the metrics that are listed in Table 12.3:
● SQL Query Analyzer. When you run an SQL command, you can use the Statistics

tab to monitor the duration (in milliseconds), the affected rows, the server round
trips, and the bytes transmitted. You can also use SQL Query Analyzer to show
you the execution plan that SQL Server uses to run your SQL operation. You can
use this feature to identify missed indexes that manifest as table scans.

566 Improving .NET Application Performance and Scalability

● SQL Profiler. You can use SQL Profiler to monitor an enormous amount of
information that includes cursors, locks, and transactions. Use this tool to identify
the resources that are used, the operations that are performed, and the length of
time (in milliseconds) that particular operations take.

● Performance Counters. Use performance counters to monitor connection pooling,
index hits and misses, cache hits and misses, and locks.

More Information
For more information about measuring data access performance, see
“ADO.NET/Data Access” in Chapter 15, “Measuring .NET Application
Performance.”

Summary
The database is often a focal point for application load because the majority of
application requests require data that comes from a database. Therefore, developing
efficient ADO.NET data access code is critical.

This chapter has provided a brief overview of ADO.NET architecture and has
highlighted the main performance and scalability issues that you need to be aware
of when you develop data access code. By following the design and implementation
guidelines in this chapter, you will greatly increase your chances of building data
access code that enables your application to meet its performance objectives.

Additional Resources
For resources and for more information about how to improve data access
performance, see the following:
● For a printable checklist, see “Checklist: ADO.NET Performance” in the

“Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.” See the

“Data Access” section.
● Chapter 14, “Improving SQL Server Performance.”
● Chapter 15, “Measuring .NET Application Performance.” See the

“ADO.NET/Data Access” section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “ADO.NET Tuning”

section.

 Chapter 12: Improving ADO.NET Performance 567

● For more information, see “How To: Page Records in .NET Applications” in the
“How To” section of this guide.

● For community discussion, use the Microsoft newsgroups. The product teams
contribute frequently to these newsgroups. The Data Access newsgroup is
available through a Network News Transport Protocol (NNTP) news reader
at news://msnews.microsoft.com/microsoft.public.dotnet.framework.adonet. You can
also use the newsgroup through your Web browser at http://msdn.microsoft.com
/newsgroups/loadframes.asp.

● Microsoft patterns and practices: .NET Data Access Architecture Guide at
http://msdn.microsoft.com/library/en-us/dnbda/html/daag.asp.

● Microsoft patterns and practices: Designing Data Tier Components and Passing
Data Through Tiers at http://msdn.microsoft.com/library/en-us/dnbda/html/boagag.asp.

For more information, see the following Knowledge Base articles:
● 313649, “INFO: Roadmap for XML Integration with ADO.NET” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;313649
● 313480, “INFO: Roadmap for .NET Data Providers” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;313480
● 313590, “INFO: Roadmap for ADO.NET” at

http://support.microsoft.com/default.aspx?scid=kb;en-us;313590
● 814410, “FIX: Performance Degradation and Memory Leak in the SQL Server

ODBC Driver” at http://support.microsoft.com/default.aspx?scid=kb;en-us;814410

news://msnews.microsoft.com/microsoft.public.dotnet.framework.adonet
http://msdn.microsoft.com/newsgroups/loadframes.asp
http://msdn.microsoft.com/newsgroups/loadframes.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/daag.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/BOAGag.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;313649
http://support.microsoft.com/default.aspx?scid=kb;en-us;313480
http://support.microsoft.com/default.aspx?scid=kb;en-us;313590
http://support.microsoft.com/default.aspx?scid=kb;en-us;814410

13
Code Review: .NET Application
Performance

Objectives
● Locate and review performance and scalability issues in managed code.
● Review ASP.NET code.
● Review the efficiency of interop code.
● Review serviced component code.
● Review Web services code.
● Review XML code.
● Review .NET remoting code.
● Review data access code.
● Select tools to help with the code review.

Overview
Code reviews should be a regular part of your development process. Performance
and scalability code reviews focus on identifying coding techniques and design
choices that could lead to performance and scalability issues. The review goal is to
identify potential performance and scalability issues before the code is deployed.
The cost and effort of fixing performance and scalability flaws at development time
is far less than fixing them later in the product deployment cycle.

Avoid performance code reviews too early in the coding phase because this can
restrict your design options. Also, bear in mind that that performance decisions
often involve tradeoffs. For example, it is easy to reduce maintainability and
flexibility while striving to optimize code.

570 Improving .NET Application Performance and Scalability

This chapter begins by highlighting the most significant issues that time and again
result in inefficient code and suboptimal performance. The chapter then presents the
review questions you need to ask while reviewing managed code. These questions
apply regardless of the type of managed application you are building. Subsequent
sections focus on questions specific to ASP.NET, interoperability with unmanaged
code, Enterprise Services, Web services, .NET remoting, and data access. The chapter
concludes by identifying a set of tools that you can use to help perform your code
reviews.

How to Use This Chapter
This chapter presents the questions that you need to ask to expose potential
performance and scalability issues in your managed code. To get the most out of this
chapter, do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of the areas to focus on
while performing performance-related code reviews.

● Read Chapter 3, “Design Guidelines for Application Performance.” Read
Chapter 3 to help ensure that you do not introduce bottlenecks at design time.

● Know your application architecture. Before you start to review code, make sure
you fully understand your application’s architecture and design goals. If your
application does not adhere to best practices architecture and design principles
for performance, it is unlikely to perform or scale satisfactorily, even with detailed
code optimization. For more information, see Chapter 3, “Design Guidelines for
Application Performance,” and Chapter 4, “Architecture and Design Review of a
.NET Application for Performance and Scalability.”

● Scope your review. Identify the priority areas in your application where the
review should focus. For example, if you have an online transaction processing
(OLTP) database, data access is typically the key area where the most number of
optimizations are probable. Similarly, if your application contains complex
business logic, focus initially on the business layer. While you should focus on
high impact areas, keep in mind the end-to-end flow at the application level.

● Read “Application Performance” chapters. Read the “Application Performance
and Scalability” chapters found in Part III of this guide to discover technical
solutions to problems raised during your code review.

● Update your coding standards. During successive code reviews, identify key
characteristics that appear repeatedly and add those to your development
department’s coding standards. Over time, this helps raise developer awareness
of the important issues and helps reduce common performance-related coding
mistakes and encourage best practices during development.

 Chapter 13: Code Review: .NET Application Performance 571

FxCop
A good way to start the review process is to run your compiled assemblies through
the FxCop analysis tool. The tool analyzes binary assemblies (not source code) to
ensure that they conform to the Microsoft® .NET Framework Design Guidelines,
available on MSDN®.

The tool comes with a predefined set of rules, although you can customize and
extend them. For the list of performance rules that FxCop checks for, see “FxCop
Performance Rules” on GotDotNet at http://www.gotdotnet.com/team/libraries
/FxCopRules/PerformanceRules.aspx.

More Information
For more information, see the following resources:
● To download the FxCop tool, see “About Developing Reusable Libraries”

on GotDotNet at http://www.gotdotnet.com/team/libraries/default.aspx.
● For general information about FxCop, see the “FxCop Team Page” on

GotDotNet at http://www.gotdotnet.com/team/fxcop/.
● To get help and support for the tool, see the GotDotNet message board for

discussions about the FxCop tool at http://www.gotdotnet.com/community
/messageboard/MessageBoard.aspx?ID=234.

● For the .NET Framework design guidelines, see “Design Guidelines for
Class Library Developers” in the .NET Framework General Reference on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html
/cpconnetframeworkdesignguidelines.asp.

Common Performance Issues
During your code reviews, pay particular attention to the following areas:
● Frequent code paths. Prioritize your code review process by identifying code

paths that are frequently executed and begin your review process in these areas.
● Frequent loops. Even the slightest inefficiency inside a loop is magnified many

times over depending on the number of iterations. Specifically watch out for
repetitive property access inside your loops, using foreach instead of for,
performing expensive operations within your loops, and using recursion.
Recursion incurs the overhead of having to repeatedly build new stack frames.

http://www.gotdotnet.com/team/libraries/FxCopRules/PerformanceRules.aspx
http://www.gotdotnet.com/team/libraries/FxCopRules/PerformanceRules.aspx
http://www.gotdotnet.com/team/libraries/default.aspx
http://www.gotdotnet.com/team/fxcop/
http://www.gotdotnet.com/community/messageboard/MessageBoard.aspx?ID=234
http://www.gotdotnet.com/community/messageboard/MessageBoard.aspx?ID=234
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

572 Improving .NET Application Performance and Scalability

There are a few areas that regularly lead to performance bottlenecks. Start your code
review by looking for the following common performance issues:
● Resource cleanup
● Exceptions
● String management
● Threading
● Boxing

Resource Cleanup
Failing to clean up resources is a common cause of performance and scalability
bottlenecks. Review your code to make sure all resources are closed and released
as soon as possible. This is particularly important for shared and limited resources
such as connections. Make sure your code calls Dispose (or Close) on disposable
resources. Make sure your code uses finally blocks or using statements to ensure
resources are closed even in the event of an exception.

Exceptions
While structured exception handling is encouraged because it leads to more robust
code and code that is less complex to maintain than code that uses method return
codes to handle error conditions, exceptions can be expensive.

Make sure you do not use exception handling to control regular application flow. Use
it only for exceptional conditions. Avoid exception handling inside loops — surround
the loop with a try/catch block instead if that is required. Also identify code that
swallows exceptions or inefficient code that catches, wraps, and rethrows exceptions
for no valid reason.

String Management
Excessive string concatenation results in many unnecessary allocations, creating extra
work for the garbage collector. Use StringBuilder for complex string manipulations
and when you need to concatenate strings multiple times. If you know the number of
appends and concatenate strings in a single statement or operation, prefer the +
operator. In ASP.NET applications, consider emitting HTML output by using multiple
Response.Write calls instead of using a StringBuilder.

 Chapter 13: Code Review: .NET Application Performance 573

Threading
Server-side code should generally use the common language runtime (CLR)
thread pool and should not create threads on a per-request basis. Review your code
to ensure that appropriate use is made of the thread pool and that the appropriate
synchronization primitives are used. Make sure your code does not lock whole
classes or whole methods when locking a few lines of code might be appropriate.
Also make sure your code does not terminate or pause threads by using
Thread.Abort or Thread.Suspend.

Boxing
Boxing causes a heap allocation and a memory copy operation. Review your code
to identify areas where implicit boxing occurs. Pay particular attention to code inside
loops where the boxing overhead quickly adds up. Avoid passing value types in
method parameters that expect a reference type. Sometimes this is unavoidable. In
this case, to reduce the boxing overhead, box your variable once and keep an object
reference to the boxed copy as long as needed, and then unbox it when you need a
value type again.

Excessive boxing often occurs where you use collections that store System.Object
types. Consider using an array or a custom-typed collection class instead.

To identify locations that might have boxing overhead, you can search your
assembly’s Microsoft intermediate language (MSIL) code for the box and unbox
instructions, using the following command line.

Ildasm.exe yourcomponent.dll /text | findstr box
Ildasm.exe yourcomponent.dll /text | findstr unbox

To measure the overhead, use a profiler.

574 Improving .NET Application Performance and Scalability

Managed Code and CLR Performance
While the .NET CLR is designed for high performance, the way in which you write
managed code can either take advantage of that high performance or hinder it. Use
the review questions in this section to analyze your entire managed source code base.
The review questions apply regardless of the type of assembly. This section helps you
identify coding techniques that produce inefficient managed code, which in turn can
lead to performance problems. For more information about the issues raised in this
section, see Chapter 5, “Improving Managed Code Performance.” This section
describes the following:
● Memory management
● Looping and recursion
● String operations
● Exception handling
● Arrays
● Collections
● Locking and synchronization
● Threading
● Asynchronous processing
● Serialization
● Visual Basic considerations
● Reflection and late binding
● Code access security
● Ngen.exe

Memory Management
Use the following review questions to assess how efficiently your code uses memory:
● Do you manage memory efficiently?
● Do you call GC.Collect?
● Do you use finalizers?
● Do you use unmanaged resources across calls?
● Do you use buffers for I/O operations?

 Chapter 13: Code Review: .NET Application Performance 575

Do You Manage Memory Efficiently?
To identify how efficiently your code manages memory, review the following
questions:
● Do you call Dispose or Close?

Check that your code calls Dispose or Close on all classes that support these
methods. Common disposable resources include the following:
● Database-related classes: Connection, DataReader, and Transaction.
● File-based classes: FileStream and BinaryWriter.
● Stream-based classes: StreamReader, TextReader, TextWriter, BinaryReader,

and TextWriter.
● Network-based classes: Socket, UdpClient, and TcpClient.
Also check that your C# code uses the using statement to ensure that Dispose
is called. If you have Visual Basic .NET code, make sure it uses a Finally block
to ensure that resources are released.

● Do you have complex object graphs?
Analyze your class and structure design and identify those that contain many
references to other objects. These result in complex object graphs at runtime,
which can be expensive to allocate and create additional work for the garbage
collector. Identify opportunities to simplify these structures. Simpler graphs
have superior heap locality and they are easier to maintain.
Another common problem to look out for is referencing short-lived objects from
long-lived objects. Doing so increases the likelihood of short-lived objects being
promoted from generation 0, which increases the burden on the garbage collector.
This often happens when you allocate a new object and then assign it to a class
level object reference.

● Do you set member variables to null before long-running calls?
Identify potentially long-running method calls. Check that you set any class-level
member variables that you do not require after the call to null before making the
call. This enables those objects to be garbage collected while the call is executing.

Note: There is no need to explicitly set local variables to null because the just-in-time (JIT)
compiler can statically determine that the variable is no longer referenced.

576 Improving .NET Application Performance and Scalability

● Do you cache data using WeakReference objects?
Look at where your code caches objects to see if there is an opportunity to use
weak references. Weak references are suitable for medium- to large-sized objects
stored in a collection. They are not appropriate for very small objects.
By using weak references, cached objects can be resurrected easily if needed or
they can be released by garbage collection when there is memory pressure.
Using weak references is just one way of implementing caching policy. For more
information about caching, see “Caching” in Chapter 3, “Design Guidelines for
Application Performance.”

● Do you call ReleaseComObject?
If you create and destroy COM objects on a per-request basis under load, consider
calling ReleaseComObject. Calling ReleaseComObject releases references to the
underlying COM object more quickly than if you rely on finalization. For example,
if you call COM components from ASP.NET, consider calling ReleaseComObject.
If you call COM components hosted in COM+ from managed code, consider
calling ReleaseComObject. If you are calling a serviced component that wraps a
COM component, you should implement Dispose in your serviced component,
and your Dispose method should call ReleaseComObject. The caller code should
call your serviced component’s Dispose method.

Do You Call GC.Collect?
Check that your code does not call GC.Collect explicitly. The garbage collector is
self-tuning. By programmatically forcing a collection with this method, the chances
are you hinder rather than improve performance.

The garbage collector gains its efficiency by adopting a lazy approach to collection
and delaying garbage collection until it is needed.

Do You Use Finalizers?
Finalization has an impact on performance. Objects that need finalization must
necessarily survive at least one more garbage collection than they otherwise would;
therefore, they tend to get promoted to older generations.

As a design consideration, you should wrap unmanaged resources in a separate class
and implement a finalizer on this class. This class should not reference any managed
object. For example, if you have a class that references managed and unmanaged
resources, wrap the unmanaged resources in a separate class with a finalizer and
make that class a member of the outer class. The outer class should not have a
finalizer.

 Chapter 13: Code Review: .NET Application Performance 577

Identify which of your classes implement finalizers and consider the following
questions:
● Does your class need a finalizer?

Only implement a finalizer for objects that hold unmanaged resources across
calls. Avoid implementing a finalizer on classes that do not require it because
it adds load to the finalizer thread as well as the garbage collector.

● Does your class implement IDisposable?
Check that any class that provides a finalizer also implements IDisposable,
using the Dispose pattern described in Chapter 5, “Improving Managed Code
Performance.”

● Does your Dispose implementation suppress finalization?
Check that your Dispose method calls GC.SuppressFinalization.
GC.SuppressFinalization instructs the runtime to not call Finalize on your object
because the cleanup has already been performed.

● Can your Dispose method be safely called multiple times?
Check that clients can call Dispose multiple times without causing exceptions.
Check that your code throws an ObjectDisposedException exception from
methods (other than Dispose) if they are invoked after calling Dispose.

● Does your Dispose method call base class Dispose methods?
If your class inherits from a disposable class, make sure that it calls the base
class’s Dispose.

● Does your Dispose method call Dispose on class members?
If you have any member variables that are disposable objects, they too should be
disposed.

● Is your finalizer code simple?
Check that your finalizer code simply releases resources and does not perform
more complex operations. Anything else adds overhead to the dedicated finalizer
thread which can result in blocking.

● Is your cleanup code thread safe?
For your thread safe types, make sure that your cleanup code is also thread safe.
You need to do this to synchronize your cleanup code in the case where multiple
client threads call Dispose at the same time.

Do You Use Unmanaged Resources Across Calls?
Check that any class that uses an unmanaged resource, such as a database connection
across method calls, implements the IDisposable interface. If the semantics of the
object are such that a Close method is more logical than a Dispose method, provide
a Close method in addition to Dispose.

578 Improving .NET Application Performance and Scalability

Do You Use Buffers for I/O Operations?
If your code performs I/O or long-running calls that require pinned memory,
investigate where in your code the buffers are allocated. You can help reduce heap
fragmentation by allocating them when your application starts. This increases the
likelihood that they end up together in generation 2, where the cost of the pin is
largely eliminated. You should also consider reusing and pooling the buffers for
efficiency.

Looping and Recursion
Inefficient looping and recursion can create many bottlenecks. Also, any slight
inefficiency is magnified due to it being repeatedly executed. For this reason, you
should take extra care to ensure the code within the loop or the recursive method is
optimized. For more information about the questions and issues raised in this section,
see “Iterating and Looping” in Chapter 5, “Improving Managed Code Performance.”
Use the following review questions to help identify performance issues in your loops:
● Do you repetitively access properties?
● Do you use recursion?
● Do you use foreach?
● Do you perform expensive operations within your loops?

Do You Repetitively Access Properties?
Repeated accessing of object properties can be expensive. Properties can appear to
be simple, but might in fact involve expensive processing operations.

Do You Use Recursion?
If your code uses recursion, consider using a loop instead. A loop is preferable in
some scenarios because each recursive call builds a new stack frame for the call.
This results in consumption of memory, which can be expensive depending upon
the number of recursions. A loop does not require any stack frame creation unless
there is a method call inside the loop.

If you do use recursion, check that your code establishes a maximum number of
times it can recurse, and ensure there is always a way out of the recursion and that
there is no danger of running out of stack space.

 Chapter 13: Code Review: .NET Application Performance 579

Do You Use foreach?
Using foreach can result in extra overhead because of the way enumeration is
implemented in .NET Framework collections. .NET Framework 1.1 collections
provide an enumerator for the foreach statement to use by overriding the
IEnumerable.GetEnumerator. This approach is suboptimal because it introduces
both managed heap and virtual function overhead associated with foreach on simple
collection types. This can be a significant factor in performance-sensitive regions of
your application. If you are developing a custom collection for your custom type,
consider the following guidelines while implementing IEnumerable:
● If you implement IEnumerable.GetEnumerator, also implement a nonvirtual

GetEnumerator method. Your class’s IEnumerable.GetEnumerator method
should call this nonvirtual method, which should return a nested public
enumerator struct.

● Explicitly implement the IEnumerator.Current property on your enumerator
struct.

For more information about implementing custom collections and about how to
implement IEnumerable as efficiently as possible, see “Collection Guidelines”
in Chapter 5, “Improving Managed Code Performance.”

Consider using a for loop instead of foreach to increase performance for iterating
through .NET Framework collections that can be indexed with an integer.

Do You Perform Expensive Operations Within Your Loops?
Examine the code in your loop and look for the following opportunities for
optimization:
● Move any code out of the loop that does not change in the loop.
● Investigate the methods called inside the loop. If the called methods contain small

amounts of code, consider inlining them or parts of them.
● If the code in the loop performs string concatenation, make sure that it uses

StringBuilder.
● If you test for multiple exit conditions, begin the expression with the one most

likely to allow you to exit.
● Do not use exceptions as a tool to exit one or more loops.
● Avoid calling properties within loops and if you can, check what the property

accessor does. Calling a property can be a very expensive operation if the property
is performing complex operations.

580 Improving .NET Application Performance and Scalability

String Operations
Review your code to see how it performs string manipulation. Intensive string
manipulation can significantly degrade performance. Consider the following
questions when reviewing your code’s string manipulation:
● Do you concatenate strings?
● Do you use StringBuilder?
● Do you perform string comparisons?

Do You Concatenate Strings?
If you concatenate strings where the number of appends is known, you should use
the + operator as follows.

String str = "abc" + "def" + "ghi";

If the number and size of appends is unknown, such as string concatenation in a
loop, you should use the StringBuilder class as follows.

for (int i=0; i< Results.Count; i++){
 StringBuilder.Append (Results[i]);
}

Do You Use StringBuilder?
StringBuilder is efficient for string concatenation where the number and size of
appends is unknown. Some of the scenarios which demonstrate an efficient way
of using StringBuilder are as follows:
● String concatenation

//Prefer this
StringBuilder sb;
sb.Append(str1);
sb.Append(str2);

//over this
sb.Append(str1+str2);

 Chapter 13: Code Review: .NET Application Performance 581

● Concatenating strings from various functions

//Prefer this
void f1(sb,...);
void f2(sb,...);
void f3(sb,...);

//over this
StringBuilder sb;
sb.Append(f1(...));
sb.Append(f2(...));
sb.Append(f3(...));

Do You Perform String Comparisons?
Check whether your code performs case-insensitive string comparisons. If it does,
check that it uses the following overloaded Compare method.

String.Compare (string strA, string strB, bool ignoreCase);

Watch out for code that calls the ToLower method. Converting strings to lowercase
and then comparing them involves temporary string allocations. This can be very
expensive, especially when comparing strings inside a loop.

More Information
For more information about the issues raised in this section, see “String Operations”
in Chapter 5, “Improving Managed Code Performance.”

Exception Handling
Managed code should use exception handling for robustness, security, and to
ease maintenance. Used improperly, exception management can significantly
affect performance. For more information about the questions and issues raised in
this section, see “Exception Management” in Chapter 5, “Improving Managed Code
Performance.” Use the following review questions to help ensure that your code uses
exception handling efficiently:
● Do you catch exceptions you cannot handle?
● Do you control application logic with exception handling?
● Do you use finally blocks to ensure resources are freed?
● Do you use exception handling inside loops?
● Do you re-throw exceptions?

582 Improving .NET Application Performance and Scalability

Do You Catch Exceptions You Cannot Handle?
You should catch exceptions for very specific reasons, because catching generally
involves rethrowing an exception to the code that calls you. Rethrowing an exception
is as expensive as throwing a new exception.

Check that when your code catches an exception, it does so for a reason. For example,
it might log exception details, attempt to retry a failed operation, or wrap the
exception in a new exception and throw the outer exception back to the caller. This
operation should be performed carefully and should not obscure error details.

Do You Control Application Logic with Exception Handling?
Check that your code does not use exception handling to control the flow of your
normal application logic. Make sure that your code uses exceptions for only
exceptional and unexpected conditions. If you throw an exception with the
expectation that something other than a general purpose handler is going to do
anything with it, you have probably done something wrong. You can consider using
bool return values if you need to specify the status (success or failure) of a particular
activity.

For example, you can return false instead of throwing an exception if a user account
was not found in the database. This is not a condition that warrants an exception.
Failing to connect to the database, however, warrants an exception.

Do You Use Finally Blocks to Ensure Resources Are Freed?
Make sure that resources are closed after use by using try/catch blocks. The finally
block is always executed, even if an exception occurs, as shown in the following
example.

SqlConnection conn = new SqlConnection(connString);
try
{
 conn.Open(); // Open the resource
}
finally
{
 if(null!=conn)
 conn.Close(); // Always executed even if an exception occurs
}

Note: C# provides the using construct that ensures an acquired resource is disposed at the end
of the construct. The acquired resource must implement System.IDisposable or a type that can
be implicitly converted to System.IDisposable, as shown in the following example.

 Chapter 13: Code Review: .NET Application Performance 583

Font MyFont3 = new Font("Arial", 10.0f);
using (MyFont3)
{
 // use MyFont3
} // compiler will generate code to call Dispose on MyFont3

Do You Use Exception Handling Inside Loops?
Check if your code uses exceptions inside loops. This should be avoided. If you
need to catch an exception, place the try/catch block outside the loop for better
performance.

Do You Rethrow Exceptions?
Rethrowing exceptions is inefficient. Not only do you pay the cost for the original
exception, but you also pay the cost for the exception that you rethrow.

Rethrowing exceptions also makes it harder to debug your code because you cannot
see the original location of the thrown exception in the debugger. A common
technique is to wrap the original exception as an inner exception. However, if you
then rethrow, you need to decide whether the additional information from the inner
exception is better than the superior debugging you would get if you had done
nothing.

Arrays
Arrays provide basic functionality for grouping types. To ensure that your use of
arrays is efficient, review the following questions:
● Do you use strongly typed arrays?
● Do you use multidimensional arrays?

Do You Use Strongly Typed Arrays?
Identify places in your code where you use object arrays (arrays containing the
Object type). If you use object arrays to store other types, such as integers or floats,
the values are boxed when you add them to the array. Use a strongly typed array
instead, to avoid the boxing. For example, use the following to store integers.

int[] arrIn = new int[10];

Use the preceding to store integers instead of the following.

Object[] arrObj = new Object[10];

584 Improving .NET Application Performance and Scalability

Do You Use Multidimensional Arrays?
If your code uses multidimensional arrays, see if you can replace the code with a
jagged array (a single dimensional array of arrays) to benefit from MSIL performance
optimizations.

Note: Jagged arrays are not CLS compliant and may not be used across languages. For more
information, see “Use Jagged Arrays Instead of Multidimensional Arrays” in Chapter 5, “Improving
Managed Code Performance.”

Collections
To avoid creating bottlenecks and introducing inefficiencies, you need to use the
appropriate collection type based on factors such as the amount of data you store,
whether you need to frequently resize the collection, and the way in which you
retrieve items from the collection.

For design considerations, see Chapter 4, “Architecture and Design Review of a
.NET Application for Performance and Scalability.” Chapter 4 addresses the
following questions:
● Are you using the right collection type?
● Have you analyzed the requirements?
● Are you creating your own data structures unnecessarily?
● Are you implementing custom collections?

For more information see “Collection Guidelines” in Chapter 5, “Improving Managed
Code Performance.” Chapter 5 asks the following questions:
● Do you need to sort your collection?
● Do you need to search your collection?
● Do you need to access each element by index?
● Do you need a custom collection?

Review the following questions if your code uses arrays or one of the
.NET Framework collection classes:
● Have you considered arrays?
● Do you enumerate through collections?
● Do you initialize the collection to an approximate final size?
● Do you store value types in a collection?
● Have you considered strongly typed collections?
● Do you use ArrayList?
● Do you use Hashtable?
● Do you use SortedList?

 Chapter 13: Code Review: .NET Application Performance 585

Have You Considered Arrays?
Arrays avoid boxing and unboxing overhead for value types, as long as you use
strongly typed arrays. You should consider using arrays for collections where
possible unless you need special features such as sorting or storing the values as
key/value pairs.

Do You Enumerate Through Collections?
Enumerating through a collection using foreach is costly in comparison to iterating
using a simple index. You should avoid foreach for iteration in performance-critical
code paths, and use for loops instead.

Do You Initialize the Collection to an Approximate Final Size?
It is more efficient to initialize collections to a final approximate size even if the
collection is capable of growing dynamically. For example, you can initialize an
ArrayList using the following overloaded constructor.

ArrayList ar = new ArrayList (43);

Do You Store Value Types in a Collection?
Storing value types in a collection involves a boxing and unboxing overhead. The
overhead can be significant when iterating through a large collection for inserting
or retrieving the value types. Consider using arrays or developing a custom, strongly
typed collection for this purpose.

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) introduces
generics to the C# language that avoid the boxing and unboxing overhead.

Have You Considered Strongly Typed Collections?
Does your code use an ArrayList for storing string types? You should prefer
StringCollection over ArrayList when storing strings. This avoids casting overhead
that occurs when you insert or retrieve items and also ensures that type checking
occurs. You can develop a custom collection for your own data type. For example,
you could create a Cart collection to store objects of type CartItem.

586 Improving .NET Application Performance and Scalability

Do You Use ArrayList?
If your code uses ArrayList, review the following questions:
● Do you store strongly typed data in ArrayLists?

Use ArrayList to store custom object types, particularly when the data changes
frequently and you perform frequent insert and delete operations. By doing so,
you avoid the boxing overhead. The following code fragment demonstrates the
boxing issue.

ArrayList al = new ArrayList();
al.Add(42.0F); // Implicit boxing because the Add method takes an object
float f = (float)al[0]; // Item is unboxed here

● Do you use Contains to search ArrayLists?
Store presorted data and use ArrayList.BinarySearch for efficient searches. Sorting
and linear searches using Contains are inefficient. This is of particular significance
for large lists. If you only have a few items in the list, the overhead is insignificant.
If you need several lookups, then consider Hashtable instead of ArrayList.

Do You Use Hashtable?
If your code uses a Hashtable collection of key/value pairs, consider the following
review questions:
● Do you store small amounts of data in a Hashtable?

If you store small amounts of data (10 or fewer items), this is likely to be slower
than using a ListDictionary. If you do not know the number of items to be stored,
use a HybridDictionary.

● Do you store strings?
Prefer StringDictionary instead of Hashtable for storing strings, because this
preserves the string type and avoids the cost of up-casting and down-casting
during storing and retrieval.

Do You Use SortedList?
You should use a SortedList to store key-and-value pairs that are sorted by the keys
and accessed by key and by index. New items are inserted in sorted order, so the
SortedList is well suited for retrieving stored ranges.

You should use SortedList if you need frequent re-sorting of data after small inserts
or updates. If you need to perform a number of additions or updates and then re-sort
the whole collection, an ArrayList performs better than the SortedList.

Evaluate both collection types by conducting small tests and measuring the overall
overhead in terms of time taken for sorting, and choose the one which is right for
your scenario.

 Chapter 13: Code Review: .NET Application Performance 587

Locking and Synchronization
To help assess the efficiency of your locking and synchronization code, use the
following questions:
● Do you use Mutex objects?
● Do you use the Synchronized attribute?
● Do you lock “this”?
● Do you lock the type of an object?
● Do you use ReaderWriterLocks?

Do You Use Mutex Objects?
Review your code and make sure that Mutex objects are used only for cross-process
synchronization and not cross-thread synchronization in a single process. The Mutex
object is significantly more expensive to use than a critical section with the Lock (C#)
or SyncLock (VB) statement.

Do You Use the Synchronized Attribute?
See which of your methods are annotated with the synchronized attribute. This
attribute is coarse-grained and it serializes access to the entire method such that
only one thread can execute the method at any given instance, with all threads
waiting in a queue. Unless you specifically need to synchronize an entire method,
use an appropriate synchronization statement (such as a lock statement) to apply
granular synchronization around the specific lines of code that need it. This helps
to reduce contention and improve performance.

Do You Lock “this”?
Avoid locking “this” in your class for correctness reasons, not for any specific
performance gain. To avoid this problem, provide a private object to lock on.

public class A {
 ...
 lock(this) { ... }
 ...
}
// Change to the code below:
public class A
{
 private Object thisLock = new Object();
 ...
 lock(thisLock) { ... }
 ...
}

588 Improving .NET Application Performance and Scalability

Use this approach to safely synchronize only relevant lines of code. If you require
atomic updates to a member variable, use System.Threading.Interlocked.

Do You Lock The Type of an Object?
Avoid locking the type of the object, as shown in the following code sample.

lock(typeof(MyClass));

If there are other threads within the same process that lock on the type of the object,
this might cause your code to hang until the thread locking the type of the object is
finished executing.

This also creates a potential for deadlocks. For example, there might be some other
application in a different application domain in the same process that acquires a lock
on the same type and never releases it.

Consider providing a static object in your class instead, and use that as a means of
synchronization.

private static Object _lock = new Object();
lock(_lock);

For more information, see “A Special Dr. GUI: Don’t Lock Type Objects!” on
MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaskdr/html
/askgui06032003.asp.

Do You Use ReaderWriterLock?
Check whether your code uses ReaderWriterLock objects to synchronize multiple
reads and occasional writes. You should prefer the ReaderWriterLock over the other
locking mechanisms such as lock and Monitor, where you need to occasionally
update data which is read frequently, such as a custom cache collection. The
ReaderWriterLock allows multiple threads to read a resource concurrently but
requires a thread to wait for an exclusive lock to write the resource.

For more information, see “ReaderWriterLock Class” in the .NET Framework Class
Library on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref
/html/frlrfSystemThreadingReaderWriterLockClassTopic.asp.

More Information
For more information about the questions and issues raised in this section, see
“Locking and Synchronization” and “Locking and Synchronization Guidelines”
in Chapter 5, “Improving Managed Code Performance.”

To review your approach to locking and synchronization from a design perspective,
see “Concurrency” in Chapter 4, “Architecture and Design Review for .NET
Application Performance and Scalability.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaskdr/html/askgui06032003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaskdr/html/askgui06032003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemThreadingReaderWriterLockClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemThreadingReaderWriterLockClassTopic.asp

 Chapter 13: Code Review: .NET Application Performance 589

Threading
If you misuse threads, you can easily reduce your application’s performance rather
than improve it. Review your code by using the following questions to help identify
potential performance-related issues caused by misuse of threads or inappropriate
threading techniques. For more information about the questions and issues raised in
this section, see “Threading Guidelines” in Chapter 5, “Improving Managed Code
Performance.”
● Do you create additional threads?
● Do you call Thread.Suspend or Thread.Resume?
● Do you use volatile fields?
● Do you execute periodic tasks?

Do You Create Additional Threads?
You should generally avoid creating threads, particularly in server-side code —
use the CLR thread pool instead. In addition to the cost of creating the underlying
operating system thread, frequently creating new threads can also lead to excessive
context switching, memory allocation, and additional cleanup when the thread dies.
Recycling threads within the thread pool generally leads to superior results.

Do You Call Thread.Suspend or Thread.Resume?
Use synchronization objects if you need to synchronize threads. Calling
Thread.Suspend and Thread.Resume to synchronize the activities of multiple
threads can cause deadlocks. Generally, Suspend and Resume should be used
only in the context of debugging or profiling, and not at all for typical applications.
Use synchronization objects such as ManualResetEvent objects if you need to
synchronize threads.

Do You Use Volatile Fields?
Limit the use of the volatile keyword because volatile fields restrict the way the
compiler reads and writes the contents of the fields. Volatile fields are not meant
for ensuring thread safety.

Do You Execute Periodic Tasks?
If you require a single thread for periodic tasks, it is cheaper to have just one thread
explicitly executing the periodic tasks and then sleeping until it needs to perform the
task again. However, if you require multiple threads to execute periodic tasks for
each new request, you should use the thread pool.

Use the Threading.Timer class to periodically schedule tasks. The Timer class uses
the CLR thread pool to execute the code.

590 Improving .NET Application Performance and Scalability

Note that a dedicated thread is more likely to get scheduled at the correct time than a
pooled thread. This is because if all threads are busy, there could be a delay between
the scheduled time of the background work and a worker thread becoming available.
If there is a dedicated thread for the background work, a thread will be ready at the
appointed time.

Asynchronous Processing
You can use asynchronous calls to help increase application concurrency.

To ensure that you use asynchronous processing appropriately, review the following
questions:
● Do you poll for asynchronous invocation resources?
● Do you call EndInvoke after calling BeginInvoke?

Do You Poll for Asynchronous Invocation Results?
Avoid polling for asynchronous invocation results. Polling is inefficient and uses
precious processor cycles which can be used by other server threads. Use a blocking
call instead. Methods of AsyncResult.AsyncWaitHandle.WaitHandle class such as
WaitOne, WaitAll, and WaitAny are good examples of blocking calls.

Do You Call EndInvoke After Calling BeginInvoke?
Review your code to see where it calls BeginInvoke to use asynchronous delegates.
For each call to BeginInvoke, make sure your code calls EndInvoke to avoid resource
leaks.

More Information
For more information about the questions and issues raised in this section, see
“Asynchronous Calls Explained” and “Asynchronous Calls Guidelines” in Chapter 5,
“Improving Managed Code Performance.”

To review your design and how it uses asynchronous processing see “Concurrency”
in Chapter 4, “Architecture and Design Review of a .NET Application for
Performance and Scalability.”

 Chapter 13: Code Review: .NET Application Performance 591

Serialization
Inefficient serialization code is a common performance-related problem area.
To review whether your code uses serialization, search for the “Serializable”
string. Classes that support serialization should be decorated with the
SerializableAttribute; they may also implement ISerializable. If your code
does use serialization, review the following questions:
● Do you serialize too much data?
● Do you serialize DataSet objects?
● Do you implement ISerializable?

Do You Serialize Too Much Data?
Review which data members from an object your code serializes. Identify items that
do not need to be serialized, such as items that can be easily recalculated when the
object is deserialized. For example, there is no need to serialize an Age property in
addition to a DateOfBirth property because the Age can easily be recalculated
without requiring significant processor power. Such members can be marked with
the NonSerialized attribute if you use the SoapFormatter or the BinaryFormatter or
the XmlIgnore attribute if you use the XmlSerializer class, which Web services use.

Also identify opportunities to use structures within your classes to encapsulate the
data that needs to be serialized. Collecting the logical data in a data structure can
help reduce round trips and lessen the serialization impact.

Do You Serialize DataSet Objects?
The DataSet object generates a large amount of serialization data and is expensive to
serialize and deserialize. If your code serializes DataSet objects, make sure to conduct
performance testing to analyze whether it is creating a bottleneck in your application.
If it is, consider alternatives such as using custom classes.

Do You Implement ISerializable?
If your classes implement ISerializable to control the serialization process, be aware
that you are responsible for maintaining your own serialization code. If you
implement ISerializable simply to restrict specific fields from being serialized,
consider using the Serializable and NonSerialized attributes instead. By using these
attributes, you will automatically gain the benefit of any serialization improvements
in future versions of the .NET Framework.

592 Improving .NET Application Performance and Scalability

More Information
For more information about improving serialization performance and DataSet
serialization, see “How To: Improve Serialization Performance” in the “How To”
section of this guide.

For more information about the various options for passing data across the tiers of
a distributed .NET application, see Chapter 4, “Architecture and Design Review of
a .NET Application for Performance and Scalability.”

Visual Basic Considerations
When optimized, Visual Basic .NET code can perform as well as C# code. If you have
ported existing Visual Basic code to Visual Basic .NET, performance is unlikely to be
optimized because you are unlikely to be using the best .NET coding techniques. If
you have Visual Basic .NET source code, review the following questions:
● Have you switched off int checking?
● Do you use on error goto?
● Do you turn on Option Strict and Explicit?
● Do you perform lots of string concatenation?

Have You Switched Off int Checking?
Int checking is beneficial during development, but you should consider turning it
off to gain performance in production. Visual Basic turns on int checking by default,
to make sure that overflow and divide-by-zero conditions generate exceptions.

Do You Use On Error Goto?
Review your code to see if it uses the on error goto construct. If it does, you
should change your code to use the .NET structured exception handling with
Try/Catch/Finally blocks. The following code uses on error goto.

Sub AddOrderOld(connstring)
 On Error GoTo endFunc
 Dim dataclass As DAOrder = New DAOrder
 Dim conn As SqlConnection = New
 SqlConnection(connstring)
 dataclass.AddOrder(conn)
 EndFunc:
 If Not(conn is Nothing) Then
 conn.Close()
 End If
End Sub

 Chapter 13: Code Review: .NET Application Performance 593

The following code shows how this should be rewritten using exception handling.

Sub AddOrder(connstring)
 Dim conn As SqlConnection
 Try
 Dim dataclass As DAOrder = New DAOrder
 conn = New SqlConnection(connstring)
 dataclass.AddOrder(conn)
 Catch ex As Exception
 ' Exception handling code
 Finally
 If Not(conn is Nothing) Then
 conn.Close()
 End If
 End Try
End Sub

Do You Turn on Option Strict and Explicit?
Review your code and ensure that the Strict and Explicit options are turned on. This
ensures that all narrowing type coercions must be explicitly specified. This protects
you from inadvertent late binding and enforces a higher level of coding discipline.
Option Explicit forces you to declare a variable before using it by moving the type-
inference from run time to compile time. The code for turning on Explicit and Strict
is shown in the following code sample.

Option Explicit On
Option Strict On

If you compile from the command line using the Vbc.exe file, you can indicate that
the compiler should turn on Strict and Explicit as follows.

vbc mySource.vb /optionexplicit+ /optionstrict+

Do You Perform Lots of String Concatenation?
If your code performs lots of string concatenations, make sure that it uses the
StringBuilder class for better performance.

Note: If you use ASP.NET to emit HTML output, use multiple Response.Write calls instead of using
a StringBuilder.

594 Improving .NET Application Performance and Scalability

Reflection and Late Binding
Use the following review questions to review your code’s use of reflection:

If your code uses reflection, review the following questions:
● Do you use .NET Framework classes that use reflection?
● Do you use late binding?
● Do you use System.Object to access custom objects?

Do You Use .NET Framework Classes that Use Reflection?
Analyze where your code uses reflection. It should be avoided on the critical path in
an application, especially in loops and recursive methods. Reflection is used by many
.NET Framework classes. Some common places where reflection is used are the
following:
● The page framework in ASP.NET uses reflection to create the controls on the page,

and hook event handlers. By reducing the number of controls, you enable faster
page rendering.

● Framework APIs such as Object.ToString use reflection. Although ToString is a
virtual method, the base Object implementation of ToString uses reflection to
return the type name of the class. Implement ToString on your custom types to
avoid this.

● The .NET Framework remoting formatters, BinaryFormatter and SOAPFormatter,
use reflection. While they are fast for referenced objects, they can be slow for value
types which have to be boxed and unboxed to pass through the reflection API.

Do You Use Late Binding?
In Visual Basic .NET, a variable is late bound if it is declared as an Object or is
without an explicit data type. When your code accesses members on late-bound
variables, type checking and member lookup occurs at run time. As a result, early-
bound objects have better performance than late-bound objects. The following
example shows a data class being assigned to an object.

Sub AddOrder()
 Dim dataclass As Object = New DAOrder
 ' Dim dataclass as DAOrder = New DAOrder will improve performance
 ' Do other processing
End Sub

Do You Use System.Object to Access Custom Objects?
Avoid using System.Object to access custom objects because this incurs the
performance overhead of reflection. Use this approach only in situations where
you cannot determine the type of an object at design time.

 Chapter 13: Code Review: .NET Application Performance 595

More Information
For more information about the questions and issues raised in this section, see
“Reflection and Late Binding” in Chapter 5, “Improving Managed Code
Performance.”

Code Access Security
Code access security supports the safe execution of semi-trusted code, protects
users from malicious software, and prevents several kinds of attacks. It also supports
the controlled, code identity-based access to resources. Use the following review
questions to review your use of code access security:
● Do you use declarative security?
● Do you call unmanaged code?

Do You Use Declarative Security?
Where possible, it is recommended that you use declarative security instead of
imperative security checks. The current implementation of demand provides better
performance and support with the security tools that are currently being built to help
security audits.

Note that if your security checks are conditional within a method, imperative security
is your only option.

Do You Call Unmanaged Code?
When calling unmanaged code, you can remove the runtime security checks by
using the SuppressUnmanagedCodeSecurity attribute. This converts the check to a
LinkDemand check, which is much faster. However, you should only do so if you are
absolutely certain that your code is not subject to luring attacks.

More Information
For more information about the questions and issues raised in this section, see
“Code Access Security” in Chapter 5, “Improving Managed Code Performance.”

For more information about the danger of luring attacks and the potential risks
introduced by using SuppressUnmanagedCodeSecurity and LinkDemand, see
Chapter 8, “Code Access Security in Practice” in “Improving Web Application Security:
Threats and Countermeasures” on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

596 Improving .NET Application Performance and Scalability

Class Design Considerations
Review your class design using the following questions:
● Do you use properties?
● Do you define only the required variables as public?
● Do you seal your classes or methods?

Do You Use Properties?
You can expose class-level member variables by using public fields or public
properties. The use of properties represents good object-oriented programming
practice because it allows you to encapsulate validation and security checks and
to ensure that they are executed when the property is accessed.

Properties must be simple and should not contain more code than required for
getting/setting and validation of the parameters. Properties can look like inexpensive
fields to clients of your class, but they may end up performing expensive operations.

Do You Define Only the Required Variables As Public?
You can scope member variables as either public or private members. Think carefully
about which members should be made public because with public members you run
the risk of exposing sensitive data that can easily be manipulated. In addition to
security concerns, you should also avoid unnecessary public members to prevent any
additional serialization overhead when you use the XmlSerializer class, which
serializes all public members by default.

Do You Seal Your Classes or Methods?
If you do not want anybody to extend your base classes, you should mark them with
the sealed keyword. Also, if you derive from a base class that has virtual members
and you do not want anybody to extend the functionality of your derived class,
consider sealing the virtual members in the derived class. Sealing the virtual methods
makes them candidates for inlining and other compiler optimizations.

Ngen.exe
The Native Image Generator utility (Ngen.exe) allows you to precompile your
assemblies to avoid JIT compilation at run time. However, Ngen.exe does not
guarantee improved performance and you should carefully consider whether to
use it.

 Chapter 13: Code Review: .NET Application Performance 597

Ngen.exe cannot be used on assemblies that need to be shared across application
domains. Therefore, sharing code is one of the prime considerations for choosing
Ngen.exe. When considering using Ngen.exe, review the following questions:
● Do you precompile Windows Forms applications?
● Do you create large shared libraries?
● Do you use application domains?

Do You Precompile Windows Forms Applications?
Windows Forms applications use a large number of shared libraries provided with
the .NET Framework. As a result, the load and initialization time for Windows Forms
applications can be much higher than other kinds of applications. While not always
the case, precompiling Windows Forms applications usually improves performance.
You should test your application with and without precompilation to be sure.

Do You Create Large Shared Libraries?
Precompiling your code using Ngen.exe generally helps if you create large shared
libraries, because you pay the cost of loading then much more often. Microsoft
precompiles the .NET Framework assemblies because the assemblies are shared
across applications. This reduces the working set size and improves startup time.

ASP.NET
ASP.NET is often the foundation from which other technologies are used. Optimizing
ASP.NET performance is critical to ensure optimum application performance. Review
the following questions to help assess the efficiency of your ASP.NET applications:
● Do you use caching?
● Do you use session state?
● Do you use application state?
● Do you use threading and synchronization features?
● Do you manage resources efficiently?
● Do you manage strings efficiently?
● Do you manage exceptions efficiently?
● Have you optimized your Web pages?
● Do you use view state?
● Do you use server controls?
● Do you access data from your pages?
● Do you use data binding?
● Do you call unmanaged code from ASPX pages?
● Have you reviewed the settings in Machine.config?

598 Improving .NET Application Performance and Scalability

Do You Use Caching?
Use the following review questions to assess your code’s use of ASP.NET caching
features:
● Do you have too many variations for output caching?

Check your pages that use the output cache to ensure that the number of
variations has a limit. Too many variations of an output cached page can cause
an increase in memory usage. You can identify pages that use the output cache
by searching for the string “OutputCache.”

● Could you use output caching?
When reviewing your pages, start by asking yourself if the whole page can be
cached. If the whole page cannot be cached, can portions of it be cached? Consider
using the output cache even if the data is not static. If your content does not need
to be delivered in near real-time, consider output caching. Using the output cache
to cache either the entire page or portions of the page can significantly improve
performance.

● Is there static data that would be better stored in the cache?
Identify application-side data that is static or infrequently updated. This type of
data is a great candidate for storing in the cache.

● Do you check for nulls before accessing cache items?
You can improve performance by checking for null before accessing the cached
item as shown in the following code fragment.

Object item = Cache["myitem"];
if (item==null)
{
 // repopulate the cache
}

This helps avoid any exceptions which are caused by null objects. To find where
in your code you access the cache, you can search for the string “Cache.”

More Information

For more information about the questions and issues raised in this section, see
“Caching Guidelines” in Chapter 6, “Improving ASP.NET Performance.”

 Chapter 13: Code Review: .NET Application Performance 599

Do You Use Session State?
Use the following review questions to review your code’s use of session state:
● Do you disable session state when not required?

Session state is on by default. If your application does not use session state, disable
it in Web.config as follows.

<sessionState mode="Off" />

If parts of your application need session state, identify pages that do not use it and
disable it for those pages by using the following page level attribute.

<@% EnableSessionState = "false" %>

Minimizing the use of session state increases the performance of your application.
● Do you have pages that do not write to a session?

Page requests using session state internally use a ReaderWriterLock to manage
access to the session state. For pages that only read session data, consider setting
EnableSessionState to ReadOnly.

<%@ Page EnableSessionState="ReadOnly" . . .%>

This is particularly useful when you use HTML frames. The default setting (due to
ReaderWriterLock) serializes the page execution. By setting it to ReadOnly, you
prevent blocking and allow more parallelism.

● Do you check for nulls before accessing items in session state?
You can improve performance by checking for null before accessing the item, as
shown in the following code.

object item = Session["myitem"];
if(item==null)
{
// do something else
}

A common pitfall when retrieving data from session state is to not check to see if
the data is null before accessing it and then catching the resulting exception. You
should avoid this because exceptions are expensive. To find where your code
accesses session state, you can search for the string “Session.”

● Do you store complex objects in session state?
Avoid storing complex objects in session state, particularly if you use an out-of-
process session state store. When using out-of-process session state, objects have
to be serialized and deserialized for each request, which decreases performance.

600 Improving .NET Application Performance and Scalability

● Do you store STA COM objects in session state?
Storing single-threaded apartment (STA) COM objects in session state causes
thread affinity because the sessions are bound to the original thread on which the
component is created. This severely affects both performance and scalability.
Make sure that you use the following page level attribute on any page that stores
STA COM objects in session state.

<@%Page AspCompat = "true" %>

This forces the page to run from the STA thread pool, avoiding any costly
apartment switch from the default multithreaded apartment (MTA) thread
pool for ASP.NET. Where possible, avoid the use of STA COM objects.
For more information, see Knowledge Base article 817005, “FIX: Severe
Performance Issues When You Bind Session State to Threads in ASPCompat
Model” at http://support.microsoft.com/default.aspx?scid=kb;en-us;817005.

More Information

For more information about the questions and issues raised in this section,
see “Session State” in Chapter 6, “Improving ASP.NET Performance.”

Do You Use Application State?
Use the following review questions to assess how efficiently your code uses
application state:
● Do you store STA COM components in application state?

Avoid storing STA COM components in application state where possible. Doing
so effectively bottlenecks your application to a single thread of execution when
accessing the component. Where possible, avoid using STA COM objects.

● Do you use the application state dictionary?
You should use application state dictionary for storing read-only values that can
be set at application initialization time and do not change afterward. There are
several issues to be aware of when using application state in your code, such as
the following:
● Memory allocated to the storage of application variables is not released unless

they are removed or replaced.
● Application state is not shared across a Web farm or a Web garden — variables

stored in application state are global to the particular process in which the
application is running. Each application process can have different values.

For a complete list of the pros and cons of using application state, see
“Am I Losing My Memory?” on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnaskdr/html/askgui09172002.asp.

http://support.microsoft.com/default.aspx?scid=kb;en-us;817005
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaskdr/html/askgui09172002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaskdr/html/askgui09172002.asp

 Chapter 13: Code Review: .NET Application Performance 601

Consider using the following alternatives to application state:
● Create static properties for the application rather than using the state

dictionary. It is more efficient to look up a static property than to access
the state dictionary. For example, consider the following code.

Application["name"] = "App Name";

It is more efficient to use the following code.

private static String _appName = "App Name";
public string AppName
{
 get{return _appName;}
 set{_appName = value;}
}

● Use configuration files for storing application configuration information.
● Consider caching data that is volatile enough that it cannot be stored in

application state, but needs updates periodically from a persistent medium,
in the Cache object.

● Use the session store for user-specific information.
You can identify places where your code uses application state by searching
for the string “Application.”

More Information

For more information about the questions and issues raised in this section, see
“Application State” in Chapter 6, “Improving ASP.NET Performance.”

Do You Use Threading and Synchronization Features?
The .NET Framework exposes various threading and synchronization features, and
the way your code uses multiple threads can have a significant impact on application
performance and scalability. Use the following review questions to assess how
efficiently your ASP.NET code uses threading:
● Do you create threads on a per-request basis?

Avoid manually creating threads in ASP.NET applications. Creating threads is an
expensive operation that requires initialization of both managed and unmanaged
resources. If you do need additional threads to perform work, use the CLR thread
pool. To find places in your code where you are creating threads, search for the
string “ThreadStart.”

602 Improving .NET Application Performance and Scalability

● Do you perform long-running blocking operations?
Avoid blocking operations in your ASP.NET applications where possible. If you
have to execute a long-running task, consider using asynchronous execution
(if you can free the calling thread) or use the asynchronous “fire and forget”
model.
For more information, see “How To: Submit and Poll for Long-Running Tasks”
in the “How To” section of this guide.

More Information

For more information about the questions and issues raised in this section, see
“Threading Guidelines” in Chapter 6, “Improving ASP.NET Performance.”

Do You Manage Resources Efficiently?
Use the following review questions to assess how efficiently your code uses
resources:
● Do you explicitly close resources properly?

Ensure that your code explicitly closes objects that implement IDisposable by
calling the object’s Dispose or Close method. Failure to close resources properly
and speedily can lead to increased memory consumption and poor performance.
Failing to close database connections is a common problem. Use a finally block
(or a using block in C#) to release these resources and to ensure that the resource is
closed even if an exception occurs.

● Do you pool shared resources?
Check that you use pooling to increase performance when accessing shared
resources. Ensure that shared resources, such as database connections and
serviced components, that can be pooled are being pooled. Without pooling, your
code incurs the overhead of initialization each time the shared resource is used.

● Do you obtain your resources late and release them early?
Open shared resources just before you need them and release them as soon as you
are finished. Holding onto resources for longer than you need them increases
memory pressure and increases contention for these resources if they are shared.

● Do you transfer data in chunks over I/O calls?
If you do need to transfer data over I/O calls in chunks, allocate and pin buffers
for sending and receiving the chunks. If you need to make concurrent I/O calls,
you should create a pool of pinned buffers that is recycled among various clients
rather than creating a buffer on a per-request basis. This helps you avoid heap
fragmentation and reduce buffer creation time.

 Chapter 13: Code Review: .NET Application Performance 603

More Information

For more information about the questions and issues raised in this section,
see “Resource Management” in Chapter 6, “Improving ASP.NET Performance,”
and “Resource Management” in Chapter 3, “Design Guidelines for Application
Performance.”

Do You Manage Strings Efficiently?
Use the following review questions to assess how efficiently your ASP.NET code
manipulates strings:
● Do you use Response.Write for formatting output?

Identify areas in your code where you concatenate output, such as to create a
table, and consider using Response.Write instead. Response.Write is the most
efficient method for writing content to the client.

● Do you use StringBuilder to concatenate strings?
If the number of appends is unknown and you cannot send the data to the client
immediately by using a Response.Write, use the StringBuilder class to
concatenate strings.

● Do you use += for concatenating strings?
Identify places in your code where you perform string concatenation by using
the += operator. If the number of appends is unknown, or you are appending
an unknown size of data, consider using the StringBuilder class instead.

More Information

For more information about the questions and issues raised in this section, see “String
Management” in Chapter 6, “Improving ASP.NET Performance.”

Do You Manage Exceptions Efficiently?
Use the following review questions to assess how efficiently your code uses
exceptions:
● Have you implemented an error handler in Global.asax?

Although implementing an error handler in Global.asax does not necessarily
increase performance, it helps you to identify unexpected exceptions that occur
in your application. After you identify the exceptions that occur, take appropriate
action to avoid these exceptions.

● Do you use try/finally on disposable resources?
Ensure that disposable resources are released in a finally block to ensure they get
cleaned up even in the event of an exception. Failing to dispose of resources is a
common problem.

604 Improving .NET Application Performance and Scalability

● Does your code avoid exceptions?
Your code should attempt to avoid exceptions to improve performance because
exceptions incur a significant overhead. Use the following approaches:
● Check for null values.
● Do not use exceptions to control regular application logic.
● Do not catch exceptions you cannot handle and obscure useful diagnostic

information.
● Use the overloaded Server.Transfer method Server.Transfer(String,bool)

instead of Server.Transfer, Response.Redirect, and Response.End to avoid
exceptions.

More Information

For more information about the questions and issues raised in this section, see
“Exception Management” in Chapter 6, “Improving ASP.NET Performance.”

Have You Optimized Your Web Pages?
Use the following review questions to asses the efficiency of your .aspx pages:
● Have you taken steps to reduce your page size?

Try to keep the page size to a minimum. Large page sizes place increased load
on the CPU because of increased processing and a significant increase in network
bandwidth utilization, which may lead to network congestion. Both of these
factors lead to increased response times for clients. Consider the following
guidelines to help reduce page size:
● Use script includes (script tags rather than interspersing code with HTML).
● Remove redundant white space characters from your HTML.
● Disable view state for server controls where it is not needed.
● Avoid long control names.
● Minimize the use of graphics, and use compressed images.
● Consider using cascading style sheets to avoid sending the same formatting

directives to the client repeatedly.

 Chapter 13: Code Review: .NET Application Performance 605

● Is buffering disabled?
Ensure that you have buffering enabled. Buffering causes the server to buffer the
output and send it only after it has finished the processing of the page. If buffering
is disabled, the worker process needs to continuously stream responses from all
concurrent requests; this can be a significant overhead on memory and the
processor, especially when you use the ASP.NET process model.
To find out if you have buffering disabled, you can search your code base for the
following strings: “buffer” and “BufferOutput.”
Make sure that the buffer attribute is set to true on the <pages> element in your
application's Web.config file.

<pages buffer="True">

● Do you use Response.Redirect?
Search your code for “Response.Redirect” and consider replacing it with
Server.Transfer. This does not incur the cost of a new request because it avoids
any client-side redirection.
You cannot always simply replace Response.Redirect calls with Server.Transfer
calls because Server.Transfer uses a new handler during the handler phase of
execution. Response.Redirect generates a second request. If you need different
authentication and authorization, caching, or other run-time devices on the target,
the two mechanisms are not equivalent. Response.Redirect causes an extra
request to be sent to the server. Response.Redirect also makes the URL visible to
the user. This may be required in some scenarios where you require the user to
bookmark the new location.

● Do you use Page.IsPostBack?
Check that the logic in your page uses the Page.IsPostBack property to reduce
redundant processing and avoid unnecessary initialization costs. Use the
Page.IsPostBack property to conditionally execute code, depending on whether
the page is generated in response to a server control event or whether it is loaded
for the first time.

● Do you validate user input?
Check that you validate user input on the client to reduce round trips to the server.
This also provides better feedback to the user. For security reasons, ensure that
any client-side validation is complimented with the equivalent server-side
validation.
For more information about validation design guidelines for building secure
.NET Web applications, see “Input Validation” in Chapter 4, “Design Guidelines
for Secure Web Applications” in “Improving Web Application Security: Threats and
Countermeasures” on MSDN at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/ThreatCounter.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

606 Improving .NET Application Performance and Scalability

● Have you set Explicit and Strict to true?
Ensure you use Option Strict and Explicit to reduce inadvertent late binding
when using Visual Basic .NET.

<%@ Page Language="VB" Explicit="true" Strict="true" %>

This can be easily searched for by using the Findstr.exe file with regular
expressions.

C:\findstr /i /s /r /c:"<%.*@.*page.*%>" *.aspx
pag\default.aspx:<%@ Page Language="VB" %>
pag\login.aspx:<%@ page Language="VB" %>
pag\main.aspx:<%@ Page Language="VB" Explicit="true" Strict="true" %>
...

● Have you disabled debugging?
Check your Web.config file and ensure debug is set to false in the <compilation>
section and check your .aspx pages to ensure debug is set to false. If debugging is
enabled, the compiler does not generate optimized code and pages are not batch
compiled.
You can check your .aspx pages by using the Findstr.exe file with regular
expressions.

C:\pag>findstr /i /r /c:"<%.*@.*page.*debug=.*true*.*%>" *.aspx
login.aspx:<%@ page Language="VB" Debug="True" %>
main.aspx:<%@ Page Language="c#" Debug="True" %>

● Have you disabled tracing?
Check your Web.config file to ensure trace is disabled in the <trace> section.
Also check your .aspx pages to ensure trace is set to false.
You can check your .aspx pages by using the Findstr.exe file with regular
expressions.

C:\pag>findstr /i /r /c:"<%.*@.*page.*trace=.*true*.*%>" *.aspx
login.aspx:<%@ page Language="VB" Trace="True" %>
main.aspx:<%@ Page Language="c#" Trace="True" %>

 Chapter 13: Code Review: .NET Application Performance 607

● Do you set aggressive timeouts?
Set timeouts aggressively and tune accordingly. Evaluate each page and determine
a reasonable timeout. The default page timeout is 90 seconds specified by the
executionTimeout attribute in Machine.config. Server resources are held up until
the request is processed completely or the execution times out, whichever is
earlier.
In most scenarios, users do not wait for such a long period for the requests to
complete. They either abandon the request totally or send a new request which
further increases the load on the server.
For more information, see Chapter 17, “Tuning .NET Application Performance.”

More Information

For more information about the questions and issues raised in this section, see
“Pages” in Chapter 6, “Improving ASP.NET Performance.”

Do You Use View State?
Use the following review questions to asses how efficiently your applications use
view state:
● Do you disable view state when it is not required?

Evaluate each page to determine if you need view state enabled. View state adds
overhead to each request. The overhead includes increased page sizes sent to the
client as well as a serialization and deserialization cost. You do not need view
state under the following conditions:
● The page does not post back to itself; the page is only used for output and

does not rely on response processing.
● Your page’s server controls do not handle events and you have no dynamic

or data-bound property values (or they are set in code on every request).
● If you are ignoring old data and repopulating the server control every time

the page is refreshed.
● Have you taken steps to reduce the size of your view state?

Evaluate your use of view state for each page. To determine a page’s view state
size, you can enable tracing and see each how each control uses it. Disable view
state on a control-by-control basis.

More Information

For more information about the questions and issues raised in this section,
see “View State” in Chapter 6, “Improving ASP.NET Performance.”

608 Improving .NET Application Performance and Scalability

Do You Use Server Controls?
Use the following review questions to review how efficiently your ASP.NET
applications use server controls:
● Do you use server controls when you do not need to?

Evaluate your use of server controls to determine if you can replace them with
lightweight HTML controls or possibly static text. You might be able to replace
a server control under the following conditions:
● The data being displayed in the control is static, for example, a label.
● You do not need programmatic access to the control on the server side.
● The control is displaying read-only data.
● The control is not needed during post back processing.

● Do you have deep hierarchies of server controls?
Deeply nested hierarchies of server controls compound the cost of building the
control tree. Consider rendering the content yourself by using Response.Write or
building a custom control which does the rendering. To determine the number of
controls and to see the control hierarchy, enable tracing for the page.

More Information

For more information about the questions and issues raised in this section, see
“Server Controls” in Chapter 6, “Improving ASP.NET Performance.”

Do You Access Data From Your ASPX Pages?
Some form of data access is required by most ASP.NET applications. Data access
is a common area where performance and scalability issues are found. Review the
following questions to help improve your application’s page level data access:
● Do you page large result sets?

Identify areas of your application where large result sets are displayed and
consider paging the results. Displaying large result sets to users can have a
significant impact on performance. For paging implementation details, see
“How To: Page Records in .NET Applications” in the “How To” section of this
guide.

● Do you use DataSets when you could be using DataReaders?
If you do not need to cache data, exchange data between layers or data bind
to a control and only need forward-only, read-only access to data, then use
DataReader instead.

 Chapter 13: Code Review: .NET Application Performance 609

Do You Use Data Binding?
Use the following review questions to review your code’s use of data binding:
● Do you use Page.DataBind?

Avoid calling Page.DataBind and bind each control individually to optimize your
data binding. Calling Page.DataBind recursively calls DataBind on each control
on the page.

● Do you use DataBinder.Eval?
DataBinder.Eval uses reflection, which affects performance. In most cases
DataBinder.Eval is called many times from within a page, so implementing
alternative methods provides a good opportunity to improve performance.
Avoid the following approach.

<ItemTemplate>
 <tr>
 <td><%# DataBinder.Eval(Container.DataItem,"field1") %></td>
 <td><%# DataBinder.Eval(Container.DataItem,"field2") %></td>
 </tr>
</ItemTemplate>

Use explicit casting. It offers better performance by avoiding the cost of reflection.
Cast the Container.DataItem as a DataRowView if the data source is a DataSet.

<ItemTemplate>
 <tr>
 <td><%# ((DataRowView)Container.DataItem)["field1"] %></td>
 <td><%# ((DataRowView)Container.DataItem)["field2"] %></td>
 </tr>
</ItemTemplate>

Cast the Container.DataItem as a String if the data source is an Array or an
ArrayList.

<ItemTemplate>
 <tr>
 <td><%# ((String)Container.DataItem)["field1"] %></td>
 <td><%# ((String)Container.DataItem)["field2"] %></td>
 </tr>
</ItemTemplate>

More Information

For more information about the questions and issues raised in this section,
see “Databinding” in Chapter 6, “Improving ASP.NET Performance.”

610 Improving .NET Application Performance and Scalability

Do You Call Unmanaged Code From ASPX Pages?
Use the following review questions to review your code’s use of interoperability:
● Have you enabled AspCompat for calling STA COM components?

Make sure that any page that calls an STA COM component sets the AspCompat
page level attribute.

<@%Page AspCompat = "true" %>

This instructs ASP.NET to execute the current page request using a thread from
the STA thread pool. By default, ASP.NET uses the MTA thread pool to process a
request to a page. If you are using STA components, the component is bound to
the thread where it was created. This causes a costly thread switch from the thread
pool thread to the thread on which the STA object is created.

● Do you create STA COM components in the page constructor?
Check your pages to ensure you are not creating STA COM components in the
page constructor. Create STA components in the Page_Load, Page_Init or other
events instead.
The page constructor always executes on an MTA thread. When an STA COM
component is created from an MTA thread, the STA COM component is created
on the host STA thread. The same thread (host STA) executes all instances of
apartment-threaded components that are created from MTA threads. This means
that even though all users have a reference to their own instance of the COM
component, all of the calls into these components are serialized to this one thread,
and only one call executes at a time. This effectively bottlenecks the page to a
single thread and causes substantial performance degradation.
If you are using the AspCompat attribute, these events run using a thread from
the STA thread pool, which results in a smaller performance hit due to the thread
switch.

● Do you use Server.Create object?
Avoid using Server.CreateObject and early bind to your components at compile
time wherever possible. Server.CreateObject uses late binding and is primarily
provided for backwards compatibility.
Search your code base to see if you use this routine and as an alternative, create
an interop assembly to take advantage of early binding.

More Information

For more information about the questions and issues raised in this section,
see “COM Interop” in Chapter 6, “Improving ASP.NET Performance.”

 Chapter 13: Code Review: .NET Application Performance 611

Have You Reviewed the Settings in Machine.config?
Use the following review questions to review your application’s deployment plan:
● Is the thread pool tuned appropriately?

Proper tuning of the CLR thread pool tuned improves performance significantly.
Before deploying your application, ensure that the thread pool has been tuned for
your application.

● Is the memory limit configured appropriately?
Configuring the ASP.NET memory limit ensures optimal ASP.NET cache
performance and server stability. In IIS 5.0 or when you use the ASP.NET process
model under IIS 6.0, configure the memory limit in Machine.config. With IIS 6.0,
you configure the memory limit by using the IIS MMC snap-in.

● Have you removed unnecessary HttpModules?
Including HttpModules that you do not need adds extra overhead to ASP.NET
request processing. Check that you have removed or commented out unused
HttpModules in Machine.config.

For more information about the questions and issues raised in this section,
see “ASP.NET Tuning” in Chapter 17, “Tuning .NET Application Performance.”

More Information
For more information about the issues raised in this section, see Chapter 6,
“Improving ASP.NET Performance.”

Interop
There is a cost associated with calling unmanaged code from managed code. There
is a fixed cost associated with the transition across the boundary, and a variable cost
associated with parameter and return value marshaling. The fixed contribution to the
cost for both COM interop and P/Invoke is small; typically less than 50 instructions.
The cost of marshaling to and from managed types depends on how different the in-
memory type representations are on either side of the boundary. Additionally, when
you call across thread apartments, a thread switch is incurred which adds to the total
cost of the call.

To locate calls to unmanaged code, scan your source files for
“System.Runtime.InteropServices,” which is the namespace name used when you call
unmanaged code.

612 Improving .NET Application Performance and Scalability

If your code uses interop, use the following questions when you review your code:
● Do you explicitly name the method you call when using P/Invoke?

Be explicit with the name of the function you want to call. When you use the
DllImport attribute, you can set the ExactSpelling attribute to true to prevent the
CLR from searching for a different function name.

● Do you use Blittable types?
When possible, use blittable types when calling unmanaged code. Blittable data
types have the same representation in managed and unmanaged code and require
no marshaling. The following types from the System namespace are blittable
types: Byte, SByte, Int16, UInt16, Int32, UInt32, Int64, IntPtr, and UIntPtr.

● Do you use In/Out attribute explicitly for parameters?
By default, parameters are marshaled into and out of each call. If you know that
a parameter is used only in a single direction, you can use the In attribute or Out
attribute to control when marshaling occurs. Combining the two is particularly
useful when applied to arrays and formatted, non-blittable types. Callers see the
changes a callee makes to these types only when you apply both attributes.
Because these types require copying during marshaling, you can use the In
attribute and Out attribute to reduce unnecessary copies.

instance string marshal(bstr) FormatNameByRef(
[in][out] string& marshal(bstr) first,
[in][out] string& marshal(bstr) middle,
 [in][out] string& marshal(bstr) last)

● Do you rely on the default interop marshaling?
Sometimes it is faster to perform manual marshaling by using methods available
on the Marshal class, rather than relying on default interop marshaling. For
example, if large arrays of strings need to be passed across an interop boundary
but the unmanaged code needs only a few of those elements, you can declare the
array as IntPtr and manually access only those few elements that are required.

● Do you have Unicode to ANSI conversions?
When you call functions in the Win32 API, you should call the Unicode version
of the API; for example, GetModuleNameW instead of the ANSI version
GetModuleNameA. All strings in the CLR are Unicode strings. If you call a Win32
API through P/Invoke that expects an ANSI character array, every character in the
string has to be narrowed.

 Chapter 13: Code Review: .NET Application Performance 613

● Do you explicitly pin short-lived objects?
Pinning short-lived objects may cause fragmentation of the managed heap. You
can find places where you are explicitly pinning objects by searching for “fixed” in
your source code.
You should pin only long-lived objects and where you are sure of the buffer size;
for example, those used to perform repeated I/O calls. You can reuse this type of
buffer for I/O throughout the lifetime of your application. By allocating and
initializing these buffers when your application starts up, you help ensure that
they are promoted faster to generation 2. In generation 2, the overhead of heap
fragmentation is largely eliminated.

● How do you release COM objects?
Consider calling Marshal.ReleaseComObject in a finally block to ensure that
COM objects referenced through a runtime callable wrapper (RCW) release
properly even if an exception occurs.
When you reference a COM object from ASP.NET, you actually maintain a
reference to an RCW. It is not enough to simply assign a value of null to the
reference that holds the RCW, and instead you should call
Marshal.ReleaseComObject. This is of most relevance to server applications
because under heavy load scenarios, garbage collection (and finalization) might
not occur soon enough and performance might suffer due to a build up of objects
awaiting collection.
You do not need to call ReleaseComObject from Windows Forms applications
that use a modest number of COM objects that are passed freely in managed
code. The garbage collector can efficiently manage the garbage collection for these
infrequent allocations.
A common pitfall when releasing COM objects is to set the object to null and call
GC.Collect followed by GC.WaitForPendingFinalizers. You should not do this
because the finalization thread takes precedence over the application threads to
run the garbage collection. This can significantly reduce application performance.

● Do you use the /unsafe switch when creating interop assemblies?
By default, RCWs perform run-time security checks that cause the stack to be
walked to ensure that the calling code has the proper permissions to execute the
code. You can create run-time callable wrappers that perform reduced run-time
security checks by running the Tlbimp.exe file with the /unsafe option. This
should be used only after careful code reviews of such APIs to ensure that it is not
subjected to luring attack.
For more information see “Use SuppressUnmanagedCodeSecurity with Caution”
in Chapter 8, “Code Access Security in Practice” of Improving Web Application
Security: Threats and Countermeasures on MSDN at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

614 Improving .NET Application Performance and Scalability

More Information
For more information about the issues raised in this section, see Chapter 7,
“Improving Interop Performance.”

Enterprise Services
Use the following review questions to analyze the efficiency of your serviced
components and the code that calls your serviced components:
● Do you use object pooling?
● Do you manage resources efficiently?
● Do you use Queued Components?
● Do you use Loosely Coupled Events?
● Do you use COM+ transactions?
● Do you use the Synchronization attribute?

Do You Use Object Pooling?
To ensure that you use object pooling most efficiently and effectively, review the
following questions:
● Do you use objects with heavy initialization overhead?

Consider enabling object pooling for objects that perform heavy initialization.
Otherwise do not use object pooling. For example, object pooling is well suited
to an object that opens a legacy database connection in its constructor.

● Do you need to control the number of objects activated?
You can use object pooling to limit the number of objects. For example, you might
want to restrict the number of open legacy database connection. Object pooling
provides an effective connection pooling mechanism for the legacy database.

● Do you release objects properly back to pool?
If you use JIT activation, calling SetAbort or SetComplete or using the
AutoComplete attribute ensures that an object returns to the pool. Client
code should always call Dispose on any object that implements IDisposable,
including serviced components.
Consider using JIT activation with object pooling if you call only one method on
the pooled object.

● Do you use JIT activation when calling multiple functions?
Do not use JIT activation if the client is going to instantiate the class and call
multiple methods. It is more appropriate for single call scenarios.

 Chapter 13: Code Review: .NET Application Performance 615

Do You Manage Resources Efficiently?
Review the following questions to ensure you manage resources efficiently within
your serviced component code:
● Do you call Dispose on serviced components?

Make sure that client code always calls Dispose on serviced components. This
helps to ensure the speedy release of unmanaged resources. Additionally, calling
Dispose on pooled objects (which are not using JIT activation) returns them to the
pool.

● Do you call ReleaseComObject on objects that involve Runtime Callable
Wrappers?
Identify components that are accessed using RCWs and ensure
you call Marshal.ReleaseCOMObject appropriately. Do not call
Marshall.ReleaseComObject when you reference a regular (nonqueued,
nonevent class) managed serviced component in a library application. In this case,
you do not reference an RCW. You reference an RCW in the following situations:
● You reference an unmanaged COM+ component written in native code

(for example, a Visual Basic 6.0 component) hosted in either a library or server
application.

● You reference an unmanaged queued component in a library or server
application.

● You reference an unmanaged Loosely Coupled Event (LCE) class in a library
or server application.

● You reference an unmanaged COM component (no COM+).
● Do you call SetAbort as soon as possible?

Call SetAbort immediately on failure so that the transaction can be aborted and
resources freed quickly. The SetAbort example shown in Table 13.1 performs
faster than using AutoComplete. Note that when you have nested serviced
component calls, you should call SetAbort in lower level methods and each
method should propagate an error value upwards. Database exceptions should
be caught in the class making the call to the database. It should also call SetAbort
and return an error message and error code.

616 Improving .NET Application Performance and Scalability

Table 13.1: Examples of SetAbort and AutoComplete

SetAbort AutoComplete

if(!DoSomeWork())
{
 //Something goes wrong.
 ContextUtil.SetAbort();
}
else
{
 //All goes well.
 ContextUtil.SetComplete();
}

[AutoComplete]
public void Debit(int amount) {
 // Your code
 // Commits if no error, otherwise
aborts
}

Do You Use Queued Components?
When using queued components, you should avoid any time and order dependency
in the algorithm for the client. The natural programming model provided by queuing
rapidly breaks down if you start to force ordering. Queued Components is a “fire and
forget” model, and time and order dependencies will unnecessarily cause unexpected
behavior and contention issues.

Do You Use Loosely Coupled Events?
The COM+ Loosely Coupled Event (LCE) service provides a distributed publisher-
subscriber model. If you use LCE, you should not use it to broadcast messages to
large numbers of subscribers. Review the following questions:
● Do you use LCE for a large number of subscribers?

Evaluate whether you have too many subscribers for an event because LCE is
not designed for large multicast scenarios. A good alternative is to use broadcast.
The sockets layer has broadcast packet support.
For more information about using the sockets layer, see “Using UDP Services”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconusingudpservices.asp.

● Do you block on the executing thread for publishing of events?
Using queued components lets you publish the events asynchronously without
blocking your main executing thread. This can be particularly useful in scenarios
where you need to publish events from ASP.NET application but do not want to
block the worker thread processing the request.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconusingudpservices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconusingudpservices.asp

 Chapter 13: Code Review: .NET Application Performance 617

● Do you fire events to one subscriber at a time?
When a publisher fires an event, the method call does not return until all the
subscriber components have been activated and contacted. With large numbers of
subscribers, this can severely affect performance. You can use the Fire in parallel
option to instruct the event system to use multiple threads to deliver events to
subscribers by using the following attribute.

EventClassAttribute(FireInParallel=true)

Do You Use COM+ Transactions?
If you use COM+ transactions provided by Enterprise Services, review the following
questions:
● Do you need distributed COM+ transactions?

The declarative programming model supported by Enterprise Services makes it
very easy to add transactional support to your programs. When you need to
manage transactions that span multiple resource managers, the Microsoft
Distributed Transaction Coordinator (DTC) makes it easy to manage your unit of
work. For transactions against a single database, consider ADO.NET or manual T -
 SQL transactions in stored procedures. Regardless of the type (DTC, ADO.NET
transactions, or SQL Server transactions), avoid using transactions where you do
not need to. For example, fetching and displaying records (that are not updatable)
in a transaction is an unnecessary overhead.

● Have you chosen the appropriate isolation level?
The default isolation level in COM+ 1.5 is Serializable, although COM+ 1.5
enables you to change this isolation level. COM+ 1.5 comes with Windows 2003
and Windows XP, but not Windows 2000. Use of the Repeatable Read or
Serializable isolation levels can result in database requests being queued and
response time increasing, but they provide higher data consistency.
Use ReadCommitted as the default unless you have different data consistency
requirements. Lower isolation levels might be appropriate for certain read-only
cases. When determining an appropriate level, carefully consider your business
rules and the transaction’s unit of work. You can configure a component’s
isolation level using the Transaction attribute as shown in the following code.

[Transaction(Isolation=TransactionIsolationLevel.ReadCommitted)]

Do You Use the Synchronization Attribute?
If you use the Synchronization attribute, access to an entire object is synchronized;
this ensures that only a single thread executes a given object instance at a time. You
should consider more granular approaches, such as using locks or Mutex objects,
to provide more granular locking and to improve concurrency.

618 Improving .NET Application Performance and Scalability

More Information
For more information about the issues raised in this section, see Chapter 8,
“Improving Enterprise Services Performance.”

Web Services
Use the review questions in this section to assess the efficiency of your Web services
as well as the client code which calls your Web services.

Web Methods
Review your Web method implementation by using the following questions:
● Do you use primitive types as parameters for Web methods?

Regardless of the encoding style you use, you should prefer simple primitive
types such as int, double, and string as parameters for Web services. These
types require less serialization effort and are easily validated.

● Do you validate the input with a schema before processing it?
We strongly recommend having a schema and using it to assist in the design and
debug phases even if strong validation is inappropriate for production. From a
security standpoint, you should validate input. Finding and rejecting invalid input
early can also help avoid redundant processing time and CPU utilization.
However, validating XML input using schemas introduces additional processing
overhead; you need to balance the benefits of validation against this additional
cost for your particular application to determine whether validation is
appropriate.
If you do use validation, make sure you optimize schema validation performance,
for example, by compiling and caching the schema. You can validate incoming
messages in a separate HTTP module, SOAP extension or within the Web method
itself. For more information, see “Validating XML” in Chapter 9, “Improving XML
Performance.”

● Do you perform I/O operations in your Web service?
If your code performs I/O bound operations such as file access, consider using
an asynchronous Web method. An asynchronous implementation helps in cases
where you want to free up the worker thread instead of waiting for the results to
return from a potentially long-running task.
You should not implement asynchronous Web methods when making a long-
running database call because you end up using delegates that require a worker
thread for asynchronous processing. This degrades performance rather than
increasing it.

 Chapter 13: Code Review: .NET Application Performance 619

● Does the client expect data back from the Web service?
If your client does not expect data from the Web service, check if your code uses
the OneWay attribute on the Web method so that the client does not wait on any
results.

public class BatchOperations : WebService {
[SoapDocumentMethod(OneWay=true),
WebMethod(Description="Starts long running operation 1 .")]
public void ProcessLongRunningOp1(){
// Start processing
}
}

Web Service Clients
Use the following review questions help review your Web service consumer code:
● Have you considered calling Web services asynchronously?
● Do you make long-running calls to Web services?
● Do you use XMLIgnore to reduce the amount of data sent over wire?
● Are client timeouts greater then your Web service timeout?
● Do you abort connections when ASP.NET pages timeout?
● Do you use PreAuthentication with Basic authentication?
● Do you use UnsafeAuthenticatedConnectionString with Windows

authentication?
● Have you configured your connections?
● Have you tuned the thread pool on the server and client?

Have You Considered Calling Web Services Asynchronously?
You can improve performance on the client by invoking Web services
asynchronously. The proxy generated by Visual Studio .NET automatically provides
two extra methods for asynchronous invocation of the Web service. For example, if
you have a method named MyProcess, Visual Studio .NET automatically generates
two additional methods named BeginMyProcess and EndMyProcess.

For Windows Forms applications, you should use asynchronous invocation to keep
the user interface (UI) responsive to user actions. For server applications, you should
invoke Web services asynchronously when you can free up the worker thread to do
some useful work.

Do You Make Long-Running Calls to Web Services?
If your Web service calls are long-running, you can free up the worker thread for
useful work by invoking the Web services asynchronously.

620 Improving .NET Application Performance and Scalability

For more information see “How To: Submit and Poll for Long-Running Tasks” in
the “How To” section of this guide.

Do You Use XMLIgnore To Reduce the Amount of Data Sent Over the Wire?
Use the XMLIgnore attribute to avoid sending unnecessary data over the wire. By
default, XML serialization serializes all the public properties and fields of a class. If
your class includes derived data or codes that you do not want to return to the client,
you can mark members with the XmlIgnore attribute.

As a design consideration, you should consider passing custom classes to and from
Web services. This is an efficient approach. The class does not need to correspond
one-to-one with internal structures used by the clients or the Web service.

Are Client Timeouts Greater Than Your Web Service Timeout?
Ensure that the client timeouts calling the Web service are greater than the Web
service timeout. Consider the following guidelines:
● When calling a Web service synchronously, ensure that the proxy timeout is set

appropriately.
● Set the executionTimeout attribute for the HttpRunTime element to a higher

value than the proxy timeout for the Web service.

Do You Abort Connections When ASP.NET Pages Timeout?
If you have an ASP.NET page that calls a Web service, it is possible for the page
request to time out before the page receives a response back from the Web service.
In this event, the connection to the Web service does not get aborted and the Web
service request continues to execute, eventually returning despite the client page
timing out.

To address this issue, tune your time-outs and modify the automatically generated
proxy code to abort the request if the ASP.NET page times out.

For more information, about tuning time-outs for Web services, see “Web Services
Tuning” in Chapter 17, “Tuning .NET Application Performance.” For more
information about how to abort Web service connections for timed-out Web pages,
see “Timeouts” in Chapter 10, “Improving Web Services Performance.”

Do You Use Pre-Authentication with Basic Authentication?
To save rounds trips between the client and server, use the PreAuthenticate property
of the proxy when using basic authentication. Pre-authentication applies only after
the Web service successfully authenticates the first time. Pre-authentication has no
impact on the first Web request. For more information, see “Connections” in
Chapter 10, “Improving Web Services Performance.”

 Chapter 13: Code Review: .NET Application Performance 621

Do You Use UnsafeAuthenticatedConnectionString with Windows Authentication?
If your ASP.NET application calls a Web service that uses Windows Integrated
Authentication, consider enabling UnsafeAuthenticatedConnectionSharing. By
default, when you connect using Windows authentication, connections are opened
and closed per request. Enabling UnsafeAuthenticatedSharing keeps connections
open so they can be reused. If you enable UnsafeAuthenticatedSharing, the same
connection is reused for multiple requests from different users. This may not be
desirable if you need to flow the identity of the user when making the calls.

For more information, see “Connections” in Chapter 10, “Improving Web Services
Performance.”

Have You Configured Your Connections?
If you are calling multiple Web services, you can prioritize and allocate connections
using the ConnectionManagement element in Machine.config.

If you call a remote Web service from an ASP.NET application, ensure that you have
configured the maxconnection setting in Machine.config. You can consider increasing
this to twelve times the number of CPUs if you have processor utilization below the
threshold limits.

Have You Tuned the Thread Pool on the Server and Client?
Before deploying your application, ensure that the thread pool has been tuned for
your client (where appropriate) and your Web service. Appropriate tuning of the
thread pool can improve performance drastically. The important attributes are:
maxWorkerThreads, maxIOThreads, minFreeThreads, and
minLocalRequestFreeThreads.

Tuning the thread pool affects the number of requests that can concurrently be
processed by the server. This drives other decisions, such as the size of the connection
pool to the database, and the number of concurrent connections to a remote Web
service (defined by maxconnection in Machine.config).

For more information, see “Threading” in Chapter 10, “Improving Web Services
Performance.”

More Information
For more information about the issues raised in this section, see Chapter 10,
“Improving Web Services Performance.”

622 Improving .NET Application Performance and Scalability

Remoting
Use the following review questions to analyze your use and choice of .NET remoting:
● Do you use MarshalByRef and MarshalByValue appropriately?
● Do you use the HttpChannel?
● Do you need to transfer large amounts of data over the HttpChannel?
● Which formatter do you use to serialize data?
● Do you send all the data across the wire?
● Do you serialize ADO.NET objects using the BinaryFormatter?
● Have you considered calling remote components asynchronously?

Do You Use MarshalByRef and MarshalByValue Appropriately?
Identify places in your code where you are using MarshalByRef and
MarshalByValue. Ensure that you are using the appropriate one.

Use MarshalByRef in the following situations:
● The state of the object should stay in the host application domain.
● The size of the objects is prohibitively large.

Use MarshalByValue in the following situations:
● You do not need to update the data on the server.
● You need to pass the complete state of the object.

Do You Use the HttpChannel?
If you use the HttpChannel for .NET remoting, you should prefer IIS as the host
for the remote component because the component is loaded in the ASP.NET worker
process. The ASP.NET worker process loads the server garbage collector, which is
more efficient for garbage collection on multiprocessor machines. If you use a custom
host, such as a Windows service, you can use only the workstation garbage collector.
The HttpChannel also enables you to load balance components hosted in IIS.

Do You Need to Transfer Large Amounts of Data over the HttpChannel?
Consider reducing the amount of data being serialized. Mark any member that
does not need to be serialized with the NonSerialized attribute to avoid serialization.
However, if you still pass large amounts of data, consider using HTTP 1.1
compression by hosting the objects in IIS. You need to develop a custom proxy for
compressing and decompressing the data at the client side. This can add an extra
layer of complexity as well as development time for your application.

 Chapter 13: Code Review: .NET Application Performance 623

Which Formatter Do You Use To Serialize Data?
If you need to use the SoapFormatter, consider using Web services instead of .NET
remoting. SOAP-based communication in Web services outperforms remoting in
most scenarios.

Prefer the BinaryFormatter for optimum performance when using .NET remoting.
The BinaryFormatter creates a compact binary wire representation for the data
passed across the boundary. This reduces the amount of data getting passed over
the network.

Do You Send All The Data Across The Wire?
Sending an entire data structure across the wire can be expensive. Evaluate the data
structures you are sending across the wire to determine whether you need to pass all
the data associated with that data structure. The internal representation of the data
need not be same as the one transmitted across remoting boundaries.

Mark members that do not need to be serialized with the NonSerialized attribute.

Do You Serialize ADO.NET Objects using BinaryFormatter?
Serializing ADO.NET objects using BinaryFormatter still causes them to be serialized
as XML. As a result, the size of data passed over the wire is high for ADO.NET
objects. In most cases, you can optimize the serialization of ADO.NET objects by
implementing your own serialization for these objects.

More Information

For more information, see the following resources:
● “How To: Improve Serialization Performance” in the “How To” section of

this guide.
● Knowledge Base article 829740, “Improving DataSet Serialization and Remoting

Performance,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;829740.
● “Binary Serialization of ADO.NET Objects” in MSDN Magazine at

http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx.
● If you serialize using DataSet, see “Do You Use DataSets?” in the “DataSets”

section later in this chapter.

Have You Considered Asynchronous Calls to the Remote Component?
For server applications, you should consider asynchronous calls when you can
free up the worker thread to do some other useful work. The worker thread can
be completely freed to handle more incoming requests or partially freed to do some
useful work before blocking for the results.

http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx

624 Improving .NET Application Performance and Scalability

More Information
For more information about the issues raised in this section, see Chapter 11,
“Improving Remoting Performance.”

Data Access
Use the following questions in this section to review the efficiency of your
application’s data access:
● Do you use connections efficiently?
● Do you use commands efficiently?
● Do you use stored procedures efficiently?
● Do you use Transact-SQL?
● Do you use Parameters?
● Do you use DataReaders?
● Do you use DataSets?
● Do you use Transactions?
● Do you use Binary Large Objects (BLOBS)?
● Do you page through data?

Do You Use Connections Efficiently?
Use the following review questions to review your code’s use of database
connections:
● Do you close your connections properly?

Keeping too many open connections is a common pitfall. Ensure you close
your connections properly to reduce resource pressure. Identify areas in your
code where you are using connections and ensure the following guidelines are
followed:
● Open and close the connection within the method.
● Explicitly close connections using a finally or using block.
● When using DataReaders, specify CommandBehavior.CloseConnection.
● If using Fill or Update with a DataSet, do not explicitly open the connection.

The Fill and Update methods automatically open and close the connection.

 Chapter 13: Code Review: .NET Application Performance 625

● Do you pool your database connections?
Creating database connections is expensive. You can reduce the creation overhead
by pooling your database connections.
You can pool connections by connecting to a database as a single identity rather
than flowing the identity of original caller to the database. Flowing the caller’s
identity results in a separate connection pool for each user. Changing the
connection string even by adding an empty space creates a separate pool for that
connection string. If you are pooling your database connections, make certain that
you call Close or Dispose on the connection as soon as you are done with the
connection. This ensures that it is promptly returned to the pool.

● Is the pool size set appropriately?
It is important to optimize the maximum and minimum levels of the pool size to
maximize the throughput for your application. If you set the maximum levels to
values that are too high, you may end up creating deadlocks and heavy resource
utilization on the database. If you use values that are too low, you run the risk of
under utilizing the database and queuing up the requests.
Determine appropriate maximum and minimum values for the pool during
performance testing and performance tuning.

● What data provider do you use?
Make sure that your code uses the correct data provider. Each database-specific
provider is optimized for a particular database:
● Use System.Data.SqlClient for SQL Server 7.0 and later.
● Use System.Data.OleDb for SQL Server 6.5 or OLE DB providers.
● Use System.Data.ODBC for ODBC data sources.
● Use System.Data.Oracle.Client for Oracle.
● Use SQLXML managed classes for XML data and SQL Server 2000.

● Do you check the State property of OleDbConnection?
Using the State property causes an additional round trip to the database. If you
need to check the status of the connection, consider handling the StateChange
event.

More Information

For more information about the questions and issues raised in this section, see
“Connections” in Chapter 12, “Improving ADO.NET Performance.”

626 Improving .NET Application Performance and Scalability

Do You Use Commands Efficiently?
Use the following review questions to help review how efficiently your code uses
database commands:
● Do you execute queries that do not return data?

If you do not return values from your stored procedure, use ExecuteNonQuery
for optimum performance.

● Do you execute queries that only return a single value?
Identify queries that return only a single value. Consider changing the query to
use return values and use Command.ExecuteNonQuery, or if you do not have
control over the query, use Command.ExecuteScaler, which returns the value of
the first column of the first row.

● Do you access very wide rows or rows with BLOBs?
If you are accessing very wide rows or rows with BLOB data, use
CommandBehavior.SequentialAccess in conjunction with GetBytes to access
BLOB in chunks.

● Do you use CommandBuilder at runtime?
CommandBuilder objects are useful for design time, prototyping, and code
generation. However, you should avoid using them in production applications
because the processing required to generate commands can affect performance.
Ensure you are not using the CommandBuilder objects at run time.

More Information

For more information about the questions and issues raised in this section, see
“Commands” in Chapter 12, “Improving ADO.NET Performance.”

Do You Use Stored Procedures?
Use the following review questions to review your code’s use of stored procedures:
● Have you analyzed the stored procedure query plan?

During your application’s development stage, you should analyze your stored
procedure query plan. Recompilation is not necessarily a bad thing; the optimizer
recompiles when initial plan is not optimal for other calls. By monitoring and
reducing frequent recompilation, you could avoid performance hits. You can
monitor recompiling stored procedures by creating a trace in SQL Profiler and
track for the SP:Recompile event. Identify the cause of recompilation and take
corrective actions. For more information, see “Execution Plan Recompiles” in
Chapter 14, “Improving SQL Server Performance.”

 Chapter 13: Code Review: .NET Application Performance 627

● Do you have multiple statements within the stored procedure?
Use SET NOCOUNT ON when you have multiple statements within your stored
procedures. This prevents SQL Server from sending the DONE_IN_PROC
message for each statement in the stored procedure and reduces the processing
SQL Server performs as well as the size of the response sent across the network.

● Do you return a result set for small amounts of data?
You should use output parameters and ExecuteNonQuery to return small
amounts of data instead of returning a result set that contains a single row. This
avoids the performance overhead associated with creating the result set on the
server. If you need to return several output parameters, you can select them into
variables and then emit a single row by selecting with all the variables so there’s
one resultset for all.

● Do you use CommandType.Text with OleDbCommand?
If you use the OleDbCommand, use CommandType.Text. If you use
CommandType.StoredProcedure, ODBC call syntax is generated by the provider
anyway. By using explicit call syntax, you reduce the work of the provider.

More Information

For more information about the questions and issues raised in this section, see
“Stored Procedures” in Chapter 12, “Improving ADO.NET Performance.”

Do You Use Transact-SQL?
If you use T-SQL, review the following questions:
● Do you restrict the amount of data selected?

Returning large amounts of data increases query time and the time it takes to
transfer the data across the network. Similarly updating large amounts of data
increases the load on the database server. Avoid using SELECT * in your queries
and check that you restrict the amount of data that you select in your queries, for
example, by using an appropriate WHERE clause.

● Do you use Select Top in rows?
Using Top in your SELECT statements enables you to limit the number of rows
that can be returned by the select command. If you implement client-side paging,
it makes sense to make use this feature. The query processing is aborted when the
specified number of rows have been retrieved.
For more information about paging data, see “How To: Page Records in .NET
Applications” in the “How To” section of this guide.

628 Improving .NET Application Performance and Scalability

● Do you select only the columns you need?
Select only columns you need instead of using SELECT * queries. This reduces
the network traffic in addition to reducing the processing on the database server.
Reducing your columns to the minimum also makes it easier for SQL Server to use
an index to cover your query. If all the columns you need are in a usable index that
is smaller than the main table, less I/O is required because the index contains the
full result. Indexes are often created exactly for this reason, or columns are added
to existing indexes not because of the sorting needs but to make the index better at
“covering” the necessary queries. Creation of “covering” indexes is vital because if
the index does not cover the query, the main table needs to be access (a so-called
bookmark lookup from the index). From a performance perspective, these are
equivalent to using joins.

● Do you batch multiple queries to avoid round trips?
Batching is the process of sending several SQL statements in one trip to the
server. Batching can increase performance by reducing round trips to the
database. Where possible, batch multiple SQL statements together and use the
DataReader.NextResult method to improve performance. Another alternative is
to batch multiple SQL statements within a stored procedure.

Do You Use Parameters?
Use the following review questions to review your code’s use of parameters:
● Do you use parameters for all your stored procedures and SQL statements?

Using parameters when calling SQL statements as well as stored procedures can
increase performance. Identify areas in your code where you call SQL statements
or stored procedures and ensure that you are explicitly creating parameters and
supplying the parameter type, size, precision, and scale.

● Do you explicitly specify the parameter types?
Specifying the parameter types prevents unnecessary type conversions that are
otherwise performed by the data provider. Use the enumeration type that is
relevant for the connection used by you; for example, SqlDbType or OledbType.

● Do you cache the parameters for a frequently called stored procedure?
Consider caching the stored procedure parameters if you invoke stored
procedures frequently to improve performance. If ASP.NET pages calls stored
procedures, you can use cache APIs. If your data access code is factored into a
separate component, caching helps only if your components are stateful. A good
approach is to cache parameter arrays in a Hashtable. Each parameter array
contains the parameters that are required by a particular stored procedure used
by a particular connection.

 Chapter 13: Code Review: .NET Application Performance 629

More Information

For more information about the questions and issues raised in this section, see
“Parameters” in Chapter 12, “Improving ADO.NET Performance.”

Do you use DataReaders?
If you use DataReaders, review the following questions:
● Do you close your DataReaders?

Scan your code to ensure you are closing your DataReaders as soon as you
are finished with them. You should call Close or Dispose in a finally block.
If you pass a DateReader back from a method, use
CommandBahavior.CloseConnection to ensure the connection gets closed
when the reader is closed.

● Do you use index to read from a DataReader?
All output from a DataReader should be read using an index (for example,
rdr.GetString(0)) which is faster, but for readability and maintainability, you
might prefer to use the string names of the columns. If you are accessing the same
columns multiple times (for example, when you retrieve a number of rows), you
should use local variables that store the index number of the columns. You can use
rdr.GetOrdinal() to retrieve the ordinal position of a column.
For more information, see “Use GetOrdinal when Using an Index-Based Lookup”
in Chapter 12, “Improving ADO.NET Performance.”

Do You Use DataSets?
Use the following review questions to review your code’s use of DataSets:
● Do you serialize DataSets?

Inefficient serializing of DataSets is a major performance issue for remote
calls. You should avoid sending DataSets (especially when using .NET remoting)
and consider alternative means of sending data over the wire, such as arrays or
simple collections, where possible.
If you serialize DataSets, make sure you adhere to the following guidelines:
● Only return relevant data in the DataSet.
● Consider using alias column names to shorter actual column names. This helps

reduce the size of the DataSet.
● Avoid multiple versions of the data. Call AcceptChanges before serializing a

DataSet.
● When serializing a DataSet over a Remoting channel, use the

DataSetSurrogate class.

630 Improving .NET Application Performance and Scalability

For more information, see “How To: Improve Serialization Performance” in the
“How To” section of this guide and Knowledge Base article 829740, “Improving
DataSet Serialization and Remoting Performance,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;829740.

● Do you search data which has a primary key column?
If you need to search a DataSet using a primary key, create the primary key on
the DataTable. This creates an index that the Rows.Find method can use to
quickly find the required records. Avoid using DataTable.Select, which does not
use indices.

● Do you search data which does not have a primary key?
If you need to repetitively search by nonprimary key data, create a DataView with
a sort order. This creates an index that can be used to improve search efficiency.
This is best suited to repetitive searches as there is some cost to creating the index.

● Do you use DataSets for XML data?
If you do not pass the schema for the XML data, the DataSet tries to infer the
schema at run time. Pass XmlReadMode.IgnoreSchema to the ReadXml method
to ensure that schema is not inferred.

More Information

For more information about the questions and issues raised in this section,
see “Connections” in Chapter 12, “Improving ADO.NET Performance.”

Do You Use Transactions?
Use the following review questions to review your code’s use of transactions:
● What isolation level do you use?

Different isolation levels have different costs. Applications may have to operate at
different transaction isolation levels, depending on their business needs. You need
to choose the isolation level that is appropriate for the scenario. For example,
scenarios that require a high degree of data integrity need a higher isolation level.

● Do you have long-running transactions?
Having a long-running transaction with high isolation levels prevents other
users from reading the data. Instead of locking resources for the duration of the
transaction, consider accommodating various states within your schema (for
example, ticket status PENDING, instead of locking the row). Another option is
to use compensating transactions.

http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740

 Chapter 13: Code Review: .NET Application Performance 631

● Did you turn off automatic transaction enlistment if it’s not needed?
If you use the.NET Framework Data Provider for SQL Server, you can turn off
automatic transaction enlistment by setting Enlist to false in the connection string,
as shown in the following code, when you are not dealing with an existing
distribution transaction.

SqlConnection LondonSqlConnection = new SqlConnection(
"Server=London;Integrated Security=true;Enlist=false;");

More Information

For more information about the questions and issues raised in this section,
see “Transactions” in Chapter 12, “Improving ADO.NET Performance.”

Do You Use Binary Large Objects (BLOBS)?
Use the following review questions to review your code’s use of BLOB data:
● Do you store BLOBs in the database?

Reading and writing BLOBs to and from a database is an expensive operation, not
only from a database perspective, but also from a code perspective. This is because
there is also a memory impact associated with accessing BLOB data. If you store
files such as images or documents that are frequently accessed by a Web server,
consider storing the files on the Web server’s file system and maintaining a list of
all the objects in the database. This can increase performance by avoiding frequent
moving of BLOBs from the database to the Web server.

Note: This approach adds a maintenance overhead of having to update the links if the file path
changes.

If you have a large store of images that is too large for a Web server, storing it in
the SQL database as BLOBs is the right choice.

● Do you use a DataReader to read BLOBs?
If you access BLOB data, check that you use
CommandBehavior.SequentialAccess in conjunction with the GetBytes,
GetChars, or GetString methods to read BLOB in chunks.

● Do you read or write BLOBs to SQL Server database?
Ensure that you use READTEXT and UPDATETEXT to read and write large
BLOBs to a SQL Server database. Use READTEXT to read text, ntext, varchar,
varbinary, or image values. This enables you to read the data in chunks to
improve performance. Use UPDATETEXT to write data in chunks.
However, if you “BLOB” an item that is relatively small, you can consider reading
it in a statement or operation rather than in chunks. This depends on your
network bandwidth and workload.

632 Improving .NET Application Performance and Scalability

● Do you read or write BLOBs to an Oracle database?
Ensure that you use the System.Data.OracleClient.OracleLob class to read and
write BLOBs to an Oracle database. The Read and Write methods provide the
flexibility of reading and writing the data in chunks.

More Information

For more information about the questions and issues raised in this section, see
“Binary Large Objects” in Chapter 12, “Improving ADO.NET Performance.”

Do You Page Through Data?
Use the following review questions to review your code’s use of paging records:
● Do you page data based on user query (such as results of a search query)?

If you need to page through a large amount of data based on user queries,
consider using SELECT TOP along with the table data type in your stored
procedures. For more information, see “How To: Page Records in .NET
Applications” in the “How To” section of this guide.

● Do you page through data which is mostly static over a period of time?
If you need to page through large amounts of data that is same for all users and
is mostly static, consider using SELECT TOP along with the global temptable in
your stored procedures. If you take this approach, ensure you have a policy in
place to manage factors, such as refreshing the temp table with current data. For
more information refer to “How To: Page Records in .NET Applications”.

More Information
For more information about the issues raised in this section, see Chapter 12,
“Improving ADO.NET Performance.”

Summary
Performance and scalability code reviews are similar to regular code reviews or
inspections, except that the focus is on the identification of coding flaws that can
lead to reduced performance and scalability.

This chapter has shown how to review managed code for top performance and
scalability issues. It has also shown you how to identify other more subtle flaws
that can lead to performance and scalability issues.

Performance and scalability code reviews are not a panacea. However, they can be
very effective and should be a regular milestone in the development life cycle.

 Chapter 13: Code Review: .NET Application Performance 633

Additional Resources
For more information, see the following resources:
● Chapter 4 “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 6, “Improving ASP.NET Performance.”
● Chapter 7, “Improving Interop Performance.”
● Chapter 8, “Improving Enterprise Services Performance.”
● Chapter 9, “Improving XML Performance.”
● Chapter 10, “Improving Web Services Performance.”
● Chapter 11, “Improving Remoting Performance.”
● Chapter 12, “Improving ADO.NET Performance.”

For printable checklists, see the following checklists in the “Checklists” section of
this guide:
● “Checklist: ASP.NET Performance.”
● “Checklist: Managed Code Performance.”
● “Checklist: Enterprise Services Performance.”
● “Checklist: Interop Performance.”
● “Checklist: Remoting Performance.”
● “Checklist: Web Services Performance.”
● “Checklist: XML Performance.”

For further reading, see the following resource:
● For more information about designing for performance, see “Performance” on

MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html
/vxconPerformance.asp?frame=true.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconPerformance.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconPerformance.asp?frame=true

Part IV
Database Server Performance
and Scalability

In This Part
● Improving SQL Server Performance

14
Improving SQL Server Performance

Objectives
● Design efficient schemas.
● Optimize queries.
● Fine-tune indexes.
● Perform efficient transactions.
● Build efficient stored procedures.
● Analyze and understand execution plans.
● Identify and eliminate execution plan recompiles.
● Avoid scalability pitfalls when you use SQL XML.
● Tune Microsoft SQL Server.
● Test and monitor your data access performance.
● Consider how deployment decisions impact performance and scalability.

Overview
There are many issues that affect SQL Server performance and scalability.
This chapter discusses these issues, starting with data design and ending with
deployment. The chapter emphasizes the techniques you can use to obtain the
biggest gains in performance and scalability. You usually can obtain the biggest
gains by creating efficient data access code for the application and by using correct
development techniques. You usually do not obtain such big gains in performance
and scalability by changing SQL Server configuration settings.

638 Improving .NET Application Performance and Scalability

Figure 14.1 shows where your performance design and tuning efforts are
best focused.

P
er

fo
rm

an
ce

 G
ai

ns

Windows OS SQL Server Hardware Database Application

Figure 14.1
Focus for performance design and tuning efforts

The graph is meant to reflect the typical situation and to underscore the point that
you obtain the best performance and scalability gains in application development.
Indexing is considered part of the application development effort, although it is also
part of administration.

How to Use This Chapter
Use this chapter to apply proven strategies and best practices for designing
and writing high-performance interop code. To get the most out of this chapter,
do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of performance and
scalability design issues.

● Measure your application performance. Read the “ADO.NET / Data Access”
and “.NET Framework Technologies” sections of Chapter 15, “Measuring .NET
Application Performance,” to learn about the key metrics that you can use to
measure application performance. It is important for you to measure application
performance so that you can accurately identify and resolve performance issues.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important for you to apply a coherent testing process and to analyze the results.

 Chapter 14: Improving SQL Server Performance 639

● Tune your application performance. Read the “ADO.NET Tuning” and “SQL
Server Tuning” sections of Chapter 17, “Tuning .NET Application Performance,”
to learn how to resolve performance issues that you identify through the use of
tuning metrics.

● Use the accompanying checklist in the “Checklists” section of this guide. Use
the “Checklist: SQL Server Performance” checklist to quickly view and evaluate
the guidelines presented in this chapter.

SQL: Scale Up vs. Scale Out
Scaling up refers to moving an application to a larger class of hardware that uses
more powerful processors, more memory, and quicker disk drives. Scaling out refers
to an implementation of federated servers, where consumer-class computers are
added and where data is then partitioned or replicated across them. You can scale
out by using functional partitioning. For example, you might scale out by putting
your Customer Relationship Management (CRM) functionality on one server and
your Enterprise Resource Planning (ERP) functionality on another server. Or, you
could scale out by using data partitioning. For example, you might scale out by
creating updatable partitioned views across databases.

Do not consider scaling up or scaling out until you are certain that you are getting
the best performance that you can through application optimization. Consider the
following scenarios when it comes to addressing two common scalability bottlenecks:
● Processor and memory-related bottlenecks. Scaling up is usually a good

approach if your bottlenecks are processor related or memory related. By
upgrading to a faster processor or by adding more processors, you maximize
use of your existing hardware resources. You can resolve memory bottlenecks
by adding additional memory or by upgrading existing memory. The /3GB switch
in the Boot.ini file and Address Windowing Extensions (AWE) also help maximize
memory use.
For more information about AWE, search for “AWE SQL Server” (without
quotation marks) on the Microsoft support site at http://support.microsoft.com.

● Disk I/O-related bottlenecks. Scaling up can also help to resolve disk I/O-related
bottlenecks. This form of bottleneck usually occurs in online transaction
processing (OLTP) applications where an application performs random disk reads
and writes, in contrast to sequential access in online analytical processing (OLAP)
applications. For OLTP applications, the I/O load can be spread by adding disk
drives. Adding memory also helps reduce I/O load. Because the I/O load is
reduced, the size of the SQL Server buffer cache increases. As a result, page faults
are reduced.

http://support.microsoft.com/

640 Improving .NET Application Performance and Scalability

Consider the following guidelines before you decide to scale up or scale out:
● Optimize the application before scaling up or scaling out.
● Address historical and reporting data.
● Scale up for most applications.
● Scale out when scaling up does not suffice or is cost-prohibitive.

Optimize the Application Before Scaling Up or Scaling Out
Before you decide to scale up or to scale out, you need to be sure that it is required.
Scaling out works best when you plan and design for it in the early stages of your
application development life cycle. Changing your application after it is in
production so that you can scale up or scale out is expensive. In addition, certain
initial design decisions that you make may prevent you from scaling out later.

You can resolve most performance and scalability issues by performing the
optimization steps that are outlined in the rest of this chapter. These optimizations
help reduce the impact of bottlenecks that are caused by specific design or
implementation techniques. These optimizations also help ensure that existing
resources are fully utilized. For example, with optimization, you can resolve
bottlenecks that are caused by inefficient locking, unprepared SQL statements, poor
indexes that lead to increased CPU utilization, and memory or disk I/O utilization.

In practice, you need to simulate your data usage and growth early in the application
life cycle by using a realistic workload. Simulating your data usage and growth helps
you identify scalability issues sooner rather than later so that you can modify your
design and approach to mitigate those issues.

Address Historical and Reporting Data
Historical data may become very large over time and may cause long-running
queries. Consider partitioning historical data by some range, and implement a way
to limit older data. Either move the older data offline, or implement a separate data
warehouse that contains the older data.

Reporting needs may also be very resource intensive. You may consider upgrading
your database server or scaling out to meet your reporting needs. By implementing
a data warehouse or a reporting server, you may be able to provide faster response
times and less resource contention. Additionally, a data warehouse or a reporting
server is easier to manage than multiple servers in a federated server scheme.

More Information

For more information about how to partition historical data, see “Partition Tables
Vertically and Horizontally” later in this chapter.

 Chapter 14: Improving SQL Server Performance 641

Scale Up for Most Applications
If you still have high levels of system resource use after you tune your application
and after you address historical and reporting data issues, consider replacing slow
hardware components with new, faster components. Or, consider adding more
hardware to your existing server.

High levels of system resource use include high CPU utilization, high memory use,
and excessive disk I/O. The new components you might add include additional
processors or memory. Alternatively, consider replacing your existing server with
a new, more powerful server.

Ensure that any configuration changes take full advantage of the new hardware.
For example, you may need to use the /3GB switch in the Boot.ini file. This is an
easy next step for both migration and maintenance reasons. You should perform
tests to help determine the new server capacity that you require.

More Information

For more information about testing, see Chapter 16, “Testing .NET Application
Performance.”

Scale Out When Scaling Up Does Not Suffice or Is Cost-Prohibitive
If your application still does not perform well enough, you can consider scaling
out or implementing a federated servers option. These approaches usually require
certain tables to be horizontally partitioned so that they reside on separate servers.
The approaches may also require some replication between servers of the main
domain tables that also have to be available on a partition.

Disaster recovery and failover are also more complex for federated servers.
You have to determine if the benefit of this added complexity outweighs the cost
advantage of being able to use consumer-class computers for federated servers.

More Information
For general information about SQL Server scalability, see “SQL Server Scalability
FAQ” at http://www.microsoft.com/sql/techinfo/administration/2000/scalabilityfaq.asp.

For more information about federated servers, see “Federated SQL Server 2000
Servers” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec
/8_ar_cs_4fw3.asp.

For general information about application scalability, see “How To: Scale .NET
Applications” in the “How To” section of this guide.

http://www.microsoft.com/sql/techinfo/administration/2000/scalabilityfaq.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec/8_ar_cs_4fw3.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec/8_ar_cs_4fw3.asp

642 Improving .NET Application Performance and Scalability

Performance and Scalability Issues
The main issues relating to SQL Server that affect the performance and the scalability
of your application are summarized in this section. Later sections in this chapter
provide strategies and technical implementation details to help you prevent or
resolve each of the following issues:
● Not knowing the performance and scalability characteristics of your system. If

performance and scalability of a system are important to you, the biggest mistake
that you can make is to not know the actual performance and scalability
characteristics of important queries, and the effect the different queries have on
each other in a multiuser system. You achieve performance and scalability when
you limit resource use and handle contention for those resources. Contention
is caused by locking and by physical contention. Resource use includes CPU
utilization, network I/O, disk I/O, and memory use.

● Retrieving too much data. A common mistake is to retrieve more data than you
actually require. Retrieving too much data leads to increased network traffic, and
increased server and client resource use. This can include both columns and rows.

● Misuse of transactions. Long-running transactions, transactions that depend on
user input to commit, transactions that never commit because of an error, and non-
transactional queries inside transactions cause scalability and performance
problems because they lock resources longer than needed.

● Misuse of indexes. If you do not create indexes that support the queries that are
issued against your server, the performance of your application suffers as a result.
However, if you have too many indexes, the insert and update performance of
your application suffers. You have to find a balance between the indexing needs
of the writes and reads that is based on how your application is used.

● Mixing OLTP, OLAP, and reporting workloads. OLTP workloads are
characterized by many small transactions, with an expectation of very quick
response time from the user. OLAP and reporting workloads are characterized
by a few long-running operations that might consume more resources and cause
more contention. The long-running operations are caused by locking and by the
underlying physical sub-system. You must resolve this conflict to achieve a
scalable system.

● Inefficient schemas. Adding indexes can help improve performance. However,
their impact may be limited if your queries are inefficient because of poor table
design that results in too many join operations or in inefficient join operations.
Schema design is a key performance factor. It also provides information to the
server that may be used to optimize query plans. Schema design is largely a
tradeoff between good read performance and good write performance.
Normalization helps write performance. Denormalization helps read performance.

● Using an inefficient disk subsystem. The physical disk subsystem must provide
a database server with sufficient I/O processing power to permit the database
server to run without disk queuing or long I/O waits.

 Chapter 14: Improving SQL Server Performance 643

Schema
Good, efficient schema design is essential for high performance data access.
Consider the following guidelines when you design your database schema:
● Devote the appropriate resources to schema design.
● Separate OLAP and OLTP workloads.
● Normalize first, denormalize for performance later.
● Define all primary keys and foreign key relationships.
● Define all unique constraints and check constraints.
● Choose the most appropriate data type.
● Use indexed views for denormalization.
● Partition tables vertically and horizontally.

Devote the Appropriate Resources to Schema Design
Too many organizations design tables at the last minute when the tables are needed
for their queries. Take the time and devote the resources that are needed to gather
the business requirements, to design the right data model, and to test the data model.
Make sure that your design is appropriate for your business and that the design
accurately reflects the relationships between all objects. Changing a data model after
your system is already in production is expensive, time consuming, and inevitably
affects a lot of code.

Separate OLAP and OLTP Workloads
OLAP and OLTP workloads on one server have to be designed to not impede each
other. OLAP and reporting workloads tend to be characterized by infrequent, long-
running queries. Users are rarely waiting impatiently for the queries to complete.
OLTP workloads tend to be characterized by lots of small transactions that return
something to the user in less than a second. Long-running queries for analysis,
reports, or ad-hoc queries may block inserts and other transactions in the OLTP
workload until the OLAP query completes.

If you need to support both workloads, consider creating a reporting server that
supports the OLAP and reporting workloads. If you perform lots of analysis,
consider using SQL Server Analysis Services to perform those functions.

644 Improving .NET Application Performance and Scalability

Normalize First, Denormalize for Performance Later
You achieve a good, logical database design by applying normalization rules to
your design. Normalization provides several benefits such as reducing redundant
data. When you reduce redundant data, you can create narrow and compact tables.
However, overnormalization of a database schema may affect performance and
scalability. Obtaining the right degree of normalization involves tradeoffs. On the one
hand, you want a normalized database to limit data duplication and to maintain data
integrity. On the other hand, it may be harder to program against fully normalized
databases, and performance can suffer.

Addresses are one part of a data model that is typically denormalized. Because many
systems store multiple addresses for companies or people over long periods of time,
it is relationally correct to have a separate address table and to join to that table to
always get the applicable address. However, it is common practice to keep the
current address duplicated in the person table or even to keep two addresses because
this type of information is fairly static and is accessed often. The performance benefits
of avoiding the extra join generally outweigh the consistency problems in this case.

The following denormalization approaches can help:
● Start with a normalized model, and then denormalize if necessary. Do not start

with a denormalized model and then normalize it. Typically, each denormalization
requires a compensating action to ensure data consistency. The compensating
action may affect performance.

● Avoid highly abstracted object models that may be extremely flexible but are
complex to understand and result in too many self-joins. For example, many
things can be modeled by using an Object table, an Attributes table, and a
Relationship table. This object model is very flexible, but the self-joins, the alias
joins, and the number of joins become so cumbersome that it is not only difficult
to write queries and understand them, but performance and scalability suffer. For
an abstract object model, try to find some common object types that can be used as
subtypes under the generic Object type, and then try to find the best balance
between flexibility and performance.

Define All Primary Keys and Foreign Key Relationships
Primary keys and foreign key relationships that are correctly defined help ensure
that you can write optimal queries. One common result of incorrect relationships
is having to add DISTINCT clauses to eliminate redundant data from result sets.

When primary and foreign keys are defined as constraints in the database schema,
the server can use that information to create optimal execution plans.

 Chapter 14: Improving SQL Server Performance 645

Declarative referential integrity (DRI) performs better than triggers do, and DRI is
easier to maintain and troubleshoot than triggers are. DRI is checked by the server
before the server performs the actual data modification request. When you use
triggers, the data modification requests are inserted in the Inserted and Deleted
temporary system tables, and the trigger code is run. Depending on the trigger
code, the final modifications are then made or not made,

The sample screen shot in Figure 14.2 shows an execution plan that accesses only
one table, although two tables are included in a join in the query. Because there is a
declared foreign key relationship between the authors table and the titleauthor table,
and the au_id column in the titleauthor table is not allowed to be null, the optimizer
knows it does not need to access the authors table to resolve the query. The result of
the SET STATISTICS IO command also shows that the authors table is never
accessed.

Figure 14.2
Sample execution plan

Define All Unique Constraints and Check Constraints
Unique constraints and check constraints provide more information for the optimizer
to use to create optimal execution plans. A unique constraint gives the optimizer
information about the expected results. A check constraint can be used to determine
whether a table or index has to be accessed to find a result set.

646 Improving .NET Application Performance and Scalability

Figure 14.3 shows a query that references a table that is not scanned at execution
time because the optimizer knows from the check constraint that no rows can be
returned. To try this example, create a check constraint on the Quantity column
that allows only values greater than zero. The SET STATISTICS IO command output
shows no physical or logical reads and a scan count of zero. The output shows this
because the constraint information answered the query.

Figure 14.3
Example of a check constraint that prevents unnecessary reads

More Information

For more information, see MSDN article, “SET STATISTICS IO,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_set-set_0q0f.asp.

Choose the Most Appropriate Data Type
Choose the most appropriate data type, with the appropriate size and nullability.
Consider each of the following when you are choosing a data type:
● Try to choose the smallest data type that works for each column. Also, choose

the most appropriate type because both explicit and implicit conversions may be
costly in terms of the time that it takes to do the conversion. They also may be
costly in terms of the table or index scans that may occur because the optimizer
cannot use an index to evaluate the query.

● Try to avoid nullable foreign key columns to limit the amount of outer joins that
might need to be written. Outer joins tend to be more expensive to process than
inner joins. If there are cases where the foreign key value may not be known,
consider adding a row in the other table that would be the unknown case. Some
database architects use one row for the unknown case, one row for the case that is
not applicable, and one row for the case that is not determined yet. This approach
not only allows for inner joins rather than outer joins, but it provides more
information about the actual nature of the foreign key value.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_set-set_0q0f.asp

 Chapter 14: Improving SQL Server Performance 647

● Columns that use the text data type have extra overhead because they are stored
separately on text/image pages rather than on data pages. Use the varchar type
instead of text for superior performance for columns that contain less than 8,000
characters.

● The sql_variant data type allows a single column, parameter, or variable to store
data values of different data types like int and nchar. However, each instance of a
sql_variant column records the data value and additional metadata. The metadata
includes the base data type, maximum size, scale, precision, and collation. While
sql_variant provides flexibility, the use of sql_variant affects performance because
of the additional data type conversion.

● nicode data types like nchar and nvarchar take twice as much storage
space compared to ASCII data types like char and varchar. The speed factors
specific to SQL Server are discussed in the article referenced in the following
“More Information” section. However, note that strings in the Microsoft .NET
Framework and in the Microsoft Windows 2000 kernel are Unicode. If you need
or anticipate needing Unicode support, do not hesitate to use them.

More Information

For more information, see the “Performance and Storage Space” section
of “International Features in Microsoft SQL Server 2000” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html
/intlfeaturesinsqlserver2000.asp.

Use Indexed Views for Denormalization
When you have joins across multiple tables that do not change frequently, such as
domain or lookup tables, you can define an indexed view for better performance.
An indexed view is a view that is physically stored like a table. The indexed view is
updated by SQL Server when any of the tables that the indexed view is based on are
updated. This has the added benefit of pulling I/O away from the main tables and
indexes.

Partition Tables Vertically and Horizontally
You can use vertical table partitioning to move infrequently used columns into
another table. Moving the infrequently used columns makes the main table
narrower and allows more rows to fit on a page.

Horizontal table partitioning is a bit more complicated. But when tables that use
horizontal table partitioning are designed correctly, you may obtain huge scalability
gains. One of the most common scenarios for horizontal table partitioning is to
support history or archive databases where partitions can be easily delineated by
date. A simple method that you can use to view the data is to use partitioned views
in conjunction with check constraints.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/intlfeaturesinsqlserver2000.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/intlfeaturesinsqlserver2000.asp

648 Improving .NET Application Performance and Scalability

Data-dependent routing is even more effective for very large systems. With this
approach, you use tables to hold partition information. Access is then routed to the
appropriate partition directly so that the overhead of the partitioned view is avoided.

If you use a partitioned view, make sure that the execution plan shows that only the
relevant partitions are being accessed. Figure 14.4 shows an execution plan over a
partitioned view on three orders tables that have been horizontally partitioned by
the OrderDate column. There is one table per year for 1996, 1997, and 1998. Each
table has a PartitionID column that has a check constraint. There is also a partition
table that includes a PartitionID and the year for that partition. The query then uses
the partition table to get the appropriate PartitionID for each year and to access only
the appropriate partition.

Although the graphical query plan includes both tables in the plan, moving the
mouse over the Tip on the Filter icon shows that this is a start filter, as seen in the
STARTUP clause in the argument of the filter. A start filter is a special type of filter
that you want to see in plans that use partitioned views.

Figure 14.4
An execution plan that shows the filter details

 Chapter 14: Improving SQL Server Performance 649

Note that the SET STATISITCS IO output shown in Figure 14.5 shows that only the
Orders98 table was actually accessed.

Figure 14.5
SET STATISTICS IO output

More Information

For more information about the graphical execution plan, see “Graphically
Displaying the Execution Plan Using SQL Query Analyzer” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql
/odp_tun_1_5pde.asp.

Queries
Writing efficient queries in SQL Server is more an exercise in writing elegant
relational queries than in knowing specific tricks and syntax tips. Generally, a well-
written, relationally correct query written against a well-designed relationally correct
database model that uses the correct indexes produces a system that performs fairly
well and that is scalable. The following guidelines may help you create efficient
queries:
● Know the performance and scalability characteristics of queries.
● Write correctly formed queries.
● Return only the rows and columns needed.
● Avoid expensive operators such as NOT LIKE.
● Avoid explicit or implicit functions in WHERE clauses.
● Use locking and isolation level hints to minimize locking.
● Use stored procedures or parameterized queries.
● Minimize cursor use.
● Avoid long actions in triggers.
● Use temporary tables and table variables appropriately.
● Limit query and index hints use.
● Fully qualify database objects.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_5pde.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_5pde.asp

650 Improving .NET Application Performance and Scalability

Know the Performance and Scalability Characteristics of Queries
The best way to achieve performance and scalability is to know the characteristics
of your queries. Although it is not realistic to monitor every query, you should
measure and understand your most commonly used queries. Do not wait until
you have a problem to perform this exercise. Measure the performance of your
application throughout the life cycle of your application.

Good performance and scalability also requires the cooperation of both developers
and database administrators. The process depends on both query development and
index development. These areas of development typically are found in two different
job roles. Each organization has to find a process that allows developers and database
administrators to cooperate and to exchange information with each other. Some
organizations require developers to write appropriate indexes for each query and to
submit an execution plan to the database architect. The architect is responsible for
evaluating the system as a whole, for removing redundancies, for finding efficiencies
of scale, and for acting as the liaison between the developer and the database
administrator The database administrator can then get information on what indexes
might be needed and how queries might be used. The database administrator can
then implement optimal indexes.

In addition, the database administrator should regularly monitor the SQL query
that consumes the most resources and submit that information to the architect and
developers. This allows the development team to stay ahead of performance issues.

Write Correctly Formed Queries
Ensure that your queries are correctly formed. Ensure that your joins are correct, that
all parts of the keys are included in the ON clause, and that there is a predicate for all
queries. Pay extra attention to ensure that no cross products result from missing ON
or WHERE clauses for joined tables. Cross products are also known as Cartesian
products.

Do not automatically add a DISTINCT clause to SELECT statements. There is no
need to include a DISTINCT clause by default. If you find that you need it because
duplicate data is returned, the duplicate data may be the result of an incorrect data
model or an incorrect join. For example, a join of a table with a composite primary
key against a table with a foreign key that is referencing only part of the primary key
results in duplicate values. You should investigate queries that return redundant data
for these problems.

 Chapter 14: Improving SQL Server Performance 651

Return Only the Rows and Columns Needed
One of the most common performance and scalability problems are queries that
return too many columns or too many rows. One query in particular that returns
too many columns is the often-abused SELECT * FROM construct. Columns in the
SELECT clause are also considered by the optimizer when it identifies indexes for
execution plans. Using a SELECT * query not only returns unnecessary data, but it
also can force clustered index scans for the query plan, regardless of the WHERE
clause restrictions. This happens because the cost of going back to the clustered index
to return the remaining data from the row after using a non-clustered index to limit
the result set is actually more resource-intensive than scanning the clustered index.

The query shown in Figure 14.6 shows the difference in query cost for a SELECT *
compared to selecting a column. The first query uses a clustered index scan to resolve
the query because it has to retrieve all the data from the clustered index, even though
there is an index on the OrderDate column. The second query uses the OrderDate
index to perform an index seek operation. Because the query returns only the
OrderID column, and because the OrderID column is the clustering key, the query is
resolved by using only that index. This is much more efficient; the query cost relative
to the batch is 33.61 percent rather than 66.39 percent. These numbers may be
different on your computers.

Figure 14.6
Difference in query cost for a SELECT * query compared to selecting a column

652 Improving .NET Application Performance and Scalability

Often, too many rows are returned because the application design allows a user to
select large result sets from search forms. Returning hundreds or even thousands of
results to a user stresses the server, the network, and the client. A large amount of
data is generally not what the end user requires. Use a design pattern that supports
paging, and return only a page or two of the requested data at a time.

Queries that call other queries that return too many columns and rows to the calling
query are another often-overlooked consideration. This includes queries that are
written as views or table-valued functions or views. Although views are useful for
many reasons, they may return more columns than you need, or they may return all
the rows in the underlying table to the calling query.

More Information

For more information about data paging, see “How To: Page Records in .NET
Applications” in the “How To” section of this guide.

Avoid Expensive Operators Such as NOT LIKE
Some operators in joins or predicates tend to produce resource-intensive operations.
The LIKE operator with a value enclosed in wildcards (“%a value%”) almost always
causes a table scan. This type of table scan is a very expensive operation because of
the preceding wildcard. LIKE operators with only the closing wildcard can use an
index because the index is part of a B+ tree, and the index is traversed by matching
the string value from left to right.

Negative operations, such as <> or NOT LIKE, are also very difficult to resolve
efficiently. Try to rewrite them in another way if you can. If you are only checking for
existence, use the IF EXISTS or the IF NOT EXISTS construct instead. You can use an
index. If you use a scan, you can stop the scan at the first occurrence.

Avoid Explicit or Implicit Functions in WHERE Clauses
The optimizer cannot always select an index by using columns in a WHERE clause
that are inside functions. Columns in a WHERE clause are seen as an expression
rather than a column. Therefore, the columns are not used in the execution plan
optimization. A common problem is date functions around datetime columns. If
you have a datetime column in a WHERE clause, and you need to convert it or use
a data function, try to push the function to the literal expression.

The following query with a function on the datetime column causes a table scan in
the NorthWind database, even though there is an index on the OrderDate column:

SELECT OrderID FROM NorthWind.dbo.Orders WHERE DATEADD(day, 15, OrderDate) =
'07/23/1996'

 Chapter 14: Improving SQL Server Performance 653

However, by moving the function to the other side of the WHERE equation, an index
can be used on the datetime column. This is shown in the following example:

SELECT OrderID FROM NorthWind.dbo.Orders WHERE OrderDate = DATEADD(day, -15,
'07/23/1996')

The graphical execution plan for both of these queries is shown in Figure 14.7, which
shows the difference in plans. Note the Scan icon for the first query and the Seek icon
for the second query. Figure 14.7 also shows the comparative difference in query costs
between the two queries; the first query has an 85.98 percent cost compared to the
14.02 percent cost for the second query. The costs on your computer may be different.

Figure 14.7
Query comparison

Implicit conversions also cause table and index scans, often because of data type
mismatches. Be especially wary of nvarchar and varchar data type mismatches and
nchar and char data type mismatches that cause an implicit conversion. You can see
these in the following execution plan. The following example uses a local variable of
type char against an nchar column in the Customers table. The type mismatch causes
an implicit conversion and a scan in this example:

DECLARE @CustID CHAR(5)
SET @CustID = 'FOLKO'
SELECT CompanyName FROM NorthWind.dbo.Customers WHERE CustomerID = @CustID

654 Improving .NET Application Performance and Scalability

Figure 14.8 shows the results of the type mismatch.

Figure 14.8
Output showing an implicit conversion

Use Locking and Isolation Level Hints to Minimize Locking
Locking has a huge impact on performance and scalability. Locking also affects
perceived performance because of the wait for the locked object. All applications
experience a certain level of locking. The key is to understand the type of locking
that is occurring, the objects that are being locked, and most importantly, the
duration of each locking occurrence.

There are three basic types of locks in SQL Server:
● Shared
● Update
● Exclusive

Note: There are also intent, schema, and bulk update locks, but these locks are less significant and
are not addressed in this chapter.

 Chapter 14: Improving SQL Server Performance 655

Shared locks are compatible with other shared locks, but they are not compatible
with exclusive locks. Update locks are compatible with shared locks, but they are not
compatible with exclusive locks or with other update locks. Exclusive locks are not
compatible with shared locks, update locks, or other exclusive locks. Different types
of locks are held for different amounts of time to obtain the requested isolation level.

There are four ANSI isolation levels that can be specified for transactions in SQL
Server:
● Read uncommitted
● Read committed
● Repeatable read
● Serializable

Each of these isolation levels allow zero or more of the isolation level phenomena
to occur:
● Dirty reads. Dirty reads are transactions that see the effects of other transactions

that were never committed.
● Nonrepeatable reads. Nonrepeatable reads are transactions that see only

committed data from other transactions. In a nonrepeatable read, data
changes when it is referenced multiple times in the transaction.

● Phantoms. Phantoms are transactions that see or that do not see rows that
are inserted or deleted from another transaction that is not committed yet.

The default isolation level in SQL Server 2000 is read committed. Figure 14.9 shows
the phenomena that are allowed at each isolation level.

Isolation Level Phenomena Allowed

Read uncommitted

High

Dirty Read
Non Repeatable Read
Phantoms

C
on

cu
rr

en
cy

Low

Low

C
on

si
st

en
cy

High

Read committed

Repeatable read

Serializable

Non Repeatable Read
Phantoms

Phantoms

-

Figure 14.9
ANSI isolation levels

656 Improving .NET Application Performance and Scalability

Instead of accepting the default SQL Server isolation level of read committed, you
can explicitly select the appropriate isolation level for code. You can do this by using
isolation levels or locking hints.

WITH NOLOCK and WITH READUNCOMMITTED
If you designed your application to use locking hints, use the WITH (NOLOCK) or
WITH (READUNCOMMITTED) table hint in SELECT statements to avoid generating
read locks that may not be required. This can provide a significant increase in
scalability, especially where SELECT statements are run at a serializable isolation
level because the SELECT statement is called within an explicit transaction that starts
in a middle-tier object using Microsoft Transaction Server (MTS), COM+, or
Enterprise Services. Another approach is to determine if the transaction as a whole
can run at a lower isolation level. You can use the SET TRANSACTION ISOLATION
LEVEL command to change the isolation level for all transactions in a SQL Server
session.

UPDLOCK
A common technique for handling deadlocks is to use an UPDLOCK table hint on
SELECT statements that are commonly involved in transactions that deadlock. The
UPDLOCK issues update locks, and it holds the locks until the end of the transaction.
The typical shared lock that is issued by a SELECT statement is only held until the
row has been read. By holding the update lock until the end of the transaction, other
users can still read the data but cannot acquire a lock that you may need later. This is
a common deadlock scenario.

TABLOCK
You can use the TABLOCK table hint to improve performance when you use the bulk
insert command. When there are large amounts of inserts, requesting a lock on the
entire table helps by relieving the lock manager of the overhead of managing
dynamic locking. However, requesting a lock on the entire table blocks all other users
on the table. It therefore is not something you should do when other users need to
use the system.

To use locking and isolation level locking hints effectively, you have to understand
locking behavior in SQL Server and the specific needs of your application. You can
then select the best mechanism for key queries. In general, the default isolation level
and locking of SQL Server is best, but you can increase scalability by using other
locking hints when you need to.

 Chapter 14: Improving SQL Server Performance 657

Use Stored Procedures or Parameterized Queries
Significant work has been done in SQL Server 2000 to optimize dynamic code,
especially with the addition of the sp_executesql system stored procedure and
the ability to reuse execution plans for parameterized queries. However, stored
procedures still generally provide improved performance and scalability.

Consider the following issues when you decide whether to store your SQL
commands on the server by using stored procedures or to embed commands
in your application by using embedded SQL statements:
● Logic separation. When you design your data access strategy, separate business

logic from data manipulation logic for performance, maintainability and flexibility
benefits. Validate business rules before you send the data to the database to help
reduce network trips. Separate your business logic from data manipulation logic
to isolate the impact of database changes or business rule changes. Use stored
procedures to clarify the separation by moving the data manipulation logic away
from the business logic so the two do not become intertwined. Establish standards
that identify the proper coding standards to avoid intermingling of logic.

● Tuning and deployment. Stored procedure code is stored in the database and
allows database administrators to review data access code and to tune both the
stored procedures and the database independent of the deployed application. You
do not always need to redeploy your application when stored procedures change.
Embedded SQL is deployed as part of the application code and requires database
administrators to profile the application to identify the SQL that is actually used.
This complicates tuning, and you must redeploy the application if any changes are
made.

● Network bandwidth. Source code for stored procedures is stored on the server,
and you only send the name and parameters across the network to the server.
However, when you use embedded SQL, the full source of the commands must
be transmitted each time the commands are run. By using stored procedures, you
can reduce the amount of data sent to the server, particularly when large SQL
operations are frequently run.

● Simplified batching of commands. Stored procedures offer simplified and more
maintainable batching of work.

● Improved data security and integrity. Stored procedures are strongly
recommended to ensure data security, to promote data integrity, and to support
performance and scalability. Administrators can secure the tables against direct
access or manipulation. Users and applications are granted access to the stored
procedures that enforce data integrity rules. Using embedded SQL typically
requires advanced permissions on tables and may allow unauthorized
modification of data.

658 Improving .NET Application Performance and Scalability

● SQL injection. Avoid using dynamically generated SQL with user input. SQL
injection may occur when malicious user input is used to perform unauthorized
actions such as retrieving too much data or destructively modifying data.
Parameterized stored procedures and parameterized SQL statements can both
help reduce the likelihood of SQL injection. By using the parameters collections,
you force parameters to be treated as literal values rather than executable code.
You should also constrain all user input to reduce the likelihood of a SQL injection
attack.

More Information

For more information about how to prevent SQL injection, see Chapter 14,
“Building Secure Data Access,” in Improving Web Application Security: Threats and
Countermeasures at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/THCMCh14.asp.

Minimize Cursor Use
Cursors force the database engine to repeatedly fetch rows, negotiate blocking,
manage locks, and transmit results. Use forward-only and read-only cursors unless
you need to update tables. More locks may be used than are needed, and there is an
impact on the tempdb database. The impact varies according to the type of cursor
used.

The forward-only, read-only cursor is the fastest and least resource-intensive way to
get data from the server. This type of cursor is also known as a firehose cursor or a
local fast-forward cursor. If you feel that you really need to use a cursor, learn more
about the different types of cursors, their locking, and their impact on the tempdb
database.

Often, cursors are used to perform a function row by row. If there is a primary key on
a table, you can usually write a WHILE loop to do the same work without incurring
the overhead of a cursor. The following example is very simple but demonstrates this
approach:

declare @currid int

select @currid = min(OrderID)
from Orders where OrderDate < '7/10/1996'

while @currid is not null
begin
 print @currid
 select @currid = min(OrderID)
 from Orders
 where OrderDate < '7/10/1996'
 and OrderID > @currid

end

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh14.asp

 Chapter 14: Improving SQL Server Performance 659

More Information

For more information about cursors, see “Transact-SQL Cursors”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/acdata
/ac_8_con_07_9bzn.asp.

Avoid Long Actions in Triggers
Trigger code is often overlooked when developers evaluate systems for performance
and scalability problems. Because triggers are always part of the INSERT, UPDATE,
or DELETE calling transactions, a long-running action in a trigger can cause locks to
be held longer than intended, resulting in blocking of other queries. Keep your
trigger code as small and as efficient as possible. If you need to perform a long-
running or resource-intensive task, consider using message queuing to accomplish
the task asynchronously.

Use Temporary Tables and Table Variables Appropriately
If your application frequently creates temporary tables, consider using the table
variable or a permanent table. You can use the table data type to store a row set
in memory. Table variables are cleaned up automatically at the end of the function,
stored procedure, or batch that they are defined in. Many requests to create
temporary tables may cause contention in both the tempdb database and in the
system tables. Very large temporary tables are also problematic. If you find that you
are creating many large temporary tables, you may want to consider a permanent
table that can be truncated between uses.

Table variables use the tempdb database in a manner that is similar to how table
variables use temporary tables, so avoid large table variables. Also, table variables
are not considered by the optimizer when the optimizer generates execution plans
and parallel queries. Therefore, table variables may cause decreased performance.
Finally, table variables cannot be indexed as flexibly as temporary tables.

You have to test temporary table and table variable usage for performance. Test
with many users for scalability to determine the approach that is best for each
situation. Also, be aware that there may be concurrency issues when there are many
temporary tables and variables that are requesting resources in the tempdb database.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/acdata/ac_8_con_07_9bzn.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/acdata/ac_8_con_07_9bzn.asp

660 Improving .NET Application Performance and Scalability

Limit Query and Index Hints Use
Although the previous section discusses how to use table hints to limit locking, you
should use query and index hints only if necessary. Query hints include the MERGE,
HASH, LOOP, and FORCE ORDER hints that direct the optimizer to select a specific
join algorithm. Index hints are table hints where a certain index is specified for the
optimizer to use. Generally the optimizer chooses the most efficient execution plan.
Forcing an execution plan by specifying an index or a join algorithm should be a last
resort. Also, remember that SQL Server uses a cost-based optimizer; costs change
over time as data changes. Hints may no longer work for a query, and the hint may
never be reevaluated.

If you find that the optimizer is not choosing an optimal plan, try breaking your
query into smaller pieces. Or, try another approach to the query to obtain a better
plan before you decide to use hard-coded query hints.

Fully Qualify Database Objects
By fully qualifying all database objects with the owner, you minimize overhead
for name resolution, and you avoid potential schema locks and execution plan
recompiles. For example, the SELECT * FROM dbo.Authors statement or the EXEC
dbo.CustOrdersHist statement performs better than the SELECT * FROM Authors or
the EXEC CustOrderHist statements. In systems that have many stored procedures,
the amount of time that is spent to resolve a non-qualified stored procedure name
adds up.

Indexes
Indexes are vital to efficient data access. However, there is a cost associated with
creating and maintaining an index structure. Having a large number of indexes on
a table may result in faster select statements, but slower insert, update, and delete
statements. The performance overhead varies by application and database. If you
have a large number of indexes on a table, you increase the chance that the optimizer
will choose a suboptimal index for a query plan.

Data from columns that comprise a particular index are stored in an index page.
Indexes are built on B-tree structures formed of 8-KB index pages. There are clustered
indexes and non-clustered indexes in SQL Server. With non-clustered indexes, the leaf
level nodes contain only the index data with a pointer to the associated data page
where the remaining data resides. As a result, data access that uses a non-clustered
index may cause extra reads of the data from the data page. With clustered indexes,
the leaf level nodes of the B-tree contain the actual data rows for the table. There is
only one clustered index per table. Remember that the clustering key is used in all
non-clustered indexes as the row identifier, so choose them wisely.

 Chapter 14: Improving SQL Server Performance 661

Indexing is an art and is dependant on data distribution, cost, usage, and an
understanding of how SQL Server uses indexes. It takes time to get it right.
Use the following guidelines to help create efficient indexes:
● Create indexes based on use.
● Keep clustered index keys as small as possible.
● Consider range data for clustered indexes.
● Create an index on all foreign keys.
● Create highly selective indexes.
● Consider a covering index for often-used, high-impact queries.
● Use multiple narrow indexes rather than a few wide indexes.
● Create composite indexes with the most restrictive column first.
● Consider indexes on columns used in WHERE, ORDER BY, GROUP BY,

and DISTINCT clauses.
● Remove unused indexes.
● Use the Index Tuning Wizard.

Create Indexes Based on Use
Indexes come at a cost that must be balanced between write and read operations.
Write operations may be negatively and positively affected by indexes. Read
operations are mostly benefited by indexes. You have to understand the way that
your system is used to find the optimal indexes. Esoteric discussions about the
degree to which insert operation performance is affected by indexes are of limited
value if the number of insert operations is small, and your system performs intensive
read operations. Spend time evaluating indexes for the most commonly queried
tables, the most commonly used queries, and the most problematic queries. Design
indexes to support these tables and queries in a systemic manner. As mentioned
previously, designing indexes is an art, not a science. It takes knowledge of your
system to create effective indexes.

Do not create indexes if a table is rarely queried, or if a table does not ever seem
to be used by the optimizer. Avoid indexes on bit, text, ntext, or image data types
because they are rarely used. Avoid very wide indexes and indexes that are not
selective.

Keep Clustered Index Keys As Small As Possible
Because non-clustered indexes store clustered index keys as their row locators. The
row locators reference the actual data row. Therefore, keep clustered index keys as
small as possible.

662 Improving .NET Application Performance and Scalability

Consider Range Data for Clustered Indexes
If you frequently query the database for ranges of rows by using clauses such as
BETWEEN, or operators such as > and <, consider a clustered index on the column
specified by the WHERE clause. Generally, clustered indexes are not as effective for
primary keys in transaction tables, but they are very effective for primary keys in
domain or lookup tables that may never be used other than in joins. In general, every
table should have a clustered index unless there is a demonstrated performance
reason not to have one.

Create an Index on All Foreign Keys
Be sure to create an index on any foreign key. Because foreign keys are used in joins,
foreign keys almost always benefit from having an index.

Create Highly Selective Indexes
Create indexes that exhibit high selectivity. In other words, create indexes that have
many distinct values. For example, an index on a region column may have a small
number of distinct values. Therefore, there may not be enough distinct values for the
optimizer to use. Another example of an item that may not have enough distinct
values is a bit column. Since there are only two values, an index cannot be very
selective and as a result, the index may not be used.

Use the DBCC SHOW_STATISTICS command on a table or index to better
understand the statistics on columns in an index. In the output of this command,
density is used to indicate selectivity. Density is calculated as one divided by the
number of distinct values. Therefore, a unique index has a density of 1/number of rows.
For example, a table with 1,000 rows would have a density of 0.001. An index on a bit
column has a density of 0.5 because you divide one by the only two possible unique
values in a bit column. The smaller the density number is, the greater the selectivity.

The best numbers to use for density are the All Density numbers in the DBCC
SHOW_STATISTICS command output, not the Density number in the first result
that is produced.

Figure 14.10 shows the DBCC SHOW_STATISTICS command output for the
PK_Orders index on an orders table. The output shows a very selective density
because it uses the primary key.

Figure 14.10
DBCC SHOW_STATISTICS output

 Chapter 14: Improving SQL Server Performance 663

More Information

For more information about statistics, see “Statistics Used by the Query Optimizer
in SQL Server 2000” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnsql2k/html/statquery.asp.

Consider a Covering Index for Often-Used, High-Impact Queries
Queries that are frequently called, problematic queries, or queries that use lots of
resources are good candidates for a covering index. A covering index is an index
that includes all the columns that are referenced in the WHERE and SELECT clauses.
The index “covers” the query, and can completely service the query without going to
the base data. This is in effect a materialized view of the query. The covering index
performs well because the data is in one place and in the required order. A covering
index may improve scalability by removing contention and access from the main
table.

Use Multiple Narrow Indexes Rather than a Few Wide Indexes
SQL Server can use multiple indexes per table, and it can intersect indexes. As a
result, you should use multiple narrow indexes that consist of only one column
because narrow indexes tend to provide more options than wide composite indexes.

Also, statistics are only kept for the first column in a composite index. Multiple single
column indexes ensure statistics are kept for those columns. Composite indexes are
of greatest value as covering indexes. Because the first column is the column with
statistics, you typically use composite indexes if that column is also a reference in
the WHERE clause.

A side consideration of creating smaller indexes is the use of the CHECKSUM
function to create a hash index on a very wide column. This allows you to create
smaller indexes. It is a good approach when you need an index on long character
columns where you also need to limit your use of space.

Create Composite Indexes with the Most Restrictive Column First
When you create a composite index, remember that only the first column stores
statistics. Try to make that column the most restrictive column. If the composite index
is not selective enough, the optimizer may not use it. Also, a WHERE clause that does
not use all the columns included in the composite index may cause the index not to
be used. For example, a WHERE clause that skips a column in the middle of the
composite index may cause the index not to be used.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/statquery.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/statquery.asp

664 Improving .NET Application Performance and Scalability

Consider Indexes on Columns Used in WHERE, ORDER BY, GROUP BY,
and DISTINCT Clauses
Consider creating an index on columns that are used in WHERE clauses and in
aggregate operations such as GROUP BY, DISTINCT, MAX, MIN, or ORDER BY.
These generally benefit from an index, although you need to measure and test to
validate that there is a benefit in your scenario.

Remove Unused Indexes
Be sure to remove all unused or out-of-date indexes. Unused or out-of-date
indexes continue to impact write operations because they need to be maintained
even though they are not used. They are still used by the optimizer in execution plan
considerations. You can use SQL Profiler to determine the indexes that are used.

Use the Index Tuning Wizard
The Index Tuning Wizard (ITW) uses the same information and statistics that the
optimizer uses to create an execution plan. You should use this tool to obtain
guidance and tips on index options that might otherwise be overlooked. However,
it is not the only tool, and system knowledge is still the best way to create efficient
indexes. Capture a representative trace by using SQL Profiler as input to the ITW for
more system-wide index suggestions.

Transactions
Efficient transaction handling significantly enhances scalability. You have to be
careful to code transactions correctly. Transactions hold locks on resources that
can block other transactions. The following recommendations are some of the more
effective things that you can do to create efficient transactions:
● Avoid long-running transactions.
● Avoid transactions that require user input to commit.
● Access heavily used data at the end of the transaction.
● Try to access resources in the same order.
● Use isolation level hints to minimize locking.
● Ensure that explicit transactions commit or roll back.

 Chapter 14: Improving SQL Server Performance 665

Avoid Long-Running Transactions
Locks are held during transactions, so it is critical to keep transactions as short as
possible. Do not forget that you can start transactions from the application layer. A
common technique is to do all the needed validation checking before you start the
transaction. You still have to check again during the transaction, but you avoid many
situations where you start a transaction and then have to roll back the transaction.

Avoid Transactions that Require User Input to Commit
Be careful not to start a transaction that requires user input to commit. In this case.
the transaction locks are held until the input is received at some indeterminate time
in the future.

Access Heavily Used Data at the End of the Transaction
Try to put all the read operations in a transaction at the beginning, put the write
operations at the end, and put the most contentious resources at the very end. This
ensures that the shortest locks are held against the resources that are most often used
by others. Creating your transactions in this way helps limit blocking of other
transactions.

Try to Access Resources in the Same Order
Reduce deadlocks by using resources in the same order. For example, if stored
procedures SP1 and SP2 use tables T1 and T2, make sure that both SP1 and SP2
process T1 and T2 in the same order. Otherwise, if SP1 uses T1 and then T2, and SP2
uses T2 and then T1, each stored procedure could be waiting to use a resource that
the other stored procedure is already using. The result is a deadlock when this
happens.

Avoiding locking conflicts in a multiuser scenario is not easy. Your goal should be
to reduce deadlock opportunities and to reduce the length of time locks are held.

Use Isolation Level Hints to Minimize Locking
If your business logic allows it, lower the isolation level to one that is less restrictive.
A common way to lower isolation levels is to use the WITH NOLOCK hint on
SELECT statements in transactions.

Ensure That Explicit Transactions Commit or Roll Back
All transactional code should have explicit error handling that either commits or
rolls back on an error. This type of error handling allows open transactions that are
holding locks to release the locks when the transaction cannot complete. Otherwise,
the transaction never would release the lock. You can use the DBCC OPENTRAN
command to find transactions that may be open for long periods.

666 Improving .NET Application Performance and Scalability

Stored Procedures
Stored procedures provide improved performance and scalability to your systems.
When you develop stored procedures, keep the following recommendations in mind:
● Use Set NOCOUNT ON in stored procedures.
● Do not use the sp_ prefix for custom stored procedures.

Use Set NOCOUNT ON in Stored Procedures
Use the SET NOCOUNT ON statement to prevent SQL Server from sending the
DONE_IN_PROC message for each statement in a stored procedure. For example,
if you have eight operations in a stored procedure and you have not used this option
eight messages are returned to the caller. Each message contains the number of
affected rows for the respective statement.

Do Not Use the Sp_ Prefix for Custom Stored Procedures
SQL Server always looks in the master database for a stored procedure that
begins with the sp_ prefix. SQL Server then uses any supplied qualifiers such as the
database name or owner. Therefore, if you use the sp_ prefix for a user-created stored
procedure, and you put it in the current database, the master database is still checked
first. This occurs even if you qualify the stored procedure with the database name.
To avoid this issue, use a custom naming convention, and do not use the sp_ prefix.

Execution Plans
To improve performance, it is critical to understand and measure the current
performance of your T-SQL code. A common mistake is to invest too much effort
in writing an elegant piece of code and in worrying about specific coding tricks and
tips. Instead, you should remember to look at the execution plan of your queries and
understand how your queries are run. The following guidelines outline some of the
main ways you can improve the performance and scalability of T-SQL code:
● Evaluate the query execution plan.
● Avoid table and index scans.
● Evaluate hash joins.
● Evaluate bookmarks.
● Evaluate sorts and filters.
● Compare actual versus estimated rows and executions.

 Chapter 14: Improving SQL Server Performance 667

Evaluate the Query Execution Plan
In SQL Query Analyzer, enable the Display Execution Plan option, and run
your query against a representative data load to see the plan that is created by the
optimizer for the query. Evaluate this plan, and then identify any good indexes that
the optimizer could use. Also, identify the part of your query that takes the longest
time to run and that might be better optimized. Understanding the actual plan that
runs is the first step toward optimizing a query. As with indexing, it takes time and
knowledge of your system to be able to identify the best plan.

Avoid Table and Index Scans
Table and index scans are expensive operations, and they become more expensive
as data grows. Investigate every table or index scan that you see in an execution plan.
Can an index be created that would allow a seek operation instead of a table scan?
Eliminating unnecessary I/O caused by scans is one of the quickest ways to obtain a
substantial improvement in performance.

Not all table or index scans are bad. The optimizer selects a scan for tables that have
fewer than a few hundred rows, and a clustered index scan may be the most effective
option for some queries. However, you generally should avoid scans.

Evaluate Hash Joins
Make sure that you investigate hash joins in a query execution plan. A hash join may
be the best option, but frequently, a hash join is selected because there are no indexes
that the optimizer can use to perform an efficient nested loop or merge join. In the
absence of indexes, a hash join is the best option. However, better indexing may occur
from a nested loop or merge join. Note that hash joins are also fairly CPU intensive. If
you have high CPU usage, and you do not feel that enough work is being performed
against the server to justify this, evaluate the execution plans by using SQL Profiler
to find out if you have a lot of hash joins.

Queries that use a parallel execution plan often have to perform hash joins to
recombine the finished parallel streams. Hash joins in this scenario are usually
optimal and should not be a concern.

Evaluate Bookmarks
A bookmark in an execution plan indicates that an index was used to limit the table
and that a bookmark was then used to probe the clustered index or the heap table to
retrieve more data that is not available in the index. A bookmark is often used in this
way to retrieve columns that are in a SELECT clause. This means that at least twice
the I/O is necessary to retrieve the results.

668 Improving .NET Application Performance and Scalability

A bookmark is not always a problem, but you should find out if adding a covering
index might be more effective. A bookmark may not be a problem if the original
index was very selective, in which case few bookmark lookups are needed. However,
a bookmark to the data from an index that was not very selective would be
problematic, especially if the resulting table rows spread across a significant
percentage of the pages in the table.

Evaluate Sorts and Filters
Sorts and filters are both CPU intensive and memory intensive because the server
performs these operations in memory. When there are instances of sorts and filters,
find out if you can create an index that would support the sorting or the filtering.
Filtering is often the result of an implicit conversion, so investigate the filter to learn
if a conversion occurred. Sorts and filters are not always bad, but they are key
indicators of potential problems, and you should investigate them further.

Compare Actual vs. Estimated Rows and Executions
When you read the output from a SHOWPLAN statement, start from the most-
indented row that has the highest incremental change in the TotalSubtreeCost
column. Carefully evaluate both the index selection and the optimizer’s estimate
by using the SET STATISTICS PROFILE ON command. This command runs the
statement, so only use it on SELECT statements or T-SQL code that does not modify
data, or you can preface the command with a BEGIN TRAN /ROLLBACK statement.

As an alternative, use the new profiler Performance:Showplan Statistics event in
SQL 2000. This event belongs to event class 98. This event reports four columns that
show estimated and actual rows and executions. You must select the Binary Data
column before the profiler event adds data to the T-SQL or SP:stmtcompleted events.

Substantial differences in the estimated row count may indicate the optimizer had
out-of-date statistics or skewed statistics. For example, if the estimated row count is
2 rows, and the actual row count is 50,000, the optimizer may have had out-of-date
statistics or skewed statistics. Try using the UPDATE STATISTICS WITH FULLSCAN
command.

More Information
For more information about the statistics that are used by Query Optimizer,
see “Statistics Used by the Query Optimizer in Microsoft SQL Server 2000” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/statquery.asp.

For more information about query recompilation, see “Query Recompilation in SQL
Server 2000” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k
/html/sql_queryrecompilation.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/statquery.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp

 Chapter 14: Improving SQL Server Performance 669

For more information about troubleshooting slow-running queries, see Knowledge
Base article 243589, “HOW TO: Troubleshoot Slow-Running Queries on SQL Server
7.0 or Later,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;243589.

Execution Plan Recompiles
Performance is affected every time a query results in the creation of a new execution
plan or when a plan is recompiled. Recompiles are not always a bad thing. The initial
plan that was created may not be optimal for other calls or data may have changed.
A recompile might be needed to create a better plan. The optimizer generally causes a
recompile when it is necessary; however, there are steps that you can take to ensure
that recompilation does not occur when it is not needed. The following guidelines
help you avoid frequent recompiles:
● Use stored procedures or parameterized queries.
● Use sp_executesql for dynamic code.
● Avoid interleaving DDL and DML in stored procedures, including the tempdb

database DDL.
● Avoid cursors over temporary tables.

Use Stored Procedures or Parameterized Queries
The server saves execution plans for stored procedures and parameterized queries
under most circumstances. This allows them to be reused on later calls.

Use Sp_executesql for Dynamic Code
If you must use dynamic code in your application, try to wrap it in the
sp_executesql system stored procedure. This system stored procedure permits you to
write parameterized queries in T-SQL and saves the execution plan for the code. If the
dynamic code has little chance of being called again, there is no value in saving the
execution plan because the execution plan will eventually be removed from the cache
when the execution plan expires. Evaluate whether an execution plan should be
saved or not. Note that wrapping code in the sp_executesql system stored procedure
without using parameters does not provide compile time performance savings.

Dynamic code is often used for query builder applications, it is often resource-
intensive, and it is often reused in this scenario. Using the sp_executsql system
stored procedure to wrap this code can help improve performance.

http://support.microsoft.com/default.aspx?scid=kb;en-us;243589

670 Improving .NET Application Performance and Scalability

Avoid Interleaving DDL and DML in Stored Procedures, Including
the Tempdb database DDL
Interleaving data definition language (DDL) and data manipulation language
(DML) in stored procedures is one of the most common causes of stored procedure
recompiles. A common scenario is to create a temporary table, to insert data into
that table, to create an index, and then to select data from the table. This sequence
of events typically causes a recompile. To avoid recompiles, put all the DDL at the
beginning of the stored procedure, and put the DML after the DDL.

The following code shows a stored procedure that creates a table (DDL), inserts
data into that table (a DML statement), creates an index (a DDL statement), and
then selects data from the table (another DML statement):

CREATE PROCEDURE RecompileExample @employeeID int
AS
SET NOCOUNT ON
CREATE TABLE #EmployeeOrders(OrderID int not null)
INSERT #EmployeeOrders
SELECT OrderID from Northwind.dbo.Orders WHERE EmployeeID = @EmployeeID
CREATE CLUSTERED INDEX EC ON #EmployeeOrders(OrderID)
SELECT * FROM #EmployeeOrders ORDER BY OrderID
GO

By running SQL Profiler and capturing the SP:Recompile events, you can see a
recompile every time the procedure that interleaves DDL and DML is run. This is
shown in Figure 14.11. The recompiles that occur for this simple sample code are not
likely to take much time. However, more complex queries may result in significant
cost for the recompiles.

Figure 14.11
SQL Profiler showing recompiles

 Chapter 14: Improving SQL Server Performance 671

The following code puts all the DDL at the beginning so that there is no interleaving
of DDL and DML. This means that a recompile is not required.

CREATE PROCEDURE NoRecompileExample @employeeID int
AS
SET NOCOUNT ON
CREATE TABLE #EmployeeOrders (OrderID int not null)
CREATE CLUSTERED INDEX EC ON #EmployeeOrders(OrderID)

INSERT #EmployeeOrders
SELECT OrderID from Northwind.dbo.Orders WHERE EmployeeID = @EmployeeID
SELECT * FROM #EmployeeOrders ORDER BY OrderID
GO

The SQL Profiler trace shown in Figure 14.12 for the revised code no longer shows a
recompile.

Figure 14.12
Profiler output with no recompiles

Avoid Cursors over Temporary Tables
A cursor that has a DECLARE statement that selects data from a temporary table
almost always causes a recompile. As a result, avoid using cursors over temporary
tables.

More Information
For more information about query recompilation, see “Query Recompilation in SQL
Server 2000” on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnsql2k/html/sql_queryrecompilation.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp

672 Improving .NET Application Performance and Scalability

SQL XML
SQL Server 2000 added a series of new XML features. While these are popular
and flexible, you should be aware of some of the following scalability issues that
are involved in using these new features:
● Avoid OPENXML over large XML documents.
● Avoid large numbers of concurrent OPENXML statements over XML

documents.

Avoid OPENXML over Large XML Documents
Be aware that there are limitations to the amount of memory that is available to the
OPENXML construct over an XML document operation. This operation builds a
Document Object Model (DOM) in the SQL buffer space that can be much larger than
the original document size. Also, this operation is limited to one eighth of the buffer
space, and large XML documents may consume this memory fairly quickly and cause
an out-of-memory error on the server. Do not create large systems based on this
functionality without conducting significant load testing. You might also want to use
the XML bulk load option if possible.

Avoid Large Numbers of Concurrent OPENXML Statements over
XML Documents
You also have to consider the issue with OPENXML when you use OPENXML to
batch inserts. This is a fairly common operation because it is an effective way to issue
a group of inserts with one statement. Issuing a group of inserts reduces the overhead
of multiple insert statements and multiple round trips. However, be aware that this
approach may not be very scalable because of the aforementioned memory
limitations.

More Information
For more information about OPENXML, see “Using OPENXML” on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsql
/ac_openxml_1cx8.asp.

Tuning
To improve performance, it is critical to understand and measure the current
performance of code. Note that tuning is an ongoing, iterative process. Because
SQL Server uses a cost-based optimizer and because costs may change, the efficiency
of particular queries can change over time.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsql/ac_openxml_1cx8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsql/ac_openxml_1cx8.asp

 Chapter 14: Improving SQL Server Performance 673

The following guidelines outline some of the main ways to improve the performance
and scalability of your T-SQL code:
● Use SQL Profiler to identify long-running queries.
● Take note of small queries called often.
● Use sp_lock and sp_who2 to evaluate blocking and locking.
● Evaluate waittype and waittime in master..sysprocesses.
● Use DBCC OPENTRAN to locate long-running transactions.

Use SQL Profiler to Identify Long-Running Queries
Use the SQL Profiler SQLProfiler TSQL_Duration template to identify queries with
the longest durations. Long-running queries have the greatest potential for locking
resources longer, blocking other users, and limiting scalability. They are also the best
candidates for optimization. Reviewing long-running queries is a continuous process
and requires representative loads to ensure effective tuning.

In some cases, using the SQL Profiler templates is somewhat limiting when you use
them to measure the change in performance while you test new indexes or
application design changes. SQL Profiler can become a very powerful baseline tool
when you save the results of your performance test as a trace file. Trace files use the
.trc extension. Beginning with SQL Server 2000, you can use these trace files to write
automated reports that quantitatively measure gains in the performance of your
application for certain query types that otherwise would not be grouped properly
when using the template. There is the clever fn_trace_gettable trace reporting
function. This trace function is shown in the following sample code:

SELECT Count(*) as CountOfEvents,
AVG(Duration) AS AvgDuration,
SUM(Duration) AS [SumDuration],
SUBSTRING(TextData, 1, 30) AS [Text Data]
FROM ::fn_trace_gettable('F:\MyTrace.trc',default)
WHERE EventClass in (10,12) -- BatchCompleted, RPC Completed
GROUP BY SUBSTRING(TextData, 1, 30)
ORDER BY SUM(Duration) DESC

Take Note of Small Queries Called Often
Often, small queries that run fairly quickly but that are called often are overlooked.
Use SQL Profiler to identify queries that are called often, and then try to optimize
them. Optimizing one query that runs hundreds of times may be more effective than
optimizing one long-running query that runs only once.

674 Improving .NET Application Performance and Scalability

You can modify the fn_trace_gettable sample code to order by SUM(CPU) so that it
becomes an effective tool for identifying small queries or stored procedures that may
be called thousands of times in an hour. When you tally their CPU costs, these
queries can represent a huge expense to the overall performance of your SQL Server.
By correctly designing indexes and avoiding bookmark lookups, you can shorten
each call by milliseconds. Over time, this can amount to a big saving.

This kind of reporting is also useful for arranging small queries by reads and writes.
Before you upgrade your subsystem, consider using these reporting methods to
identify small queries. You can then plan application design changes that may help
consolidate these small queries into larger batches.

Use Sp_lock and Sp_who2 to Evaluate Locking and Blocking
Use the sp_ lock and sp_who2 system stored procedures to find out which locks are
acquired by your query. You should use the least restrictive locks possible. Investigate
queries that result in table locks. These table locks block other users from accessing
the entire table and can severely limit scalability.

Evaluate Waittype and Waittime in master..sysprocesses
OLTP servers may report degradation of simple insert operations, update operations,
and delete operations over time. The increase in average duration might occur due to
a sysprocesses.waittype value of 0x0081. This is the log writer, and this waittype
value means there is a delay in execution while your system process ID (SPID) waits
on the two-phase commit process to the transaction log. You can measure this delay
by capturing the sysprocesses.waittime value. This value may indicate that your
transaction log is on the same spindle set (volume) as your data. It may also indicate
that you do not have an adequate I/O subsystem where the log file exists, or that you
have an inappropriately configured IO subsystem where the log file exists.

Your database administrator should also pay close attention to common locked
resources. These can indicate a specific problem in a particular table. Specific
Waittype values can be an early indication that your server is underpowered or
overusing the disk, the CPU, or the transaction log. You can find out if your server is
underpowered or overusing resources by taking snapshots of the sysprocesses and
syslockinfo tables approximately every five seconds and by measuring how long a
SPID waited.

More Information

For more information about sp_lock , see “sp_lock” in the “Transact-SQL Reference”
on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref
/ts_sp_la-lz_6cdn.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_sp_la-lz_6cdn.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_sp_la-lz_6cdn.asp

 Chapter 14: Improving SQL Server Performance 675

For more information about how to analyze blocking, see the following Knowledge
Base articles:
● 2244453, “INF: Understanding and Resolving SQL Server 7.0 or 2000 Blocking

Problems,” at http://support.microsoft.com/default.aspx?scid=kb;EN-US;224453.
● 324885, “Support WebCast: Microsoft SQL Server: Rapid Blocker Script Analysis,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;324885&Product=sql2k.

Use DBCC OPENTRAN to Locate Long-Running Transactions
Run the DBCC OPENTRAN command to discover transactions that are open for long
periods of time. This command has to be run repeatedly over the discovery period
because transactions come and go. However, transactions that are reported
continuously by this command may be running too long or are not committing at all.
You should investigate these transactions.

Testing
The performance of a query that is not tuned can vary dramatically depending on the
size of the data. A query that takes less than a second in a small database can take
minutes in a database that has millions of rows. If your production database is large,
populate your test database with an equivalent amount of data during development
and testing. This gives you an opportunity to test the performance of your
application with realistic data and to find the queries that need to be optimized.
Ensure that you check your query execution plans by using tables that contain a
realistic amount and distribution of data.

When you populate tables with large amounts of test data, follow these guidelines:
● Ensure that your transaction logs do not fill up. Using a simple loop mechanism

can fill your transaction log for every single insert.
● Budget your database growth.
● Use tools to populate data.

The SQL Server resource kit provides valuable tools for generating test data
in your database such as Database Hammer and Database Generator. For
more information, see Chapter 39, “Tools, Samples, eBooks, and More,” on
the SQL Server Resource CD. This content is also available online at
http://www.microsoft.com/sql/techinfo/reskit/default.asp.

● Use existing production data.
If your application is going to be used against an existing database, consider
making copies of the production data in your development, testing, and staging
environments. If your production database contains sensitive data such as salary
information, student grades, or other sensitive data, make sure that you strip it out
or randomize it.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;224453
http://support.microsoft.com/default.aspx?scid=kb;en-us;324885&Product=sql2k
http://www.microsoft.com/sql/techinfo/reskit/default.asp

676 Improving .NET Application Performance and Scalability

● Use common user scenarios with a balance between read and write operations.
● Use testing tools to perform stress and load tests on the system.

More Information
For more information about performance testing, see Chapter 16, “Testing .NET
Application Performance.”

Monitoring
You can think of a database system as a living and growing thing that you must
continuously monitor and tune. Tuning is not an event; it is an ongoing process.
Metrics, counters, and performance should be proactively reviewed on a regular
basis. The following guidelines help you to maintain the performance and scalability
of your application as your database ages:
● Keep statistics up to date.
● Use SQL Profiler to tune long-running queries.
● Use SQL Profiler to monitor table and index scans.
● Use Performance Monitor to monitor high resource usage.
● Set up an operations and development feedback loop.

Keep Statistics Up to Date
SQL Server uses a cost-based optimizer that is sensitive to statistical information
provided on tables and indexes, such as the number of rows in a table and the
average key length. Without correct and up-to-date statistical information,
SQL Server may end up with a less optimal execution plan for a particular query.

Statistics that are maintained on each table in SQL Server to aid the optimizer in
cost-based decision making include the number of rows, the number of pages used
by the table, and the number of modifications made to the keys of the table since the
last statistics update. In addition to maintaining statistics on indexed columns, it is
possible to maintain statistics on columns that are not indexed.

Out-of-date or missing statistics are indicated by warnings when the execution
plan of a query is graphically displayed in SQL Query Analyzer. The table name is
displayed in red text. Monitor the Missing Column Statistics event class by using
SQL Profiler so that you know when statistics are missing. To turn on the Update
statistics option for a database, right-click the database in SQL Server Enterprise
Manager, and then click Properties. Click the Option tab, and then select the Auto
update statistics check box. In addition, you can run the sp_updatestats system
stored procedure from SQL Query Analyzer in the database to update the statistics
for that database.

 Chapter 14: Improving SQL Server Performance 677

Use the UPDATE STATISTICS command or the sp_updatestats system stored
procedure to manually update statistics after large changes in data, or on a daily
basis if there is a daily window available.

More Information

For more information, see Knowledge Base article 195565, “INF: How SQL Server 7.0
and SQL Server 2000 Autostats Work,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;195565.

Use SQL Profiler to Tune Long-Running Queries
Periodically use the SQL Profiler as described earlier to continuously tune
long-running queries. As statistics and usage change, the queries that appear
as the longest queries will change.

Use SQL Profiler to Monitor Table and Index Scans
Periodically use the SQL Profiler to continuously search for table and index scans.
As statistics and usage change, the table and index scans that appear will change.

Use Performance Monitor to Monitor High Resource Usage
Periodically use the Performance Monitor to identify areas of high resource usage,
and then investigate.

Set Up an Operations and Development Feedback Loop
Implement regular communications between production and operations personnel
and the development group. Ensure all parties are exchanging information related to
performance and scalability or development changes that might affect performance
and scalability.

More Information
For more information about Performance Monitor or System Monitor
and SQL Server, see “Monitoring Server Performance and Activity” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adminsql
/ad_mon_perf_00mr.asp.

http://support.microsoft.com/default.aspx?scid=kb;en-us;195565
http://support.microsoft.com/default.aspx?scid=kb;en-us;195565
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adminsql/ad_mon_perf_00mr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adminsql/ad_mon_perf_00mr.asp

678 Improving .NET Application Performance and Scalability

Deployment Considerations
Physical deployment is an important factor for performance and scalability. However,
a common mistake in performance and scalability tuning is to initially focus on
scaling up or scaling out the hardware. Although a computer with limited resources
does hinder performance, you can make the largest gains by minimizing resource
usage as described earlier in this chapter. You should only consider adding hardware
after you limit CPU use, network I/O, disk I/O, and memory use.

Physical configuration requirements are very specific for different scenarios, so they
are not covered in depth in this section. However, the following are some important
guidelines you should keep in mind:
● Use default server configuration settings for most applications.
● Locate logs and the tempdb database on separate devices from the data.
● Provide separate devices for heavily accessed tables and indexes.
● Use the appropriate RAID configuration.
● Use multiple disk controllers.
● Pre-grow databases and logs to avoid automatic growth and fragmentation

performance impact.
● Maximize available memory.
● Manage index fragmentation.
● Keep database administrator tasks in mind.

Use Default Server Configuration Settings for Most Applications
SQL Server uses optimal configuration settings when it is newly installed. Changing
the configuration settings may actually decrease performance except in certain high
load situations. Thoroughly test any configuration change before making it to ensure
that the change really improves performance or scalability. One exception is the
memory setting, which is discussed later in this section.

To find out if your server settings comply with common best practices, you
can download the Microsoft SQL Server 2000 Best Practices Analyzer tool at
http://www.microsoft.com/downloads/details.aspx?FamilyId=B352EB1F-D3CA-44EE
-893E-9E07339C1F22&displaylang=en.

More Information

For more information about SQL Server configuration settings, see Knowledge Base
article 319942, “HOW TO: Determine Proper SQL Server Configuration Settings,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;319942.

http://www.microsoft.com/downloads/details.aspx?FamilyId=B352EB1F-D3CA-44EE-893E-9E07339C1F22&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=B352EB1F-D3CA-44EE-893E-9E07339C1F22&displaylang=en
http://support.microsoft.com/default.aspx?scid=kb;en-us;319942

 Chapter 14: Improving SQL Server Performance 679

Locate Logs and the Tempdb Database on Separate Devices from
the Data
You can improve performance by locating your database logs and the tempdb
database on physical disk arrays or devices that are separate from the main data
device. Because data modifications are written to the log and to the database, and to
the tempdb database if temp tables are used, having three different locations on
different disk controllers provides significant benefits.

Provide Separate Devices for Heavily Accessed Tables and Indexes
If you have an I/O bottleneck on specific tables or indexes, try putting the tables or
indexes in their own file group on a separate physical disk array or device to alleviate
the performance bottleneck.

Use the Appropriate RAID Configuration
For a database server, you should choose hardware-level RAID rather than software
RAID. Software RAID is usually cheaper but uses CPU cycles. If CPU utilization is a
bottleneck for you, SQL Server may not perform optimally.

Two core RAID levels are of value for a database server:
● Striping with parity (RAID 5)
● Striped mirror (RAID 0+1)

When you choose a RAID level, you have to consider your cost, performance,
and availability requirements. RAID 5 is less expensive than RAID 0+1, and RAID 5
performs better for read operations than write operations. RAID 0+1 is more
expensive and performs better for write-intensive operations and for accessing the
tempdb database.

Use Multiple Disk Controllers
A disk controller has a limit on its throughput. Associating too many disks with a
single disk controller can lead to I/O bottlenecks.

More Information

For more information about how to determine the number of disks per
disk controller, see “Microsoft SQL Server 7.0 Performance Tuning Guide” on
MSDN at http://msdn.microsoft.com/library/en-us/dnsql7/html/msdn_sql7perftune.asp
?frame=true#sql7perftune_diskperform.

http://msdn.microsoft.com/library/en-us/dnsql7/html/msdn_sql7perftune.asp?frame=true%23sql7perftune_diskperform%20
http://msdn.microsoft.com/library/en-us/dnsql7/html/msdn_sql7perftune.asp?frame=true%23sql7perftune_diskperform%20

680 Improving .NET Application Performance and Scalability

Pre-Grow Databases and Logs to Avoid Automatic Growth and
Fragmentation Performance Impact
If you have enabled automatic growth, ensure that you are using the proper
automatic growth option. You can grow database size by percent or by fixed size.
Avoid frequent changes to the database sizes. If you are importing large amounts
of data that tend to be of a fixed size on a weekly basis, grow the database by a fixed
size to accommodate the new data.

Maximize Available Memory
Increasing memory is one of the best ways to improve SQL Server performance
because more data can be cached in memory. Enable Address Windowing Extensions
(AWE) for higher RAM utilization by SQL Server. Enable the /3GB switch in the
Boot.ini file to allow a process to make use of 3 GB of virtual memory. By default, the
system uses 2 GB. The operating system limits memory use by a process to 2 GB.

Use performance counters to decide the amount of memory that you need. Some
performance counters that you can use to measure your need for memory are listed
below:
● The SQLServer:Buffer Manager:Buffer cache hit ratio counter indicates that data

is retrieved from memory cache. The number should be around 90. A lower value
indicates that SQL Server requires more memory.

● The Memory:Available Bytes counter shows the amount of RAM that is available.
Low memory availability is a problem if the counter shows that 10 megabytes
(MB) of memory or less is available.

● The SQLServer:Buffer Manager: Free pages counter should not have a sustained
value of 4 or less for more than two seconds. When there are no free pages in the
buffer pool, the memory requirements of your SQL Server may have become so
intense that the lazy writer or the check pointing process is unable to keep up.
Typical signs of buffer pool pressure are a higher than normal number of lazy
writes per second or a higher number of checkpoint pages per second as SQL
Server attempts to empty the procedure and the data cache to get enough free
memory to service the incoming query plan executions. This is an effective
detection mechanism that indicates that your procedure or data cache is starved
for memory. Either increase the RAM that is allocated to SQL Server, or locate the
large number of hashes or sorts that may be occurring.

The memory configuration option is the one server configuration setting that you
should evaluate and possibly change if there are processes running on the server
other than SQL Server. If so, change the memory option to Fixed, and leave enough
memory for the operating system and for the other processes that might be running.

 Chapter 14: Improving SQL Server Performance 681

More Information

For more information about SQL Server memory requirements, see “Inside SQL
Server 2000’s Memory Management Facilities” at http://msdn.microsoft.com/data
/default.aspx?pull=/library/en-us/dnsqldev/html/sqldev_01262004.asp.

Also, see Knowledge Base article 274750, “HOW TO: Configure memory for more
than 2 GB in SQL Server,” at http://support.microsoft.com/default.aspx?scid=kb;en-us
;274750.

Manage Index Fragmentation
As data is modified in a system, pages can split, and data can become fragmented
or physically scattered on the hard disk. Use the DBCC SHOWCONTIG command
to see the density and the degree of fragmentation for an index for a table.

There are several ways to resolve index fragmentation.
● Drop and recreate the index.
● Use the DBCC DBREINDEX command.
● Use the DBCC INDEXDEFRAG command.

The first two ways hold locks against the system. Therefore, you should only drop
and then recreate an index or use the DBCC DBREINDEX command when there are
no users on the system.

You can use DBCC INDEXDEFRAG when your system is online because it does not
lock resources.

More Information

For more information about the DBCC SHOWCONTIG, DBCC DBREINDEX, and
DBCC INDEXDEFRAG commands, see the following “Transact-SQL Reference”
topics:
● “DBCC SHOWCONTIG” at http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/tsqlref/ts_dbcc_46cn.asp
● “DBCC DBREINDEX” at http://msdn.microsoft.com/library/en-us/tsqlref

/ts_dbcc_94mw.asp
● “DBCC INDEXDEFRAG” at http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/tsqlref/ts_dbcc_30o9.asp

Keep Database Administrator Tasks in Mind
Do not forget to take database administrator tasks into account when you think
about performance. For example, consider the impact that database backups,
statistic updates, DBCC checks, and index rebuilds have on your systems. Include
these operations in your testing and performance analysis.

http://msdn.microsoft.com/data/default.aspx?pull=/library/en-us/dnsqldev/html/sqldev_01262004.asp
http://msdn.microsoft.com/data/default.aspx?pull=/library/en-us/dnsqldev/html/sqldev_01262004.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;274750
http://support.microsoft.com/default.aspx?scid=kb;en-us;274750
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_dbcc_46cn.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_dbcc_46cn.asp
http://msdn.microsoft.com/library/en-us/tsqlref/ts_dbcc_94mw.asp
http://msdn.microsoft.com/library/en-us/tsqlref/ts_dbcc_94mw.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_dbcc_30o9.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_dbcc_30o9.asp

682 Improving .NET Application Performance and Scalability

Summary
There are many issues that affect SQL Server performance and scalability. This
chapter has taken a layered, top-down approach from data design to deployment.
This chapter emphasizes the techniques you can use to obtain the biggest gains in
performance and scalability.

Remember that you usually can obtain the biggest gains by creating efficient data
access code for the application and by using the correct general development
techniques. You usually do not obtain such significant gains in performance and
scalability by changing SQL Server configuration settings.

Additional Resources
For related reading, see the following resources:
● For a printable checklist, see the “Checklist: SQL Server Performance” checklist in

the “Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 12, “Improving ADO.NET Performance.”
● Chapter 15, “Measuring .NET Application Performance.” See the

“ADO.NET/Data Access” section.
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.” See the “ADO.NET”

and “SQL Server” sections.
● “How To: Optimize SQL Indexes” in the “How To” section of this guide.
● “How To: Optimize SQL Queries” in the “How To” section of this guide.
● “How To: Use SQL Profiler” in the “How To” section of this guide.
● Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook by

Ken England.
● Handbook of Relational Database Design by Candace Fleming and Barbara von Halle.

Addison-Wesley Publishing Company.
● Inside Microsoft SQL Server 2000 by Karen Delaney. Microsoft Press®,

November 2000.
● “Microsoft SQL Server Performance Tuning and Optimization” at

http://www.sql-server-performance.com.

http://www.sql-server-performance.com/

Part V
Measuring, Testing, and Tuning

In This Part
● Measuring .NET Application Performance
● Testing .NET Application Performance
● Tuning .NET Application Performance

15
Measuring .NET Application
Performance

Objectives
● Instrument your applications.
● Measure system resource utilization.
● Measure CLR and managed code performance.
● Measure ASP.NET application and Web service performance.
● Measure Enterprise Services performance.
● Measure .NET remoting performance.
● Measure interop performance.
● Measure ADO.NET and data access performance.

Overview
To determine whether your application meets its performance objectives and to help
identify bottlenecks, you need to measure your application’s performance and collect
metrics. Metrics of particular interest tend to be response time, throughput, and
resource utilization (how much CPU, memory, disk I/O, and network bandwidth
your application consumes while performing its tasks).

686 Improving .NET Application Performance and Scalability

This chapter begins by explaining what measuring is, what the goals of
measuring are, and how measuring relates to your application development life
cycle. The chapter then presents the tools and technique that you can use to
measure performance and obtain metrics. These range from using the inbuilt system
performance counters to using custom application instrumentation code. The chapter
then shows you the performance counters that you can use to measure system
resource utilization. Finally, the remainder of the chapter is divided into technology-
focused sections that show you what to measure and how to measure it for each of
the core Microsoft® .NET technologies including ASP.NET, Web services, Enterprise
Services, .NET remoting, interoperability, and ADO.NET data access.

How to Use This Chapter
To get the most from this chapter, do the following:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of the issues around
measuring .NET application performance.

● Read How Tos. This chapter references several How Tos that are in the “How To”
section of this guide. The following How Tos help you use a number of the tools
discussed in the chapter and implement a number of the techniques and
recommendations:
● “How To: Use CLR Profiler”
● “How To: Monitor the ASP.NET Thread Pool Using Custom Counters”
● “How To: Time Managed Code Using QueryPerformanceCounter and

QueryPerformanceFrequency”
● “How To: Use Custom Performance Counters from ASP.NET”
● “How To: Use EIF”
● “How To: Use ACT to Test Performance and Scalability”
● “How To: Perform Capacity Planning for .NET Applications”

● Read Chapter 16, “Testing .NET Application Performance.” A key part of the
testing process is to capture metrics so that you can determine how close your
application is to meeting its performance objectives. The testing chapter presents
performance testing processes for load, stress, and capacity testing. Use the
current chapter in conjunction with the testing chapter to identify which metrics
you should be capturing when performing your tests.

● Download the tools. This chapter discusses Enterprise Instrumentation
Framework (EIF) as a way to instrument your applications. EIF is available
as a free download from the Microsoft Download Center at
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919
-8BB4-1F84B7EB1368&displaylang=en.

http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en

 Chapter 15: Measuring .NET Application Performance 687

Goals of Measuring
Measuring enables you to identify how the performance of your application
stands in relation to your defined performance goals and helps you to identify the
bottlenecks that affect your application performance. It helps you identify whether
your application is moving toward or away from your performance goals. Defining
what you will measure, that is, your metrics, and defining the objectives for each
metric is a critical part of your testing plan.

Performance objectives include the following:
● Response time or latency
● Throughput
● Resource utilization

Response Time or Latency
Response time is the amount of time taken to respond to a request. You can measure
response time at the server or client as follows:
● Latency measured at the server. This is the time taken by the server to complete

the execution of a request. This does not take into account the client-to-server
latency, which includes additional time for the request and response to cross the
network.

● Latency measured at the client. The latency measured at the client includes the
request queue, the time taken by the server to complete the execution of the
request, and the network latency. You can measure this latency in various ways.
Two common approaches are to measure the time taken by the first byte to reach
the client (time to first byte, or TTFB) or the time taken by the last byte of the
response to reach the client (time to last byte, or TTLB). Generally, you should
test this using various network bandwidths between the client and the server.

By measuring latency, you can gauge whether your application takes too long to
respond to client requests.

Throughput
Throughput is the number of requests that can be successfully served by your
application per unit time. It can vary depending on the load (number of users)
applied to the server. Throughput is usually measured in terms of requests per
second. In some systems, throughput may go down when there are many concurrent
users. In other systems, throughput remains constant under pressure but latency
begins to suffer, perhaps due to queuing. Other systems have some balance between
maximum throughput and overall latency under stress.

688 Improving .NET Application Performance and Scalability

Resource Utilization
You identify resource utilization costs in terms of server and network resources.
The primary resources are the following:
● CPU
● Memory
● Disk I/O
● Network I/O

You can identify the resource cost on a per-operation basis. Operations might include
browsing a product catalog, adding items to a shopping cart, or placing an order. You
can measure resource costs for a given user load or you can average resource costs
when the application is tested using a given workload profile.

Workload Profile
A workload profile consists of an aggregate mix of users performing various
operations. For example, for a load of 200 concurrent users, the profile might indicate
that 20 percent of users perform order placement, 30 percent add items to a shopping
cart, while 50 percent browse the product catalog. This helps you identify and
optimize areas that consume an unusually large proportion of server resources.

Metrics
Metrics provide information about how close your application is to your performance
goals. In addition, they also help you identify problem areas and bottlenecks within
your application. You can group various metric types under the following categories:
● Network. Network metrics are related to network bandwidth usage.
● System. System metrics are related to processor, memory, disk I/O, and

network I/O.
● Platform. Platform metrics are related to ASP.NET, and the .NET common

language runtime (CLR).
● Application. Application metrics include custom performance counters.
● Service level. Service level metrics are related to your application, such as orders

per second and searches per second.

 Chapter 15: Measuring .NET Application Performance 689

How Measuring Applies to Life Cycle
You should start to measure as soon as you have a defined set of performance
objectives for your application. This should be early in the application design
phase. The process of continual measuring is shown in Figure 15.1.

Requirements
Analysis

Design

Development

Testing

Deployment

Maintenance

Code Review

Architecture and
Design Review

Tuning

M
easuring

Performance
Modeling,
Design
Guidelines

A
ss

es
si

ng

Stress,
Load and
Capacity

Writing
Efficient Code

Figure 15.1
Measuring in relation to the application life cycle

You must continue to measure application performance throughout the life cycle to
determine whether your application is trending toward or away from its performance
objectives.

690 Improving .NET Application Performance and Scalability

Tools and Techniques
Measuring involves collecting data during the various stages of your application’s
development life cycle. You might need to collect data during prototyping,
application development, performance testing, and tuning, and in a production
environment. The following tools and techniques help you to collect data:
● System and platform metrics
● Network monitoring tools
● Profiling tools
● Tools for analyzing log files
● Application instrumentation

System and Platform Metrics
You can use various tools to collect system and platform metrics:
● System Monitor. This is a standard component of the Windows operating system.

You can use it to monitor performance objects and counters and instances of
various hardware and software components.

● Microsoft Operations Manager (MOM). You can install MOM agents on
individual servers that collect data and send it a centralized MOM server. The
data is stored in the MOM database, which can be a dedicated SQL Server or the
Microsoft SQL Server 2000 Desktop Engine (MSDE) version of Microsoft SQL
Server. MOM is suitable for collecting large amounts of data over a long period
of time.

● Stress tools such as Application Center Test (ACT). You can use tools such as
ACT to simulate clients and collect data during the duration of a test.

Network Monitoring Tools
You can monitor network performance with the following tools:
● Internet Protocol Security (IPSec) monitor. You can use IPSec monitor to confirm

whether your secured communications are successful. In this way you can
monitor any possible pattern of security-related or authentication-related failures.

● Network Monitor (NetMon). You use NetMon to monitor the network traffic. You
can use it to capture packets sent between client and server computers. It provides
valuable timing information as well as packet size, network utilization,
addressing, and routing information and many other statistics that you can use to
analyze system performance.

 Chapter 15: Measuring .NET Application Performance 691

Profiling Tools
There are a variety of tools available that allow you to profile .NET applications and
SQL Server:
● CLR Profiler. This allows you to create a memory allocation profile for your

application so you can see how much allocation occurs, where it occurs, and
how efficient the garbage collector is within you application. By using the various
profile views, you can obtain many useful details about the execution, allocation,
and memory consumption of your application.
For more information about using this tool, see “How To: Use CLR Profiler” in the
“How To” section of this guide.

● SQL Profiler. This profiling tool is installed with SQL Server. You can use it to
identify slow and inefficient queries, deadlocks, timeouts, recompilations, errors,
and exceptions for any database interactions.

● SQL Query Analyzer. This tool is also installed with SQL Server. You can use it to
analyze the execution plans for SQL queries and stored procedures. This is mostly
used in conjunction with the SQL Profiler.

● Third-party tools. There are various third-party tools that you can use to profile
.NET applications including VTune from Intel and Xtremesoft Appmetrics. These
tools help you identify and tune your application bottlenecks.

Tools for Analyzing Log Files
Analyzing log files is an important activity when tuning or troubleshooting your
live application. Log files can provide usage statistics for various modules of the
application, a profile of the users accessing your application, errors and exceptions,
together with other diagnostics that can help identify performance issues and their
possible cause.

You can analyze various logs including Internet Information Services (IIS) logs, SQL
Server logs, Windows event logs, and custom application logs. You can use various
third-party tools to analyze and extract details from these log files.

Application Instrumentation
In addition to the preceding tools, you can instrument your code for capturing
application-specific information. This form of information is much more fine-grained
than that provided by standard system performance counters. It is also a great way to
capture metrics around specific application scenarios.

For example, instrumentation enables you to measure how long it takes to add an
item to a shopping cart, or how long it takes to validate a credit card number. There
are a number of ways that you can instrument your code. These are summarized in
the next section, and each approach is expanded upon in subsequent sections.

692 Improving .NET Application Performance and Scalability

Instrumentation
Instrumentation is the process of adding code to your application to generate events
to allow you to monitor application health and performance. The events are generally
logged to an appropriate event source and can be monitored by suitable monitoring
tools such as MOM. An event is a notification of some action.

Instrumentation allows you to perform various tasks:
● Profile applications. Profiling enables you to identify how long a particular

method or operation takes to run and how efficient it is in terms of CPU and
memory resource usage.

● Collect custom data. This might include custom performance counters that you
use to monitor application-specific activity, such as how long it takes to place an
order.

● Trace code. This allows you to understand the application code path and all the
methods run for a particular use case.

What Options Are Available?
You can use various tools and technologies to help you instrument your application.
The right choice depends on your development platform, logging frequency, the
volume of data being logged, and how you plan to monitor. You have several
options:
● Event Tracing for Windows (ETW)
● Window Management Instrumentation (WMI)
● Custom performance counters
● Enterprise Instrumentation Framework (EIF)
● Trace and Debug classes

When Do You Use Each Option?
The various options available for logging are suitable for different scenarios. The
following questions help you make an informed choice:
● What do you want to accomplish with instrumentation?

There are various goals for instrumentation. For example, if you need only
debugging and tracing features, you might use these features mostly in a test
environment where performance is not an issue. But if you plan to log the
business actions performed by each user, this is very important from a
performance point of view and needs to be considered at design time.
If you need to trace and log activity, you need to opt for a tool that lets you specify
various levels of instrumentation through a configuration file.

 Chapter 15: Measuring .NET Application Performance 693

● How frequently do you need to log events?
Frequency of logging is one of the most important factors that helps you decide
the right choice of the instrumentation tool for you. For example, the event log is
suitable only for very low-frequency events, whereas a custom log file or ETW is
more suitable for high-frequency logging. The custom performance counters are
best for long-term trending such as week-long stress tests.

● Is your instrumentation configurable?
In a real-life scenario for a typical application, you might want to instrument it
so the data collected is helpful in various application stages, such as development
(debugging/tracing), system testing, tuning, and capacity planning.
All the code stubs for generating the data need to be inserted in the application
during the development stage of the life cycle. The code stubs for generating such
a huge amount of data may themselves add to performance overhead. However,
in most scenarios, it is a small subset of data that you are interested in during a
particular stage of the life cycle. You need configurable instrumentation so the
relevant set can be turned on at will to minimize performance overhead.

Based on the preceding considerations, the usage scenarios for the various options
are as follows.

Event Tracing for Windows (ETW)
ETW is suitable for logging high-frequency events such as errors, warnings or audits.
The frequency of logging can be in hundred of thousands of events each second in a
running application. This is ideal for server applications that log the business actions
performed by the users. The amount of logging done may be high, depending on the
number of concurrent users connected to the server.

Windows Management Instrumentation (WMI)
Windows Management Instrumentation is the core management technology built
into the Windows operating system. WMI supports a very wide range of
management tools that lets you analyze the data collected for your application.

Logging to a WMI sink is more expensive than other sinks, so you should generally
do so only for critical and high-visibility events such as a system driver failure.

694 Improving .NET Application Performance and Scalability

Custom Performance Counters
You can use custom counters to time key scenarios within your application. For
example, you can use a custom counter to time how long order placement takes or
how long it takes to retrieve customer records. For more information about custom
counters, see the following How Tos in the “How To” section of this guide:
● “How To: Monitor the ASP.NET Thread Pool Using Custom Counters”
● “How To: Time Managed Code Using QueryPerformanceCounter and

QueryPerformanceFrequency”
● “How To: Use Custom Performance Counters from ASP.NET”

Enterprise Instrumentation Framework (EIF)
EIF permits .NET applications to be instrumented to publish a broad spectrum
of information such as errors, warnings, audits, diagnostic events, and business-
specific events. You can configure which events you generate and where the events
go, to the Windows Event Log service or SQL Server, for example. EIF encapsulates
the functionality of ETW, the Event Log service, and WMI. EIF is suitable for large
enterprise applications where you need various logging levels in your application
across the tiers. EIF also provides you a configuration file where you can turn on or
turn off the switch for logging of a particular counter.

EIF also has an important feature of request tracing that enables you to trace business
processes or application services by following an execution path for an application
spanning multiple physical tiers.

More Information
● For more information and a working sample of implementing EIF,

see “How To: Use EIF” in the “How To” section of this guide.
● The levels of granularity of tracing are also configurable. EIF is available as a

free download from the Microsoft Download Center at the Microsoft Enterprise
Instrumentation Framework page at http://www.microsoft.com/downloads
/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en.

Trace and Debug Classes
The Trace and Debug classes allow you to add functionality in your application
mostly for debugging and tracing purposes.

The code added using the Debug class is relevant for debug builds of the application.
You can print the debugging information and check logic for assertions for various
regular expressions in your code. You can write the debug information by registering
a particular listener, as shown in the following code sample.

http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en

 Chapter 15: Measuring .NET Application Performance 695

public static void Main(string[] args){
 Debug.Listeners.Add(new TextWriterTraceListener(Console.Out));
 Debug.AutoFlush = true;
 Debug.WriteLine("Entering Main");
 Debug.WriteLine("Exiting Main");
}

The code stubs added using the Trace class are enabled for both the debug and
release builds of the application. The Trace class can be used to isolate problems by
enabling the trace through the execution code path.

In Visual Studio .NET, tracing is enabled by default. When using the command line
build for C# source code, you need to add /d:Trace flag for the compiler or #define
TRACE in the source code to enable tracing. For Visual Basic .NET source code you
need to add /d:TRACE=True for the command line compiler. The following code
sample uses the Trace class for adding the tracing feature in your code.

public static void Main(string[] args){
 Trace.Listeners.Add(new TextWriterTraceListener(Console.Out));
 Trace.AutoFlush = true;
 Trace.WriteLine("Entering Main");
 Trace.WriteLine("Exiting Main");
}

More Information

For more information, see Knowledge Base article 815788, “HOW TO:
Trace and Debug in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;815788.

System Resources
When you need to measure how many system resources your application consumes,
you need to pay particular attention to the following:
● Processor. Processor utilization, context switches, interrupts and so on.
● Memory. Amount of available memory, virtual memory, and cache utilization.
● Network. Percent of the available bandwidth being utilized, network bottlenecks.
● Disk I/O. Amount of read and write disk activity. I/O bottlenecks occur if read

and write operations begin to queue.

The next sections describe the performance counters that help you measure the
preceding metrics.

http://support.microsoft.com/default.aspx?scid=kb;en-us;815788
http://support.microsoft.com/default.aspx?scid=kb;en-us;815788

696 Improving .NET Application Performance and Scalability

Processor
To measure processor utilization and context switching, you can use the following
counters:
● Processor\% Processor Time

Threshold: The general figure for the threshold limit for processors is 85 percent.
Significance: This counter is the primary indicator of processor activity. High
values many not necessarily be bad. However, if the other processor-related
counters are increasing linearly such as % Privileged Time or Processor Queue
Length, high CPU utilization may be worth investigating.

● Processor\% Privileged Time
Threshold: A figure that is consistently over 75 percent indicates a bottleneck.
Significance: This counter indicates the percentage of time a thread runs in
privileged mode. When your application calls operating system functions (for
example to perform file or network I/O or to allocate memory), these operating
system functions are executed in privileged mode.

● Processor\% Interrupt Time
Threshold: Depends on processor.
Significance: This counter indicates the percentage of time the processor spends
receiving and servicing hardware interrupts. This value is an indirect indicator
of the activity of devices that generate interrupts, such as network adapters.
A dramatic increase in this counter indicates potential hardware problems.

● System\Processor Queue Length
Threshold: An average value consistently higher than 2 indicates a bottleneck.
Significance: If there are more tasks ready to run than there are processors,
threads queue up. The processor queue is the collection of threads that are ready
but not able to be executed by the processor because another active thread is
currently executing. A sustained or recurring queue of more than two threads is
a clear indication of a processor bottleneck. You may get more throughput by
reducing parallelism in those cases.
You can use this counter in conjunction with the Processor\% Processor Time
counter to determine if your application can benefit from more CPUs. There is a
single queue for processor time, even on multiprocessor computers. Therefore, in
a multiprocessor computer, divide the Processor Queue Length (PQL) value by the
number of processors servicing the workload.

 Chapter 15: Measuring .NET Application Performance 697

If the CPU is very busy (90 percent and higher utilization) and the PQL average is
consistently higher than 2 per processor, you may have a processor bottleneck that
could benefit from additional CPUs. Or, you could reduce the number of threads
and queue more at the application level. This will cause less context switching,
and less context switching is good for reducing CPU load. The common reason for
a PQL of 2 or higher with low CPU utilization is that requests for processor time
arrive randomly and threads demand irregular amounts of time from the
processor. This means that the processor is not a bottleneck but that it is your
threading logic that needs to be improved.

● System\Context Switches/sec
Threshold: As a general rule, context switching rates of less than 5,000 per second
per processor are not worth worrying about. If context switching rates exceed
15,000 per second per processor, then there is a constraint.
Significance: Context switching happens when a higher priority thread preempts
a lower priority thread that is currently running or when a high priority thread
blocks. High levels of context switching can occur when many threads share the
same priority level. This often indicates that there are too many threads competing
for the processors on the system. If you do not see much processor utilization and
you see very low levels of context switching, it could indicate that threads are
blocked.

Memory
To measure memory utilization and the impact of paging, you can use the following
counters:
● Memory\Available Mbytes

Threshold: A consistent value of less than 20 to 25 percent of installed RAM is an
indication of insufficient memory.
Significance: This indicates the amount of physical memory available to processes
running on the computer. Note that this counter displays the last observed value
only. It is not an average.

● Memory\Page Reads/sec
Threshold: Sustained values of more than five indicate a large number of page
faults for read requests.
Significance: This counter indicates that the working set of your process is too
large for the physical memory and that it is paging to disk. It shows the number
of read operations, without regard to the number of pages retrieved in each
operation. Higher values indicate a memory bottleneck.
If a low rate of page-read operations coincides with high values for Physical
Disk\% Disk Time and Physical Disk\Avg. Disk Queue Length, there could be
a disk bottleneck. If an increase in queue length is not accompanied by a decrease
in the pages-read rate, a memory shortage exists.

698 Improving .NET Application Performance and Scalability

● Memory\Pages/sec
Threshold: Sustained values higher than five indicate a bottleneck.
Significance: This counter indicates the rate at which pages are read from or
written to disk to resolve hard page faults. Multiply the values of the Physical
Disk\Avg. Disk sec/Transfer and Memory\Pages/sec counters. If the product
of these counters exceeds 0.1, paging is taking more than 10 percent of disk access
time, which indicates that you need more RAM.

● Memory\Pool Nonpaged Bytes
Threshold: Watch the value of Memory\Pool Nonpaged Bytes for an increase of
10 percent or more from its value at system startup.
Significance: If there is an increase of 10 percent or more from its value at startup,
a serious leak is potentially developing.

● Server\Pool Nonpaged Failures
Threshold: Regular nonzero values indicate a bottleneck.
Significance: This counter indicates the number of times allocations from the
nonpaged pool have failed. It indicates that the computer’s physical memory
is too small. The nonpaged pool contains pages from a process’s virtual address
space that are not to be swapped out to the page file on disk, such as a process’
kernel object table. The availability of the nonpaged pool determines how many
processes, threads, and other such objects can be created. When allocations from
the nonpaged pool fail, this can be due to a memory leak in a process, particularly
if processor usage has not increased accordingly.

● Server\Pool Paged Failures
Threshold: No specific value.
Significance: This counter indicates the number of times allocations from the
paged pool have failed. This counter indicates that the computer’s physical
memory or page file is too small.

● Server\Pool Nonpaged Peak
Threshold: No specific value.
Significance: This is the maximum number of bytes in the nonpaged pool that
the server has had in use at any one point. It indicates how much physical
memory the computer should have. Because the nonpaged pool must be resident,
and because there has to be some memory left over for other operations, you
might quadruple it to get the actual physical memory you should have for the
system.

 Chapter 15: Measuring .NET Application Performance 699

● Memory\Cache Bytes
Threshold: No specific value.
Significance: Monitors the size of cache under different load conditions. This
counter displays the size of the static files cache. By default, this counter uses
approximately 50 percent of available memory, but decreases if the available
memory shrinks, which affects system performance.

● Memory\Cache Faults/sec
Threshold: No specific value.
Significance: This counter indicates how often the operating system looks for data
in the file system cache but fails to find it. This value should be as low as possible.
The cache is independent of data location but is heavily dependent on data
density within the set of pages. A high rate of cache faults can indicate insufficient
memory or could also denote poorly localized data.

● Cache\MDL Read Hits %
Threshold: The higher this value, the better the performance of the file system
cache. Values should preferably be as close to 100 percent as possible.
Significance: This counter provides the percentage of Memory Descriptor List
(MDL) Read requests to the file system cache, where the cache returns the object
directly rather than requiring a read from the hard disk.

Disk I/O
To measure disk I/O activity, you can use the following counters:
● PhysicalDisk\Avg. Disk Queue Length

Threshold: Should not be higher than the number of spindles plus two.
Significance: This counter indicates the average number of both read and writes
requests that were queued for the selected disk during the sample interval.

● PhysicalDisk\Avg. Disk Read Queue Length
Threshold: Should be less than two.
Significance: This counter indicates the average number of read requests that were
queued for the selected disk during the sample interval.

● PhysicalDisk\Avg. Disk Write Queue Length
Threshold: Should be less than two.
Significance: This counter indicates the average number of write requests that
were queued for the selected disk during the sample interval.

● PhysicalDisk\Avg. Disk sec/Read
Threshold: No specific value.
Significance: This counter indicates the average time, in seconds, of a read of data
from the disk.

700 Improving .NET Application Performance and Scalability

● PhysicalDisk\Avg. Disk sec/Transfer
Threshold: Should not be more than 18 milliseconds.
Significance: This counter indicates the time, in seconds, of the average disk
transfer. This may indicate a large amount of disk fragmentation, slow disks, or
disk failures. Multiply the values of the Physical Disk\Avg. Disk sec/Transfer
and Memory\Pages/sec counters. If the product of these counters exceeds 0.1,
paging is taking more than 10 percent of disk access time, so you need more RAM.

● PhysicalDisk\Disk Writes/sec
Threshold: Depends on manufacturer’s specification.
Significance: This counter indicates the rate of write operations on the disk.

Network I/O
To measure network I/O, you can use the following counters:
● Network Interface\Bytes Total/sec

Threshold: Sustained values of more than 80 percent of network bandwidth.
Significance: This counter indicates the rate at which bytes are sent and received
over each network adapter. This counter helps you know whether the traffic at
your network adapter is saturated and if you need to add another network
adapter. How quickly you can identify a problem depends on the type of network
you have as well as whether you share bandwidth with other applications.

● Network Interface\Bytes Received/sec
Threshold: No specific value.
Significance: This counter indicates the rate at which bytes are received over each
network adapter. You can calculate the rate of incoming data as a part of total
bandwidth. This will help you know that you need to optimize on the incoming
data from the client or that you need to add another network adapter to handle
the incoming traffic.

● Network Interface\Bytes Sent/sec
Threshold: No specific value.
Significance: This counter indicates the rate at which bytes are sent over each
network adapter. You can calculate the rate of incoming data as a part of total
bandwidth. This will help you know that you need to optimize on the data being
sent to the client or you need to add another network adapter to handle the
outbound traffic.

 Chapter 15: Measuring .NET Application Performance 701

● Server\Bytes Total/sec
Threshold: Value should not be more than 50 percent of network capacity.
Significance: This counter indicates the number of bytes sent and received over the
network. Higher values indicate network bandwidth as the bottleneck. If the sum
of Bytes Total/sec for all servers is roughly equal to the maximum transfer rates of
your network, you may need to segment the network.

● Protocol related counters:
● Protocol_Object\Segments Received/sec
● Protocol_Object\Segments Sent/sec

Protocol_Object can be TCP, UDP, NetBEUI, NWLink IPX, NWLink NetBIOS,
NWLink SPX, or other protocol layer performance objects.
Threshold: Application-specific.
Significance: Protocol-related counters help you narrow down the traffic to
various protocols because you might be using one or more protocols in your
network. You may want to identify which protocol is consuming the network
bandwidth disproportionately.

● Processor\% Interrupt Time
Threshold: Depends on processor.
Significance: This counter indicates the percentage of time the processor spends
receiving and servicing hardware interrupts. This value is an indirect indicator
of the activity of devices that generate interrupts, such as network adapters.

.NET Framework Technologies
The .NET Framework provides a series of performance counters, which you can
monitor using System Monitor and other monitoring tools. To measure other
aspects of .NET application performance, you need to add instrumentation to your
applications. Subsequent sections in this chapter explain what you need to measure
for each of .NET technology starting with the CLR and managed code in general and
then how to measure it.

CLR and Managed Code
This section describes what you need to measure in relation to the CLR and managed
code and how you capture the key metrics. This applies to all managed code,
regardless of the type of assembly, for example, ASP.NET application, Web service,
serviced component, and data access component.

702 Improving .NET Application Performance and Scalability

What to Measure
When measuring the processes running under CLR some of the key points to look
for are as follows:
● Memory. Measure managed and unmanaged memory consumption.
● Working set. Measure the overall size of your application’s working set.
● Exceptions. Measure the effect of exceptions on performance.
● Contention. Measure the effect of contention on performance.
● Threading. Measure the efficiency of threading operations.
● Code access security. Measure the effect of code access security checks on

performance.

How to Measure
You can measure the performance of your managed code by using system
performance counters. The main counters used to measure managed code
performance and to identify CLR related bottlenecks are summarized in Table 15.1.

Table 15.1: Performance Counters Used to Measure Managed Code Performance

Area Counter

Memory Process\Private Bytes

.NET CLR Memory\% Time in GC

.NET CLR Memory\# Bytes in all Heaps

.NET CLR Memory\# Gen 0 Collections

.NET CLR Memory\# Gen 1 Collections

.NET CLR Memory\# Gen 2 Collections

.NET CLR Memory\# of Pinned Objects

.NET CLR Memory\Large Object Heap Size

Working Set Process\Working Set

Exceptions .NET CLR Exceptions\# of Exceps Thrown / sec

Contention .NET CLR LocksAndThreads\Contention Rate/sec

.NET CLR LocksAndThreads\Current Queue Length

Threading .NET CLR LocksAndThreads\# of current physical Threads

Thread\% Processor Time

Thread\Context Switches/sec

Thread\Thread State

Code Access Security .NET CLR Security\Total RunTime Checks

.NET CLR Security\Stack Walk Depth

 Chapter 15: Measuring .NET Application Performance 703

Memory
To measure memory consumption, use the following counters:
● Process\Private Bytes

Threshold: The threshold depends on your application and on settings in the
Machine config file. The default for ASP.NET is 60 percent available physical
RAM or 800 MB, whichever is the minimum. Note that .NET Framework 1.1
supports 1,800 MB as the upper bound instead of 800 MB if you add a /3GB
switch in your Boot.ini file. This is because the .NET Framework is able to
support 3 GB virtual address space instead of the 2 GB for the earlier versions.
Significance: This counter indicates the current number of bytes allocated to this
process that cannot be shared with other processes. This counter is used for
identifying memory leaks.

● .NET CLR Memory\% Time in GC
Threshold: This counter should average about 5 percent for most applications
when the CPU is 70 percent busy, with occasional peaks. As the CPU load
increases, so does the percentage of time spent performing garbage collection.
Keep this in mind when you measure the CPU.
Significance: This counter indicates the percentage of elapsed time spent
performing a garbage collection since the last garbage collection cycle. The
most common cause of a high value is making too many allocations, which may
be the case if you are allocating on a per-request basis for ASP.NET applications.
You need to study the allocation profile for your application if this counter shows
a higher value.

● .NET CLR Memory\# Bytes in all Heaps
Threshold: No specific value.
Significance: This counter is the sum of four other counters — Gen 0 Heap Size,
Gen 1 Heap Size, Gen 2 Heap Size, and Large Object Heap Size. The value of this
counter will always be less than the value of Process\Private Bytes, which also
includes the native memory allocated for the process by the operating system.
Private Bytes - # Bytes in all Heaps is the number of bytes allocated for
unmanaged objects.
This counter reflects the memory usage by managed resources.

● .NET CLR Memory\# Gen 0 Collections
Threshold: No specific value.
Significance: This counter indicates the number of times the generation 0 objects
are garbage-collected from the start of the application. Objects that survive the
collection are promoted to Generation 1. You can observe the memory allocation
pattern of your application by plotting the values of this counter over time.

704 Improving .NET Application Performance and Scalability

● .NET CLR Memory\# Gen 1 Collections
Threshold: One-tenth the value of # Gen 0 Collections.
Significance: This counter indicates the number of times the generation 1 objects
are garbage-collected from the start of the application.

● .NET CLR Memory\# Gen 2 Collections
Threshold: One-tenth the value of # Gen 1 Collections.
Significance: This counter indicates the number of times the generation 2 objects
are garbage-collected from the start of the application. The generation 2 heap is
the costliest to maintain for an application. Whenever there is a generation 2
collection, it suspends all the application threads. You should profile the allocation
pattern for your application and minimize the objects in generation 2 heap.

● .NET CLR Memory\# of Pinned Objects
Threshold: No specific value.
Significance: When .NET-based applications use unmanaged code, these objects
are pinned in memory. That is, they cannot move around because the pointers to
them would become invalid. These can be measured by this counter. You can also
pin objects explicitly in managed code, such as reusable buffers used for I/O calls.
Too many pinned objects affect the performance of the garbage collector because
they restrict its ability to move objects and organize memory efficiently.

● .NET CLR Memory\Large Object Heap Size
Threshold: No specific values.
Significance: The large object heap size shows the amount of memory consumed
by objects whose size is greater than 85 KB. If the difference between # Bytes in
All Heaps and Large Object Heap Size is small, most of the memory is being
used up by large objects. The large object heap cannot be compacted after
collection and may become heavily fragmented over a period of time. You should
investigate your memory allocation profile if you see large numbers here.

 Chapter 15: Measuring .NET Application Performance 705

Working Set
To measure the working set, use the following counter:
● Process\Working Set

Threshold: No specific value.
Significance: The working set is the set of memory pages currently loaded in
RAM. If the system has sufficient memory, it can maintain enough space in the
working set so that it does not need to perform the disk operations. However, if
there is insufficient memory, the system tries to reduce the working set by taking
away the memory from the processes which results in an increase in page faults.
When the rate of page faults rises, the system tries to increase the working set of
the process. If you observe wide fluctuations in the working set, it might indicate
a memory shortage. Higher values in the working set may also be due to multiple
assemblies in your application. You can improve the working set by using
assemblies shared in the global assembly cache.

Exceptions
To measure exceptions, use the following counter:
● .NET CLR Exceptions\# of Exceps Thrown / sec

Threshold: This counter value should be less than 5 percent of Request/sec for the
ASP.NET application. If you see more than 1 request in 20 throw an exception, you
should pay closer attention to it.
Significance: This counter indicates the total number of exceptions generated per
second in managed code. Exceptions are very costly and can severely degrade
your application performance. You should investigate your code for application
logic that uses exceptions for normal processing behavior. Response.Redirect,
Server.Transfer, and Response.End all cause a ThreadAbortException in
ASP.NET applications.

Contention
To measure contention, use the following counters:
● .NET CLR LocksAndThreads\Contention Rate / sec

Threshold: No specific value.
Significance: This counter displays the rate at which the runtime attempts to
acquire a managed lock but without a success. Sustained nonzero values may be
a cause of concern. You may want to run dedicated tests for a particular piece of
code to identify the contention rate for the particular code path.

706 Improving .NET Application Performance and Scalability

● .NET CLR LocksAndThreads\Current Queue Length
Threshold: No specific value.
Significance: This counter displays the last recorded number of threads currently
waiting to acquire a managed lock in an application. You may want to run
dedicated tests for a particular piece of code to identify the average queue length
for the particular code path. This helps you identify inefficient synchronization
mechanisms.

Threading
To measure threading, use the following counters:
● .NET CLR LocksAndThreads\# of current physical Threads

Threshold: No specific value.
Significance: This counter indicates the number of native operating system
threads currently owned by the CLR that act as underlying threads for .NET
thread objects. This gives you the idea of how many threads are actually spawned
by your application.
This counter can be monitored along with System\Context Switches/sec. A high
rate of context switches almost certainly means that you have spawned a higher
than optimal number of threads for your process. If you want to analyze which
threads are causing the context switches, you can analyze the Thread\Context
Swtiches/sec counter for all threads in a process and then make a dump of the
process stack to identify the actual threads by comparing the thread IDs from the
test data with the information available from the dump.

● Thread\% Processor Time
Threshold: No specific value.
Significance: This counter gives you the idea as to which thread is actually taking
the maximum processor time. If you see idle CPU and low throughput, threads
could be waiting or deadlocked. You can take a stack dump of the process and
compare the thread IDs from test data with the dump information to identify
threads that are waiting or blocked.

● Thread\Context Switches/sec
Threshold: No specific value.
Significance: The counter needs to be investigated when the System\Context
Switches/sec counter shows a high value. The counter helps in identifying which
threads are actually causing the high context switching rates.

● Thread\Thread State
Threshold: The counter tells the state of a particular thread at a given instance.
Significance: You need to monitor this counter when you fear that a particular
thread is consuming most of the processor resources.

 Chapter 15: Measuring .NET Application Performance 707

Code Access Security
To measure code access security, use the following counters:
● .NET CLR Security\Total RunTime Checks

Threshold: No specific value.
Significance: This counter displays the total number of runtime code access
security checks performed since the start of the application. This counter used
together with the Stack Walk Depth counter is indicative of the performance
penalty that your code incurs for security checks.

● .NET CLR Security\Stack Walk Depth
Threshold: No specific value.
Significance: This counter displays the depth of the stack during that last runtime
code access security check. This counter is not an average. It just displays the last
observed value.

Timing Your Code Path
There are often requirements that you need to know how much time a particular code
path takes during execution. You may need this information when you are comparing
various prototypes in the design stage or profiling the APIs or critical code paths
during the development stage. You need to instrument your code to calculate the
time duration and log it in an appropriate event sink such as Event Log or Windows
Trace Session Manager. The timing code in your application may look like the
following.

QueryPerfCounter myTimer = new QueryPerfCounter();
// Measure without boxing
myTimer.Start();
for(int i = 0; i < iterations; i++)
{
 // do some work to time
}
myTimer.Stop();
// Calculate time per iteration in nanoseconds
double result = myTimer.Duration(iterations);

More Information

For more information about the approach and a working sample, see “How To: Time
Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency”
in the “How To” section of this guide.

708 Improving .NET Application Performance and Scalability

ASP.NET
This section describes what you need to do to measure ASP.NET application
performance and how to capture the key metrics. For more information about
measuring ASP.NET Web services, see “Web Services” later in this chapter.

What to Measure
To effectively determine ASP.NET performance, you need to measure the following:
● Throughput. This includes the number of requests executed per second and

throughput related bottlenecks, such as the number of requests waiting to be
executed and the number of requests being rejected.

● Cost of throughput. This includes the cost of processor, memory, disk I/O, and
network utilization.

● Queues. This includes the queue levels for the worker process and for each virtual
directory hosting a .NET Web application.

● Response time and latency. The response time is measured at the client as the
amount of time between the initial request and the response to the client (first byte
or last byte). Latency generally includes server execution time and the time taken
for the request and response to be sent across the network.

● Cache utilization. This includes the ratio of cache hits to cache misses. It needs to
be seen in larger context because the virtual memory utilization may affect the
cache performance.

● Errors and exceptions. This includes numbers of errors and exceptions generated.
● Sessions. You need to be able to determine the optimum value for session timeout

and the cost of storing session data locally versus remotely. You also need to
determine the session size for a single user.

● Loading. This includes the number of assemblies and application domains loaded,
and the amount of committed virtual memory consumed by the application.

● View state size. This includes the amount of view state per page.
● Page size. This includes the size of individual pages.
● Page cost. This includes the processing effort required to serve pages.
● Worker process restarts. This includes the number of times the ASP.NET worker

process recycles.

 Chapter 15: Measuring .NET Application Performance 709

How to Measure
You measure ASP.NET performance primarily by using system performance
counters. Figure 15.2 shows the main performance counters that you use to measure
ASP.NET performance and how they relate to the ASP.NET request processing cycle.

ASP.NET Worker Process

Client

Pipeline

IIS

Application
Domain

Named Pipe

ASP.NET\
Requests
Rejected

ASP.NET\
Requests
Queued

ASP.NET\
Requests
WaitTime

ASP.NET Applications\
Requests/Sec

Web Service\
ISAPI Extension
Requests / Sec

Requests
Waiting to be

Written to Client

ASP.NET
Applications \

Requests
Executing

ASP.NET\ Worker
Process Restarts

ASP.NET\
Requests In
Application

Queue

AppDomain Queue

Figure 15.2
The ASP.NET request/response cycle and key performance counters

Table 15.2 summarizes the key performance counters that you use to measure
ASP.NET performance and to identify ASP.NET bottlenecks.

Table 15.2: Performance Counters Used to Measure ASP.NET Performance

Area Counter

Worker Process ASP.NET\Worker Process Restarts

Throughput ASP.NET Applications\Requests/Sec

Web Service\ISAPI Extension Requests/sec

ASP.NET\Requests Current

ASP.NET Applications\Requests Executing

ASP.NET Applications\Requests Timed Out

Response time / latency ASP.NET\ Request Execution Time

(continued)

710 Improving .NET Application Performance and Scalability

Table 15.2: Performance Counters Used to Measure ASP.NET Performance (continued)

Area Counter

Cache ASP.NET Applications\Cache Total Entries

ASP.NET Applications\Cache Total Hit Ratio

ASP.NET Applications\Cache Total Turnover Rate

ASP.NET Applications\Cache API Hit Ratio

ASP.NET Applications\Cache API Turnover Rate

ASP.NET Applications\Output Cache Entries

ASP.NET Applications\Output Cache Hit Ratio

ASP.NET Applications\Output Cache Turnover Rate

Throughput
To measure ASP.NET throughput, use the following counters:
● ASP.NET Applications\Requests/Sec

Threshold: Depends on your business requirements.
Significance: The throughput of the ASP.NET application on the server. It is one
the primary indicators that help you measure the cost of deploying your system
at the necessary capacity.

● Web Service\ISAPI Extension Requests/sec
Threshold: Depends on your business requirements.
Significance: The rate of ISAPI extension requests that are simultaneously being
processed by the Web service. This counter is not affected by the ASP.NET
worker process restart count, although the ASP.NET Applications\Requests/Sec
counter is.

Cost of Throughput
To measure the throughput cost in terms of the amount of system resources that your
requests consume, you need to measure CPU utilization, memory consumption, and
the amount of disk and network I/O. This also helps in measuring the cost of the
hardware needed to achieve a given level of performance. For more information
about how to measure resource costs, see “System Resources” earlier in this chapter.

 Chapter 15: Measuring .NET Application Performance 711

Requests
To measure ASP.NET requests, use the following counters:
● ASP.NET\Requests Current

Threshold: No specific value.
Significance: The number of requests currently handled by the ASP.NET ISAPI.
This includes those that are queued, executing, or waiting to be written to the
client. ASP.NET begins to reject requests when this counter exceeds the
requestQueueLimit defined in the processModel configuration section.
If ASP.NET\Requests Current is greater than zero and no responses have been
received from the ASP.NET worker process for a duration greater than the limit
specified by <processModel responseDeadlockInterval=/>, the process is
terminated and a new process is started.

● ASP.NET Applications\Requests Executing
Threshold: No specific value.
Significance: The number of requests currently executing. This counter is
incremented when the HttpRuntime begins to process the request and is
decremented after the HttpRuntime finishes the request.
For information about a hotfix for this counter, see Knowledge Base
article 821156, “INFO: ASP.NET 1.1 June 2003 Hotfix Rollup Package,”
at http://support.microsoft.com/default.aspx?scid=kb;[LN];821156.

● ASP.NET Applications\ Requests Timed Out
Threshold: No specific value.
Significance: The number of requests that have timed out. You need to investigate
the cause of request timeouts. One possible reason is contention between various
threads. A good instrumentation strategy helps capture the problem in the log.
To investigate further, you can debug and analyze the process using a run-time
debugger such as WinDbg.

http://support.microsoft.com/default.aspx?scid=kb;[LN];821156

712 Improving .NET Application Performance and Scalability

Queues
To measure ASP.NET queuing, use the following counters:
● ASP.NET\ Requests Queued

Threshold: No specific value.
Significance: The number of requests currently queued. Queued requests indicate
a shortage of I/O threads in IIS 5.0. In IIS 6.0, this indicates a shortage of worker
threads. Requests are rejected when ASP.NET\Requests Current exceeds the
requestQueueLimit (default = 5000) attribute for <processModel> element
defined in the Machine.config file. This can happen when the server is under very
heavy load.
The queue between IIS and ASP.NET is a named pipe through which the request
is sent from one process to the other. In IIS 5.0, this queue is between the IIS
process (Inetinfo.exe) and the ASP.NET worker process (Aspnet_wp.exe.) In
addition to the worker process queue there are separate queues for each virtual
directory (application domain.) When running in IIS 6.0, there is a queue where
requests are posted to the managed thread pool from native code. There is also a
queue for each virtual directory.
You should investigate the ASP.NET Applications\Requests In Application
Queue and ASP.NET\Requests Queued to investigate performance issues.

● ASP.NET Applications\ Requests In Application Queue
Threshold: No specific value.
Significance: There is a separate queue that is maintained for each virtual
directory. The limit for this queue is defined by the appRequestQueueLimit
attribute for <httpRunTime> element in Machine.config. When the queue limit
is reached the request is rejected with a “Server too busy” error.

● ASP.NET\ Requests Rejected
Threshold: No specific value.
Significance: The number of requests rejected because the request queue was
full. ASP.NET worker process starts rejecting requests when ASP.NET\Requests
Current exceeds the requestQueueLimit defined in the processModel
configuration section. The default value for requestQueueLimit is 5000.

● ASP.NET\ Requests Wait Time
Threshold: 1,000 milliseconds. The average request should be close to zero
milliseconds waiting in queue.
Significance: The number of milliseconds the most recent request was waiting
in the named pipe queue between the IIS and the ASP.NET worker process. This
does not include any time spent in the queue for a virtual directory hosting the
Web application.

 Chapter 15: Measuring .NET Application Performance 713

Response Time and Latency
You can measure response time (and latency) from a client and server perspective.
From the client perspective, you can measure the time taken for the first byte of the
response to reach the client and the time taken for the last time to reach the client. The
 latency here includes network latency (the time taken for the request and response to
travel over the network) and server latency (the time taken for the server to process
the request.) You measure time to first byte (TTFB) and time to last byte (TTLB) by
using client-side tools such as ACT. On the server-side, you measure the time taken
by ASP.NET to process a request by using the ASP.NET\Request Execution Time
performance counter.

The key items to measure to determine response time and latency are shown in
Figure 15.3.

ASP.NET Worker Process

Client IIS

Application
Domain

Request

1st Byte of Response

Last Byte of Response

ASP.NET\Request
Execution Time

Time to First Byte
(TTFB)

Time to Last Byte
(TTLB)

Figure 15.3
Response time and latency measurements

To measure response time and latency, capture the following metrics:
● TTFB

Threshold: Depends on your business requirements.
Significance: This is the time interval between sending a request to the server and
receiving the first byte of the response. The value varies depending on network
bandwidth and server load. Use client tools such as ACT to obtain this metric.

714 Improving .NET Application Performance and Scalability

● TTLB-
Threshold: Depends on your business requirements.
Significance: This is the time interval between sending a request to the server and
receiving the last byte of the response. Again, the value varies depending upon
network bandwidth and server load. Use client tools such as ACT to obtain this
metric.

● ASP.NET\Request Execution Time
Threshold: The value is based on your business requirements.
Significance: This is the number of milliseconds taken to execute the last request.
The execution time begins when the HttpContext for the request is created, and
stops before the response is sent to IIS. Assuming that user code does not call
HttpResponse.Flush, this implies that execution time stops before sending any
bytes to IIS, or to the client.

More information

For more information about measuring ASP.NET response time and latency, see the
following resources:
● Knowledge Base article 815161, “HOW TO: Measure ASP.NET Responsiveness

with the Web Application Stress Tool,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;815161.

● “How To: Use ACT to Test Performance and Scalability” in the “How To” section
of this guide.

Cache Utilization
To measure ASP.NET caching, use the following counters:
● ASP.NET Applications\Cache Total Entries

Threshold: No specific value.
Significance: The current number of entries in the cache which includes both user
and internal entries. ASP.NET uses the cache to store objects that are expensive to
create, including configuration objects and preserved assembly entries.

● ASP.NET Applications\Cache Total Hit Ratio
Threshold: With sufficient RAM, you should normally record a high (greater than
80 percent) cache hit ratio.
Significance: This counter shows the ratio for the total number of internal and
user hits on the cache.

http://support.microsoft.com/default.aspx?scid=kb;en-us;815161

 Chapter 15: Measuring .NET Application Performance 715

● ASP.NET Applications\Cache Total Turnover Rate
Threshold: No specific value.
Significance: The number of additions and removals to and from the cache per
second (both user and internal.) A high turnover rate indicates that items are
being quickly added and removed, which can impact performance.

● ASP.NET Applications\Cache API Hit Ratio
Threshold: No specific value.
Significance: Ratio of cache hits to misses of objects called from user code. A low
ratio can indicate inefficient use of caching techniques.

● ASP.NET Applications\Cache API Turnover Rate
Threshold: No specific value.
Significance: The number of additions and removals to and from the output cache
per second. A high turnover rate indicates that items are being quickly added and
removed, which can impact performance.

● ASP.NET Applications\Output Cache Entries
Threshold: No specific value.
Significance: The number of entries in the output cache. You need to measure the
ASP.NET Applications\Output Cache Hit Ratio counter to verify the hit rate to
the cache entries. If the hit rate is low, you need to identify the cache entries and
reconsider your caching mechanism.

● ASP.NET Applications\Output Cache Hit Ratio
Threshold: No specific value.
Significance: The total hit-to-miss ratio of output cache requests.

● ASP.NET Applications\Output Cache Turnover Rate
Threshold: No specific value.
Significance: The number of additions and removals to the output cache per
second. A high turnover rate indicates that items are being quickly added and
removed, which can impact performance.

Errors and Exceptions
To measure ASP.NET exceptions, use the following counters:
● ASP.NET Applications\ Errors Total/sec

Threshold: No specific value.
Significance: The total number of exceptions generated during preprocessing,
parsing, compilation, and run-time processing of a request. A high value can
severely affect your application performance. This may render all other results
invalid.

716 Improving .NET Application Performance and Scalability

● ASP.NET Applications\ Errors During Execution
Threshold: No specific value.
Significance: The total number of errors that have occurred during the processing
of requests.

● ASP.NET Applications\ Errors Unhandled During Execution/sec
Threshold: No specific value.
Significance: The total number of unhandled exceptions per second at run time.

Sessions
To measure session performance, you need to be able to determine the optimum
value for session timeout, and the cost of storing session state in process and out of
process.

Determining an Optimum Value for Session Timeout
Setting an optimum value for session timeout is important because sessions continue
to consume server resources even if the user is no longer browsing the site. If you fail
to optimize session timeouts, this can cause increased memory consumption.

� To determine the optimum session timeout

1. Identify the average session length for an average user based on the workload
model for your application. For more information about workloads, see
“Workload Modeling” in Chapter 16, “Testing .NET Application Performance.”

2. Set the session duration in IIS for your Web site to a value slightly greater than
the average session length. The optimum setting is a balance between conserving
resources and maintaining the users session.

3. Identify the metrics you need to monitor during load testing. A sample snapshot
of relevant metrics is shown in Table 15.3.

Table 15.3: Metrics

Object Counter Instance

ASP.NET Applications Requests/Sec Your virtual dir

Processor % Processor Time _Total

Memory Available Mbytes N/A

Process Private Bytes aspnet_wp

4. Run load tests with the simultaneous number of users set to the value identified
for your workload model. The duration of the test should be more than the value
configured for the session timeout in IIS.

 Chapter 15: Measuring .NET Application Performance 717

5. Repeat the load test with the same number of simultaneous users each time. For
each of the iterations, increase the value for the session timeout by a small amount.
For each of the iterations, you should observe the time interval where there is an
overlap of existing users who have completed their work but who still have an
active session on the server and a new set of users who have active sessions
increases. You should observe increased memory consumption. As soon as the
sessions for the old set of users time out, memory consumption is reduced. The
height of the spikes in memory utilization depends on the amount of data being
stored in the session store on a per-user basis.

6. Continue to increase the timeout until the spikes tend to smooth out and stabilize.
Set your session state to be as small as possible while still avoiding the memory
utilization spikes.

7. Set a value for the session timeout that is well above this limit.

In Process vs. Remote Session Stores
You might need to use a remote session state store because you want to install your
application in a load balanced Web farm. If you do so, you need to do the following:
● Ensure that all objects that are to be stored are serializable.
● Measure the cost of storing sessions on a remote server. You need to consider

network latency and the frequency with which your application is likely to access
the session state store.

� To measure relative in-process vs. remote server processing cost

1. Identify your performance objectives, such as response time (TTFB/TTLB) and
resource utilization levels (CPU, memory, disk I/O and network I/O).

Note: You should identify performance objectives by using performance modeling during the
early phases of your application requirements capture and design. For more information, see
Chapter 2, “Performance Modeling.”

2. Configure the session mode for your application to use the in-process state store
by using the following setting in Web.config.

<session mode="InProc" ... />

3. Perform a load test using the workload profile identified for your application.
For more information, see “Load Testing Process” in Chapter 16, “Testing .NET
Application Performance.”

718 Improving .NET Application Performance and Scalability

4. Identify the metrics which you need to monitor during the load tests. A sample
snapshot is shown in Table 15.4.

Table 15.4: Snapshot of Load Test Metrics

Object Counter Instance

ASP.NET Applications Requests/Sec Your virtual dir

ASP.NET Request Execution Time N/A

Processor % Processor Time _Total

Memory Available Mbytes N/A

Process Private Bytes Aspnet_wp

You also need to measure the TTLB values on the client used for generating load
on the server.

5. Run the load tests with the simultaneous number of users set to the value
identified for your workload model.

6. Execute the test with the session mode set to “StateServer” in your application’s
Web.config file.

7. Compare the values of TTLB and other metrics to determine the cost of storing
sessions on a remote server. You should aim to meet the performance objective
set for your application response time.

Loading
To measure ASP.NET loading, use the following counters:
● .NET CLR Loading\ Current appdomains

Threshold: The value should be same as number of Web applications plus one.
The additional one is the default application domain loaded by the ASP.NET
worker process.
Significance: The current number of application domains loaded in the process.

● .NET CLR Loading\ Current Assemblies
Threshold: No specific value.
Significance: The current number of assemblies loaded in the process. ASP.NET
Web pages (.aspx files) and user controls (.ascx files) are “batch compiled” by
default, which typically results in one to three assemblies, depending on the
number of dependencies. Excessive memory consumption may be caused by
an unusually high number of loaded assemblies. You should try to minimize the
number of Web pages and user controls without compromising the efficiency of
workflow.

 Chapter 15: Measuring .NET Application Performance 719

Assemblies cannot be unloaded from an application domain. To prevent excessive
memory consumption, the application domain is unloaded when the number of
recompilations (.aspx, .ascx, .asax) exceeds the limit specified by <compilation
numRecompilesBeforeAppRestart=/>.

Note: If the <%@ page debug=%> attribute is set to true, or if <compilation debug=/> is set to
true, batch compilation is disabled.

● .NET CLR Loading\ Bytes in Loader Heap
Threshold: No specific value.
Significance: This counter displays the current size (in bytes) of committed
memory across all application domains. Committed memory is the physical
memory for which space has been reserved in the paging file on disk.

ViewState Size
View state can constitute a significant portion of your Web page output, particularly
if you are using large controls such as the DataGrid or a tree control.

It is important to measure the size of view state because this can have a big impact
on the size of the overall response and on the response time. You can measure view
state by enabling page level tracing. To enable tracing for a page, add the Trace
attribute and set its value to true as shown in the following code.

<%@ Page Language="C#" Trace="True" %>

Page Size
If you need to identify the size of the response sent for a request made for a particular
page, one option is to enable logging of bytes sent in the IIS log.

� To enable logging of bytes sent in IIS

1. Open the Internet Information Services management console.
2. Expand the Web Sites node.
3. Right-click the Web site you need to enable logging for, and then click Properties.

The Default Web Site Properties dialog box appears.
4. On the Web Site tab, click Properties.

The Extended Logging Properties dialog box appears.
5. Select the Extended Properties tab and select the Extended Properties check box.
6. Select the Bytes Sent (sc-bytes) check box.
7. Click OK to close all dialog boxes.

720 Improving .NET Application Performance and Scalability

� To observe the size of a page

1. Use Internet Explorer to browse to the page for which you need to know the
page size.

2. Use Windows Explorer to browse to the <root drive>\Windows\system32
\Logfiles\W3SVC1 folder.

3. Open the log file. You should see the sc-bytes column added to the log file. You
can observe the value for the request made in step 1.

Note: Do not enable this on your production server as this significantly increases the log file size.

Page Cost
You can measure the page cost in terms of time taken to serve the page and the
processor cycles needed to completely execute the request for the page:
● Measuring page cost in terms of CPU cycles. It is possible to calculate the cost

of each request execution for a particular page in terms of CPU cycles by using
Transaction Cost Analysis (TCA). The formula used to calculate the cost in terms
of CPU cycles is as follows:
Cost (Mcycles/request) = ((number of processors x processor speed) x processor use))/
number of requests per second
For detailed information on the TCA methodology, see “How To: Perform
Capacity Planning for .NET Applications” in the “How To” section of this guide.

● Measuring page cost in terms of time. To measure the time taken for request
execution, you can measure the ASP.NET\Request Execution Time counter.
Instead of an average value, if you need to calculate the page cost for each request
you can add the code that follows to your application’s Global.asax file. The code
calculates the time by calculating the interval between the
Application_BeginRequest and Application_EndRequest events.

Note: Logging incurs some performance overhead, so avoid logging this information in your
production environment.

<%@ import namespace="System.IO" %>
<script runat=server>

//static members for the writing syncronization
private static StreamWriter _writer;
private static object _lock = new object();

(continued)

 Chapter 15: Measuring .NET Application Performance 721

(continued)

//change this to a directory that the aspnet account has read\write
//permissions to
private static string _fileName =
string.Format(@"c:\temp\log_{0}.txt",DateTime.Now.ToFileTime());

//member variables for tracking start/end times
private DateTime _startTime;
private DateTime _endTime;

public static StreamWriter GetStaticWriter()
{
 //make sure we're thread safe here...
 if(_writer==null){
 lock(_lock){
 if(_writer==null){
 _writer = new StreamWriter(_fileName,false);
 _writer.WriteLine("IP ADDRESS \tSTART TIME \tEND TIME \tDIFF
\tURL");
_writer.WriteLine("===============\t============\t============\t===============
=\t=========================");
 _writer.Flush();
 }
 }
 }
 return _writer;
}
public static void LogText(string str){
 GetStaticWriter().WriteLine(str);
 GetStaticWriter().Flush();
}
protected void Application_BeginRequest(Object sender, EventArgs e){
 _startTime = DateTime.Now;
}
protected void Application_EndRequest(Object sender, EventArgs e){
 _endTime = DateTime.Now;
LogText(string.Format("{0,-
12}\t{1:hh:mm:ss.fff}\t{2:hh:mm:ss.fff}\t{3}\t{4}",Request.ServerVariables["REM
OTE_ADDRESS"].ToString(),_startTime,_endTime,_endTime-_startTime,Request.Url));
}
protected void Application_End(Object sender, EventArgs e){
//release the writer
// Even if this doesn't execute, when the appdomain gets shutdown //it will be
released anyways
 if(_writer!=null)
 _writer.Close();
}
</script>

722 Improving .NET Application Performance and Scalability

The log file for your application will be similar to the one shown in Figure 15.4.

Figure 15.4
Log file

Worker Process Restarts
To measure worker process restarts, use the following counter:
● ASP.NET\ Worker Process Restarts

Threshold: Depends on your business requirements.
Significance: The number of times the Web application recycles and the worker
process recycles.

Web Services
This section describes what you need to do to measure ASP.NET Web service
performance and how you capture the key metrics.

What to Measure
To effectively determine ASP.NET performance, you need to measure the following:
● Throughput. Measure the number of requests executed per second and

throughput-related bottlenecks, such as the number of requests waiting to be
executed, and the number of requests being rejected.

● Cost of throughput. Measure processor, memory, disk I/O, and network
utilization.

● Queues. Measure the queue levels for the worker process and for each virtual
directory hosting a .NET Web service.

● Request Execution Time. Measure the time taken to execute the request at the
server.

● Latency or Response Time. Measure the time taken for Web method execution
and for the response to be returned to the client.

 Chapter 15: Measuring .NET Application Performance 723

● Cache utilization. Measure the ratio of cache hits to cache misses. This needs to
be seen in larger context because the virtual memory utilization may affect the
cache performance.

● Errors and exceptions. Measure the numbers of errors and exceptions generated.
● Sessions. Determine and measure the optimum value for session timeout, and the

cost of storing session data locally versus remotely. You also need to determine the
session size for a single user.

● XML serialization. Measure the cost of XML serialization.

How to Measure
To measure Web service performance, you can use many of the same counters used
to measure ASP.NET application performance. For details about these counters, see
“ASP.NET” earlier in this chapter. The other main factor to measure is the impact of
XML serialization.

Serialization Cost
Web services use the XmlSerializer class to serialize and de-serialize data. You
can calculate the cost of serializing a particular object in terms of memory overhead
and the size of data by using the following code snippet.

using System;
using System.IO;
using System.Xml;
using System.Xml.Serialization;
using System.Text;
using System.Data;

//A sample class for serialization
public class MyClass{
 public string name;
 public string surName;
 public MyClass(){
 name="FirstName";
 surName="LastName";
 }
}
class Class1{
 private static long startMemory, endMemory, gcMemory, actualMemory,
 overHeadMemory;
 private static double percentOverhead;

 static void Main(string[] args){
 //stream to which the class object shall be serialized
 Stream fs = new FileStream("SomeFile.txt",FileMode.Create);
 MyClass mc = new MyClass();

(continued)

724 Improving .NET Application Performance and Scalability

(continued)

 XmlSerializer xs = new XmlSerializer(typeof(MyClass));
 XmlWriter writer = new XmlTextWriter(fs, new UTF8Encoding());
 // Clean up the GC memory and measure the measuring as the baseline before
 // performing the serialization
 System.GC.Collect();
 System.GC.WaitForPendingFinalizers();
 startMemory = System.GC.GetTotalMemory(false);

 xs.Serialize(writer,mc);

 //Calculate the overhead and the amount of data after serialization
 CalculateOverhead(fs.Position);
 DisplayInfo();
 writer.Close();
 fs.Close();
 Console.ReadLine();
}
 public static void CalculateOverhead(long streamPosition){
 endMemory = System.GC.GetTotalMemory(false);
 gcMemory = endMemory-startMemory;
 actualMemory = streamPosition;
 overHeadMemory = gcMemory-actualMemory;
 percentOverhead = ((double)(overHeadMemory * 100)) /
 (double)actualMemory;
 }
 public static void DisplayInfo() {
 Console.WriteLine("Total amount of data after serialization ->"+actualMemory);
 Console.WriteLine("Total memory used by GC for serialization ->"+gcMemory);
 Console.WriteLine("Overhead memory used serialization ->"+overHeadMemory);
 Console.WriteLine("Percent overhead ->"+percentOverhead);
 }
}

You can use CLR Profiler to get a more complete picture of allocations and the
actual objects allocated. For more information, see “How To: Use CLR Profiler” in
the “How To” section of this guide.

 Chapter 15: Measuring .NET Application Performance 725

Enterprise Services
This section describes what you need to do to measure Enterprise Services
application performance and how you capture the key metrics.

What to Measure
To measure Enterprise Services performance, you need to capture the following
metrics that primarily relate to object usage:
● Number of objects activated
● Number of objects in use
● Time duration for which an object is in call
● Cost of a transaction in terms of resources and time taken to complete the

transaction
● Cost in terms of processor and memory utilization for specific method calls

to serviced components
● Optimum size for the object pool

During the design, prototyping, or development stage, you may also require to
evaluate the performance of components using various features of Enterprise
Services, such as components with and without object pooling and components
with and without just-in-time activation.

How to Measure
To measure Enterprise Services performance, you can capture metrics displayed
by the Component Services administration tool.

Components Services Administration Tool
The Component Services tool enables you to measure metrics for the components
hosted in COM+. However, you can only observe the values only at a given instant
as there is no logging feature available.

� To view Enterprise Services metrics

1. Open the Component Services administration tool.
2. Expand Component Services, Computers, My Computer, COM+ Applications,

and then expand your application in the left hand tree control.
3. Click the Components folder.
4. On the View menu, click Status.

726 Improving .NET Application Performance and Scalability

This enables you to see the metrics in Table 15.5, in the details pane of the console.

Table 15.5: Enterprise Services Metrics

Column Description

ProgID Identifies a specific component.

Objects Shows the number of objects that are currently held by client references.

Activated Shows the number of objects that are currently activated.

Pooled Shows the total number of objects created by the pool, including objects that are
in use and objects that are deactivated.

In Call Identifies objects in call.

Call Time (ms) Shows the average call duration (in milliseconds) of method calls made in the
last 20 seconds (up to 20 calls). Call time is measured at the object and does
not include the time used to traverse the network.

Optimum Size for the Object Pool
Object pooling is usually enabled for components that take a long time to be
initialized. These components tend to hold on some sort of server resources such as
a network connection or a file handle. If the pool size is too big, the objects may end
up blocking on server resources without doing any useful work. If the pool size is too
small, the requests may end up waiting in a queue waiting to get hold of an object to
service the request.

You need to execute the load test in the following procedure to identify the optimum
size for your pool.

� To determine the optimum size for the object pool

1. Identify the transactions per second (T), response time, and the workload model
set during the performance modeling phase for your application.

2. For a given load of simultaneous users and test duration of Y seconds, you should
be able to complete a specific number of transactions in the given time frame
without crossing the limit set for the response time and other system resources.
The calculation for total transactions uses the following formula:
Total transactions T (in Y seconds) = T transactions/sec * Y sec

3. Start with a value of the maximum object pool that is lower than the concurrent
load of users for the transactions.

 Chapter 15: Measuring .NET Application Performance 727

4. Identify the metrics that need to be measured during the load testing of the
System Monitor. For example, if you have an ASP.NET client, see Table 15.6.

Table 15.6: Measuring ASP.NET Performance

Object Counter Instance

ASP.NET Applications Requests/Sec Your virtual dir

ASP.NET Applications Requests In Application Queue Your virtual dir

ASP.NET Request Execution Time N/A

Processor % Processor Time _Total

Memory Available Mbytes N/A

Process Private Bytes aspnet_wp

You also need to measure the metrics related to object pool usage from the
Component Services console.

� To measure object pool usage

1. Run the load tests with the simultaneous number of users set to the value
identified for your workload model.

2. Perform multiple iterations for the load test with same number of simultaneous
users. Each of the iterations increases the value for Max Object Pool Size by a
small amount. For each of the iterations, there is a change in the values of the
metrics.

3. Plot a graph for the metrics with respect to the varying object pool size. Decide on
the optimum value for the object pool based on the various performance objectives
set for the metrics identified.

Third-Party Tools
If you need to profile the components at a more detailed level with respect to time
taken, resource cost for a particular transaction, and so on, you need to either
instrument your code or use third-party tools such as Xtremesoft AppMetrics.

Remoting
This section describes what you need to do to measure .NET remoting performance
and how you capture the key metrics.

728 Improving .NET Application Performance and Scalability

What to Measure
To effectively determine .NET remoting performance, you need to measure the
following:
● Throughput. Measure the throughput of the remote component.
● Serialization cost and amount of data. Measure the cost of serializing parameters

and return values.
● Number of TCP connections. Measure the number of TCP connections

established with the remote host.
● Contention for singleton objects. Measure the impact of locking and queuing.

How to Measure
You can measure throughput by using system performance counters, although
you may also need to add custom instrumentation code. You also need to use custom
code to measure serialization performance. You can capture connection information
using the Netstat tool. The performance counters that you use to measure .NET
remoting performance are shown in Table 15.7.

Table 15.7: Performance Counters Used to Measure.NET Remoting Performance

Area Counter

Throughput .NET CLR Remoting\Remote Calls/sec

ASP.NET Applications\Requests/Sec

Contention .NET CLR LocksAndThreads\Contention Rate/sec

.NET CLR LocksAndThreads\Current Queue Length

Throughput
To measure .NET remoting throughput, use the following counters:
● .NET CLR Remoting\Remote Call/sec

Threshold: No specific value.
Significance: Measures the current rate of incoming .NET remoting requests.
More than one remote call may be required to complete a single operation. You
need to divide the counter with the amount of requests to complete a single
operation. This gives you the rate of operations completed per second.
You might need to instrument your code to observe the request execution time.

 Chapter 15: Measuring .NET Application Performance 729

● ASP.NET Applications\ Requests/Sec
Threshold: No specific value.
Significance: If your remote component is hosted in IIS, you can measure the
throughput by observing this counter. You need to divide the counter with the
amount of requests to complete a single operation. This gives you the rate of
operations completed per second.

Serialization Cost and Amount of Data
Serializing data across .NET remoting boundaries can be a major overhead,
particularly if you use the SoapFormatter. The amount of data passed over the
wire and the processor and memory overhead required to serialize the data can be
significant, especially in server applications under heavy load. Large amounts of data
serialization can lead to network congestion, processor, and memory bottlenecks.

To optimize and tune serialization, you can measure the costs associated with
serializing individual parameters. You can measure byte sizes and the overhead
placed on garbage collection. In this way, for a given load you can calculate the
total amount of data and the memory overhead by multiplying the values with the
number of concurrent users.

using System;
using System.Data;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

[System.Serializable]
public class MyClass
{
public string name;
 public string surName;
 public MyClass(){
 name="FirstName";
 surName="LastName";
 }
}
class Class1
{
 private static IFormatter iBinForm = new BinaryFormatter();
 private static long startMemory, endMemory, gcMemory, actualMemory,
 overHeadMemory;

 private static double percentOverhead;
 private static byte [] byteData = new byte[5000];

(continued)

730 Improving .NET Application Performance and Scalability

(continued)

 [STAThread]
 static void Main(string[] args)
 {
 Console.WriteLine("Press any key to start...");
 Console.ReadLine();

 Stream serializationStream = new
 MemoryStream(byteData,0,byteData.Length,true,true);
 serializationStream.Position=0;

 MyClass mc = new MyClass();
 System.GC.Collect();
 System.GC.WaitForPendingFinalizers();
 startMemory = System.GC.GetTotalMemory(false);
 iBinForm.Serialize(serializationStream,mc);
 CalculateOverhead(serializationStream.Position);
 DisplayInfo();
 serializationStream.Close();
 Console.ReadLine();
 }
}

Number of TCP Connections
To identify the total number of TCP connections to a given server, you can monitor
the TCP\ Connections Established performance counter.

If you need to analyze the connections further and identify which client is
consuming the most connections, the state for each connection, and the total number
of connections, you can run the following command at the command prompt.

C:\>netstat –a –n –p TCP

The output from this command would be similar to the output shown in Figure 15.5.

Figure 15.5
Output from Netstat.exe

You can observe the TCP connections made from different computers and categorize
them based on their IP address.

 Chapter 15: Measuring .NET Application Performance 731

Interop
This section describes what you need to do to measure interoperability performance
and how to capture the key metrics. You can use the measuring techniques discussed
in this section to measure P/Invoke and COM interop performance.

What to Measure
To effectively determine interop performance, you need to measure the following:
● Marshaling time per request
● Processor and memory utilization
● Chattiness of marshaled interfaces

How to Measure
You can measure interop performance by using the performance counters shown
in Table 15.8.

Table 15.8: Performance Counters Used to Measure Interop Performance

Area Counter

Processor Processor\% Processor Time

Processor\% Privileged Time

Processor\% Interrupt Time

System\Processor Queue Length

System\Context Switches/sec

Memory Process\Private Bytes

.NET CLR Memory\% Time in GC

.NET CLR Memory\# Bytes in all Heaps

.NET CLR Memory\# Gen 0 Collections

.NET CLR Memory\# Gen 1 Collections

.NET CLR Memory\# Gen 2 Collections

.NET CLR Memory\# of Pinned Objects

.NET CLR Memory\Large Object Heap Size

Chattiness .NET CLR Interop\# of marshalling

732 Improving .NET Application Performance and Scalability

Chattiness of Marshaled Interfaces
You can measure interface chattiness by measuring the number of times your code
switches from managed to unmanaged code and back again. Use the following
counter:
● .NET CLR Interop\# of marshalling

Threshold: No specific value.
Significance: This tells you the number of transitions from managed to
unmanaged code and back again. If this number is high, determine whether
you can redesign this part of the application to reduce the number of transitions
needed.

● .NET CLR Interop\# of Stubs
Threshold: No specific value.
Significance: Displays the current number of stubs that the CLR has created.

ADO.NET/Data Access
This section describes what you need to do to measure ADO.NET data access
performance and how you capture the key metrics.

What to Measure
To effectively determine ADO.NET data access performance, you need to measure
the following:
● Connection pooling. Measure the utilization and effectiveness of pooling.
● Queries. Measure response times and query efficiency.
● Indexes. Measure the effectiveness of index searches.
● Cache. Measure the effectiveness of caching and cache utilization levels.
● Transactions. Measure transactions per second, concurrent transactions.
● Locks. Measure the impact of table-locking and row-locking, average time spent

waiting for a lock, and number of deadlocks.

 Chapter 15: Measuring .NET Application Performance 733

How to Measure
You can measure ADO.NET data access performance by using the performance
counters shown in Table 15.9.

Table 15.9: Performance Counters Used to Measure ADO.NET Performance

Area Counter

Connection Pooling .NET CLR Data\SqlClient: Current # connection pools

.NET CLR Data\SqlClient: Current # pooled connections

.NET CLR Data\SqlClient: Peak # pooled connections

.NET CLR Data\SqlClient: Total # failed connects

Indexes SQL Server Access Methods\Index Searches/sec

SQL Server Access Methods\Full Scans/sec

Cache SQL Server: Cache Manager\Cache Hit Ratio

SQL Server: Cache Manager\Cache Use Counts/sec

SQL Server: Memory Manager\ SQL Cache Memory(KB)

Memory\ Cache Faults/sec

Transactions SQL Server: Databases\Transactions/sec

SQL Server: Databases\Active Transactions

Locks SQL Server: Locks\ Lock Requests/sec

SQL Server: Locks\ Lock Timeouts/sec

SQL Server: Locks\Lock Waits/sec

SQL Server: Locks\ Number of Deadlocks/sec

SQL Server: Locks\Average Wait Time (ms)

SQL Server: Latches\Average Latch Wait Time(ms)

734 Improving .NET Application Performance and Scalability

Connection Pooling — SqlConnection
To monitor the connection pool of .NET Framework data provider for SQL Server,
you can monitor the following performance counters:
● .NET CLR Data\ SqlClient: Current # connection pools

Threshold: No specific value.
Significance: Current number of pools associated with the process.

● .NET CLR Data\ SqlClient: Current # pooled connections
Threshold: No specific value.
Significance: Current number of connections in all pools associated with the
process.

● .NET CLR Data\SqlClient: Peak # pooled connections
Threshold: No specific value.
Significance: The highest number of connections in all pools since the process
started.

● .NET CLR Data\SqlClient Total # failed connects
Threshold: No specific value.
Significance: The total number of connection open attempts that have failed for
any reason.

More Information

For more information about a counter reset problem, see Knowledge Base article
314429, “BUG: Performance Counters for SQL Server .NET Data Provider Are Not
Reset,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;314429.

Connection Pooling — OleDbConnection
Currently there is no direct way to measure the effectiveness of OLEDB and ODBC
pools by using System Monitor because the counters provided are not reliable.
However, you can monitor the number of logins per second with the SQL Server:
General Statistics\Logins/sec counter. You can also monitor user connections on
the database server to evaluate pool performance.

You should observe that SQL Server: General Statistics \Logins/sec drops to zero.
This indicates that connections are getting repeatedly reused and that the pool is
working effectively.

http://support.microsoft.com/default.aspx?scid=kb;en-us;314429

 Chapter 15: Measuring .NET Application Performance 735

Indexes
To measure index performance, use the following counters:
● SQL Server: Access Methods\Index Searches/sec

Threshold: No specific value.
Significance: Number of index searches. Index searches are used to start range
scans, single index record fetches, and to reposition within an index.

● SQL Server: Access Methods\Full Scans/sec
Threshold: No specific value.
Significance: The rate of full table or full index scans. Lower numbers are better.

● To tune indexes, use the Index Tuning Wizard that comes with SQL Server 2000.

Cache
To measure caching, use the following counters:
● SQL Server: Cache Manager\Cache Hit Ratio

Threshold: No specific value.
Significance: Ratio between cache hits and lookups.

● SQL Server: Cache Manager\Cache Use Counts/sec
Threshold: No specific value.
Significance: Times each type of cache object has been used.

● SQL Server: Memory Manager\SQL Cache Memory (KB)
Threshold: No specific value.
Significance: Total amount of dynamic memory the server is using for the dynamic
SQL cache.

● Memory\Cache Faults/sec
Threshold: This indicates how often the operating system looks for data in the file
system cache but fails to find it.
Significance: This value should be as small as possible. A high rate of cache faults
may indicate insufficient memory or poorly organized or heavily fragmented
disks.

736 Improving .NET Application Performance and Scalability

Transactions
To measure transactions, use the following counters:
● SQL Server: Databases\Transactions/sec

Threshold: No specific value.
Significance: Number of transactions started for the database. This is the primary
indicator of database throughput.

● SQL Server: Databases\Active Transactions
Threshold: No specific value.
Significance: Number of active transactions for the database.

Locks
To measure the impact of locks in the database, use the following counters:
● SQL Server: Locks\ Lock Requests/sec

Threshold: No specific value.
Significance: Number of new locks and lock conversions requested from the lock
manager.

● SQL Server: Locks\ Lock Timeouts/sec
Threshold: No specific value.
Significance: Number of lock requests that timed out. This includes internal
requests for NOWAIT locks.

● SQL Server: Locks\Lock Waits/sec
Threshold: No specific value.
Significance: Number of lock requests that could not be satisfied immediately and
required the caller to wait before being granted the lock.

● SQL Server: Locks\ Number of Deadlocks/sec
Threshold: No specific value.
Significance: Number of lock requests that resulted in a deadlock. A typical reason
for this could be interference between long-running queries and multiple row
updates. This number has to be very low. This translates to significant extra work
because a deadlock implies that there must be a retry or compensating action at
some higher level of the business logic.
High values indicate that there is a scope to improve your design that manages
the transaction isolation levels and queries.

● SQL Server: Locks\Average Wait Time (ms)
Threshold: No specific value.
Significance: The average amount of wait time (milliseconds) for each lock request
that resulted in a wait.

 Chapter 15: Measuring .NET Application Performance 737

● SQL Server: Latches\Average Latch Wait Time (ms)
Threshold: No specific value.
Significance: The average amount of time that a request for a latch had to wait
within the database. Latches are lightweight, short-term row locks, so higher
numbers indicate contention for resources.

Summary
Having set performance objects early in your application’s design phase, you begin
to measure by collecting metrics. You continue to measure throughout the application
life cycle to determine whether your application’s performance is trending toward or
away from its performance goals.

This chapter has shown you what the key metrics are that you need to capture for
the CLR and managed code in general and also for specific .NET technologies such
as ASP.NET, Web services, Enterprise Services, COM interop, and ADO.NET data
access. In each case, the chapter has shown you what to measure and how to measure
the key metrics.

Additional Resources
For more information about measuring performance, see the following resources in
this guide:
● Chapter 2, “Performance Modeling.”
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.”

See the following How Tos in the “How To” section of this guide:
● “How To: Use CLR Profiler”
● “How To: Monitor the ASP.NET Thread Pool Using Custom Counters”
● “How To: Time Managed Code Using QueryPerformanceCounter and

QueryPerformanceFrequency”
● “How To: Use Custom Performance Counters from ASP.NET”
● “How To: Use EIF”
● “How To: Use ACT to Test Performance and Scalability”
● “How To: Perform Capacity Planning for .NET Applications”

For further reading, see the following resources:
● Performance Testing Microsoft .NET Web Applications, by Microsoft ACE Team
● Performance Engineering of Software Systems, by Connie U. Smith

16
Testing .NET Application
Performance

Objectives
● Learn performance testing fundamentals.
● Perform load testing.
● Perform stress testing.
● Perform workload modeling.
● Identify testing best and worst practices.

Overview
Performance testing is used to verify that an application is able to perform under
expected and peak load conditions, and that it can scale sufficiently to handle
increased capacity. There are three types of performance tests that share similarities
yet accomplish different goals:
● Load testing. Use load testing to verify application behavior under normal and

peak load conditions. This allows you to verify that your application can meet
your desired performance objectives; these performance objectives are often
specified in a service level agreement. It enables you to measure response times,
throughput rates, resource utilization levels, and to identify your application’s
breaking point, assuming that breaking point occurs below the peak load
condition.

740 Improving .NET Application Performance and Scalability

● Stress testing. Use stress testing to evaluate your application’s behavior when it is
pushed beyond the normal or peak load conditions. The goal of stress testing is to
unearth application bugs that surface only under high load conditions. These can
include such things as synchronization issues, race conditions, and memory leaks.
Stress testing enables you to identify your application’s weak points, and how it
behaves under extreme load conditions.

● Capacity testing. Capacity testing is complementary to load testing and it
determines your server’s ultimate failure point, whereas load testing monitors
results at various levels of load and traffic patterns. You perform capacity testing
in conjunction with capacity planning. You use capacity planning to plan for
future growth, such as an increased user base or increased volume of data. For
example, to accommodate future loads you need to know how many additional
resources (such as CPU, RAM, disk space, or network bandwidth) are necessary
to support future usage levels. Capacity testing helps you identify a scaling
strategy to determine whether you should scale up or scale out. For more
information, refer to “How To: Perform Capacity Planning for .NET Applications”
in the “How To” section of this guide.

This chapter demonstrates an approach to performance testing that is particularly
effective when combined with the other principles in this guide.

How to Use This Chapter
To gain the most from this chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of the issues around
performance testing.

● Identify your stress test tool. To execute the performance test processes defined
in this chapter, you need a stress test tool to simulate user load. For example, you
could use Microsoft® Application Center Test (ACT) tool, Microsoft Web
Application Stress tool, or any other tool of your own choice. ACT is included
with Enterprise editions of the Microsoft Visual Studio® .NET development
system. You can download the Microsoft Web Application Stress tool at
http://www.microsoft.com/technet/itsolutions/intranet/downloads/webstres.mspx.

● Identify your scenarios. Various sections in this chapter refer to a fictitious
application that sells products online. For example, the user can browse and
search through products, add them to a shopping cart, and purchase them with
a credit card. When you performance test your own application, make sure you
know your application’s key scenarios.

http://www.microsoft.com/technet/itsolutions/intranet/downloads/webstres.mspx

 Chapter 16: Testing .NET Application Performance 741

● Use the “How To” section. The “How To” section of this guide includes the
following instructional articles referenced by this chapter:
● “How To: Use ACT to Test Performance and Scalability”
● “How To: Use ACT to Test Web Services Performance”
● “How To: Perform Capacity Planning for .NET Applications”

Performance Testing
Performance testing is the process of identifying how an application responds to a
specified set of conditions and input. Multiple individual performance test scenarios
(suites, cases, scripts) are often needed to cover all of the conditions and/or input of
interest. For testing purposes, if possible, the application should be hosted on a
hardware infrastructure that is representative of the live environment. By examining
your application’s behavior under simulated load conditions, you identify whether
your application is trending toward or away from its defined performance objectives.

Goals of Performance Testing
The main goal of performance testing is to identify how well your application
performs in relation to your performance objectives. Some of the other goals of
performance testing include the following:
● Identify bottlenecks and their causes.
● Optimize and tune the platform configuration (both the hardware and software)

for maximum performance.
● Verify the reliability of your application under stress.

You may not be able to identify all the characteristics by running a single type of
performance test. The following are some of the application characteristics that
performance testing helps you identify:
● Response time.
● Throughput.
● Maximum concurrent users supported. For a definition of concurrent users, see

“Testing Considerations,” later in this chapter.
● Resource utilization in terms of the amount of CPU, RAM, network I/O, and disk

I/O resources your application consumes during the test.
● Behavior under various workload patterns including normal load conditions,

excessive load conditions, and conditions in between.

742 Improving .NET Application Performance and Scalability

● Application breaking point. The application breaking point means a condition
where the application stops responding to requests. Some of the symptoms of
breaking point include 503 errors with a “Server Too Busy” message, and errors in
the application event log that indicate that the ASPNET worker process recycled
because of potential deadlocks.

● Symptoms and causes of application failure under stress conditions.
● Weak points in your application.
● What is required to support a projected increase in load. For example, an increase

in the number of users, amount of data, or application activity might cause an
increase in load.

Performance Objectives
Most of the performance tests depend on a set of predefined, documented, and
agreed-upon performance objectives. Knowing the objectives from the beginning
helps make the testing process more efficient. You can evaluate your application’s
performance by comparing it with your performance objectives.

You may run tests that are exploratory in nature to know more about the system
without having any performance objective. But even these eventually serve as input
to the tests that are conducted for evaluating performance against performance
objectives.

Performance objectives often include the following:
● Response time or latency
● Throughput
● Resource utilization (CPU, network I/O, disk I/O, and memory)
● Workload

Response Time or Latency
Response time is the amount of time taken to respond to a request. You can measure
response time at the server or client as follows:
● Latency measured at the server. This is the time taken by the server to complete

the execution of a request. This does not include the client-to-server latency, which
includes additional time for the request and response to cross the network.

● Latency measured at the client. The latency measured at the client includes the
request queue, plus the time taken by the server to complete the execution of the
request and the network latency. You can measure the latency in various ways.
Two common approaches are time taken by the first byte to reach the client (time
to first byte, TTFB), or the time taken by the last byte of the response to reach the
client (time to last byte, TTLB). Generally, you should test this using various
network bandwidths between the client and the server.

 Chapter 16: Testing .NET Application Performance 743

By measuring latency, you can gauge whether your application takes too long to
respond to client requests.

Throughput
Throughput is the number of requests that can be served by your application per
unit time. It can vary depending upon the load (number of users) and the type of
user activity applied to the server. For example, downloading files requires higher
throughput than browsing text-based Web pages. Throughput is usually measured
in terms of requests per second. There are other units for measurement, such as
transactions per second or orders per second.

Resource Utilization
Identify resource utilization costs in terms of server and network resources.
The primary resources are:
● CPU
● Memory
● Disk I/O
● Network I/O

You can identify the resource cost on a per operation basis. Operations might include
browsing a product catalog, adding items to a shopping cart, or placing an order. You
can measure resource costs for a given user load, or you can average resource costs
when the application is tested using a given workload profile.

A workload profile consists of an aggregate mix of users performing various
operations. For example, for a load of 200 concurrent users (as defined below), the
profile might indicate that 20 percent of users perform order placement, 30 percent
add items to a shopping cart, while 50 percent browse the product catalog. This helps
you identify and optimize areas that consume an unusually large proportion of
server resources and response time.

Workload
In this chapter, we have defined the load on the application as simultaneous users or
concurrent users.

Simultaneous users have active connections to the same Web site, whereas concurrent
users hit the site at exactly the same moment. Concurrent access is likely to occur at
infrequent intervals. Your site may have 100 to 150 concurrent users but 1,000 to 1,500
simultaneous users.

When load testing your application, you can simulate simultaneous users by
including a random think time in your script such that not all the user threads from
the load generator are firing requests at the same moment. This is useful to simulate
real world situations.

744 Improving .NET Application Performance and Scalability

However, if you want to stress your application, you probably want to use
concurrent users. You can simulate concurrent users by removing the think time
from your script.

For more information on workload modeling, see “Workload Modeling,” later in this
chapter.

Tools
There are tools available to help simulate load. You can simulate load in terms of
users, connections, data, and in other ways. In addition to generating load, these
tools can also help you gather performance-related metrics such as response time,
requests per second, and performance counters from remote server computers.

Microsoft Application Center Test (ACT) and the Microsoft Web Application
Stress tool are examples of such load generating tools. The ACT tool is included
with Enterprise editions of Visual Studio .NET. You can download the Microsoft
Web Application Stress Tool at http://www.microsoft.com/technet/itsolutions/intranet
/downloads/webstres.mspx.

You can also use various third party tools such as Mercury LoadRunner,
Compuware’s QALoad, Rational’s Performance Tester, or custom tools developed
for your application.

Load Testing Process
You use load testing to verify application behavior under normal and peak load
conditions. You incrementally increase the load from normal to peak load to see how
your application performs with varying load conditions. You continue to increase the
load until you cross the threshold limit for your performance objectives. For example,
you might continue to increase the load until the server CPU utilization reaches 75
percent, which is your specified threshold. The load testing process lets you identify
application bottlenecks and the maximum operating capacity of the application.

Input
Input may include the following:
● Performance objectives from your performance model. For more information

about Performance Modeling, see Chapter 2, “Performance Modeling.”
● Application characteristics (scenarios).
● Workload characteristics.
● Performance objectives for each scenario.
● Test plans.

http://www.microsoft.com/technet/itsolutions/intranet/downloads/webstres.mspx
http://www.microsoft.com/technet/itsolutions/intranet/downloads/webstres.mspx

 Chapter 16: Testing .NET Application Performance 745

Steps
The load testing process is a six step process as shown in Figure 16.1.

2. Identify Workload

Load Testing Process

1. Identify Key Scenarios

3. Identify Metrics

4. Create Test Cases

6. Analyze Results

5. Simulate Load

Iterate

Figure 16.1
The load testing process

The load testing process involves the following steps:
1. Identify key scenarios. Identify application scenarios that are critical for

performance.
2. Identify workload. Distribute the total application load among the key scenarios

identified in step 1.
3. Identify metrics. Identify the metrics that you want to collect about the

application when running the test.
4. Create test cases. Create the test cases where you define steps for executing a

single test along with the expected results.
5. Simulate load. Use test tools to simulate load according to the test cases and to

capture the result metrics.
6. Analyze the results. Analyze the metric data captured during the test.

The next sections describe each of these steps.

746 Improving .NET Application Performance and Scalability

Step 1. Identify Key Scenarios
Start by identifying your application’s key scenarios. Scenarios are anticipated user
paths that generally incorporate multiple application activities. Key scenarios are
those for which you have specific performance goals or those that have a significant
performance impact, either because they are commonly executed or because they are
resource intensive. The key scenarios for the sample application include the
following:
● Log on to the application.
● Browse a product catalog.
● Search for a specific product.
● Add items to the shopping cart.
● Validate credit card details and place an order.

Step 2. Identify Workload
Identify the performance characteristics or workload associated with each of the
defined scenarios. For each scenario you must identify the following:
● Numbers of users. The total number of concurrent and simultaneous users who

access the application in a given time frame. For a definition of concurrent users,
see “Testing Considerations,” later in this chapter.

● Rate of requests. The requests received from the concurrent load of users per unit
time.

● Patterns of requests. A given load of concurrent users may be performing
different tasks using the application. Patterns of requests identify the average
load of users, and the rate of requests for a given functionality of an application.

For more information about how to create a workload model for your application,
see “Workload Modeling,” later in this chapter.

After you create a workload model, begin load testing with a total number of users
distributed against your user profile, and then start to incrementally increase the
load for each test cycle. Continue to increase the load, and record the behavior until
you reach the threshold for the resources identified in your performance objectives.
You can also continue to increase the number of users until you hit your service level
limits, beyond which you would be violating your service level agreements for
throughput, response time, and resource utilization.

 Chapter 16: Testing .NET Application Performance 747

Step 3. Identify Metrics
Identify the metrics that you need to measure when you run your tests. When you
simulate load, you need to know which metrics to look for and where to gauge the
performance of your application. Identify the metrics that are relevant to your
performance objectives, as well as those that help you identify bottlenecks. Metrics
allow you to evaluate how your application performs in relation to performance
objectives — such as throughput, response time, and resource utilization.

As you progress through multiple iterations of the tests, you can add metrics based
upon your analysis of the previous test cycles. For example, if you observe that that
your ASP.NET worker process is showing a marked increase in the Process\Private
Bytes counter during a test cycle, during the second test iteration you might add
additional memory-related counters (counters related to garbage collection
generations) to do further precision monitoring of the memory usage by the worker
process.

For more information about the types of metrics to capture for an ASP.NET
application, see “Metrics,” later in this chapter.

To evaluate the performance of your application in more detail and to identify
the potential bottlenecks, monitor metrics under the following categories:
● Network-specific metrics. This set of metrics provides information about the

overall health and efficiency of your network, including routers, switches, and
gateways.

● System-related metrics. This set of metrics helps you identify the resource
utilization on your server. The resources are CPU, memory, disk I/O, and
network I/O.

● Platform-specific metrics. Platform-specific metrics are related to software that
is used to host your application, such as the .NET Framework common language
runtime and ASP.NET-related metrics.

● Application-specific metrics. These include custom performance counters
inserted in your application code to monitor application health and identify
performance issues. You might use custom counters to determine the number of
concurrent threads waiting to acquire a particular lock or the number of requests
queued to make an outbound call to a Web service.

● Service level metrics. Service level metrics can help to measure overall application
throughput and latency, or they might be tied to specific business scenarios as
shown in Table 16.1.

748 Improving .NET Application Performance and Scalability

Table 16.1: Sample Service Level Metrics for the Sample Application

Metric Value

Orders / second 70

Catalogue Browse / second 130

Number of concurrent users 100

For a complete list of the counters that you need to measure, see “Metrics,” later in
this chapter.

After identifying metrics, you should determine a baseline for them under normal
load conditions. This helps you decide on the acceptable load levels for your
application. Baseline values help you analyze your application performance at
varying load levels. An example is showed in Table 16.2.

Table 16.2: Acceptable Load Levels

Metric Accepted level

% CPU Usage Must not exceed 60%

Requests / second 100 or more

Response time (TTLB) for client on 56 Kbps bandwidth Must not exceed 8 seconds

Step 4. Create Test Cases
Document your various test cases in test plans for the workload patterns identified
in Step 2. Two examples are shown in this section.

Test Case for the Sample E-Commerce Application
The test case for the sample e-commerce application used for illustration purposes
in this chapter might define the following:
● Number of users: 500 simultaneous users
● Test duration: 2 hours
● Think time: Random think time between 1 and 10 seconds in the test script after

each operation

 Chapter 16: Testing .NET Application Performance 749

Divide the users into various user profiles based on the workload identified in step 2.
For the sample application, the distribution of load for various profiles could be
similar to that shown in Table 16.3.

Table 16.3: Load Distribution

User scenarios Percentage of users Users

Browse 50 250

Search 30 150

Place order 20 100

Total 100 500

Expected Results
The expected results for the sample application might be defined as the following:
● Throughput: 100 requests per second (ASP.NET\Requests/sec performance

counter)
● Requests Executing: 45 requests executing (ASP.NET\Requests Executing

performance counter)
● Avg. Response Time: 2.5 second response time (TTLB on 100 megabits per

second [Mbps] LAN)
● Resource utilization thresholds:

Processor\% Processor Time: 75 percent
Memory\Available MBytes: 25 percent of total physical RAM

Step 5. Simulate Load
Use tools such as ACT to run the identified scenarios and to simulate load. In
addition to handling common client requirements such as authentication, cookies,
and view state, ACT allows you to run multiple instances of the test at the same
time to match the test case.

Note: Make sure the client computers you use to generate load are not overly stressed. Resource
utilization such as processor and memory should be well below the utilization threshold values.

For more information about using ACT for performance testing, see “How To: Use
ACT to Test Performance and Scalability” in the “How To” section of this guide.

750 Improving .NET Application Performance and Scalability

Step 6. Analyze the Results
Analyze the captured data and compare the results against the metric’s accepted
level. The data you collect helps you analyze your application with respect to your
application’s performance objectives:
● Throughput versus user load.
● Response time versus user load.
● Resource utilization versus user load.

Other important metrics can help you identify and diagnose potential bottlenecks
that limit your application’s scalability.

To generate the test data, continue to increase load incrementally for multiple test
iterations until you cross the threshold limits set for your application. Threshold
limits may include service level agreements for throughput, response time, and
resource utilization. For example, the threshold limit set for CPU utilization may be
set to 75 percent; therefore, you can continue to increase the load and perform tests
until the processor utilization reaches around 80 percent.

The analysis report that you generate at the end of various test iterations identifies
your application behavior at various load levels. For a sample report, see the
“Reporting” section later in this chapter.

If you continue to increase load during the testing process, you are likely to
ultimately cause your application to fail. If you start to receive HTTP 500 (server
busy) responses from the server, it means that your server’s queue is full and that it
has started to reject requests. These responses correspond to the 503 error code in the
ACT stress tool.

Another example of application failure is a situation where the ASP.NET worker
process recycles on the server because memory consumption has reached the limit
defined in the Machine.config file or the worker process has deadlocked and has
exceeded the time duration specified through the responseDeadlockInterval
attribute in the Machine.config file.

You can identify bottlenecks in the application by analyzing the metrics data. At this
point, you need to investigate the cause, fix or tune your application, and then run
the tests again. Based upon your test analysis, you may need to create and run
special tests that are very focused.

More Information
For more information about identifying architecture and design related issues
in your application, see Chapter 4, “Architecture and Design Review of a .NET
Application for Performance and Scalability.”

For more information about identifying architecture and design-related issues in
your application, see Chapter 13, “Code Review: .NET Application Performance.”

 Chapter 16: Testing .NET Application Performance 751

For more information about tuning, refer to Chapter 17, “Tuning .NET Application
Performance.”

Output
The various outputs of the load testing process are the following:
● Updated test plans.
● Behavior of your application at various load levels.
● Maximum operating capacity.
● Potential bottlenecks.
● Recommendations for fixing the bottlenecks.

Stress-Testing Process
Stress test your application by subjecting it to very high loads that are beyond the
capacity of the application, while denying it the resources required to process that
load. For example, you can deploy your application on a server that is running a
processor-intensive application already. In this way, your application is immediately
starved of processor resources and must compete with the other application for CPU
cycles.

The goal of stress testing is to unearth application bugs that surface only under high
load conditions. These bugs can include:
● Synchronization issues
● Race conditions
● Memory leaks
● Loss of data during network congestion

Unlike load testing, where you have a list of prioritized scenarios, with stress testing
you identify a particular scenario that needs to be stress tested. There may be more
than one scenario or there may be a combination of scenarios that you can stress test
during a particular test run to reproduce a potential problem. You can also stress test
a single Web page or even a single item, such as a stored procedure or class.

Input
To perform stress testing, you need the following input:
● Application characteristics (scenarios)
● Potential or possible problems with the scenarios
● Workload profile characteristics
● Peak load capacity (obtained from load testing)

752 Improving .NET Application Performance and Scalability

Steps
The stress testing process is a six-step process as shown in Figure 16.2.

2. Identify Workload

Stress Testing Process

1. Identify Key Scenarios

3. Identify Metrics

4. Create Test Cases

6. Analyze Results

5. Simulate Load

Iterate

Figure 16.2
Stress testing process

The process involves the following steps:
1. Identify key scenario(s). Identify the application scenario or cases that need to be

stress tested to identify potential problems.
2. Identify workload. Identify the workload that you want to apply to the scenarios

identified in step 1. This is based on the workload and peak load capacity inputs.
3. Identify the metrics. Identify the metrics that you want to collect about the

application. Base these metrics on the potential problems identified for the
scenarios you identified in step 1.

4. Create test cases. Create the test cases where you define steps for running a single
test and your expected results.

5. Simulate load. Use test tools to simulate the required load for each test case and
capture the metric data results.

6. Analyze the results. Analyze the metric data captured during the test.

The next sections describe each of these steps.

 Chapter 16: Testing .NET Application Performance 753

Step 1. Identify Key Scenarios
Identify the scenario or multiple scenarios that you need to stress test. Generally,
you start by defining a single scenario that you want to stress test to identify a
potential performance issue. There are a number of ways to choose appropriate
scenarios:
● Select scenarios based on how critical they are to overall application performance.
● Try to test those operations that are most likely to affect performance. These might

include operations that perform intensive locking and synchronization, long
transactions, and disk-intensive I/O operations.

● Base your scenario selection on the data obtained from load testing that identified
specific areas of your application as potential bottlenecks. While you should have
fine-tuned and removed the bottlenecks after load testing, you should still stress
test the system in these areas to verify how well your changes handle extreme
stress levels.

Scenarios that may need to be stress tested separately for a typical e-commerce
application include the following:
● An order processing scenario that updates the inventory for a particular product.

This functionality has the potential to exhibit locking and synchronization
problems.

● A scenario that pages through search results based on user queries. If a user
specifies a particularly wide query, there could be a large impact on memory
utilization. For example, memory utilization could be affected if a query returns
an entire data table.

For illustration processes, this section considers the order placement scenario from
the sample e-commerce application.

Step 2. Identify Workload
The load you apply to a particular scenario should stress the system sufficiently
beyond threshold limits. You can incrementally increase the load and observe the
application behavior over various load conditions.

As an alternative, you can start by applying an anti-profile to the workload model
from load testing. The anti-profile has the workload distributions inverted for the
scenario under consideration. For example, if the normal load for the place order
scenario is 10 percent of the total workload, the anti-profile is 90 percent of the total
workload. The remaining load can be distributed among the other scenarios. This
can serve as a good starting point for your stress tests.

You can continue to increase the load beyond this starting point for stress testing
purposes. Configure the anti-profile needs in such a way that the load for the
identified scenario is deliberately increased beyond the peak load conditions.

754 Improving .NET Application Performance and Scalability

For example, consider the normal workload profile identified for a sample
application that is shown in Table 16.4.

Table 16.4: Sample Workload Profile for a Sample Application

User profile Percentage Simultaneous users

Browse 50% 500

Search 30% 300

Order 20% 200

Total 100% 1,000

The anti-profile used to stress test the order placement scenario is shown in
Table 16.5.

Table 16.5: Order Use Case Anti-Profile

User profile Percentage Simultaneous users

Browse 10% 100

Search 10% 100

Order 80% 800

Total 100% 1,000

Continue to increase the load for this scenario, and observe the application response
at various load levels. The time duration of the tests depends upon the scenario. For
example, it might take 10 to 15 days to simulate deadlocks on a four-processor
machine, but the same deadlocks may be simulated on an eight-processor machine
in half that time.

Step 3. Identify Metrics
Identify the metrics corresponding to the potential pitfalls for each scenario. The
metrics can be related to both performance and throughput goals, in addition to
ones that provide information about the potential problems. This might include
custom performance counters that have been embedded in the application. For
example, this might be a performance counter used to monitor the memory usage
of a particular memory stream used to serialize a DataSet.

 Chapter 16: Testing .NET Application Performance 755

For the place order scenario, where contention-related issues are the focus, you need
to measure the metrics that report contention in addition to the basic set of counters.
Table 16.6 shows the metrics that have been identified for the place order scenario.

Table 16.6: Metrics to Measure During Stress Testing of the Place Order Scenario

Object Counter Instance

Base set of metrics

Processor % Processor Time _Total

Process Private Bytes aspnet_wp

Memory Available MBytes N/A

ASP.NET Requests Rejected N/A

ASP.NET Request Execution Time N/A

ASP.NET Applications Requests/Sec Your virtual dir

Contention-related metrics

.NET CLR LocksAndThreads Contention Rate / sec aspnet_wp

.NET CLR LocksAndThreads Current Queue Length aspnet_wp

Step 4. Create Test Cases
Document your test cases for the various workload patterns identified in step 2.
For example:
● Test 1 — Place order scenario:

1,000 simultaneous users.
Use a random think time between 1 and 10 seconds in the test script after each
operation.
Run the test for 2 days.

● Test 1 — Expected results:
The ASP.NET worker process should not recycle because of deadlock.
Throughput should not fall below 35 requests per second.
Response time should not be greater than 7 seconds.
Server busy errors should not be more than 10 percent of the total response
because of contention-related issues.

756 Improving .NET Application Performance and Scalability

Step 5. Simulate Load
Use tools such as ACT to run the identified scenarios and to simulate load. This
allows you to capture the data for your metrics.

Note: Make sure that the client computers that you use to generate load are not overly
stressed. Resource utilization, such as processor and memory, should not be very high.

Step 6. Analyze the Results
Analyze the captured data and compare the results against the metric’s accepted
level. If the results indicate that your required performance levels have not been
attained, analyze and fix the cause of the bottleneck. To address the issue, you
might need to do one of the following:
● Perform a design review. For more information, see Chapter 4, “Architecture

and Design Review of a .NET Application for Performance and Scalability.”
● Perform a code review. For more information, see Chapter 13, “Code Review:

.NET Application Performance.”
● Examine the stack dumps of the worker process to diagnose the exact cause of

deadlocks.

For example, to reduce the contention for the place order scenario of the sample
application, you can implement queues into which orders are posted and are
processed serially rather than processing them immediately after the order is placed.

More Information
● For more information on tools and techniques for debugging, see “Production

Debugging for .NET Framework Applications,” at http://msdn.microsoft.com
/library/en-us/dnbda/html/DBGrm.asp.

● For more information on debugging deadlocks, see “Scenario: Contention or
Deadlock Symptoms” in “Production Debugging for .NET Framework
Applications,” at http://msdn.microsoft.com/library/en-us/dnbda/html/DBGch03.asp.

● For more information on deadlocks, see Microsoft Knowledge Base article 317723,
“INFO: What Are Race Conditions and Deadlocks?” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;317723.

http://msdn.microsoft.com/library/en-us/dnbda/html/DBGrm.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/DBGrm.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/DBGch03.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;317723
http://support.microsoft.com/default.aspx?scid=kb;en-us;317723

 Chapter 16: Testing .NET Application Performance 757

Workload Modeling
Workload modeling is the process of identifying one or more workload profiles
to be simulated against the target test systems. Each workload profile represents
a variation of the following attributes:
● Key scenarios.
● Numbers of simultaneous users.
● Rate of requests.
● Patterns of requests.

The workload model defines how each of the identified scenarios is executed. It also
defines approximate data access patterns and identifies user types and characteristics.

You can determine patterns and call frequency by using either the predicted usage of
your application based on market analysis, or if your application is already in
production, by analyzing server log files. Some important questions to help you
determine the workload for your application include:
● What are your key scenarios?

Identify the scenarios that are critical for your application from a performance
perspective. You should capture these scenarios as a part of the requirements
analysis performed in the very early stages of your application development
life cycle.

● What is the maximum expected number of users logged in to your application?
Simultaneous users are users who have active connections to the same Web site.
This represents the maximum operating capacity for your application. For the
sample e-commerce application, assume 1,000 simultaneous users. If you are
developing a new application, you can obtain these numbers by working with
the marketing team and using the results of the team’s analysis. For existing
applications, you can identify the number of simultaneous users by analyzing
your Internet Information Services (IIS) logs.

● What is the possible set of actions that a user can perform?
This depends upon the actions a user can perform when he or she is logged
into the application. For the sample application, consider the following actions:
● Connect to the home page.
● Log on to the application.
● Browse the product catalog.
● Search for specific products.
● Add products to the shopping cart.
● Validate and place an order.
● Log out from the application.

758 Improving .NET Application Performance and Scalability

● What are the various user profiles for the application?
You can group together the various types of users and the actions they perform.
For example, there are groups of users who simply connect and browse the
product catalog, and there are other users who log on, search for specific products,
and then log out. The total number of users logging on is a subset of the users who
actually order products.
Based on this approach, you can classify your user profiles. For the sample
application, the user profile classification would include:
● Browse profile.
● Search profile.
● Place order profile.

● What are the operations performed by an average user for each profile?
The operations performed by an average user for each profile are based on
marketing data for a new application and IIS log analysis for an existing one.
For example, if you are developing a business-to-consumer e-commerce site,
your research-based marketing data tells you that on an average, a user who
buys products buys at least three products from your site in a single session.
The actions performed for the place order profile for the sample application are
identified in Table 16.7.

Table 16.7: Actions Performed for the Place Order Profile

Operation Number of times performed in a single session

Connect to the home page. 1

Log on to the application. 1

Browse the product catalogue. 4

Search for specific products. 2

Add products in the shopping cart. 3

Validate and place order. 1

Log off from the application. 1

A typical user for the place order profile might not search your site, but you can
assume such actions by averaging out the activity performed by various users for
a specific profile. You can then create a table of actions performed by an average
user for all the profiles for your application.

 Chapter 16: Testing .NET Application Performance 759

● What is the average think time between requests?
Think time is the time spent by the user between two consecutive requests.
During this time, the user views the information displayed on a page or enters
details such as credit card numbers, depending on the nature of operation being
performed.
Think time can vary depending on the complexity of the data on a page. For
example, think time for the logon page is less than the think time for an order
placement page where the user must enter credit card details. You can average
out the think time for all the requests.
For more information about think time, see “Testing Considerations,” later in
this chapter.

● What is the expected user profile mix?
The usage pattern for each scenario gives an idea in a given time frame of the
percentage mix of business actions performed by users. An example is shown
in Table 16.8.

Table 16.8: Sample User Profile Over a Period of Time

User profile Percentage Simultaneous users

Browse 50% 500

Search 30% 300

Order 20% 200

Total 100% 1,000

● What is the duration for which the test needs to be executed?
The test duration depends on the workload pattern for your application and may
range from 20 minutes to as long as a week. Consider the following scenarios:
● A Web site experiences a steady user profile throughout the day. For example,

if you host an online e-commerce site, the operations performed by an average
user visiting the site are unlikely to vary during the course of an 8-to-10 hour
business day. The test script for such a site should not vary the profile of users
over the test period. The tests are executed simply by varying the number
of users for each test cycle. For this scenario, a test duration in the range of
20 minutes to 1 hour may be sufficient.

● A Web site experiences a varying profile of users on a given day. For example,
a stock brokerage site might experience more users buying (rather than selling)
stocks in the morning and the opposite in the evening. The test duration for this
type of application may range between 8 and 16 hours.

● You may even run tests continuously for a week or multiple weeks with a
constant load to observe how your application performs over a sustained
period of activity. This helps you identify any slow memory leaks over a period
of time.

760 Improving .NET Application Performance and Scalability

Testing Considerations
Your test environment should be capable of simulating production environment
conditions. To do this, keep the following considerations in mind during the test
cycle:
● Do not place too much stress on the client.
● Create baselines for your test setup.
● Allow for think time in your test script.
● Consider test duration.
● Minimize redundant requests during testing.
● Consider simultaneous versus concurrent users.
● Set an appropriate warm up time.

The next sections describe each of these considerations.

Do Not Place Too Much Stress on the Client
Do not overly stress the client computer used to generate application load. The
processor and memory usage on your client computers should be well below the
threshold limit (CPU: 75 percent). Otherwise, the client computer may end up as
a bottleneck during your testing. To avoid this, consider distributing the load on
multiple client computers. Also, monitor the network interface bandwidth utilization
to ensure that the network is not getting congested.

Create Baselines for Your Test Setup
Create baselines for your test setup for all types of tests you need to perform. The
setup should be representative of the real life environment. This has two advantages.
First, the results from various categories of tests do not reflect the type of hardware
you are using. This means that your application modifications are the only variable.
Second, you can depend on the test results because the test setup closely mirrors the
real life environment.

Allow for Think Time in Your Test Script
Think time reflects the amount of time that a typical user is likely to pause for
thought while interacting with your application. During this time, the user views
the information displayed on the page or enters details such as credit card numbers
or addresses. You should average the think time across various operations.

 Chapter 16: Testing .NET Application Performance 761

If you do not include think time in your script, there is no time gap between two
subsequent requests on a per-user basis. This directly translates to all users firing
requests to the server concurrently. So, for a concurrent load of 200 users, there will
be 200 requests fired at a given instance to the server. This is not a true representation
of how your typical users use your application.

Note: Omitting think time can be helpful when you want to generate excessive load on the server.

Make sure that the think time in your test script is based on real life conditions. This
varies according to the operations performed by the user, and it varies depending on
the page the user is interacting with.

For your test scripts, you can program for either a fixed think time between
consecutive requests or a random think time ranging between minimum and
maximum values.

Consider Test Duration
You should base the time duration for your tests on the end goal. If the goal is to
load test and monitor the application behavior for your workload pattern, the test
duration might range from 20 minutes to as long as one week. If the site is expected
to experience users of similar profile, and the average user is expected to perform the
same set of operations during the intraday activity, a test of 20 minutes to one hour is
sufficient for generating data for load testing. You may want to run load tests for an
extended period — four to five days — to see how your application performs on the
peak operating capacity for a longer duration of time.

However, to generate test data for your site if your site expects users of different
profiles during various hours of operation, you may need to test for at least eight
to 10 hours to simulate various user profiles in the workload pattern.

For stress testing purposes, the end goal is to run tests to identify potential resource
leaks and the corresponding degradation in application performance. This may
require a longer duration, ranging from a couple of hours to a week, depending on
the nature of the bottleneck.

For tests used to measure the transaction cost of an operation using transaction cost
analysis, you might need to run test for only approximately 20 minutes.

More Information

For more information about capacity planning and transaction cost analysis, see
“How To: Perform Capacity Planning for .NET Applications” in the “How To”
section of this guide.

762 Improving .NET Application Performance and Scalability

Minimize Redundant Requests During Testing
Make sure that your test load script simulates an appropriate load for your particular
scenario and does not generate additional redundant requests. For example, consider
a logon scenario. The complete operation typically consists of two requests:
● A GET request used to retrieve the initial page where the user supplies a logon

name and password.
● A POST request when the user clicks the Logon button to verify the credentials.

The GET request is the same for all users and can easily be cached and served to all
users. However, it is the POST request that is critical from a performance perspective.
In this example, your test script should avoid sending a GET request before
submitting a POST request. By avoiding the GET request within your test script, the
client threads of the load generator are able to iterate faster through the loop for a
given set of users, thereby generating more POST requests. This results in a more
effective stress test for the actual POST operation. However, there may be conditions
when even the response to a GET request is customized for a user; therefore, you
should consider including both the GET and POST requests in the stress tests.

Consider Simultaneous vs. Concurrent Users
Simultaneous users have active connections to the same Web site, whereas concurrent
users connect to the site at exactly the same moment. Concurrent access is likely to
occur at infrequent intervals. Your site may have 100 to 150 concurrent users but 1,000
to 1,500 simultaneous users.

To stress test your application by using tools such as ACT, use a think time of zero
in your test scripts. This allows you to stress your application without any time lag,
with all users concurrently accessing the site. By using an appropriate think time,
however, you can more accurately mirror a real life situation in which a user takes
some time before submitting a new request to the server.

High numbers of simultaneous users tend to produce spikes in your resource usage
and can often cause interaction that is beyond the concurrent load a server can
handle. This results in occasional “server busy” errors. Tests with simultaneous users
are very useful because they help you identify the actual load your system can handle
without sending back too many server busy errors.

Set an Appropriate Warm-up Time
ACT supports warm-up times. The warm-up time is used in a test script to ensure
your application reaches a steady state before the test tool starts to record results. The
warm-up time causes ACT to ignore the data from the first few seconds of a test run.
This is particularly important for ASP.NET applications because the first few requests
trigger just-in-time (JIT) compilation and caching.

 Chapter 16: Testing .NET Application Performance 763

The warm up time is particularly relevant for short duration tests, so that the initial
startup time does not skew the test results.

To determine an appropriate warm-up time for your application, use the ASP.NET
Applications\Compilations Total counter to measure the effects of JIT compilation.
This counter should increase every time a user action triggers the JIT complier.

In some cases you may want to know how long it takes to compile and cache.
It should be a separate test; it should not be averaged into your steady state
measurements.

Best Practices for Performance Testing
When you test, consider the following best practices.

Do
When performing performance testing, make sure you do the following:
● Clear the application and database logs after each performance test run.

Excessively large log files may artificially skew the performance results.
● Identify the correct server software and hardware to mirror your production

environment.
● Use a single graphical user interface (GUI) client to capture end-user response

time while a load is generated on the system. You may need to generate load by
using different client computers, but to make sense of client-side data, such as
response time or requests per second, you should consolidate data at a single
client and generate results based on the average values.

● Include a buffer time between the incremental increases of users during a
load test.

● Use different data parameters for each simulated user to create a more realistic
load simulation.

● Monitor all computers involved in the test, including the client that generates
the load. This is important because you should not overly stress the client.

● Prioritize your scenarios according to critical functionality and high-volume
transactions.

● Use a zero think time if you need to fire concurrent requests. This can help you
identify bottleneck issues.

● Stress test critical components of the system to assess their independent
thresholds.

764 Improving .NET Application Performance and Scalability

Do Not
● Do not allow the test system resources to cross resource threshold limits by a

significant margin during load testing, because this distorts the data in your
results.

● Do not run tests in live production environments that have other network traffic.
Use an isolated test environment that is representative of the actual production
environment.

● Do not try to break the system during a load test. The intent of the load test is not
to break the system. The intent is to observe performance under expected usage
conditions. You can stress test to determine the most likely modes of failure so
they can be addressed or mitigated.

● Do not place too much stress on the client test computers.

Metrics
The metrics that you need to capture vary depending on the server role. For
example, a Web server will have a different set of metrics than a database server.

The metrics in this section are divided into the following categories:
● Metrics for all servers
● Web server-specific metrics
● SQL Server-specific metrics

The next sections describe each of these categories.

Metrics for All Servers
Table 16.9 lists the set of metrics that you should capture on all your servers. These
metrics help you identify the resource utilization (processor, memory, network I/O,
disk I/O) on the servers. For more information on the metrics, see Chapter 15,
“Measuring .NET Application Performance.”

Table 16.9: Metrics to Be Measured on All Servers

Object Counter Instance

Network

Network Interface Bytes Received/sec Each NIC card

Network Interface Bytes Sent/sec Each NIC card

Network Interface Packets Received Discarded Each NIC card

Network Interface Packets Outbound Discarded Each NIC card

(continued)

 Chapter 16: Testing .NET Application Performance 765

Table 16.9: Metrics to Be Measured on All Servers (continued)

Object Counter Instance

Processors

Processor % Processor Time _Total

Processor % Interrupt Time _Total

Processor % Privileged Time _Total

System Processor Queue Length N/A

System Context Switches/sec N/A

Memory

Memory Available MBytes N/A

Memory Pages/sec N/A

Memory Cache Faults/sec N/A

Server Pool Nonpaged Failures N/A

Process

Process Page Faults/sec Total

Process Working Set (Monitored process)

Process Private Bytes (Monitored process)

Process Handle Count (Monitored process)

Web Server-Specific Metrics
You can either capture a small set of metrics for the Web server that lets you evaluate
the application performance with respect to your performance goals, or you can
capture a bigger set of counters that helps you identify potential bottlenecks for your
application.

Table 16.10 shows a set of counters that helps you evaluate your application
performance with respect to goals. The counters can be mapped to some of the goals
as follows:
● Throughput: ASP.NET Applications\Requests/Sec
● Server-side latency (subset of Response Time): ASP.NET\Request

Execution Time
● Process utilization: Processor\% Processor Time
● Memory utilized by the ASP.NET worker process: Process\Private Bytes

(aspnet_wp)
● Free memory available for the server: Memory\Available MBytes

766 Improving .NET Application Performance and Scalability

Table 16.10: Metrics for Application Performance Goals

Object Counter Instance

ASP.NET Applications Requests/Sec Application virtual directory

ASP.NET Request Execution Time N/A

ASP.NET Applications Requests In Application Queue Application virtual directory

Processor % Processor Time _Total

Memory Available MBytes N/A

Process Private Bytes aspnet_wp

The set of metrics shown in Table 16.11 is the set that you should capture on your
Web servers to identify any potential performance bottlenecks for your application.

Table 16.11: Web Server-Specific Metrics

Object Counter Instance

ASP.NET Requests Current N/A

ASP.NET Requests Queued N/A

ASP.NET Requests Rejected N/A

ASP.NET Request Execution Time N/A

ASP.NET Request Wait Time N/A

ASP.NET Applications Requests/Sec Your virtual dir

ASP.NET Applications Requests Executing Your virtual dir

ASP.NET Applications Requests In Application Queue Your virtual dir

ASP.NET Applications Requests Timed Out Your virtual dir

ASP.NET Applications Cache Total Hit Ratio Your virtual dir

ASP.NET Applications Cache API Hit Ratio Your virtual dir

ASP.NET Applications Output Cache Hit Ratio Your virtual dir

ASP.NET Applications Errors Total/sec Your virtual dir

ASP.NET Applications Pipeline Instance Count Your virtual dir

.NET CLR Memory % Time in GC Aspnet_wp

.NET CLR Memory # Bytes in all Heaps Aspnet_wp

.NET CLR Memory # of Pinned Objects Aspnet_wp

.NET CLR Memory Large Object Heap Size Aspnet_wp

(continued)

 Chapter 16: Testing .NET Application Performance 767

Table 16.11: Web Server-Specific Metrics (continued)

Object Counter Instance

.NET CLR Exceptions # of Exceps Thrown /sec Aspnet_wp

.NET CLR LocksAndThreads Contention Rate / sec aspnet_wp

.NET CLR LocksAndThreads Current Queue Length aspnet_wp

.NET CLR Data SqlClient: Current # connection pools

.NET CLR Data SqlClient: Current # pooled connections

Web Service ISAPI Extension Requests/sec Your Web site

SQL Server-Specific Metrics
The set of metrics shown in Table 16.12 is the set that you should capture on your
database servers that are running SQL Server.

Table 16.12: SQL Server-Specific Metrics

Object Counter Instance

SQL Server: General Statistics User Connections N/A

SQL Server: Access Methods Index Searches/sec N/A

SQL Server: Access Methods Full Scans/sec N/A

SQL Server: Databases Transactions/sec (Your Database)

SQL Server: Databases Active Transactions (Your Database)

SQL Server: Locks Lock Requests/sec _Total

SQL Server: Locks Lock Timeouts/sec _Total

SQL Server: Locks Lock Waits/sec _Total

SQL Server: Locks Number of Deadlocks/sec _Total

SQL Server: Locks Average Wait Time (ms) _Total

SQL Server: Latches Average Latch Wait Time (ms) N/A

SQL Server: Cache Manager Cache Hit Ratio _Total

SQL Server: Cache Manager Cache Use Counts/sec _Total

(continued)

768 Improving .NET Application Performance and Scalability

Table 16.12: SQL Server-Specific Metrics (continued)

Object Counter Instance

Disk I/O

PhysicalDisk Avg. Disk Queue Length (disk instance)

PhysicalDisk Avg. Disk Read Queue Length (disk instance)

PhysicalDisk Avg. Disk Write Queue Length (disk instance)

PhysicalDisk Avg. Disk sec/Read (disk instance)

PhysicalDisk Avg. Disk sec/Transfer (disk instance)

PhysicalDisk Avg. Disk Bytes/Transfer (disk instance)

PhysicalDisk Disk Writes/sec (disk instance)

Reporting
This section shows a report template that you can use to create load test reports for
your applications. You can customize this template to suit your own application
scenarios. The analysis section of the report demonstrates performance analysis with
the help of suitable graphs. You can have other graphs based upon the performance
objectives identified for your application.

Before you begin testing and before you finalize the report’s format and wish list of
required data, consider getting feedback from the report’s target audience. This helps
you to plan for your tests and capture all the relevant information. Table 16.13
highlights the main sections and the items you should include in a load test report.

Table 16.13: Load Test Report Template

Section Item Details

Web server(s) Processor: 2 gigahertz (GHz) (dual processor)

Memory: 1 GB RAM

Number of servers: 2

Load balancing: Yes

Hardware
details

Server(s) running
SQL Server

Processor: 2 GHZ (dual processor)

Memory: 1 GB RAM

Number of servers: 1

Load balancing: No

(continued)

 Chapter 16: Testing .NET Application Performance 769

Table 16.13: Load Test Report Template (continued)

Section Item Details

Client(s) Memory: 1 GB RAM

Number of servers: 2

Hardware
details
(continued)

Network Total Bandwidth for the setup: 100 megabits per second
(Mbps)

Network Bandwidth between client and server: 100 Mbps

Web server(s) Operating system: Microsoft® Windows 2000® Advanced
Server Service Pack SP4

Web server: IIS 5.0

Platform: .NET Framework 1.1

Servers running
SQL Server

Operating system: Windows 2000 Advanced Server
Service Pack SP4

Database Server: SQL Server 2000 Service Pack SP3

Software
details

Client(s) Tool used: Microsoft Application Center Test

IIS configuration Session time out:

Http-Keep alive:

Machine.Config
configuration

MaxConnections:

MaxWorkerThreads:

MaxIOThreads

MinFreeThreads

MinLocalRequestFreeThreads:

executionTimeOut:

Web.Config
configuration

<compilation debug="false"/>
<authentication mode="Windows" />
<trace enabled="false" requestLimit="10"
pageOutput="false" traceMode="SortByTime"
localOnly="true" />
<sessionState mode="InProc" timeout="20"/>

Configuration
details

Application-specific
configuration

You can include application specific configuration here
such as custom attributes added to the configuration file.

770 Improving .NET Application Performance and Scalability

Workload Profile
Table 16.14 shows the workload profile for the sample e-commerce application.

Table 16.14: Sample Application Workload Profile

User profile Percentage

Browse 50 percent

Search 30 percent

Order 20 percent

Total 100 percent

Metric Value

Number of simultaneous users 100–1,600 users

Total number tests 16

Test duration 1 hour

Think time random time of 10 seconds

Performance Objectives
Table 16.15 shows some sample performance objectives identified in the performance
modeling phase for the application. For more information on performance modeling,
see Chapter 2, “Performance Modeling.”

Table 16.15: Performance Objectives

Performance Objective Metric

Throughput and response time Requests/second:

Response time/TTLB:

System performance
(for each server)

Processor utilization:

Memory:

Disk I/O (for database server):

Application-specific metrics
(custom performance counters)

Orders/second:

Searches/second:

 Chapter 16: Testing .NET Application Performance 771

Web Server Metrics
Table 16.16 lists typical Web server metrics.

Table 16.16: Web Server Metrics

Object: Counter

Value
100 users

Value
200 users

Network

Network Interface: Bytes Received/sec

Network Interface: Bytes Sent/sec

Network Interface: Packets Received Discarded

Network Interface: Packets Outbound Discarded

Processors

Processor: % Processor Time

Processor: % Interrupt Time

Processor: % Privileged Time

System: Processor Queue Length

System: Context Switches/sec

Memory

Memory: Available MBytes

Memory: Pages/sec

Memory: Cache Faults/sec

Server: Pool Nonpaged failures

Process

Process: Page Faults / sec

Process: Working Set

Process: Private Bytes

Process: Handle Count

(continued)

772 Improving .NET Application Performance and Scalability

Table 16.16: Web Server Metrics (continued)

Object: Counter

Value
100 users

Value
200 users

ASP.NET

ASP.NET: Requests Current

ASP.NET: Requests Queued

ASP.NET: Requests Rejected

ASP.NET: Request Execution Time

ASP.NET: Requests Wait Time

ASP.NET Applications: Requests/Sec

ASP.NET Applications: Requests Executing

ASP.NET Applications: Requests In Application Queue

ASP.NET Applications: Requests Timed Out

ASP.NET Applications: Cache Total Hit Ratio

ASP.NET Applications: Cache API Hit Ratio

ASP.NET Applications: Output Cache Hit Ratio

ASP.NET Applications: Errors Total/sec

ASP.NET Applications: Pipeline Instance Count

.NET CLR Memory: % Time in GC

.NET CLR Memory: # Bytes in all Heaps

.NET CLR Memory: # of Pinned Objects

.NET CLR Memory: Large Object Heap Size

.NET CLR Exceptions: # of Exceps Thrown /sec

.NET CLR LocksAndThreads: Contention Rate / sec

.NET CLR LocksAndThreads: Current Queue Length

.NET CLR Data: SqlClient: Current # connection pools

.NET CLR Data: SqlClient: Current # pooled connections

Web Service: ISAPI Extension Requests/sec

 Chapter 16: Testing .NET Application Performance 773

SQL Server Metrics
Table 16.17 lists typical SQL Server metrics.

Table 16.17: SQL Server Metrics

Object: Counter

Values
100 users

Values
200 users

SQL Server: General Statistics: User Connections

SQL Server Access Methods: Index Searches/sec

SQL Server Access Methods: Full Scans/sec

SQL Server: Databases: Transactions/sec

SQL Server: Databases: Active Transactions

SQL Server: Locks: Lock Requests/sec

SQL Server: Locks: Lock Timeouts/sec

SQL Server: Locks: Lock Waits/sec

SQL Server: Locks: Number of Deadlocks/sec

SQL Server: Locks: Average Wait Time (ms)

SQL Server: Latches: Average Latch Wait Time(ms)

SQL Server: Cache Manager: Cache Hit Ratio

SQL Server: Cache Manager: Cache Use Counts/sec

Disk I/O

PhysicalDisk: Avg. Disk Queue Length

PhysicalDisk: Avg. Disk Read Queue Length

PhysicalDisk: Avg. Disk Write Queue Length

PhysicalDisk: Avg. Disk sec/Read

PhysicalDisk: Avg. Disk sec/Transfer

PhysicalDisk: Avg. Disk Bytes/Transfer

PhysicalDisk: Disk Writes/sec

774 Improving .NET Application Performance and Scalability

Analysis of Performance Data
After you capture and consolidate your results, analyze the captured data and
compare the results against the metric’s accepted level. If the results indicate that
your required performance levels have not been attained, you can analyze and fix the
cause of the bottleneck. The data that you collect helps you analyze your application
with respect to your application’s performance objectives:
● Throughput versus user load
● Response time versus user load
● Resource utilization versus user load

The next sections describe each of these data comparisons.

Throughput vs. User Load
The throughput versus user load graph for the test results is shown in Figure 16.3.

T
hr

ou
gh

pu
t

(R
eq

ue
st

s
pe

r
se

co
nd

)

Number of Simultaneous Users

50

0

100

150

200

250

300

350

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

12
00

11
00

13
00

14
00

15
00

16
00

Throughput Peak

SLA Failure

Figure 16.3
Throughput versus user load graph

The graph identifies the point-of-service level failure. This point represents the user
load the sample application can handle to meet service level requirements for
requests per second.

 Chapter 16: Testing .NET Application Performance 775

Response Time vs. User Load
The response time versus user load graph, based on the test results for the sample
application, is shown in Figure 16.4.

R
es

po
ns

e
T

im
e

(m
s)

Number of Simultaneous Users

0

500

1000

2500

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

12
00

11
00

13
00

14
00

15
00

16
00

SLA Failure

1500

2000

Figure 16.4
Response time versus user load graph

The response time is essentially flat with a gentle rise and linear growth for low to
medium levels of load. After queuing on the server becomes excessive, the response
time begins to increase suddenly. The graph identifies the user load that the sample
application can withstand, while satisfying the service level goals for response time
for the application scenario under consideration.

Processor vs. User Load
The graph in Figure 16.5 shows the variation of processor utilization with user load.

P
ro

ce
ss

or
 T

im
e

(%
)

Number of Simultaneous Users

0

20

40

100

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

12
00

11
00

13
00

14
00

15
00

16
00

Your threshold
limit

60

80

Figure 16.5
Processor versus user load graph

776 Improving .NET Application Performance and Scalability

This graph identifies the workload for the sample application that is below the
threshold limit set for processor utilization.

Potential Bottlenecks
The potential bottlenecks based on the analysis of performance counters for the
sample application are the following:
● Low cache hit ratio for the application indicated by the ASP.NET Applications:

Cache Total Hit Ratio performance counter.
● A significant amount of time is spent by the garbage collector in cleanup

(indicated by .NET CLR Memory\% Time in GC). This indicates inefficient
cleanup of resources.

Summary
This chapter has explained the three main forms of performance testing: load testing,
stress testing, and capacity testing. It has also presented processes for load testing
and stress testing. Use these processes together with the other guidance and
recommendations in this chapter to plan, develop, and run testing approaches for
your applications.

By acting appropriately on the test output, you can fine tune your application and
remove bottlenecks to improve performance, and you can ensure that your
application is able to scale to meet future capacity demands.

Additional Resources
For more information about testing performance, see the following resources in this
guide:
● See Chapter 15, “Measuring .NET Application Performance.”
● See Chapter 17, “Tuning .NET Application Performance.”

See the following How Tos in the “How To” section of this guide:
● See “How To: Use ACT to Test Performance and Scalability.”
● See “How To: Use ACT to Test Web Services Performance.”
● See “How To: Perform Capacity Planning for .NET Applications.”

 Chapter 16: Testing .NET Application Performance 777

For further reading, see the following resources:
● Performance Testing Microsoft .NET Web Applications, MS Press®.
● For a context-driven approach to performance testing and practical tips on

running performance tests, see the articles available at “Effective Performance
Testing” at http://www.perftestplus.com/pubs.htm.

● For a systematic, quantitative approach to performance tuning that helps you find
problems quickly, identify potential solutions, and prioritize your efforts, see “Five
Steps to Solving Software Performance Problems,” by Lloyd G. Williams, Ph.D.,
and Connie U. Smith, Ph.D., at http://www.perfeng.com/papers/step5.pdf.

● For techniques and strategies for building a collaborative relationship between test
and development around performance tuning, see “Part 11: Collaborative Tuning”
from “Beyond Performance Testing” by Scott Barber at http://www.perftestplus.com
/articles/bpt11.pdf.

● For insight into bottleneck identification and analysis, see “Part 7: Identify the
Critical Failure or Bottleneck” from “Beyond Performance Testing” by Scott Barber
at http://www.perftestplus.com/articles/bpt7.pdf.

http://www.perftestplus.com/pubs.htm
http://www.perfeng.com/papers/step5.pdf
http://www.perftestplus.com/articles/bpt11.pdf
http://www.perftestplus.com/articles/bpt11.pdf
http://www.perftestplus.com/articles/bpt7.pdf

17
Tuning .NET Application
Performance

Objectives
● Use a prescriptive performance tuning process.
● Identify application and system bottlenecks.
● Tune your system, including CPU, memory, disk I/O, and network I/O.
● Tune your platform and application.
● Configure Microsoft® .NET Framework settings.
● Tune ASP.NET applications and Web services.
● Tune Enterprise Services applications.

Overview
Performance tuning refers to the identification and systematic elimination of
bottlenecks to improve performance. The focus for tuning in this chapter is on
configuration settings, and therefore this chapter is of interest to both administrators
and developers. The chapter shows you how to identify bottlenecks, and then how to
apply the relevant configuration changes to help eliminate them. Code optimization
is the subject of the technology-specific chapters in Part III, “Application Performance
and Scalability” of this guide.

The current chapter starts by explaining three performance-tuning categories: system,
platform, and application. It then presents an iterative performance-tuning process
and explains the significance of starting with a baseline set of metrics, applying a
single set of configuration changes at a time, and testing and measuring to determine
whether your changes have been successful.

780 Improving .NET Application Performance and Scalability

Subsequent sections of this chapter show you how to tune ASP.NET, Web services,
Enterprise Services, and ADO.NET, and then how to tune shared system resources
including CPU, memory, disk I/O, and network I/O. In each case, you are shown
how to identify bottlenecks and how to eliminate them.

How to Use This Chapter
To get the most from this chapter:
● Read Chapter 16, “Testing .NET Application Performance.” Read Chapter 16

before reading the current chapter.
● Use Chapter 15, “Measuring .NET Application Performance.” Before

implementing the steps in the current chapter, make sure you have Chapter 15
available, because it provides details about the measurements that you need to
identify bottleneck causes.

● Read Chapter 3, “Design Guidelines for Application Performance.” Read
Chapter 3 to help ensure that you do not introduce bottlenecks at design time.

● Read Chapter 4, “Architecture and Design Review of a .NET Application for
Performance and Scalability.” Read Chapter 4 to help identify potential
bottlenecks caused by specific architecture or design decisions.

● Read the technology chapters. Read the chapters in Part III, “Application
Performance and Scalability,” to learn about how to optimize your code and
avoid bottlenecks caused by poor coding practices.

Categories for Tuning
Configuration and tuning settings can be divided into the following categories.
These are the areas where you focus your tuning efforts:
● Application. Includes the application configuration parameters.

For .NET applications, these parameters are primarily located in configuration
files. ASP.NET applications use Web.config configuration files.

● Platform. Includes the host operating system and the .NET Framework, together
with Web and database servers such as Internet Information Services (IIS) and
Microsoft SQL Server™. The .NET Framework configuration is maintained in
Machine.config. Settings in this file affect all of the .NET applications on the
server.

● System. Includes the hardware resources on a server. These resources include
CPU, memory, disk I/O, and network I/O.

 Chapter 17: Tuning .NET Application Performance 781

Figure 17.1 summarizes the three performance-tuning categories.

Tuning Categories

Application

Platform

System

.NET Framework
Web Server (IIS)
Operating System
Databases

CPU
Memory
Disk I/O
Network I/O

Configuration Settings
Web.config

Figure 17.1
Performance tuning categories

Tuning involves proactively tuning defaults across servers and then tuning for
specific application scenarios, such as burst load conditions. This process might
involve tuning configuration settings on specific servers and not across all servers.
If you tune a configuration file specific to one server, and subsequently move that file
to another server, you often need to retune. For example, tuning the thread pool in
ASP.NET depends on the number of CPUs installed. If the configuration file is moved
from a two-CPU server to a four-CPU server, then you must retune.

Performance Tuning Process
Performance tuning is an iterative process that you use to identify and eliminate
bottlenecks until your application meets its performance objectives. You start by
establishing a baseline. Then you collect data, analyze the results, and make
configuration changes based on the analysis. After each set of changes, you retest
and measure to verify that your application has moved closer to its performance
objectives. The purpose is not to load, stress, or capacity test your application, but
to understand how the various tuning options and configuration settings affect your
application. Figure 17.2 shows the basic tuning process.

782 Improving .NET Application Performance and Scalability

Te
st

 a
n

d
 M

ea
su

re

Collect Data

A
n

alyze R
esu

lts

Configure

Baseline

Figure 17.2
The performance tuning process

The tuning process is an iterative processing that consists of the following set of
activities.
1. Establish a baseline. Ensure that you have a well defined set of performance

objectives, test plans, and baseline metrics.
2. Collect data. Simulate load and capture metrics.
3. Analyze results. Identify performance issues and bottlenecks.
4. Configure. Tune your application setup by applying new system, platform, or

application configuration settings.
5. Test and measure. Test and measure to verify that your configuration changes

have been beneficial.

 Chapter 17: Tuning .NET Application Performance 783

1. Establish a Baseline
Before you start to tune your application, you need to have an established baseline.
You need to ensure that the following are well defined:
● Performance objectives

Your application’s performance objectives are usually measured in terms of
response times, throughput (requests per second), and resource utilization levels.
They should include budgeted times for specific scenarios together with resource
utilization levels such as CPU, memory, disk I/O, and network I/O allocated for
your application. For more information about setting performance goals, see
“Performance Best Practices at a Glance” in this guide.

● Test plans and test scripts
You need a test plan and a set of test scripts that you can use to apply load to your
application. For more information about how to approach testing, see Chapter 16,
“Testing .NET Application Performance.”

● Baseline metrics
Make sure that you capture a baseline set of metrics for your system, platform,
and application. Baseline metrics helps you evaluate the impact of any changes
made to your configuration during the performance-tuning process. For more
information about metrics, see “Metrics” in Chapter 16, “Testing .NET Application
Performance.”

2. Collect Data
Use test tools such as Microsoft Application Center Test (ACT) to simulate load. You
can use tools like System Monitor or Microsoft Operations Manager to capture
performance counters.

When you run tests for the first time, make sure you use the same version of the
application that you used to establish your baseline metrics. For subsequent iterations
of the tuning process, you test performance with the same workload and test scripts
but with modified configuration changes.

Use a Constant Workload
For all iterations of the tuning process, make sure that you use the same test scripts
and a constant workload. Doing so enables you to accurately measure the impact of
any configuration changes that you have applied.

If you run short duration tests, make sure you include an appropriate warm-up
time in your test scripts to ensure that your results are not skewed due to initial
slow response times caused by just-in-time (JIT) compilation, cache population, and
so on. Also make sure to run your tests for an adequate and realistic period of time.

784 Improving .NET Application Performance and Scalability

For more information about using ACT, see “How To: Use ACT to Test Performance
and Scalability” and “How To: Use ACT to Test Web Services Performance” in the
“How To” section of this guide.

Format the Results
A typical test generates a vast amount of data in different locations, from different
sources, and in different formats. For example, captured data includes system
performance counters from all servers, IIS log files from Web and/or application
servers, SQL Server metrics on the database server, and so on. You must collect the
data together and format it in preparation for the next step, analyzing the results.

You can format the data in such a way that you are able to map the cascading effect
of changes in one part of your configuration across your application. Organizing the
data into the categories described earlier (system, platform, and application) helps
you analyze the application as a whole, rather than analyzing it in parts.

As an example of how configuration changes can have a cascading effect, changing
the thread pool settings on the Web server might cause requests to be processed
faster, which may in turn causes increased resource utilization (CPU, memory, and
disk I/O) on your database server.

3. Analyze Results
In this step, you analyze the captured data to identify performance issues and
bottlenecks. To identify the root cause of a problem, start tracing from where you
first notice the symptom. Often, the most obvious observation is not the cause of
the problem. When you analyze your data, bear in mind the following points:
● The data you collect is usually only an indicator of a problem and is not the source

of the problem. Indicators such as performance counters can give you directions to
help isolate your debugging or troubleshooting process to target specific areas of
functionality.

● Intermittent spikes in your data as shown by performance counters may not be a
big concern. If it makes sense to, ignore anomalies.

● Make sure that your test results are not skewed by warm-up time. Make sure that
your test scripts run for a period of time before you start capturing metrics.

● If the data you collect is not complete, then your analysis is likely to be inaccurate.
You sometimes need to retest and collect the missing information or use further
analysis tools. For example, if your analysis of Common Language Runtime (CLR)
performance counters indicates that a large number of generation 2 garbage
collections are occurring, then you should use the CLR Profiler tool to profile the
overall memory usage pattern for the application.

● You should be able to identify and isolate the areas that need further tuning. This
assumes that you have already optimized your code and design for any changes,
and that only the configuration settings need tuning.

 Chapter 17: Tuning .NET Application Performance 785

● If you are currently in the process of performance tuning, then you need to
compare your current set of results with previous results or with your baseline
performance metrics.

● If, during your analysis, you identify several bottlenecks or performance issues,
prioritize them and address those that are likely to have the biggest impact first.
You can also prioritize this list on the basis of which bottleneck you hit first when
running a test.

● Document your analysis. Write down your recommendations, including what you
observed, where you observed it, and how you applied configuration changes to
resolve the issue.

4. Configure
You tune your application setup by applying new system, platform, or application
configuration settings. The analysis documentation from the previous step can
contain several recommendations, so use the following guidelines when you apply
configuration changes:
● Apply one set of changes at a time. Address changes individually. Making

multiple configuration changes can distort the results and can make it difficult to
identify potential new performance issues. A single change may actually include
a set of multiple configuration changes that need to be applied and evaluated as a
single unit.

● Fix issues in a prioritized order. Address the issues that are likely to provide
maximum payoff. For example, instead of fine-tuning ASP.NET, you might
achieve better initial results by creating an index on a database table that you
identified was missing.

5. Test and Measure
Performance tuning is an iterative process. Having applied one set of changes, you
retest and measure to see whether the configuration changes have been beneficial.
Continue the process until your application meets its performance objectives or until
you decide on an alternate course of action, such as code optimization or design
changes.

786 Improving .NET Application Performance and Scalability

Bottleneck Identification
You need to identify bottlenecks caused by poor design or implementation early in
the application life cycle. Bottlenecks that cannot be optimized or tuned need to be
identified as constraints during the design phase of the life cycle, so that they can be
factored in the design to minimize the impact on performance.

What Are Bottlenecks?
A bottleneck is the device or resource that constrains throughput. Most of the time,
performance bottlenecks in your application relate to resource issues that may
include server resources such as CPU, memory, disk I/O, and network I/O or other
external resources such as available database connections or network bandwidth.

Bottlenecks vary from layer to layer, based on the server role:
● Web/Application server. Some common causes of bottlenecks include inefficient

session and state management, thread contention, long-running calls to a Web
service or a database, and chatty interfaces.

● Database server. Some common causes for bottlenecks include poor logical
database design such as bad table design, improper normalization of tables,
inefficient indexes on tables, and badly partitioned data across tables. Other causes
include inefficient queries, inappropriate isolation levels used by transactions in
queries, and inefficient stored procedures.

How to Identify Bottlenecks

The first step in identifying bottlenecks is to know the different tests and
measurements that you must run to simulate varying user loads and access patterns
for the application. The following measurements help you to expose bottlenecks and
isolate areas that require tuning:
● Measure response time, throughput, and resource utilization across user loads.
● Measure metrics that help you capture a more granular view of your

application.

Measure Response Time, Throughput, and Resource Utilization
Across User Loads
These metrics help you identify whether you are moving toward or away from your
performance goals with each iteration through the tuning process. These also give
you a rough idea as to which resource is the first bottleneck for the application, and
on which server the bottleneck occurs.

 Chapter 17: Tuning .NET Application Performance 787

Analyzing Response Time Across User Loads
When you measure response times with varying number of users, watch for a sharp
rise in response time. This rise is the point of poor efficiency, and performance only
degrades from this point onward, as shown in Figure 17.3.

R
es

po
ns

e
T

im
e

User Load

Figure 17.3
Response time vs. user load

Measuring Throughput Across User Loads
When you measure throughput across user loads, watch for the peak levels of
throughput. At the point where throughput starts to fall, the bottleneck has been
hit. Performance continues to degrade from this point onward. An example is shown
in Figure 17.4.

T
hr

ou
gh

pu
t

User Load

Figure 17.4
Throughput vs. user load

788 Improving .NET Application Performance and Scalability

Analyzing Resource Utilization Across User Loads
Analyze resource utilization levels across linearly increasing user loads. See whether
the resource utilization levels increase at a sharper rate as new users are added and
more transactions are performed. Figure 17.5 shows a linear utilization level for
increased user load.

U
til

iz
at

io
n

User Load

Figure 17.5
Utilization vs. user load

Measure Metrics that Help You Capture a More Granular View of
Your Application
Using input from the coarse-grained monitoring of your performance objectives
mentioned earlier, you can add additional counters during subsequent iterations of
the tuning process.

Continuing with the example introduced earlier, if you are performing a remote
database call, you can measure the time taken by the database call to complete.
Monitor the metrics related to indexes, locks, number of tables scanned, resource
utilization levels, and so forth on the database to identify the reason why the query
is taking a long time to execute.

More Information
For more information about measuring throughput, load testing, and generating user
load, see Chapter 15, “Measuring .NET Application Performance” and Chapter 16,
“Testing .NET Application Performance.”

 Chapter 17: Tuning .NET Application Performance 789

System Tuning
How well your applications, services, and operating system use shared system-level
resources has a direct impact on throughput, queuing, and response time. Tools such
as System Monitor enable you to monitor resource usage. You should monitor the
following shared system components at a minimum:
● CPU
● Memory
● Disk I/O
● Network I/O

CPU
Each application that runs on a server gets a time slice of the CPU. The CPU might be
able to efficiently handle all of the processes running on the computer, or it might be
overloaded. By examining processor activity and the activity of individual processes
including thread creation, thread switching, context switching, and so on, you can
gain good insight into processor workload and performance.

Metrics
The performance counters shown in Table 17.1 help you identify processor
bottlenecks.

Table 17.1: Performance Counters Used to Identify CPU Bottlenecks

Area Counter

Processor % Processor Time

% Privileged Time

System Processor Queue Length

Context Switches/sec

For more information about how to measure these counters, their thresholds, and
their significance, see “Processor” in Chapter 15, “Measuring .NET Application
Performance.”

You can monitor an individual process or use _Total for all instances. High rates of
processor activity might indicate an excessively busy processor. A long, sustained
processor queue is a more certain indicator of a processor bottleneck. If a single
processor in a multi-processor server is overloaded, this might indicate that you
have a single-threaded application using just that single processor.

790 Improving .NET Application Performance and Scalability

Note: Processor utilization depends on your system and application characteristics. The 75%
threshold value given in “Bottlenecks” (following) is based on typical observations. Increase or
decrease this threshold based on your system characteristics.

Bottlenecks
You might have a CPU bottleneck if you see the following:
● Processor\ % Processor Time often exceeding the 75% threshold.
● A sustained queue of 2 for a prolonged period indicated by System\ Processor

Queue Length.
● Unusually high values for Processor\ % Privileged Time or System\Context

Switches/sec.

If the value of % Processor Time is high, then queuing occurs, and in most scenarios
the value of System\ Processor Queue Length will also be high. Figure 17.6 shows a
sample System Monitor graph that indicates a high percentage of processor time and
a high processor queue length.

Figure 17.6
System monitor graph showing high percentage of processor time and high processor queue length

 Chapter 17: Tuning .NET Application Performance 791

The next step is to identify which process is causing the spike (or consuming
processor time.) Use Task Manager to identify which process is consuming high
levels of CPU by looking at the CPU column on the Processes page. You can also
determine this by monitoring Process\%Processor Time and selecting the processes
you want to monitor. For example, from the System Monitor output shown in
Figure 17.7, you can see that the ASP.NET worker processor is consuming a majority
of the processor time.

Figure 17.7
System monitor output showing the ASP.NET worker process consuming over 98% of processor time

Tuning Options
Once you determine that your CPU is a bottleneck, you have several options:
● Add multiple processors if you have multi-threaded applications. Consider

upgrading to a more powerful processor if your application is single-threaded.
● If you observe a high rate of context switching, consider reducing the thread count

for your process before increasing the number of processors.
● Analyze and tune the application that is causing the high CPU utilization. You can

dump the running process by using the ADPLUS utility and analyze the cause by
using Windbg. These utilities are part of the Windows debugging toolkit. You can
download these tools from http://www.microsoft.com/whdc/ddk/debugging
/default.mspx.

● Analyze the instrumentation log generated by your application and isolate the
subsystem that is taking the maximum amount of time for execution, and check
whether it actually needs a code review rather than just tuning the deployment.

Note: Although you can change the process priority level of an application by using Task Manager or
from the command prompt, you should generally avoid doing so. For almost all cases, you should
follow one of the recommendations in the previous list.

http://www.microsoft.com/whdc/ddk/debugging/default.mspx
http://www.microsoft.com/whdc/ddk/debugging/default.mspx

792 Improving .NET Application Performance and Scalability

Memory
Memory consists of physical and virtual memory. You need to consider how
much memory is allocated to your application. When you evaluate memory-related
bottlenecks, consider unnecessary allocations, inefficient clean up, and inappropriate
caching and state management mechanisms. To resolve memory-related bottlenecks,
optimize your code to eliminate these issues and then tune the amount of memory
allocated to your application. If you determine during tuning that memory
contention and excessive paging are occurring, you may need to add more physical
memory to the server.

Low memory leads to increased paging where pages of your application’s virtual
address space are written to and from disk. If paging becomes excessive, page
thrashing occurs and intensive disk I/O decreases overall system performance.

Configuration Overview
Memory tuning consists of the following:
● Determine whether your application has a memory bottleneck. If it has, then add

more memory.
● Tune the amount of memory allocated if you can control the allocation.

For example, you can tune this for ASP.NET and SQL Server.
● Tune the page file size.

Metrics
The performance counters shown in Table 17.2 help you identify memory
bottlenecks. You should log these counter values to log files over a 24 hour period
before you form any conclusions.

Table 17.2: Performance Counters Used to Identify Memory Bottlenecks

Area Counter

Memory Available MBytes

Page Reads/sec

Pages/sec

Cache Bytes

Cache Faults/sec

Server Pool Nonpaged Failures

Pool Nonpaged Peak

Cache MDL Read Hits %

 Chapter 17: Tuning .NET Application Performance 793

For more information about how to measure these counters, their thresholds,
and their significance, see “Memory” in “CLR and Managed Code” in Chapter 15,
“Measuring .NET Application Performance.”

Bottlenecks
A low value of Available MBytes indicates that your system is low on physical
memory, caused either by system memory limitations or an application that is not
releasing memory. Monitor each process object’s working set counter. If Available
MBytes remains high even when the process is not active, it might indicate that the
object is not releasing memory. Use the CLR Profiler tool at this point to identify the
source of any memory allocation problems. For more information, see “How To: Use
CLR Profiler” in the “How To” section of this guide.

A high value of Pages/sec indicates that your application does not have sufficient
memory. The average of Pages Input/sec divided by average of Page Reads/sec gives
the number of pages per disk read. This value should not generally exceed five pages
per second. A value greater than five pages per second indicates that the system is
spending too much time paging and requires more memory (assuming that the
application has been optimized). The System Monitor graph shown in Figure 17.8
is symptomatic of insufficient memory.

Figure 17.8
Insufficient memory

794 Improving .NET Application Performance and Scalability

Tuning Options
If you determine that your application has memory issues, your options include
adding more memory, stopping services that you do not require, and removing
unnecessary protocols and drivers. Tuning considerations include:
● Deciding when to add memory
● Page file optimization

Deciding When to Add Memory
To determine the impact of excessive paging on disk activity, multiply the values of
the Physical Disk\ Avg. Disk sec/Transfer and Memory\ Pages/sec counters. If the
product of these counters exceeds 0.1, paging is taking more than 10 percent of disk
access time. If this occurs over a long period, you probably need more memory. After
upgrading your system’s memory, measure and monitor again.

To save memory:
● Turn off services you do not use. Stopping services that you do not use regularly

saves memory and improves system performance.
● Remove unnecessary protocols and drivers. Even idle protocols use space in the

paged and nonpaged memory pools. Drivers also consume memory, so you
should remove unnecessary ones.

Page File Optimization
You should optimize the page file to improve the virtual memory performance of
your server. The combination of physical memory and the page file is called the
virtual memory of the system. When the system does not have enough physical
memory to execute a process, it uses the page file on disk as an extended memory
source. This approach slows performance. To ensure an optimized page file:
● Increase the page file size on the system to 1.5 times the size of physical memory

available, but only to a maximum of 4,095 MB. The page file needs to be at least
the size of the physical memory to allow the memory to be written to the page file
in the event of a system crash.

● Make sure that the page file is not fragmented on a given partition.
● Separate the data files and the page file to different disks only if the disk is a

bottleneck because of a lot of I/O operation. These files should preferably be on
the same physical drive and the same logical partition. This keeps the data files
and the page file physically close to each other and avoids the time spent seeking
between two different logical drives.

 Chapter 17: Tuning .NET Application Performance 795

� To configure the page file size

1. Open Control Panel.
2. Double-click the System icon.
3. Select the Advanced tab.
4. Click Performance Options.
5. Click Change. The Virtual Memory dialog box appears (see Figure 17.9).

Figure 17.9
Virtual memory settings

6. Enter new values for Initial size and Maximum size. Click Set, and then click OK.

More Information
For more information about the location and partitioning of the page file, see
Knowledge Base article 197379, “Configuring Page Files for Optimization and
Recovery,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;197379.

http://support.microsoft.com/default.aspx?scid=kb;en-us;197379

796 Improving .NET Application Performance and Scalability

Disk I/O
Disk I/O refers to the number of read and write operations performed by your
application on a physical disk or multiple disks installed in your server. Common
activities that can cause disk I/O-related bottlenecks include long-running file I/O
operations, data encryption and decryption, reading unnecessary data from database
tables, and a shortage of physical memory that leads to excessive paging activity.
Slow hard disks are another factor to consider.

To resolve disk-related bottlenecks:
● Start by removing any redundant disk I/O operations in your application.
● Identify whether your system has a shortage of physical memory, and, if so, add

more memory to avoid excessive paging.
● Identify whether you need to separate your data onto multiple disks.
● Consider upgrading to faster disks if you still have disk I/O bottlenecks after

doing all of above.

Configuration Overview
Microsoft Windows® 2000 retrieves programs and data from disk. The disk subsystem
can be the most important aspect of I/O performance, but problems can be masked
by other factors, such as lack of memory. Performance console disk counters are
available within both the LogicalDisk or PhysicalDisk objects.

Metrics
The performance counters shown in Table 17.3 help you identify disk I/O
bottlenecks.

Table 17.3: Performance Counters Used to Identify Disk I/O Bottlenecks

Area Counter

PhysicalDisk Avg. Disk Queue Length

Avg. Disk Read Queue Length

Avg. Disk Write Queue Length

Avg. Disk sec/Read

Avg. Disk sec/Transfer

Disk Writes/sec

For more information about how to measure these counters, their thresholds, and
their significance, see “Disk I/O” in Chapter 15, “Measuring .NET Application
Performance.”

 Chapter 17: Tuning .NET Application Performance 797

Note: When attempting to analyze disk performance bottlenecks, you should always use physical
disk counters. In Windows 2000, physical disk counters are enabled by default, but logical disk
counters are disabled by default. If you use software RAID, you should enable logical disk counters
by using the following command.

DISKPERF -YV

Tuning Options
If you determine that disk I/O is a bottleneck, you have a number of options:
● Defragment your disks. Use the Disk Defragmenter system tool.
● Use Diskpar.exe on Windows 2000 to reduce performance loss due to misaligned

disk tracks and sectors. You can use get the Diskpar.exe from the Windows 2000
Resource Kit.

● Use stripe sets to process I/O requests concurrently over multiple disks. The
type you use depends on your data-integrity requirements. If your applications
are read-intensive and require fault tolerance, consider a RAID 5 volume. Use
mirrored volumes for fault tolerance and good I/O performance overall. If you do
not require fault tolerance, implement stripe sets for fast reading and writing and
improved storage capacity. When stripe sets are used, disk utilization per disk
should fall due to distribution of work across the volumes, and overall throughput
should increase.
If you find that there is no increased throughput when scaling to additional disks
in a stripe set, your system might be experiencing a bottleneck due to contention
between disks for the disk adapter. You might need to add an adapter to better
distribute the load.

● Place multiple drives on separate I/O buses, particularly if a disk has an
I/O-intensive workload.

● Distribute workload among multiple drives. Windows Clustering and
Distributed File System provide solutions for load balancing on different drives.

● Limit your use of file compression or encryption. File compression and
encryption are I/O-intensive operations. You should only use them where
absolutely necessary.

● Disable creation of short names. If you are not supporting MS-DOS for Windows
3.x clients, disable short names to improve performance. To disable short names,
change the default value of the \NtfsDisable8dot3NameCreation registry entry
(in HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Filesystem) to 1.

798 Improving .NET Application Performance and Scalability

● Disable last access update. By default, NTFS updates the date and time stamp
of the last access on directories whenever it traverses the directory. For a large
NTFS volume, this update process can slow performance. To disable automatic
updating, create a new REG_DWORD registry entry named
NtfsDisableLastAccessUpdate in HKEY_LOCAL_MACHINE\SYSTEM
\CurrentContolSet\Control\Filesystem and set its value to 1.

Caution: Some applications, such as incremental backup utilities, rely on the NTFS update
information and cease to function properly without it.

● Reserve appropriate space for the master file table. Add the
NtfsMftZoneReservation entry to the registry as a REG_DWORD in
HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet\Control \FileSystem.
When you add this entry to the registry, the system reserves space on the volume
for the master file table. Reserving space in this manner allows the master file
table to grow optimally. If your NTFS volumes generally contain relatively few
files that are large, set the value of this registry entry to 1 (the default). Typically
you can use a value of 2 or 3 for moderate numbers of files, and use a value of 4
(the maximum) if your volumes tend to contain a relatively large number of files.
However, make sure to test any settings greater than 2, because these greater
values cause the system to reserve a much larger portion of the disk for the master
file table.

● Use the most efficient disk systems available, including controller, I/O, cabling,
and disk. Use intelligent drivers that support interrupt moderation or interrupt
avoidance to alleviate the interrupt activity for the processor due to disk I/O.

● Check whether you are using the appropriate RAID configuration. Use RAID 10
(striping and mirroring) for best performance and fault tolerance. The tradeoff is
that using RAID 10 is expensive. Avoid using RAID 5 (parity) when you have
extensive write operations.

● Consider using database partitions. If you have a database bottleneck, consider
using database partitions and mapping disks to specific tables and transaction
logs. The primary purpose of partitions is to overcome disk bottlenecks for large
tables. If you have a table with large number of rows and you determine that it is
the source of a bottleneck, consider using partitions. For SQL Server, you can use
file groups to improve I/O performance. You can associate tables with file groups,
and then associate the file groups with a specific hard disk. For information about
file groups, see Chapter 14, “Improving SQL Server Performance.”

● Consider splitting files across hard disks. If you are dealing with extensive
file-related operations, consider splitting the files across a number of hard disks
to spread the I/O load across multiple disks.

 Chapter 17: Tuning .NET Application Performance 799

● Check the feasibility of caching in RAM any static data that is being
frequently read.

● Consider increasing memory, if you have excessive page faults.
● Consider using a disk with a higher RPM or shifting to a Storage Area

Network (SAN) device.

Network I/O
Network I/O relates to amount of data being sent and received by all of the interface
cards in your server. Common activities that can cause disk I/O-related bottlenecks
include excessive numbers of remote calls, large amounts of data sent and received
with each call, network bandwidth constraints, and all of the data being routed
through a single network interface card (NIC).

To resolve network I/O bottlenecks:
● Reduce the number of remote calls and the amount of data sent across the

network. Ensure that you do not exceed your bandwidth constraint levels.
● After you have optimized your code, determine whether you need to divide the

traffic on the server among multiple NICs. You can divide traffic based on
protocols used, or you can use separate NICs to communicate with separate
network segments.

● Consider upgrading your NIC.

Configuration Overview
Monitor both front and back interfaces for indicators of possible bottlenecks.
To monitor network-specific objects in Windows 2000, you need to install the
Network Monitor Driver.

� To install the Network Monitor Driver

1. In Control Panel, double-click Network and Dial-up Connections.
2. Select any connection.
3. On the File menu, click Properties.
4. On the General tab, click Install.
5. Click Protocol, and then click Add.
6. Click Network Monitor Driver, and then click OK.
7. Click Close.

800 Improving .NET Application Performance and Scalability

Metrics
The performance counters shown in Table 17.4 help you identify network I/O
bottlenecks.

Table 17.4: Performance Counters Used to Identify Network I/O Bottlenecks

Area Counter

Network Interface Bytes Total/sec

Bytes Received/sec

Bytes Sent/sec

Server Bytes Total/sec

Protocol Protocol_Object\Segments Received/sec

Protocol_Object\Segments Sent/sec

Processor % Interrupt Time

For more information about how to measure these counters, their thresholds, and
their significance, see “Network I/O” in Chapter 15, “Measuring .NET Application
Performance.”

Bottleneck Identification
If the rate at which bytes sent and received is greater than your connection
bandwidth or the bandwidth your network adapter can handle, a network
bandwidth bottleneck occurs. This rate is measured by Network Interface\Bytes
Total/sec.

Tuning Options
If you determine that network I/O is a bottleneck, you have the following options:
● Distributing client connections across multiple network adapters. If your system

communicates over Token Ring, Fiber Distributed Data Interface (FDDI), or
switched Ethernet networks, attempt to balance network traffic by distributing
client connections across multiple network adapters. When using multiple
network adapters, make sure that the network adapters are distributed among the
Peripheral Connect Interface (PCI) buses. For example, if you have four network
adapters with three PCI buses, one 64-bit and two 32-bit, allocate two network
adapters to the 64-bit bus and one adapter to each 32-bit bus.

 Chapter 17: Tuning .NET Application Performance 801

● Use adapters with the highest bandwidth available for best performance.
Increasing bandwidth increases the number of transmissions that occur and
in turn creates more work for your system, including more interrupts. Remove
unused network adapters to reduce overhead.

● Use adapters that support task offloading capabilities including checksum
offloading, IPSec offloading, and large send offloading.

● Use network adapters that batch interrupts by means of interrupt moderation.
High rates of interrupts from network adapters can reduce performance. By using
network adapters that batch interrupts by means of interrupt moderation, you can
alleviate this performance problem, provided that the adapter driver supports this
capability. Another option is to bind interrupts arising from network adapters to a
particular processor.

● If your network uses multiple protocols, place each protocol on a different
adapter. Make sure to use the most efficient protocols, especially ones that
minimize broadcasts.

● Divide your network into multiple subnets or segments, attaching the server to
each segment with a separate adapter. Doing so reduces congestion at the server
by spreading server requests.

.NET Framework Tuning
To tune the .NET Framework, you need to tune the CLR. Tuning the CLR affects
all managed code, regardless of the implementation technology. You then tune the
relevant .NET Framework technology, depending on the nature of your application.
For example, tuning the relevant technology might include tuning ASP.NET
applications or Web services, Enterprise Services, and ADO.NET code.

CLR Tuning
CLR tuning is mostly achieved by designing and then optimizing your code to enable
the CLR to perform its tasks efficiently. Your design needs to enable efficient garbage
collection, for example by correctly using the Dispose pattern and considering object
lifetime.

The main CLR-related bottlenecks are caused by contention for resources, inefficient
resource cleanup, misuse of the thread pool, and resource leaks. For more
information about optimizing your code for efficient CLR processing, see Chapter 5,
“Improving Managed Code Performance.”

802 Improving .NET Application Performance and Scalability

Metrics
Use the performance counters shown in Table 17.5 to help identify CLR bottlenecks.

Table 17.5: Performance Counters Used to Identify CLR Bottlenecks

Area Counter

Memory Process\Private Bytes

.NET CLR Memory\% Time in GC

.NET CLR Memory\# Bytes in all Heaps

.NET CLR Memory\# Gen 0 Collections

.NET CLR Memory\# Gen 1 Collections

.NET CLR Memory\# Gen 2 Collections

.NET CLR Memory\# of Pinned Objects

.NET CLR Memory\Large Object Heap size

Working Set Process\Working Set

Exceptions .NET CLR Exceptions\# of Exceps Thrown /sec

Contention .NET CLR LocksAndThreads\Contention Rate / sec

.NET CLR LocksAndThreads\Current Queue Length

Threading

.NET CLR LocksAndThreads\# of current physical Threads

Thread\% Processor Time

Thread\Context Switches/sec

Thread\Thread State

Code Access Security .NET CLR Security\Total Runtime Checks

.NET CLR Security\Stack Walk Depth

For more information about how to measure these counters, their thresholds, and
their significance, see “ASP.NET” in Chapter 15, “Measuring .NET Application
Performance.”

 Chapter 17: Tuning .NET Application Performance 803

Bottlenecks
The following list describes several common bottlenecks that occur in applications
written using managed code and explains how you identify them using system
counters. For more information about what to measure and how to measure it,
see “CLR and Managed Code” in Chapter 15, “Measuring .NET Application
Performance.”
● Excessive memory consumption: Excessive memory consumption can result

from poor managed or unmanaged memory management. To identify this
symptom, observe the following performance counters:
● Process\Private Bytes
● .NET CLR Memory\# Bytes in all Heaps
● Process\Working Set
● .NET CLR Memory\Large Object Heap size
An increase in Private Bytes while the # of Bytes in all Heaps counter remains
the same indicates unmanaged memory consumption. An increase in both
counters indicates managed memory consumption.

● Large working set size. The working set is the set of memory pages currently
loaded in RAM. This is measured by Process\Working Set. A high value might
indicate that you have loaded a number of assemblies. Unlike other counters,
Process\Working Set has no specific threshold value to watch, although a high
or fluctuating value can indicate a memory shortage. A high or fluctuating value
accompanied by a high rate of page faults clearly indicates that your server does
not have enough memory.

● Fragmented large object heap. Objects greater than 83 KB in size are allocated in
the large object heap, which is measured by .NET CLR Memory\Large Object
Heap size. In many cases, these objects are buffers (large strings, byte arrays, and
so on) used for I/O operations (for example, creating a BinaryReader to read an
uploaded image). Such large allocations can fragment the large object heap. You
should consider recycling those buffers to avoid fragmentation.

● High CPU utilization. High CPU utilization is usually caused by poorly written
managed code, such as code that:
● Causes excessive garbage collection. This is measured by % Time in GC.
● Throws a large number of exceptions. This is measured by .NET CLR

Exceptions\# of Exceps Thrown /sec.
● Creates a large number of threads. This causes the CPU to spend large amounts

of time switching between threads instead of performing real work. This is
measured by Thread\Context Switches/sec.

804 Improving .NET Application Performance and Scalability

● Thread contention: Thread contention occurs when multiple threads attempt to
access a shared resource. To identify this symptom, observe the following
performance counters:
.NET CLR LocksAndThreads\Contention Rate / sec
.NET CLR LocksAndThreads\Total # of Contentions
An increase in the contention rate or a significant increase in the total number
of contentions is a strong indication that your application is encountering thread
contention. To resolve the issue, identify code that accesses shared resources or
uses synchronization mechanisms.

ASP.NET Tuning
When you approach tuning ASP.NET. consider the following:
● The client’s interaction with ASP.NET. Considerations include queue sizes,

timeouts (execution timeout, proxy timeouts, deadlock intervals, and session
timeouts), uploading and downloading large files, and request and response sizes.

● The worker process itself. Considerations include the amount of memory
allocated, view state and session state sizes, cache sizes, CPU utilization, thread
affinity. If you have unavoidable thread affinity, you need to consider Web
gardens.

● Remote or local Web service calls from ASP.NET. Considerations include the
number of connections, and thread pool utilization.

Your approach to tuning ASP.NET should be to optimize these discrete areas from the
design and code perspective first, and then to tune the individual areas.

Configuration Overview
Most ASP.NET tuning is performed by modifying configuration parameters in the
system-wide Machine.config file and the application-specific Web.config file. Figure
17.10 shows an architectural view of ASP.NET and its relationship to several key
configuration elements located in Machine.config.

 Chapter 17: Tuning .NET Application Performance 805

ASP.NET Worker Process

Thread Pool
(Worker and I/O)

<httpRuntime/>

Client

<connectionManagement/><httpModules/>
<httpHandler/>

<processModel/>

Pipeline

IIS Named Pipe Application
Queue

Application
Domain

Web
Service

Figure 17.10
Mapping of the key configuration elements with the request processing cycle

You have a number of options for tuning ASP.NET applications, most of which
involve tuning the settings in Machine.config. This configuration file has many
sections, but the following sections are most critical to performance.

<processModel>
The attributes on the <processModel> element apply to the ASP.NET worker process
(aspnet_wp.exe) and to all applications being hosted in the worker process on an IIS 5
Web server. Many of the settings are tuned by default and do not require further
changes. The default settings are as follows.

<processModel enable="true" timeout="Infinite" idleTimeout="Infinite"
 shutdownTimeout="0:00:05" requestLimit="Infinite"
 requestQueueLimit="5000" restartQueueLimit="10" memoryLimit="60"
 webGarden="false" cpuMask="0xffffffff" userName="machine"
 password="AutoGenerate" logLevel="Errors"
 clientConnectedCheck="0:00:05" comAuthenticationLevel="Connect"
 comImpersonationLevel="Impersonate"
 responseDeadlockInterval="00:03:00" maxWorkerThreads="20"
 maxIoThreads="20"/>

For a detailed description of each attribute, see “<processModel> Element”
in the.NET Framework documentation at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpgenref/html/gngrfProcessmodelSection.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfProcessmodelSection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfProcessmodelSection.asp

806 Improving .NET Application Performance and Scalability

<httpRuntime>
The <httpRuntime> element configures the ASP.NET runtime settings. You can
specify these at the machine, site, application, and subdirectory levels. The default
settings from Machine.config are as follows.

<httpRuntime executionTimeout="90" maxRequestLength="4096"
 useFullyQualifiedRedirectUrl="false" minFreeThreads="8"
 minLocalRequestFreeThreads="4" appRequestQueueLimit="100"
 enableVersionHeader="true"/>

For a detailed description of each attribute, see “<httpRuntime> Element”
in the .NET Framework documentation at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpgenref/html/gngrfHttpRuntimeSection.asp.

Thread Pool Attributes
Figure 17.11 shows thread pool configuration options for ASP.NET in context.

ASPX Web Pages

ASP.NET

Remote
Web Service

maxconnectionRequests

Local Web
Service

Thread Pool

Number of threads for
processing incoming request

Minimum number of available
threads to avoid queuing of

requests from localhost

Applications
and Browsers

Figure 17.11
ASP.NET thread pool configuration options

The following list describes key attributes (in <processModel> and <httpRuntime>)
in the machine.config file related to ASP.NET ThreadPool.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfHttpRuntimeSection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfHttpRuntimeSection.asp

 Chapter 17: Tuning .NET Application Performance 807

The list also discusses the scenarios where each attribute applies:
● maxconnection. If your application makes calls to a remote Web service and the

requests are waiting for the call to complete, you can increase the CPU utilization
and your application performance by changing the maxconnection attribute on
the <ConnectionManagement> element in Machine.config. The default values are
as follows.

<connectionManagement>
 <add address="*" maxconnection="2"/>
</connectionManagement>

Increasing maxconnection enables more calls to be executed concurrently to
a remote Web service. This attribute does not affect local Web service calls. An
increase in the number of concurrent calls causes an increase in the utilization
of threads that are used to make the remote calls.
Increasing maxconnection also can lead to an increase in CPU utilization. This
increase in CPU utilization is caused by the fact that more incoming requests can
be processed by ASP.NET instead of having the incoming requests wait for their
turn to call the Web service. You need to balance the maxconnection with the
other attributes discussed in this list and the actual CPU utilization.

● maxWorkerThreads and maxIoThreads. These attributes define the maximum
number of worker and I/O threads that the ASP.NET worker process is allowed to
create. These values do not reflect the actual number of threads that are created by
the worker process. The maximum value for these attributes is 100 per processor.
As described earlier, if you increase maxconnection, you cause increased
concurrent processing, which requires a greater number of worker and I/O
threads. Consider the following guidelines when tuning these attributes:
● Change these attributes only if your processor utilization is below the

threshold limits defined by your application’s performance objectives.
● Avoid increasing these attributes if the requests are not waiting on an I/O call

but are actually performing CPU-intensive work. Increasing these attributes in
this circumstance can negatively affect performance because the already
stressed processor now has to handle increased thread context switching.

● If your application makes a short-running I/O call (for example, to a remote
Web service), you might not need to increase these values because the calling
threads are not blocked for an excessive period.

● If your application makes a long-running I/O call and your system has idle
CPU, you can safely consider increasing these attributes along with the other
related attributes discussed in this section. If your system does not have idle
CPU, then you probably should not increase these attributes.

If you have a Web service on the same server as your Web application, consider
the following to decide when to increase the default values:

808 Improving .NET Application Performance and Scalability

● Increase these attributes only if your processor utilization is below the
threshold limits defined by your application’s performance objectives.

● Avoid increasing these attributes if requests are not waiting on an I/O call but
are performing CPU-intensive tasks. Increasing these attributes in this situation
can negatively affect performance because the already stressed processor now
has to handle increased thread switching.

● maxconnection and minFreeThreads. These attributes do not have any effect
in scenarios where you make only local Web services calls.

● minFreeThreads. This attribute defines the number of threads that can be used
for work other than processing incoming requests to the worker process. This
attribute prevents the ASP.NET process from using a thread from the thread pool
to handle a new HTTP request if this would mean that the free thread count drops
below this limit. The attribute is specified on the <httpRuntime> element and has
a default value of 8.
You can use this attribute to help prevent deadlocks by ensuring that a thread is
available to handle callbacks from pending asynchronous requests. A deadlock can
occur if all of the threads in the thread pool are currently in use handling incoming
HTTP requests, and one or more of those requests are waiting for asynchronous
callbacks. In this situation, there are no available threads to service the callback.
You can set minFreeThreads to ensure that some free threads are available to
process the callbacks.
Increasing minFreeThreads means that you reserve more threads to make remote
calls. In all cases, you should ensure that maxWorkerThreads – minFreeThreads
>=12. Twelve is the optimum number of threads that should be made available to
the ASP.NET worker process to service requests. This value means that ASP.NET
cannot execute more than twelve requests concurrently. This limit is based on a
series of performance tests, which demonstrate that normally the worker process
uses four of these threads. If the processor is fully utilized (greater than 95 percent
utilization) and your application makes long-running calls, the worker process is
likely to use all twelve threads.
You might want to increase the attribute from the default values in the following
scenarios:
● You have increased maxWorkerThreads and maxIoThreads.
● You have increased maxconnection to service a greater number of back-end

calls, and hence require more threads to be made available for this purpose.
● You might need to consider changing this attribute whenever you make long

running calls which block your execution. This is most beneficial when the
work is not computationally expensive for the server where you make the
changes.

 Chapter 17: Tuning .NET Application Performance 809

● minLocalRequestFreeThreads. For a Web application using the Web service
located on the same computer, you should consider decreasing the value of
minLocalRequestFreeThreads when you need to give priority to processing local
calls. This attribute defines the minimum number of free threads that ASP.NET
keeps available so that requests from localhost are not queued. Before processing a
local request, the runtime checks to see if at least this minimum number of worker
threads are available. If fewer threads are available, the request is queued.
The default setting is four, so if only three worker threads are available the local
request is queued. When this value is decreased, ASP.NET starts to use threads
more aggressively, resulting in less local queuing.

Note: Requests from remote clients start to queue when the free threads in the thread pool fall
below the value of minFreeThreads.

If you decrease the value of minLocalRequestFreeThreads value without
changing the minFreeThreads attribute, you are effectively telling the worker
process to give priority to completing calls from the local server.

Metrics
The performance counters shown in Table 17.6 help you identify ASP.NET
bottlenecks.

Table 17.6: Performance Counters Used to Identify ASP.NET Bottlenecks

Area Counter

Worker Process ASP.NET\Worker Process Restarts

Throughput ASP.NET Applications\Requests/Sec

Web Service\ISAPI Extension Requests/sec

Requests: ASP.NET\ Requests Current

ASP.NET Applications\Requests Executing

ASP.NET Applications\ Requests Timed Out

Response time / latency ASP.NET\ Request Execution Time

Cache ASP.NET Applications\ Cache Total Entries

ASP.NET Applications\ Cache Total Hit Ratio

ASP.NET Applications\Cache Total Turnover Rate

ASP.NET Applications\Cache API Hit Ratio

ASP.NET Applications\ Cache API Turnover Rate

ASP.NET Applications\ Output Cache Entries

ASP.NET Applications\ Output Cache Hit Ratio

ASP.NET Applications\ Output Cache Turnover Rate

810 Improving .NET Application Performance and Scalability

For more information about how to measure these counters, their thresholds, and
their significance, see “ASP.NET” in Chapter 15, “Measuring .NET Application
Performance.”

Bottlenecks
The following list describes several common bottlenecks that occur in ASP.NET
applications and explains how you identify them using the system counters listed in
Table 17.6. For more information about what to measure and how to measure it, see
“ASP.NET” in Chapter 15, “Measuring .NET Application Performance.”
● Thread pool starvation. Thread pool bottlenecks can occur when ASP.NET runs

out of worker and I/O threads to process incoming requests or perform I/O work.
To identify this symptom, observe the following performance counters:
● ASP.NET\Requests Queued
● Process\% Processor Time (aspnet_wp.exe or w3wp.exe)
If requests are being queued with low processor utilization levels, this is a strong
indication that ASP.NET is performing non-CPU bound work. If your application
makes calls to remote or local Web services, you can tune the thread pool to
resolve the issue. For detailed information about how to tune the thread pool,
see “Threading Explained” in Chapter 6, “Improving ASP.NET Performance.”
As an alternative, you can use custom performance counters to monitor the thread
pool to investigate more about the available I/O and worker threads. For more
information, see “How To: Monitor the ASP.NET Thread Pool Using Custom
Counters” in the “How To” section of this guide.

● Thread contention. Thread contention occurs when multiple threads try to gain
access to a shared resource, as explained in “Bottlenecks” in the “CLR Tuning”
section earlier in this chapter.

● Memory bottlenecks. Memory bottlenecks can take many forms. They can result
from memory leaks, fragmentation issues, inefficient resource cleanup, or simply
allocating too much or too little memory for the worker process.
To identify this symptom, observe the following performance counters in addition
to the system level memory-related counters discussed in the “Memory” section of
this chapter.
● Process\Private Bytes (aspnet_wp.exe or w3wp.exe)
● Process\Virtual Bytes (aspnet_wp.exe or w3wp.exe)
● .NET CLR Memory\# Bytes in all Heaps (aspnet_wp.exe or w3wp.exe)
If any of these counters increases consistently and does not level off, your
application has a memory leak. If # Bytes in all Heaps increases consistently along
with Private Bytes, your application has a managed memory leak. If only the
Private Bytes counter increases, your application has a native memory leak.

 Chapter 17: Tuning .NET Application Performance 811

If there is a growing discrepancy between Private Bytes and Virtual Bytes, disk
fragmentation may be the cause. If your application is throwing
OutOfMemoryException, this is also a strong indication that memory is a
bottleneck.
You can configure the amount of memory allocated to the ASP.NET worker
process by setting the memoryLimit attribute on the <processModel> element in
Machine.config.
Tuning the memoryLimit attribute on the <processModel> element in
Machine.config can resolve memory bottlenecks in some cases. However, if doing
so does not alleviate the bottleneck, you need to further troubleshoot the problem.

● Worker Process Restarts. Restarting the ASP .NET worker process takes time and
consumes resources. Set the restart threshold to an appropriate value to prevent
unnecessary restarts. The following factors can contribute to recycling:
● Changes to a configuration file. (Note that these changes are not logged to the

Application Log.)
● Deadlocks.
● Exceeding memory limits (<processModel memoryLimit= />).
● Request and timeout limits specified in Machine.config.

Tuning Options
Consider the following tuning options:
● Tune the thread pool using the formula for reducing contention.
● Configure the memory limit.
● Configure timeouts aggressively.
● Evaluate configuring RequestQueue limit.
● Disable tracing and debugging.
● Disable session state if you do not use it.
● Disable View State if you do not need it.
● If you upload large files, consider maxRequestLength.
● Consider Web gardens for scenarios that benefit from processor affinity.

812 Improving .NET Application Performance and Scalability

Tune the Thread Pool Using the Formula for Reducing Contention
The formula for reducing contention can give you a good empirical start for tuning
the ASP.NET thread pool. Consider using the Microsoft product group recommended
settings shown in Table 17.7 if you have available CPU, your application performs
I/O bound operations (such as calling a Web method, accessing the file system,
and so forth), and you have queued requests (as indicated by ASP.NET
Applications\Requests In Application Queue). For more information about these
individual settings, see “Tune the Thread Pool by Using the Formula to Reduce
Contention” in Chapter 6, “Improving ASP.NET Performance.”

Table 17.7: Recommended Threading Settings for Reducing Contention

Configuration setting Default (.NET 1.1) Recommended value

maxconnection 2 12 * #CPUs

maxIoThreads 20 100

maxWorkerThreads 20 100

minFreeThreads 8 88 * #CPUs

minLocalRequestFreeThreads 4 76 * #CPUs

To reduce contention, you need to configure the following items in Machine.config.
The changes described in the list should be applied across the settings and not in
isolation.
● Set maxconnection to 12 * # of CPUs. This setting controls the maximum number

of outgoing HTTP connections allowed by the client (in this case, ASP.NET). The
recommendation is to set maxconnection to 12 * # of CPUs.

● Set maxIoThreads to 100. This setting controls the maximum number of I/O
threads in the CLR thread pool. This number is automatically multiplied by the
number of CPUs by the worker processor. The recommendation is to set
maxIoThreads to 100.

● Set maxWorkerThreads to 100. This setting controls the maximum number of
worker threads in the CLR thread pool. This number is automatically multiplied
by the number of CPUs by the worker processor. The recommendation is to set
maxWorkerThreads to 100.

● Set minFreeThreads to 88 * # of CPUs. This setting is used by the worker process
to queue all of the incoming requests if the number of available threads in the
thread pool falls below the value for this setting. This setting effectively limits the
number of concurrently executing requests to maxWorkerThreads –
minFreeThreads. The recommendation is to set minFreeThreads to 88 * # of
CPUs. This setting would limit the number of concurrent requests to 12 (assuming
that maxWorkerThreads is set to 100).

 Chapter 17: Tuning .NET Application Performance 813

● Set minLocalRequestFreeThreads to 76 * # of CPUs. This setting is used by
the worker process to queue requests from localhost (for example, your Web
application sending requests to Web services on the same computer) if the number
of available threads in the thread pool falls below this number. This setting is
similar to minFreeThreads, but it only applies to requests originating on the
local server. The recommendation is to set minLocalRequestFreeThreads to
76 * # of CPUs.

Note: The recommendations given are not inflexible rules; they are a starting point.
Appropriate testing should be done to determine the correct settings for your scenario.

Tuning the Thread Pool for Burst Load Scenarios
If your application experiences unusually high loads of users in small bursts
(for example, 1000 clients all logging in at 9 A.M. in the morning), your system
may be unable to handle the burst load. Consider setting minWorkerThreads and
minIOThreads as specified in Knowledge Base article 810259, “FIX: SetMinThreads
and GetMinThreads API Added to Common Language Runtime ThreadPool Class,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;810259.

Tuning the Thread Pool When Calling COM Objects
ASP.NET Web pages that call single-threaded apartment (STA) COM objects
should use the ASPCOMPAT attribute. The use of this attribute ensures that the
call is executed using a thread from the STA thread pool. However, all calls to an
individual COM object must be executed on the same thread. As a result, the thread
count for the process can increases during periods of high load. You can monitor the
number of active threads used in the ASP.NET worker process by viewing the
Process:Thread Count (aspnet_wp instance) performance counter.

The thread count value is higher for an application when you are using
ASPCOMPAT attribute compared to when you are not using it. When tuning
the thread pool for scenarios where your application extensively uses STA COM
components and the ASPCOMPAT attribute, you should ensure that the total
thread count for the worker process does not exceed the following value.

75 + ((maxWorkerThread + maxIoThreads) * #CPUs * 2)

http://support.microsoft.com/default.aspx?scid=kb;en-us;810259

814 Improving .NET Application Performance and Scalability

Evaluating the Change
To determine whether the formula for reducing contention has worked, look for
improved throughput. Specifically, look for the following improvements:
● CPU utilization increases.
● Throughput increases according to the ASP.NET Applications\Requests/Sec

performance counter.
● Requests in the application queue decrease according to the ASP.NET

Applications\Requests In Application Queue performance counter.

If this change does not improve your scenario, you may have a CPU-bound scenario.
In a CPU-bound scenario, adding more threads may increase thread context
switching, further degrading performance.

When tuning the thread pool, monitor the Process\Thread Count (aspnet_wp)
performance counter. This value should not be more than the following.

75 + ((maxWorkerThread + maxIoThreads) * #CPUs)

If you are using AspCompat, then this value should not be more than the following.

75 + ((maxWorkerThread + maxIoThreads) * #CPUs * 2)

Values beyond this maximum tend to increase processor context switching.

More Information
For more information, see the following resources
● “ASP.NET Performance Monitoring, and When to Alert Administrators” by

Thomas Marquardt, at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnaspp/html/monitor_perf.asp

● For more information about Web service scenarios, see Knowledge Base article
821268, “PRB: Contention, Poor Performance, and Deadlocks When You Make
Web Service Requests from ASP.NET Applications,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;821268

● “At Your Service: Performance Considerations for Making Web Service Calls from
ASPX Pages” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnservice/html/service07222003.asp

● Microsoft Support WebCast, “Microsoft ASP.NET Threading,” at
http://support.microsoft.com/default.aspx?scid=%2fservicedesks%2fwebcasts%2fen
%2ftranscripts%2fwct060503.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/monitor_perf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/monitor_perf.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07222003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07222003.asp
http://support.microsoft.com/default.aspx?scid=%2fservicedesks%2fwebcasts%2fen%2ftranscripts%2fwct060503.asp
http://support.microsoft.com/default.aspx?scid=%2fservicedesks%2fwebcasts%2fen%2ftranscripts%2fwct060503.asp

 Chapter 17: Tuning .NET Application Performance 815

● Knowledge Base article 827419, “PRB: Sudden Requirement for a Larger Number
of Threads from the ThreadPool Class May Result in Slow Computer Response
Time,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;827419

● Knowledge Base article 810259, “FIX: SetMinThreads and GetMinThreads
API Added to Common Language Runtime ThreadPool Class,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259

Configure the Memory Limit
The memory threshold for ASP.NET is determined by the memoryLimit attribute
on the <processModel> element in Machine.config. For example:

<processModel ... memoryLimit="60" .../>

This value controls the percentage of physical memory that the process is allowed
to consume. If the worker process exceeds this value, the worker process is recycled.
The default value shown in the code represents 60 percent of the total physical
memory installed in your server.

This setting is critical because it influences the cache scavenging mechanism for
ASP.NET and virtual memory paging. For more information, see “Configure the
Memory Limit” in Chapter 6, “Improving ASP.NET Performance.” The default setting
is optimized to minimize paging. If you observe high paging activity (by monitoring
the Memory\Pages/sec performance counter) you can increase the default limit,
provided that your system has sufficient physical memory.

The recommended approach for tuning is to measure the total memory consumed by
the ASP.NET worker process by measuring the Process\Private Bytes (aspnet_wp)
performance counter along with paging activity in System Monitor. If the counter
indicates that the memory consumption is nearing the default limit set for the
process, it might indicate inefficient cleanup in your application. If you have ensured
that the memory is efficiently cleaned but you still need to increase the limit, you
should do so only if you have sufficient physical memory.

This limit is important to adjust when your server has 4 GB or more of RAM. The
60 percent default memory limit means that the worker process is allocated 2.4 GB
of RAM, which is larger than the default virtual address space for a process (2 GB).
This disparity increases the likelihood of causing an OutOfMemoryException.

To avoid this situation on an IIS 5 Web server, you should set the limit to the smaller
of 800 MB or 60 percent of physical RAM for .NET Framework 1.0.

/3GB Switch
.NET Framework 1.1 supports a virtual space of 3 GB. If you put a /3GB switch
in boot.ini, you can safely use 1,800 MB as an upper bound for the memory limit.

http://support.microsoft.com/default.aspx?scid=kb;en-us;827419
http://support.microsoft.com/default.aspx?scid=kb;en-us;810259

816 Improving .NET Application Performance and Scalability

You should use the /3GB switch with only the following operating systems:
● Microsoft Windows Server™ 2003
● Microsoft Windows 2000 Advanced Server
● Microsoft Windows 2000 Datacenter Server
● Microsoft Windows NT 4.0 Enterprise Server

You should not use the /3GB switch with the following operating systems:
● Microsoft Windows 2000 Server
● Microsoft Windows NT 4.0 Server

Windows 2000 Server and Windows NT 4.0 Server can only allocate 2 GB to user
mode programs. If you use the /3GB switch with Windows 2000 Server or Windows
NT 4.0 Server, you have 1 GB for kernel and 2 GB for user mode programs, so you
lose 1 GB of address space.

IIS 6
For IIS 6 use the Maximum used memory (in megabytes) setting in the Internet
Services Manager on the Recycling page to configure the maximum memory that
the worker process is allowed to use. As Figure 17.12 shows, the value is in
megabytes and is not a percentage of physical RAM.

Figure 17.12
Memory recycling settings in the IIS 6 manager

More Information

For more information, see the following resources:
● For more information about running ASP.NET 1.1 with IIS 6, see the Microsoft

ASP.NET FAQ page at http://www.asp.net/faq/AspNetAndIIS6.aspx.
● For more information about virtual address space and virtual memory paging

activities, see Chapter 6, “Evaluating Memory and Cache Usage” in Part 2 of the
Windows 2000 Operations Guide at http://www.microsoft.com/resources/documentation
/windows/2000/server/reskit/en-us/serverop/part2/sopch06.mspx.

http://www.asp.net/faq/AspNetAndIIS6.aspx
http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/en-us/serverop/part2/sopch06.mspx
http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/en-us/serverop/part2/sopch06.mspx

 Chapter 17: Tuning .NET Application Performance 817

Configure Timeouts Aggressively
The following list explains the configuration settings that you can tune in respect to
timeouts:
● executionTimeout. This is an attribute of the <httpRuntime> element with a

default value of 90 seconds. You can programmatically set this attribute using
HttpServerUtility.ScriptTimeout as follows:

<httpRuntime executionTimeout="90" />

You need to change the default values if your application performs long-running
operations like transferring large files, making long-running calls, or performing
any other operation that may take longer than 90 seconds. Consider the following
guidelines when deciding to change this attribute value:
● Clients of an average Web application expect a response in 7 to 10 seconds.

Consider reducing the value of executionTimeout to deliberately time out
excessively long-running requests and display an error message to users.

● Carefully evaluate any decision to increase the value of executionTimeout.
Some scenarios, such as transferring extremely large files, may warrant
increasing the value of this attribute. However, keep in mind the issue of user
interface responsiveness and consider whether the user is willing to wait for a
response for such a long time.
Longer timeouts result in server resources being retained for longer periods,
which might cause stress and instability on the server under high load
conditions.
In scenarios where you do need to increase executionTimeout to more than
180 seconds, you need to increase the value of the responseDeadlockInterval
attribute to a value greater than 180 seconds (its default value).
You should also make sure that executionTimeout is set to a value greater than
the timeout value specified by the client on the Web service proxy. If the request
for a Web page times out before the call to the Web service that was made from
the page, you can end up with open socket connections, causing a resource
leak.
The ASP.NET pages calling Web services can set a TimeOut property on the
proxy object. This timeout value should be less than the executionTimeout
value, which in turn should be less than the responseDeadlockInterval value.
The value executionTimeout on a server hosting ASP.NET pages should be
greater than on the server hosting your Web service. This setting handles the
condition where a long-running Web service completes successfully, but the
ASP.NET page returns a ThreadAbortException.

818 Improving .NET Application Performance and Scalability

Note: Timeout values are specified in milliseconds. If you have debug="false" in the
Web.config file, the executionTimeout value will be ignored.

For more information about tuning the timeouts in relation to Web service
proxies, see “Timeouts” in Chapter 10, “Improving Web Services Performance.”

● responseDeadlockInterval. This attribute is used by ASP.NET to detect deadlock
or thread contention on the server. For example:

<processModel responseDeadlockInterval="00:03:00" />

Avoid increasing this timeout limit, because doing so may have an adverse effect
on the overall performance of your application. For alternative solutions, see
“Avoid Blocking on Long-Running Tasks” in Chapter 6, “Improving ASP.NET
Performance.”

● Worker process timeouts. The <processModel> element contains timeout,
idleTimeout, shutdownTimeout, and responseDeadlockInterval attributes. The
timeout and idleTimeout attributes are set to infinite by default. Avoid changing
these to lower values. Doing so causes the process to recycle (when the set
threshold is reached), which is expensive and time-consuming and causes
application downtime.

Evaluate Configuring RequestQueueLimit
There is a named pipe between IIS and the ASP.NET worker process over which
requests for ASP.NET are queued. There is also a queue for each virtual directory.

The default limit for the queue at the process level is 5000 and is specified by the
requestQueueLimit attribute on the <processModel> element as follows.

<processModel enable="true" requestQueueLimit="5000" />

The number of current requests is measured by ASP.NET\Requests Current. If the
number of current requests (which includes the requests that are queued, executing,
or waiting to be written to the client) exceeds the value set for requestQueueLimit,
the worker process rejects the requests with a 503 status code and the message
“Server Too Busy.”

The default limit for the queue for each virtual directory (or application) is 100. This
limit is specified by the appRequestQueueLimit attribute on the <httpRunTime>
element in Machine.config.

When the number of current requests in the application queue (measured by
ASP.NET Applications\ Requests In Application Queue) exceeds the default
threshold settings for each virtual directory, users receive a 503 status code and a
“Server Too Busy” error message. Requests are rejected when the number of requests
exceeds the appRequestQueueLimit value in Machine.config:

 Chapter 17: Tuning .NET Application Performance 819

The default value for the process queue is optimized. It should be roughly the value
of the appRequestQueueLimit attribute multiplied by the total number of virtual
directories.

Note: A bug in .NET Framework version 1.1 allowed ASP.NET to handle an infinite number of
requests when running in IIS 6.0. The fix, available in “821156 INFO: ASP.NET 1.1 June 2003 Hotfix
Rollup Package” at http://support.microsoft.com/?id=821156, causes ASP.NET to reject requests
when the value of Requests Current exceeds the value of requestQueueLimit.

The default value of 100 for appRequestQueueLimit (per virtual directory) is low
for servers with only a few applications (or a single application). You should consider
increasing the value incrementally and measure the application performance
(throughput, response time, and so on) at the point where requests start being
rejected. The response time for the queued requests should not exceed the levels
defined by your application’s performance objectives. If it does, it probably means
that the requests are waiting too long in the queue to be processed, so increasing the
queue limit will not serve any purpose.

The requestQueueLimit value should be set higher than the sum of the
appRequestQueueLimit values for all virtual directories because the
requestQueueLimit value is actually the limit for total number of requests queued,
executing, and waiting to be written to the clients for all virtual directories combined.

Disable Tracing and Debugging
Disable tracing and debugging in the Machine.config and Web.config as follows.

<configuration>
 <system.web>
 <trace enabled="false" pageOutput="false" /?
 <compilation debug="false" />
 </system.web>
</configuration>

For more information, see Knowledge Base article 815157, “HOW TO:
Disable Debugging for ASP.NET Applications” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;815157.

Note: You may also want to check that tracing and debugging is not enabled on individual pages,
because those settings will override the settings in the Web.config.

http://support.microsoft.com/?id=821156
http://support.microsoft.com/default.aspx?scid=kb;en-us;815157
http://support.microsoft.com/default.aspx?scid=kb;en-us;815157

820 Improving .NET Application Performance and Scalability

Disable Session State If You Do Not Use It
If you are not using sessions, you should turn them off. By turning them off, you
prevent the ASP.NET process from creating and maintaining session objects on a
per-user basis. You can turn off the session state for an individual application by
setting the mode attribute to “off” on the <sessionState> element in Web.config
as follows.

<sessionstate mode="off" />

For more information, see “Session State” in Chapter 6, “Improving ASP.NET
Performance.”

If You Use Session State, Then Reduce Timeouts
User information is stored in session state until the session expires (the default is
20 minutes). If the client disconnects, the session continues to remain active, and
session state continues to consume resources until it times out. Reducing the session
state helps clean up unused sessions faster. Reducing session state is also good
practice from a security standpoint.

You can change the timeout values in your application’s Web.config file by
modifying the timeout attribute on the <sessionState> element. The default
setting of 20 minutes is shown in the following code.

<sessionState timeout="20"/>

Evaluating the Change
If you set the session state timeout to too low a value, your users may experience
having their sessions expire frequently, which would increase the redundant hits to
the site for the same requests as well as user dissatisfaction. If you set the timeout to
too high a value, server resources are consumed for long periods, which affects your
application scalability.

You need to optimize session timeout values. For information about how to identify
the optimum value for session timeouts, see “Sessions” in “ASP.NET” in Chapter 15,
“Measuring .NET Application Performance.”

 Chapter 17: Tuning .NET Application Performance 821

Disable View State If You Do Not Need It
There are a number of ways to disable view state at various levels:
● To disable view state for all applications on a Web server, configure the <pages>

element in Machine.config as follows.

<pages enabledViewState="false" />

This approach allows you to selectively enable view state just for those pages that
need it using the EnableViewState attribute of the @ Page directive.

● To disable view state for a single page, use the @ Page directive as follows.

<%@ Page EnableViewState="false" %>

● To disable view state for a single control on a page, set the control’s
EnableViewState property to false as follows.

//programatically
yourControl.EnableViewState = false;
//something
<asp:datagrid EnableViewState=”false” runat=”server” />

More Information

For more information, see “View State” in Chapter 6, “Improving ASP.NET
Performance.”

If You Upload Large Files, Consider maxRequestLength
If your application needs to upload large files, be aware that the default setting
does not allow anything greater than 4 MB. To change this default, configure the
maxRequestLength attribute on the <httpRuntime> element in Machine.config to
an appropriate value.

More Information

For more information, see Knowledge Base article 295626, “PRB: Cannot
Upload Large Files When You Use the HtmlInputFile Server Control,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;295626.

http://support.microsoft.com/default.aspx?scid=kb;en-us;295626

822 Improving .NET Application Performance and Scalability

Consider Web Gardens for Scenarios that Benefit from
Processor Affinity
You might need to consider Web gardens if your application uses STA components
excessively or it uses any other technique which might benefit from affinity to a
processor. Affinity to a particular processor helps the process takes advantage of
more frequent CPU cache (L1 or L2 cache) hits.

You should always test and evaluate whether Web gardens improve performance for
your scenario. They are not generally advocated as an option for most applications.

By default, on an IIS 5 Web server there is only one ASP.NET worker process. You can
set the webGarden attribute on the <processModel> element in Machine.config to
true to create multiple worker processes; one per eligible processor on a multiple
processor server.

You can specify the eligible processors by setting the cpuMask attribute. This
attribute specifies a bit pattern that indicates the CPUs eligible to run ASP.NET
threads. For example, the cpuMask hexadecimal value 0x0d represents the bit pattern
1101. On a server with four processors, this bit pattern indicates that ASP.NET
processes can be scheduled for CPUs 0, 2, and 3, but not CPU 1. If webGarden is set
to true, by default, all CPUs are enabled and ASP.NET starts one process for each
CPU. If webGarden is set to false, the cpuMask attribute is ignored and only one
worker process runs on the server.

The default values for these attributes are shown below.

<processModel webGarden="false" cpuMask="0xffffffff" />

Requests are distributed among the multiple processes on a round-robin basis. Each
process has an affinity to a particular processor in this case.

On an IIS 6.0 Web server, you can create multiple worker processes per application
pool, which can have affinity to particular processors.

If you are considering using Web gardens, you should be aware of the following
pitfalls:
● Cache, session, and application state are not shared among the different processes.

Hence, each process needs its own copy of cache and application state. You can
store the session state out of process in a state service or SQL Server database to
share it across processes. Out-of-process session state incurs the additional
overhead of serialization and cross-process or cross-server communication.

● Memory requirements for your server increase when you use Web gardens
because multiple processes are used.

 Chapter 17: Tuning .NET Application Performance 823

More Information

For more information about Web gardens, the scenarios where they might result
in performance gains, and IIS 6.0 deployment considerations, see “Deployment
Considerations” in Chapter 6, “Improving ASP.NET Performance” and
“Web and Application Server Infrastructure — Performance and Scalability” at
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp
/iis/iis6perf.mspx.

Additional Considerations
In addition to the primary tuning options for ASP.NET applications discussed earlier,
you also have the following additional considerations:
● Tuning for pages and compilation. ASP.NET compiles all of the pages in a

directory into a single assembly when the first page is requested. This feature,
referred to as batch compilation, is beneficial because in general fewer assemblies
are preferable. If you have several hundred pages in a directory, the first request
for a page may take a long time to execute due to the amount of compilation work
needed.
The timeout for batch compilation is specified by the batchTimeout attribute on
the <compilation> element. If this value is exceeded, batch compilation continues
on a background thread and the requested page is compiled individually.
You are not advised to modify the default batchTimeout setting. Instead, you
should design your application to avoid using an excessive number of pages. For
example, consider using fewer dynamic pages that vary their behavior by using
query strings, rather than using large numbers of static pages.

● Short circuiting the HTTP pipeline. User requests travel through various
modules specified in the HTTP pipeline. These are defined in Web.config and
Machine.config. By removing modules that your application does not use, you
avoid any unnecessary overhead introduced by the modules. Measure to see if this
performance gain is significant for your application.
For example, if your Web application does not use forms authentication, you can
remove the FormsAuthentication module by adding the following entry to
Web.config.

<httpModules>
 <remove name="FormsAuthentication" />
</httpModules>

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp/iis/iis6perf.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/webapp/iis/iis6perf.mspx

824 Improving .NET Application Performance and Scalability

Enterprise Services Tuning
When you tune Enterprise Services performance, your main focus is optimizing
the lifetime of components, including their creation, destruction, and pooling.

Configuration Overview
Most Enterprise Services tuning involves using the Component Services
administration tool to fine-tune the settings maintained in the COM+ catalog
for your Enterprise Services applications and serviced components.

Metrics
To monitor the performance related statistics for Enterprise Services applications, you
can use the Component Services tool. This enables you to monitor the following:
● Number of objects activated
● Number of objects in use
● Time duration for which the object is in call
● Cost of transaction in term of resources and time taken to complete the transaction
● Cost in terms of processor and memory for the method call on objects
● Optimum size for the object pool

For more information about how to measure these values, their thresholds, and their
significance, see “Enterprise Services” in Chapter 15, “Measuring .NET Application
Performance.”

Some of these statistics are shown in Figure 17.13.

Figure 17.13
The Component Services tool showing component statistics

 Chapter 17: Tuning .NET Application Performance 825

Tuning Options
To tune Enterprise Services applications, you have the following options:
● Tune the application pool size.
● Tune object pool size to preallocate and set thresholds.
● Optimize idle time management for server applications.
● Use packet privacy only if you need encryption.
● Set DisableAsyncFinalization only when clients do not call Dispose.

Tune the Application Pool Size
Application pooling enables single-threaded processes to scale, and it also improves
resilience. If a single process fails, other running processes are able to handle client
requests. This feature is available in COM+ 1.5.

The concurrent number of processes that are allowed to run is determined by the
application pool size. A default value of zero indicates that application pooling is
disabled. You can increase this value on the Pooling & Recycling page on the
application’s Properties dialog box, as shown in Figure 17.14.

Note: This option is available only for server applications and not for library applications.

Figure 17.14
Application Pooling configuration

826 Improving .NET Application Performance and Scalability

You do not generally need to alter the application recycling settings. For more
information about these settings, see the following resources:
● “Preload Applications That Have Large Minimum Pool Sizes” in Chapter 8,

“Improving Enterprise Services Performance”
● “Configuring COM+ Application Recycling Values” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm
/pgservices_applicationrecycling_24mf.asp

Tune Object Pool Size to Preallocate and Set Thresholds
Tune object pool size to preallocate and set thresholds. When your application starts,
the Dllhost.exe surrogate process is initialized and the object pool is populated with a
specified number of objects determined by the minimum pool size setting. Consider
using object pooling if:
● Your application contains objects that are expensive to create and initialize.

For example, your objects need to acquire data from remote resources that are
expensive to connect to. Examples include connecting to a mainframe database
or performing a multi-table join across several thousand records.

● You can reuse objects across multiple client calls. Objects that you reuse must
contain no request or user-specific state.

● Your application has bursts of activity where several clients connect at the
same time.

If your application satisfies one of the conditions in the previous list, consider the
following guidelines:
● Preallocate objects by setting an appropriate minimum pool size. Doing so ensures

that objects are ready to use for incoming client requests.
● Set the maximum pool size if you need to set thresholds on resource utilization.

Doing so also provides an opportunity (if applicable) for you to satisfy licensing
rules. For example, you might have rules that permit only a certain number of
client connections for a particular license.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_applicationrecycling_24mf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_applicationrecycling_24mf.asp

 Chapter 17: Tuning .NET Application Performance 827

You configure object pooling on the Activation tab of your application’s Properties
dialog box, as shown in Figure 17.15

Figure 17.15
Object pooling settings in Component Services

Note: You must test and measure the performance for your specific scenario to determine the
optimal value for these settings.

For more information, see “Improving Performance with Object Pooling”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm
/pgservices_objectpooling_9wbr.asp.

Optimize Idle Time Management for Server Applications
The COM+ host process (Dllhost.exe) shuts down after a configured period of
inactivity from any client. By default, this period is three minutes. If clients access
your applications in bursts at sporadic intervals, then you might need to increase
the default time period. To configure the idle time, use the Advanced page of the
application’s Properties dialog box in Component Services. Values in the range of
1 to 1440 minutes are supported.

Use Packet Privacy Only if You Need Encryption
If you need to authenticate callers and ensure that packets have not been tampered
with in transit between the client and serviced component, you do not need
encryption. If you need to ensure the privacy of data sent to and from your serviced
components, you should consider using packet privacy authentication.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_objectpooling_9wbr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_objectpooling_9wbr.asp

828 Improving .NET Application Performance and Scalability

However, you can avoid using packet privacy authentication if your application is
located in a secure network that uses IPSec encryption to protect the communication
channels between servers. You can configure the packet privacy authentication level
on the Security page of the application’s Properties dialog box, as shown in
Figure 17.16.

Figure 17.16
Authentication level configuration

For more information, see “Use Packet Privacy Authentication Only if You Need
Encryption” in Chapter 8, “Improving Enterprise Services Performance.”

Note: This option is available only for server applications and not for library applications.

 Chapter 17: Tuning .NET Application Performance 829

Set DisableAsyncFinalization Only When Clients Do Not Call Dispose
If client code does not call Dispose to release serviced components, as a last resort
you can consider using the DisableAsyncFinalization registry key. To enable this
feature, create the following registry key.

HKLM\Software\Microsoft\COM3\System.EnterpriseServices
DisableAsyncFinalization = DWORD(0x1)

For more information, see “DisableAsyncFinalization Registry Setting” in Chapter 8,
“Improving Enterprise Services Performance.”

Note: Administrators should check with the development team if they own the client implementation,
to ensure that they call Dispose method to release resources on the server. Changing this registry
key should be considered a last resort.

Web Services Tuning
ASP.NET Web services use the same ASP.NET runtime as ASP.NET applications. As
a result, the tuning guidelines discussed earlier also apply to Web services. For Web
services, there are a number of additional considerations.

Tuning Options
Consider the following tuning options:
● Tune the thread pool using the formula for reducing contention.
● Configure maxconnections.
● Prioritize and allocate connections across discrete Web services.
● Consider the responseDeadlockInterval Attribute.
● If you upload large files, configure maxRequestLength.

Tune the Thread Pool Using the Formula for Reducing Contention
You should tune the thread pool and connection settings on any ASP.NET server
that calls other Web services. For a detailed explanation of how to configure
maxconnection in relation to other settings such as maxWorkerThreads, and
maxIoThreads, see “Threading” in Chapter 10, “Improving Web Services
Performance” and “Thread Pool Attributes” in “ASP.NET Tuning” in this chapter.

830 Improving .NET Application Performance and Scalability

Configure maxconnections
The maxconnection attribute in Machine.config limits the number of concurrent
outbound calls.

Note: This setting does not apply to local requests — requests that originate from ASP.NET
applications on the same server as the Web service. The setting applies to outbound connections
from the current computer, for example to ASP.NET applications and Web services calling other
remote Web services.

The default setting for maxconnection is 2 per connection group. For desktop
applications that call Web services, two connections may be sufficient. For ASP.NET
applications that call Web services, two is generally not enough. Change the
maxconnection attribute from default of 2 to (12 x #CPUs) as a starting point.

<connectionManagement>
 <add address="*" maxconnection="12"/>
</connectionManagement>

Note that 12 connections x #CPUs is an arbitrary number, but empirical evidence has
shown that it is optimal for a variety of scenarios, when you also limit ASP.NET to
12 concurrent requests. You need to validate the appropriate number of connections
for your scenario.

Increasing the maxconnection attribute results in increased thread pool and
processor utilization. With the increase in the maxconnection value, a higher number
of I/O threads will be available to make outbound concurrent calls to the Web
service. As a result, incoming HTTP requests are processed at a faster pace.

Before Making the Change
You should consider increasing the connections only if you have available CPU.
You should always check processor utilization before considering the increase in
the attribute, because increasing the attribute results in more processing work for the
processor as described earlier. Therefore, increasing this attribute makes sense only
when you have processor utilization below the threshold limits (such as 75 %).

For more information, see “ASP.NET Tuning” in this chapter.

Evaluating the Change
Changing the attribute may involve multiple iterations for tuning and involves
various tradeoffs with respect to thread pool utilization. Therefore, the changes
in the maxconnection attribute may require changes to other thread pool-related
configuration attributes such as maxWorkerThreads, and maxIoThreads.

 Chapter 17: Tuning .NET Application Performance 831

When you load test your application after making the configuration changes, you
should monitor CPU utilization and watch the ASP.NET Applications\Requests/sec
and ASP.NET Applications\Requests in Application Queue performance counters.
Requests in Application Queue should decrease, while Requests/sec and CPU
utilization should increase.

Prioritize and Allocate Connections Across Discrete Web Services
Enumerate and prioritize the Web services you call. Allocate more connections to
your critical Web services. You specify each Web service by using the address
attribute as follows.

<connectionManagement>
 <add address="WebServiceA" maxconnection="8">
 <add address="WebServiceB" maxconnection="4">
</connectionManagement>

For example, if your application typically makes more requests to Web ServiceA than
WebServiceB, you can dedicate more connections, as shown in the example.

Consider the responseDeadlockInterval Attribute
When making Web service calls from an ASP.NET application, if you are
increasing the value of both the proxy timeout and the executionTimeout to
greater than 180 seconds for some reason, you should consider changing the
responseDeadlockInterval attribute for processModel element in the machine.config
file. The default value of this attribute is 180 seconds. If there is no response for an
executing request for180 seconds, the ASP.NET worker process will recycle.

You must reconsider your design if it warrants changing the attributes to a higher
value.

If You Upload Large Files, Configure maxRequestLength
The ASP.NET runtime settings prevent you from uploading files larger than 4 MB.
To change this default, you need to modify the maxRequestLength parameter in the
<httpRuntime> section to the value that you require.

More Information

For more information, see the following resources:
● “Bulk Data Transfer” in Chapter 10, “Improving Web Services Performance”
● Knowledge Base article 295626, “PRB: Cannot Upload Large Files When You Use

the HtmlInputFile Server Control,” at http://support.microsoft.com/default.aspx?scid
=kb;en-us;.295626

http://support.microsoft.com/default.aspx?scid=kb;en-us;.295626
http://support.microsoft.com/default.aspx?scid=kb;en-us;.295626

832 Improving .NET Application Performance and Scalability

Remoting Tuning
The main configuration setting you tune in remoting is the lease time. To determine
appropriate lifetime timeouts for your application, you need to strike a balance
between resource utilization on the server and the performance implications of
frequently destroying and recreating objects. Increasing an object’s lifetime increases
your server’s memory and resource utilization, whereas decreasing the lifetime can
lead to objects being destroyed too frequently and prematurely.

Tuning Options
The general guidelines are as follows:
● Consider using a longer lease time for objects that are expensive to create.
● Consider shorter lease times for objects that consume lots of shared or

important resources.

Consider Using a Longer Lease Time for Objects that Are Expensive
to Create
If you use objects that are expensive to create, consider modifying the lease timeouts
to allow the object to remain longer than the default 5 minute timeout. For example, if
you use a singleton object that incurs an expensive startup process, consider
changing the timeout to a longer, more appropriate period of time, or change the
timeout to infinite.

Consider Shorter Lease Times for Objects that Consume Lots of
Shared or Important Resources
If you create objects that consume shared or important resources, consider using a
shorter lease timeout. Setting a timeout of less than 5 minutes will force the cleanup
of resources to take place sooner, which can help avoid stranded resources and
resource pressure.

 Chapter 17: Tuning .NET Application Performance 833

Tuning the Lease Time
You can tune both the lease timeout and the “renew on call” time either
programmatically or through configuration. The following configuration file shows
the use of these settings.

<configuration>
 <system.runtime.remoting>
 <application>
 <lifetime leaseTimeout="1M"
 renewOnCallTime="30S"
 leaseManagerPollTime="2M" />
 </application>
 </system.runtime.remoting>
</configuration>

Note that this approach changes all remote objects published by the server.

ADO.NET Tuning
The primary configurable option in ADO.NET is the connection string. You need
to consider the identity used to connect, the number of connections that your
application uses, the number of pooled connections pools, and timeouts for trying
to connect to the database.

Configuration Overview
Configuring the connection string depends on where the connection string is stored.
For security reasons, the connection string should be stored in encrypted format
when possible.

Metrics
The following performance counters help you identify ADO.NET bottlenecks.

Table 17.8: Performance Counters Used to Identify ADO.NET Bottlenecks

Area Counter

Connection Pooling • .NET CLR Data\SqlClient: Current # pooled connections

• .NET CLR Data\SqlClient: Peak # pooled connections

• .NET CLR Data\Total # failed connections

834 Improving .NET Application Performance and Scalability

For more information about how to measure these counters, their thresholds, and
their significance, see “ADO.NET/Data Access” in Chapter 15, “Measuring .NET
Application Performance.”

Bottlenecks
The following list describes several common bottlenecks that occur in applications
using AOD.NET and explains how you identify them using system counters.

Too Many Connections
Too many connections can be a result of poor coding practices or improper
connection string settings. To identify this symptom, observe the following
performance counters:
● A SQLServer:General Statistics object showing Logins/sec and Logouts/sec

counters should be close to zero and should stay there; values that are consistently
higher than zero indicate that connection pool is not being used.

● A SQLServer:General Statistics object showing increasing values for User
Connection without stabilizing over a period of time probably indicates a
connection leak.

For more information, see “Monitoring Pooling” in Chapter 12, “Improving
ADO.NET Performance.”

Tuning Options
Tuning ADO.NET data access mostly involves tuning the connection string used to
connect to the database. You can use the connection string to set the database
connection pool size. It is important to ensure that a consistent connection string is
used for all connections. Any slight variation in the connection string causes a new
pool to be used.

Within the same connection string is a set of attributes that may have an effect
on performance. These attributes are optimized for most common scenarios
with tradeoffs regarding performance, security, and network utilization. If you
are considering changing the defaults, see “SqlConnection.ConnectionString
Property” in the .NET Framework documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html
/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp.

Consider Tuning Your Pool Size If Needed
You can tool the connection pool size. For example, in the case of the .NET
Framework Data Provider for SQL Server, the default minimum pool size is zero
and the maximum size is 100. You might need to increase the minimum size to
reduce warm-up time. You might need to increase the maximum size if your
application needs more than 100 connections, though this scenario is rare.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp

 Chapter 17: Tuning .NET Application Performance 835

For more information about measuring the health of the database connection pool,
see Chapter 15, “Measuring .NET Application Performance.”

SQL Server Tuning
In most cases SQL Server is self-tuning, so you do not need to change the default
configuration settings. If you do make changes, test to ensure that the changes resolve
the issue and help you meet your performance objectives.

Metrics
The following performance counters help you identify SQL Server bottlenecks.

Table 17.9: Performance Counters Used to Identify SQL Server Bottlenecks

Area Counter

Indexes SQLServer: Access Methods\Index Searches/sec

SQLServer: Access Methods\ Full Scans/sec

Cache SQL Server: Cache Manager\ Cache Hit Ratio

SQL Server: Cache Manager\Cache Use Count/sec

SQL Server: Memory Manager\ SQL Cache Memory(KB)

Memory\ Cache Faults/sec

Transactions SQL Server: Databases\Transactions/sec

SQL Server: Databases\Active Transactions

Locks SQL Server: Locks\ Lock Request/sec

SQL Server: Locks\ Lock Timeouts/sec

SQL Server: Locks\Lock Waits/sec

SQL Server: Locks\ Number of Deadlocks/sec

SQL Server: Locks\Average Wait Time (ms)

SQL Server: Latches\Average Latch Wait Time(ms)

For more information about how to measure these counters, their thresholds, and
their significance, see “ADO.NET/Data Access” in Chapter 15, “Measuring .NET
Application Performance.”

836 Improving .NET Application Performance and Scalability

Bottlenecks
Out-of-date statistics can be a common bottleneck in SQL Server. If statistics used
by the SQL query optimizer are out of date, this can lead to poor performance. To
monitor these statistics, you can either use SET STATISTICS PROFILE ON in Query
Analyzer or you can use the SQL Profiler and monitor the profiler event named
Performance:Showplan Statistics (Event Class 98). A big difference between the
estimated row count and the actual row count can indicate that the optimizer had
outdated or skewed statistics. For more information, see “Compare Actual vs.
Estimated Rows and Executions” in Chapter 14, “Improving SQL Server
Performance.”

Tuning Options
In general, do not tune SQL Server configuration settings unless that is your only
remaining option (meaning that you have already tuned your application and
database design). Your tuning can work against the SQL Server self-tuning and
can degrade performance. Make sure that you test to verify that you have fixed the
problem.

To tune SQL Server, consider the following options:
● If there are other applications on the system, set SQL Server memory to a fixed

amount.
● Update statistics.
● Choose hardware-level RAID rather than software RAID when you can.

If There Are Other Applications on the System, Set SQL Server Memory
to a Fixed Amount
Assign SQL Server a fixed amount of memory only if your system is running
applications other than SQL Server. Otherwise, you can assign SQL Server as much
memory as possible. To assign SQL Server a fixed amount of memory, the SQL
memory settings of the server needs to be set as “Use a Fixed Memory size.” This
value depends on your application and SQL Server load, so consider changing the
value and testing the server with application load and SQL Server load to find an
optimal value for this setting.

Update Statistics
If statistics are out of date, your indexes will be inefficient. You can update
out-of-date statistics by using UPDATE STATISTICS WITH FULLSCAN.

 Chapter 17: Tuning .NET Application Performance 837

Choose Hardware-Level RAID Rather Than Software RAID
When You Can
Choose hardware-level RAID rather than software RAID when you can. Software
RAID takes CPU cycles away from SQL Server.

Choose RAID 0+1 (Striped Mirror) Where You Can
Use RAID 0+1 (also known as RAID 01 or striped mirror) where possible. RAID 5
(striping with parity) can be used in some circumstances, but is generally less reliable
and more expensive over time.

Internet Information Services (IIS) Tuning
Tuning IIS is the subject of entire books, and complete coverage is well beyond the
scope of this chapter. However, this section does highlight several common problem
areas and identifies several of the more important configuration settings. A number
of resources at the end of this section provide additional detailed information.
● Know the tools. The IIS Metabase and Windows registry contains settings that

control how your IIS server works. You can modify these settings by using Adsutil
and MetaEdit. For more information, see Knowledge Base article 240225,
“Description of Adsutil and MetaEdit Utilities Used to Modify the Metabase,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;240225.
You also use the IIS management console (Internet Service Manager) to configure
session state and debugging settings (both of which should be disabled if not
required). These settings are shown in Figure 17.17.

Figure 17.17
IIS console showing session state and debugging settings

http://support.microsoft.com/default.aspx?scid=kb;en-us;240225

838 Improving .NET Application Performance and Scalability

● Know how to monitor. The System Monitor comes with a rich set of counters to
monitor Web server performance. Figure 17.18 shows some of the Web Service
counters.

Note: Do not confuse Web Service with Web services. Web Service in this case refers to IIS.

Figure 17.18
System Counter Web Service counters

More Information
The following articles provide detailed information about various aspects of Web
server tuning:
● Knowledge Base article 308186, “HOW TO: Optimize Web Server Performance in

Windows 2000,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;308186
● Knowledge Base article 305313, “Optimizing Internet Information Services 5.0,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;305313
● “Tuning Internet Information Server Performance” at http://www.microsoft.com

/serviceproviders/whitepapers/tuningiis.asp
● “Windows 2000 Performance Tuning” at http://www.microsoft.com/windows2000

/advancedserver/evaluation/performance/reports/perftune.asp
● “Deploying Windows 2000 with IIS 5.0 for Dot Coms: Best Practices” at

http://www.microsoft.com/windows2000/techinfo/planning/incremental/iisdotcom.asp
● “Setting Up a Reliable Web Server by Using Windows 2000” at

http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis
/evaluate/featfunc/iis5feat.mspx

● “The Art and Science of Web Server Tuning with Internet Information
Services 5.0” at http://www.microsoft.com/technet/prodtechnol/windows2000serv
/technologies/iis/maintain/optimize/iis5tune.mspx

● “Performance Tuning IIS 6” in “Performance Tuning Guidelines for Windows
Server 2003” at http://www.microsoft.com/windowsserver2003/evaluation
/performance/tuning.mspx

http://support.microsoft.com/default.aspx?scid=kb;en-us;308186
http://support.microsoft.com/default.aspx?scid=kb;en-us;305313
http://www.microsoft.com/serviceproviders/whitepapers/tuningiis.asp
http://www.microsoft.com/serviceproviders/whitepapers/tuningiis.asp
http://www.microsoft.com/windows2000/advancedserver/evaluation/performance/reports/perftune.asp
http://www.microsoft.com/windows2000/advancedserver/evaluation/performance/reports/perftune.asp
http://www.microsoft.com/windows2000/techinfo/planning/incremental/iisdotcom.asp
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/evaluate/featfunc/iis5feat.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/evaluate/featfunc/iis5feat.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/optimize/iis5tune.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/optimize/iis5tune.mspx
http://www.microsoft.com/windowsserver2003/evaluation/performance/tuning.mspx
http://www.microsoft.com/windowsserver2003/evaluation/performance/tuning.mspx

 Chapter 17: Tuning .NET Application Performance 839

Summary
Performance tuning refers to code optimization and application configuration. This
chapter has focused on configuration and has shown you how to tune your system-,
platform-, and application-level configuration parameters to improve performance.
For each of major technology areas addressed in this chapter, you have seen how to
identify and then address bottlenecks.

Use the performance-tuning process in this chapter to help you to systematically
identify and fix bottlenecks. Start by obtaining a set of baseline metrics. Then run
tests to collect data, analyze that data to identify bottlenecks, and tune your
configuration settings. Remember to apply only one set of configuration changes at a
time. Be sure to retest and measure performance to validate the impact of your latest
changes.

Performance tuning is an iterative process that continues until your application meets
its performance objectives or you determine that your code or application design
needs further optimization.

Additional Resources
For more information about tuning performance, see the following resources in this
guide:
● Chapter 15, “Measuring .NET Application Performance”
● Chapter 16, “Testing .NET Application Performance”
● “How To: Optimize SQL Indexes”
● “How To: Optimize SQL Queries”

For further reading, see the following resources:
● “ASP.NET Performance Monitoring, and When to Alert Administrators” by

Thomas Marquardt, at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnaspp/html/monitor_perf.asp.

● Performance Testing Microsoft .NET Web Applications, Microsoft Press®.
● For a systematic, quantitative approach to performance tuning that helps you

quickly find problems, identify potential solutions, and prioritize your efforts,
see “Five Steps to Solving Software Performance Problems,” by Lloyd G. Williams,
Ph.D., and Connie U. Smith, Ph.D., at http://www.perfeng.com/papers/step5.pdf.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/monitor_perf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/monitor_perf.asp
http://www.perfeng.com/papers/step5.pdf

840 Improving .NET Application Performance and Scalability

● For techniques and strategies for building a collaborative relationship between test
and development around performance tuning, see “Part 11: Collaborative Tuning”
in “Beyond Performance Testing” by Scott Barber, at http://www.perftestplus.com
/articles/bpt11.pdf.

● For insight into bottleneck identification and analysis, see “Part 7: Identify
the Critical Failure or Bottleneck” from “Beyond Performance Testing” by
Scott Barber, at http://www.perftestplus.com/articles/bpt7.pdf.

http://www.perftestplus.com/articles/bpt11.pdf
http://www.perftestplus.com/articles/bpt11.pdf
http://www.perftestplus.com/articles/bpt7.pdf

Index of Checklists

Overview
Improving .NET Application Performance and Scalability provides a series of checklists
that help you put the information and details that you learned in the individual
chapters into action. The following checklists are included:
● Checklist: ADO.NET Performance
● Checklist: Architecture and Design Review for Performance and Scalability
● Checklist: ASP.NET Performance
● Checklist: Enterprise Services Performance
● Checklist: Interop Performance
● Checklist: Managed Code Performance
● Checklist: Remoting Performance
● Checklist: SQL Server Performance
● Checklist: Web Services Performance
● Checklist: XML Performance

Design Checklist
Checklist: Architecture and Design Review for Performance and Scalability uses a
performance and scalability frame to help you review various aspects of your
application's architecture and design. The checklist covers deployment and
infrastructure, data structures and algorithms, communication, resource
management, caching, state management, concurrency, coupling and cohesion, data
access, exception handling, and class design considerations.

842 Improving .NET Application Performance and Scalability

Application Series Checklists
Each of the checklists in the application checklist series covers performance and
scalability checks that are specific to individual technologies and to the performance
and scalability frame. This series includes the following checklists:
● Checklist: ADO.NET Performance
● Checklist: ASP.NET Performance
● Checklist: Enterprise Services Performance
● Checklist: Interop Performance
● Checklist: Managed Code Performance
● Checklist: Remoting Performance
● Checklist: Web Services Performance
● Checklist: XML Performance

Database Server Checklist
Checklist: SQL Server Performance helps you review the key items that impact
performance and scalability of your SQL Server. The checklist covers scaling up and
scaling out, deployment, queries, indexes, transactions, stored procedures, execution
plans, execution plan recompiles, SQL XML, tuning, testing, and monitoring.

Checklist:
ADO.NET Performance

How to Use This Checklist
This checklist is a companion to Chapter 12, “Improving ADO.NET Performance.”

Design Considerations

Check Description

 Design your data access layer based on how the data is used.

 Cache data to avoid unnecessary work.

 Connect by using service accounts.

 Acquire late, release early.

 Close disposable resources.

 Reduce round trips.

 Return only the data you need.

 Use Windows authentication.

 Choose the appropriate transaction type.

 Use stored procedures.

 Prioritize performance, maintainability, and productivity when you choose how to pass data
across layers.

 Consider how to handle exceptions.

 Use appropriate normalization.

Microsoft® .NET Framework Data Providers

Check Description

 Use System.Data.SqlClient for Microsoft SQL Server™ 7.0 and later.

 Use System.Data.OleDb for SQL Server 6.5 or OLE DB providers.

 Use System.Data.ODBC for ODBC data sources.

 Use System.Data.OracleClient for Oracle.

 Use SQLXML managed classes for XML data and SQL Server 2000.

844 Improving .NET Application Performance and Scalability

Connections

Check Description

 Open and close the connection in the method.

 Explicitly close connections.

 When using DataReaders, specify CommandBehavior.CloseConnection.

 Do not explicitly open a connection if you use Fill or Update for a single operation.

 Avoid checking the State property of OleDbConnection.

 Pool connections.

Commands

Check Description

 Validate SQL input and use Parameter objects.

 Retrieve only the columns and rows you need.

 Support paging over large result sets.

 Batch SQL statements to reduce round trips.

 Use ExecuteNonQuery for commands that do not return data.

 Use ExecuteScalar to return single values.

 Use CommandBehavior.SequentialAccess for very wide rows or for rows with binary large
objects (BLOBs).

 Do not use CommandBuilder at run time.

Stored Procedures

Check Description

 Use stored procedures.

 Use CommandType.Text with OleDbCommand.

 Use CommandType.StoredProcedure with SqlCommand.

 Consider using Command.Prepare.

 Use output parameters where possible.

 Consider SET NOCOUNT ON for SQL Server.

 Checklist: ADO.NET Performance 845

Parameters

Check Description

 Use the Parameters collection when you call a stored procedure.

 Use the Parameters collection when you build SQL statements.

 Explicitly create stored procedure parameters.

 Specify parameter types.

 Cache stored procedure SqlParameter objects.

DataReader

Check Description

 Close DataReader objects.

 Consider using CommandBehavior.CloseConnection to close connections.

 Cancel pending data.

 Consider using CommandBehavior.SequentialAccess with ExecuteReader.

 Use GetOrdinal when using an index-based lookup.

DataSet

Check Description

 Reduce serialization.

 Use primary keys and Rows.Find for indexed searching.

 Use a DataView for repetitive non-primary key searches.

 Use the optimistic concurrency model for datasets.

XML and DataSet Objects

Check Description

 Do not infer schemas at run time.

 Perform bulk updates and inserts by using OpenXML.

846 Improving .NET Application Performance and Scalability

Types

Check Description

 Avoid unnecessary type conversions.

Exception Management

Check Description

 Use the ConnectionState property.

 Use try/finally to clean up resources.

 Use specific handlers to catch specific exceptions.

Transactions

Check Description

 Use SQL transactions for server controlled-transactions on a single data store.

 Use ADO.NET transactions for client-controlled transactions on a single data store.

 Use Distributed Transaction Coordinators (DTC) for transactions that span multiple data
stores.

 Keep transactions as short as possible.

 Use the appropriate isolation level.

 Avoid code that can lead to deadlock.

 Set the connection string Enlist property to false.

Binary Large Objects

Check Description

 Use CommandBehavior.SequentialAccess and GetBytes to read data.

 Use READTEXT to read from SQL Server 2000.

 Use OracleLob.Read to read from Oracle databases.

 Use UpdateText to write to SQL Server databases.

 Use OracleLob.Write to write to Oracle databases.

 Avoid moving binary large objects repeatedly.

Checklist:
Architecture and Design Review
for Performance and Scalability

How to Use This Checklist
This checklist is a companion to Chapter 4, “Architecture and Design Review of a
.NET Application for Performance and Scalability.”

Deployment and Infrastructure

Check Description

 Use distributed architectures appropriately. Do not introduce distribution unnecessarily.

 Carefully select appropriate distributed communication mechanisms.

 Locate components that interact frequently within the same boundary or as close to each
other as possible.

 Take infrastructure restrictions into account in your design.

 Consider network bandwidth restrictions.

 Identify resource restrictions.

 Ensure your design does not prevent you from scaling up.

 Ensure your design does not prevent you from scaling out and it uses logical layers, does
not unwittingly introduce affinity, and supports load balancing.

Coupling and Cohesion

Check Description

 Ensure your design is loosely coupled.

 Exhibit appropriate degrees of cohesion in your design and group together logically related
entities, such as classes and methods.

 Restrict use of late binding and only use late binding where it is necessary and
appropriate.

848 Improving .NET Application Performance and Scalability

Communication

Check Description

 Interfaces do not enforce chatty communication.

 Ensure your application only makes remote calls where necessary. Impact is minimized by
client-side validation, client-side caching, and batching of work.

 Optimize remote data exchange.

 Choose appropriate secure communication mechanisms.

 Use message queues to decouple component parts of your system.

 Mitigate the impact of long-running calls by using message queues, “fire-and forget”
approaches, and asynchronous method calls.

 Do not use processes where application domains are more appropriate.

Concurrency

Check Description

 In your application do not create threads on a per-request basis, and use the
common language runtime (CLR) thread pool instead.

 Only types that need to be thread-safe are made thread-safe.

 Carefully consider lock granularity..

 Ensure your application acquires shared resources and locks late and releases them early
to reduce contention.

 Choose appropriate synchronization primitives.

 Choose an appropriate transaction isolation level.

 Ensure your application uses asynchronous execution for I/O bound tasks and not for CPU
bound tasks.

Resource Management

Check Description

 Ensure your design supports and makes effective use of pooling.

 Ensure your application acquires resources late and releases them early.

 Checklist: Architecture and Design Review for Performance and Scalability 849

Caching

Check Description

 Use caching for data that is expensive to retrieve, compute, and render.

 Cache appropriate data such as relatively static Web pages, specific items of output data,
stored procedure parameters, and query results.

 Do not use caching for data that is too volatile.

 Select an appropriate cache location.

 Select an appropriate cache expiration policy.

State Management

Check Description

 Your design favors stateless components. Or, you considered the negative impact
on scalability if you decided to use stateful components.

 If you use Microsoft® .NET Framework remoting and need to support load balancing, you
use single call server-activated objects (SAO).

 If you use Web services, you also use a message-based stateless programming model.

 If you use Enterprise Services, also use stateless components to facilitate object pooling.

 Objects that you want to store in state stores support serialization.

 Consider the performance impact of view state.

 Use statistics relating to the number of concurrent sessions and average session data
per user to help choose an appropriate session state store.

Data Structures and Algorithms

Check Description

 Ensure your design uses appropriate data structures.

 Use custom collections only where absolutely necessary.

 Extend the IEnumerable interface for your custom collections.

850 Improving .NET Application Performance and Scalability

Data Access

Check Description

 Pass data across the layers by using the most appropriate data format. Carefully consider
the performance implications.

 Use stored procedures with the Parameters collection for data access.

 Only process the data that is required.

 Where appropriate, provide data paging solutions for large result sets.

 Use Enterprise Services declarative transactions for transactions that span multiple
resource managers or where you need to flow transaction context across components.

 If you manipulate binary large objects (BLOBs), use appropriate chunking techniques, and
do not repeatedly move the same BLOB.

 Consolidate repeated data access code into helper classes.

Exception Handling

Check Description

 Do not use exceptions to control regular application flow.

 Use well-defined exception handling boundaries.

 Structured exception handling is the preferred error handling mechanism. Do not rely on
error codes.

 Only catch exceptions for a specific reason and when it is required.

Class Design Considerations

Check Description

 Classes own the data that they act upon.

 Do not use explicit interfaces unnecessarily. Use explicit interfaces for versioning and for
polymorphism where you have common functionality across multiple classes.

 Classes do not contain virtual methods when they are not needed.

 Prefer overloaded methods to methods that take variable parameters.

Checklist:
ASP.NET Performance

How to Use This Checklist
This checklist is a companion to Chapter 6, “Improving ASP.NET Performance.”

Design Considerations

Check Description

 Consider security and performance.

 Partition your application logically.

 Evaluate affinity.

 Reduce round trips.

 Avoid blocking on long-running tasks.

 Use caching.

 Avoid unnecessary exceptions.

Threading

Check Description

 Tune the thread pool by using the formula to reduce contention.

 Consider minIoThreads and minWorkerThreads for burst load.

 Do not create threads on a per-request basis.

 Avoid blocking threads.

 Avoid asynchronous calls unless you have additional parallel work.

852 Improving .NET Application Performance and Scalability

Resource Management

Check Description

 Pool resources.

 Explicitly call Close or Dispose on resources you open.

 Do not cache or block on pooled resources.

 Know your application allocation pattern.

 Obtain resources late and release them early.

 Avoid per-request impersonation.

Pages

Check Description

 Trim your page size.

 Enable buffering.

 Use Page.IsPostBack to minimize redundant processing.

 Partition page content to improve caching efficiency and reduce rendering.

 Ensure pages are batch compiled.

 Ensure debug is set to false.

 Optimize expensive loops.

 Consider using Server.Transfer instead of Response.Redirect.

 Use client-side validation.

Server Controls

Check Description

 Identify the use of view state in your server controls.

 Use server controls where appropriate.

 Avoid creating deep hierarchies of controls.

 Checklist: ASP.NET Performance 853

Data Binding

Check Description

 Avoid using Page.DataBind.

 Minimize calls to DataBinder.Eval.

Caching

Check Description

 Separate dynamic data from static data in your pages.

 Configure the memory limit.

 Cache the right data.

 Refresh your cache appropriately.

 Cache the appropriate form of data.

 Use output caching to cache relatively static pages.

 Choose the right cache location.

 Use VaryBy attributes for selective caching.

 Use kernel caching on Microsoft® Windows Server™ 2003.

State Management

Check Description

 Store simple state on the client where possible.

 Consider serialization costs.

Application State

Check Description

 Use static properties instead of the Application object to store application state.

 Use application state to share static, read-only data.

 Do not store single-threaded apartment (STA) COM objects in application state.

854 Improving .NET Application Performance and Scalability

Session State

Check Description

 Prefer basic types to reduce serialization costs.

 Disable session state if you do not use it.

 Avoid storing STA COM objects in session state.

 Use the ReadOnly attribute when you can.

View State

Check Description

 Disable view state if you do not need it.

 Minimize the number of objects you store in view state.

 Determine the size of your view state.

HTTP Modules

Check Description

 Avoid long-running and blocking calls in pipeline code.

 Consider asynchronous events.

String Management

Check Description

 Use Response.Write for formatting output.

 Use StringBuilder for temporary buffers.

 Use HttpTextWriter when building custom controls.

 Checklist: ASP.NET Performance 855

Exception Management

Check Description

 Implement a Global.asax error handler.

 Monitor application exceptions.

 Use try/finally on disposable resources.

 Write code that avoids exceptions.

 Set timeouts aggressively.

COM Interop

Check Description

 Use ASPCOMPAT to call STA COM objects.

 Avoid storing COM objects in session state or application state.

 Avoid storing STA components in session state.

 Do not create STA components in a page constructor.

 Supplement classic ASP Server.CreateObject with early binding.

Data Access

Check Description

 Use paging for large result sets.

 Use a DataReader for fast and efficient data binding.

 Prevent users from requesting too much data.

 Consider caching data.

856 Improving .NET Application Performance and Scalability

Security Considerations

Check Description

 Constrain unwanted Web server traffic.

 Turn off authentication for anonymous access.

 Validate user input on the client.

 Avoid per-request impersonation.

 Avoid caching sensitive data.

 Segregate secure and non-secure content.

 Only use Secure Sockets Layer (SSL) for pages that require it.

 Use absolute URLs for navigation.

 Consider using SSL hardware to offload SSL processing.

 Tune SSL timeout to avoid SSL session expiration.

Deployment Considerations

Check Description

 Avoid unnecessary process hops.

 Understand the performance implications of a remote middle tier.

 Short-circuit the HTTP pipeline.

 Configure the memory limit.

 Disable tracing and debugging.

 Ensure content updates do not cause additional assemblies to be loaded.

 Avoid XCOPY under heavy load.

 Consider precompiling pages.

 Consider Web garden configuration.

 Consider using HTTP compression.

 Consider using perimeter caching.

Checklist:
Enterprise Services Performance

How to Use This Checklist
This checklist is a companion to Chapter 8, “Improving Enterprise Services
Performance.”

Design Considerations

Check Description

 Use Enterprise Services only if you need to.

 Use library applications if possible.

 Consider DLL and class relationships.

 Use distributed transactions only if you need to.

 Use object pooling to reduce object creation overhead.

 Design pooled objects based on calling patterns.

 Use explicit interfaces.

 Design less chatty interfaces.

 Design stateless components.

Object Pooling

Check Description

 Return objects to the pool promptly.

 Monitor and tune pool size.

 Preload applications that have large minimum pool sizes.

State Management

Check Description

 Prefer stateless objects.

 Avoid using the Shared Property Manager (SPM).

858 Improving .NET Application Performance and Scalability

Resource Management

Check Description

 Optimize idle time management for server applications.

 Always call Dispose.

 If you call COM components, consider calling ReleaseComObject.

Queued Components

Check Description

 Use queued components to decouple client and server lifetimes.

 Do not wait for a response from a queued component.

Loosely Coupled Events

Check Description

 Consider the fire in parallel option.

 Avoid LCE for multicast scenarios.

 Use Queued Components with LCE from ASP.NET.

 Do not subscribe to LCE events from ASP.NET.

Transactions

Check Description

 Choose the right transaction mechanism.

 Choose the right isolation level.

 Use compensating transactions to reduce lock times.

Security

Check Description

 Use a trusted server model if possible.

 Avoid impersonating in the middle tier.

 Use packet privacy authentication only if you need encryption.

 Checklist: Enterprise Services Performance 859

Threading

Check Description

 Avoid STA components.

Synchronization

Check Description

 Use locks or mutexes for granular synchronization.

Checklist:
Interop Performance

How to Use This Checklist
This checklist is a companion to Chapter 7, “Improving Interop Performance.”

Design Considerations

Check Description

 Design chunky interfaces to avoid round trips.

 Reduce round trips with a facade.

 Implement IDisposable if you hold unmanaged resources across client calls.

 Reduce or avoid the use of late binding and reflection.

Marshaling

Check Description

 Explicitly name the target method you call.

 Use blittable types where possible.

 Avoid Unicode to ANSI conversions where possible.

 Use IntPtr for manual marshaling.

 Use [in] and [out] to avoid unnecessary marshaling.

 Avoid aggressive pinning of short-lived objects.

Marshal.ReleaseCOMObject

Check Description

 Consider calling ReleaseComObject in server applications.

 Do not force garbage collections with GC.Collect.

862 Improving .NET Application Performance and Scalability

Code Access Security (CAS)

Check Description

 Consider using SuppressUnmanagedCode for performance-critical, trusted scenarios.

 Consider using TLBIMP /unsafe for performance-critical, trusted scenarios.

Threading

Check Description

 Reduce or avoid cross-apartment calls.

 Use ASPCOMPAT when you call single-threaded apartment (STA) objects from ASP.NET.

 Use MTAThread when you call free-threaded objects.

 Avoid thread switches by using Neutral apartment COM components.

Monitoring Interop Performance

Check Description

 Use performance counters for P/Invoke and COM interop.

 Use CLR Spy to identify interop problems.

Checklist:
Managed Code Performance

How to Use This Checklist
This checklist is a companion to Chapter 5, “Improving Managed Code
Performance.”

Design Considerations

Check Description

 Design for efficient resource management.

 Reduce boundary crossings.

 Prefer single large assemblies rather than multiple smaller assemblies.

 Factor code by logical layers.

 Treat threads as a shared resource.

 Design for efficient exception management.

Class Design Considerations

Check Description

 Do not make classes thread safe by default.

 Consider using the sealed keyword.

 Consider the tradeoffs of using virtual members.

 Consider using overloaded methods.

 Consider overriding the Equals method for value types.

 Know the cost of accessing a property.

 Consider private versus public member variables.

 Limit the use of volatile fields.

864 Improving .NET Application Performance and Scalability

Garbage Collection Guidelines

Check Description

 Identify and analyze your application’s allocation profile.

 Avoid calling GC.Collect.

 Consider weak references with cached data.

 Prevent the promotion of short-lived objects.

 Set unneeded member variables to Null before making long-running calls.

 Minimize hidden allocations.

 Avoid or minimize complex object graphs.

 Avoid preallocating and chunking memory.

Finalize and Dispose

Check Description

 Call Close or Dispose on objects that support it.

 Use the using statement in Microsoft® C# and Try/Finally blocks in Microsoft Visual
Basic®.NET to ensure Dispose is called.

 Do not implement Finalize unless required.

 Implement Finalize only if you hold unmanaged resources across client calls.

 Move the finalization burden to the leaves of object graphs.

 If you implement Finalize, implement IDisposable.

 If you implement Finalize and Dispose, use the Dispose pattern.

 Suppress finalization in your Dispose method.

 Allow Dispose to be called multiple times.

 Call Dispose on base classes and on IDisposable members.

 Keep finalizer code simple to prevent blocking.

 Provide thread-safe cleanup code only if your type is thread-safe.

 Checklist: Managed Code Performance 865

Pinning

Check Description

 If you need to pin buffers, allocate them at startup.

Threading

Check Description

 Minimize thread creation.

 Use the thread pool when you need threads.

 Use a Timer to schedule periodic tasks.

 Consider parallel versus synchronous tasks.

 Do not use Thread.Abort to terminate other threads.

 Do not use Thread.Suspend and Thread.Resume to pause threads.

Asynchronous Calls

Check Description

 Consider client-side asynchronous calls for UI responsiveness.

 Use asynchronous methods on the server for I/O bound operations.

 Avoid asynchronous calls that do not add parallelism.

Locking and Synchronization

Check Description

 Determine if you need synchronization.

 Determine the approach.

 Determine the scope of your approach.

 Acquire locks late and release them early.

 Avoid locking and synchronization unless required.

 Use granular locks to reduce contention.

 Avoid excessive fine-grained locks.

(continued)

866 Improving .NET Application Performance and Scalability

Locking and Synchronization (continued)

Check Description

 Avoid making thread safety the default for your type.

 Use the fine grained lock (C#) statement instead of Synchronized.

 Avoid locking “this”.

 Coordinate multiple readers and single writers by using ReaderWriterLock instead
of lock.

 Do not lock the type of the objects to provide synchronized access.

Boxing and Unboxing

Check Description

 Avoid frequent boxing and unboxing overhead.

 Measure boxing overhead.

 Use DirectCast in your Visual Basic .NET code.

Exception Management

Check Description

 Do not use exceptions to control application flow.

 Use validation code to avoid unnecessary exceptions.

 Use the finally block to ensure resources are released.

 Replace Visual Basic .NET On Error Goto code with exception handling.

 Do not catch exceptions that you cannot handle.

 Be aware that rethrowing is expensive.

 Preserve as much diagnostic information as possible in your exception handlers.

 Use performance monitor to monitor common language runtime (CLR) exceptions.

 Checklist: Managed Code Performance 867

Iterating and Looping

Check Description

 Avoid repetitive field or property access.

 Optimize or avoid expensive operations within loops.

 Copy frequently called code into the loop.

 Consider replacing recursion with looping.

 Use for instead of foreach in performance-critical code paths.

String Operations

Check Description

 Avoid inefficient string concatenation.

 Use + when the number of appends is known.

 Use StringBuilder when the number of appends is unknown.

 Treat StringBuilder as an accumulator.

 Use the overloaded Compare method for case-insensitive string comparisons.

Arrays

Check Description

 Prefer arrays to collections unless you need functionality.

 Use strongly typed arrays.

 Use jagged arrays instead of multidimensional arrays.

Collections

Check Description

 Analyze your requirements before choosing the collection type.

 Initialize collections to the right size when you can.

 Consider enumerating overhead.

 Prefer to implement IEnumerable with optimistic concurrency.

 Consider boxing overhead.

(continued)

868 Improving .NET Application Performance and Scalability

Collections (continued)

Check Description

 Consider for instead of foreach.

 Implement strongly typed collections to prevent casting overhead.

 Be efficient with data in collections.

Reflection and Late Binding

Check Description

 Prefer early binding and explicit types rather than reflection.

 Avoid late binding.

 Avoid using System.Object in performance critical code paths.

 Enable Option Explicit and Option Strict in Visual Basic.NET.

Code Access Security

Check Description

 Consider SuppressUnmanagedCodeSecurity for performance-critical, trusted scenarios.

 Prefer declarative demands rather than imperative demands.

 Consider using link demands rather than full demands for performance - critical, trusted
scenarios.

Working Set Considerations

Check Description

 Load only the assemblies you need.

 Consider assemblies that are being loaded as side effects.

 Reduce the number of application domains, and/or make assemblies shared assemblies.

 Reduce the number of threads.

 Checklist: Managed Code Performance 869

Native Image Generator (Ngen.exe)

Check Description

 Scenarios where startup time is paramount should consider Ngen.exe for their startup
path.

 Scenarios that will benefit from the ability to share assemblies should adopt Ngen.exe.

 Scenarios with limited or no sharing should not use Ngen.exe.

 Do not use Ngen.exe for ASP.NET version 1.0 and 1.1.

 Consider Ngen.exe for ASP.NET version 2.0.

 Measure performance with and without Ngen.exe.

 Regenerate your image when you ship new versions.

 Choose an appropriate base address.

Checklist:
Remoting Performance

How to Use This Checklist
This checklist is a companion to Chapter 11, “Improving Remoting Performance.”

Design Considerations

Check Description

 Use .NET remoting for communicating between application domains in the same process.

 Choose the right host.

 Choose the right activation model.

 Choose the right channel.

 Choose the right formatter.

 Choose between synchronous or asynchronous communication.

 Minimize round trips and avoid chatty interfaces.

 Avoid holding state in memory.

Activation

Check Description

 Use client-activated objects (CAO) only where you need to control the lifetime.

 Use SingleCall server activated objects (SAO) for improved scalability.

 Use singleton where you need to access a synchronized resource.

 Use singleton where you need to control lifetime of server objects.

 Use appropriate state management to scale the solution.

Lifetime Considerations

Check Description

 Tune default timeouts based on need.

872 Improving .NET Application Performance and Scalability

Hosts

Check Description

 Use Internet Information Services (IIS) to authenticate calls.

 Turn off HTTP keep alives when using IIS.

 Host in IIS if you need to load balance using network load balancing (NLB).

Channels

Check Description

 Use TcpChannel for optimum performance.

 Use the TcpChannel in trusted server scenarios.

Formatters

Check Description

 Use the BinaryFormatter for optimized performance.

 Consider Web services before using the SoapFormatter.

Marshal by Reference and Marshal by Value

Check Description

 Use MBR (marshal by reference) when the object state should stay in the host application
domain.

 Use MBR when you need to update data frequently on the server.

 Use MBR when the size of the object is prohibitively large.

 Use MBV (marshal by value) when you need to pass object state to the target application
domain.

 Use MBV when you do not need to update data on the server.

 Use small MBV objects when you need to update data frequently on the server.

 Checklist: Remoting Performance 873

Serialization and Marshaling

Check Description

 Consider using a data facade.

 Marshal data efficiently and prefer primitive types.

 Reduce serialized data by using NonSerialized.

 Prefer the BinaryFormatter.

Checklist:
SQL Server Performance

How to Use This Checklist
This checklist is a companion to Chapter 14, “Improving SQL Server Performance.”

SQL: Scale Up vs. Scale Out

Check Description

 Optimize the application before scaling up or scaling out.

 Address historical and reporting data.

 Scale up for most applications.

 Scale out when scaling up does not suffice or is cost-prohibitive.

Schema

Check Description

 Devote the appropriate resources to schema design.

 Separate online analytical processing (OLAP) and online transaction processing
(OLTP) workloads.

 Normalize first, denormalize later for performance.

 Define all primary keys and foreign key relationships.

 Define all unique constraints and check constraints.

 Choose the most appropriate data type.

 Use indexed views for denormalization.

 Partition tables vertically and horizontally.

876 Improving .NET Application Performance and Scalability

Queries

Check Description

 Know the performance and scalability characteristics of queries.

 Write correctly formed queries.

 Return only the rows and columns needed.

 Avoid expensive operators such as NOT LIKE.

 Avoid explicit or implicit functions in WHERE clauses.

 Use locking and isolation level hints to minimize locking.

 Use stored procedures or parameterized queries.

 Minimize cursor use.

 Avoid long actions in triggers.

 Use temporary tables and table variables appropriately.

 Limit query and index hint use.

 Fully qualify database objects.

Indexes

Check Description

 Create indexes based on use.

 Keep clustered index keys as small as possible.

 Consider range data for clustered indexes.

 Create an index on all foreign keys.

 Create highly selective indexes.

 Create a covering index for often-used, high-impact queries.

 Use multiple narrow indexes rather than a few wide indexes.

 Create composite indexes with the most restrictive column first.

 Consider indexes on columns used in WHERE, ORDER BY, GROUP BY, and DISTINCT
clauses.

 Remove unused indexes.

 Use the Index Tuning Wizard.

 Checklist: SQL Server Performance 877

Transactions

Check Description

 Avoid long-running transactions.

 Avoid transactions that require user input to commit.

 Access heavily used data at the end of the transaction.

 Try to access resources in the same order.

 Use isolation level hints to minimize locking.

 Ensure that explicit transactions commit or roll back.

Stored Procedures

Check Description

 Use Set NOCOUNT ON in stored procedures.

 Do not use the sp_prefix for custom stored procedures.

Execution Plans

Check Description

 Evaluate the query execution plan.

 Avoid table and index scans.

 Evaluate hash joins.

 Evaluate bookmarks.

 Evaluate sorts and filters.

 Compare actual versus estimated rows and executions.

Execution Plan Recompiles

Check Description

 Use stored procedures or parameterized queries.

 Use sp_executesql for dynamic code.

 Avoid interleaving data definition language (DDL) and data manipulation language (DML) in
stored procedures, including the tempdb database DDL.

 Avoid cursors over temporary tables.

878 Improving .NET Application Performance and Scalability

SQL XML

Check Description

 Avoid OPENXML over large XML documents.

 Avoid large numbers of concurrent OPENXML statements over XML documents.

Tuning

Check Description

 Use SQL Profiler to identify long-running queries.

 Take note of small queries called often.

 Use sp_lock and sp_who2 to evaluate locking and blocking.

 Evaluate waittype and waittime in master..sysprocesses.

 Use DBCC OPENTRAN to locate long-running transactions.

Testing

Check Description

 Ensure that your transactions logs do not fill up.

 Budget your database growth.

 Use tools to populate data.

 Use existing production data.

 Use common user scenarios, with appropriate balances between reads and writes.

 Use testing tools to perform stress and load tests on the system.

Monitoring

Check Description

 Keep statistics up to date.

 Use SQL Profiler to tune long-running queries.

 Use SQL Profiler to monitor table and index scans.

 Use Performance Monitor to monitor high resource usage.

 Set up an operations and development feedback loop.

 Checklist: SQL Server Performance 879

Deployment Considerations

Check Description

 Use default server configuration settings for most applications.

 Locate logs and the tempdb database on separate devices from the data.

 Provide separate devices for heavily accessed tables and indexes.

 Use the correct RAID configuration.

 Use multiple disk controllers.

 Pre-grow databases and logs to avoid automatic growth and fragmentation
performance impact.

 Maximize available memory.

 Manage index fragmentation.

 Keep database administrator tasks in mind.

Checklist:
Web Services Performance

How to Use This Checklist
This checklist is a companion to Chapter 10, “Improving Web Services Performance.”

Design Considerations

Check Description

 Design chunky interfaces to reduce round trips.

 Prefer message-based programming over remote procedure call (RPC) style.

 Use literal message encoding for parameter formatting.

 Prefer primitive types for Web service parameters.

 Avoid maintaining server state between calls.

 Consider input validation for costly Web methods.

 Consider your approach to caching.

 Consider approaches for bulk data transfer and attachments.

 Avoid calling local Web Services.

Connections

Check Description

 Configure the maxconnection attribute.

 Prioritize and allocate connections across discrete Web services.

 Use a single identity for outbound calls.

 Consider UnsafeAuthenticatedConnectionSharing with Windows Integrated
Authentication.

 Use PreAuthenticate with Basic authentication.

882 Improving .NET Application Performance and Scalability

Threading

Check Description

 Tune the thread pool using the formula for reducing contention.

 Consider minIoThreads and minWorkerThreads for intermittent burst load.

One Way (Fire and Forget) Communication

Check Description

 Consider using the OneWay attribute if you do not require a response.

Asynchronous Web Methods

Check Description

 Use asynchronous Web methods for I/O operations.

 Do not use asynchronous Web methods when you depend on worker threads.

Asynchronous Invocation

Check Description

 Consider calling Web services asynchronously when you have additional parallel work.

 Use asynchronous invocation to call multiple unrelated Web services.

 Call Web services asynchronously for UI responsiveness.

Timeouts

Check Description

 Set your proxy timeout appropriately.

 Set your ASP.NET timeout greater than your Web service timeout.

 Abort connections for ASP.NET pages that timeout before a Web services call completes.

 Consider the responseDeadlockInterval attribute.

 Checklist: Web Services Performance 883

WebMethods

Check Description

 Prefer primitive parameter types.

 Consider buffering.

 Consider caching responses.

 Enable session state only for Web methods that need it.

Serialization

Check Description

 Reduce serialization with XmlIgnore.

 Reduce round trips.

 Consider XML compression.

Caching

Check Description

 Consider output caching for less volatile data.

 Consider providing cache-related information to clients.

 Consider perimeter caching.

State Management

Check Description

 Use session state only where it is needed.

 Avoid server affinity.

884 Improving .NET Application Performance and Scalability

Attachments

Check Description

 Prefer Base64 encoding. Direct Internet Message Encapsulation (DIME) is a supported
part of Web Services Enhancements (WSE), but Microsoft® is not investing in this
approach long-term. DIME is limited because the attachments are outside the SOAP
envelope.

COM Interop

Check Description

 Avoid single-threaded apartment (STA) COM objects.

Checklist:
XML Performance

How to Use This Checklist
This checklist is a companion to Chapter 9, “Improving XML Performance.”

Design Considerations

Check Description

 Choose the appropriate XML class for the job.

 Consider validating large documents.

 Process large documents in chunks, if possible.

 Use streaming interfaces.

 Consider hard-coded transformations.

 Consider element and attribute name lengths.

 Consider sharing the XmlNameTable.

Parsing XML

Check Description

 Use XmlTextReader to parse large XML documents.

 Use XmlValidatingReader for validation.

 Consider combining XmlReader and XmlDocument.

 On the XmlReader, use the MoveToContent and Skip methods to skip unwanted items.

Validating XML

Check Description

 Use XmlValidatingReader.

 Do not validate the same document more than once.

 Consider caching the schema.

886 Improving .NET Application Performance and Scalability

Writing XML

Check Description

 Use XmlTextWriter.

XPath Queries

Check Description

 Use XPathDocument to process XPath statements.

 Avoid the // operator by reducing the search scope.

 Compile both dynamic and static XPath expressions.

XSLT Processing

Check Description

 Use XPathDocument for faster XSLT transformations.

 Consider caching compiled style sheets.

 Consider splitting complex transformations into several stages.

 Minimize the size of the output document.

 Write efficient XSLT.

Index of How Tos

Improving .NET Application Performance and Scalability includes the following
How Tos, each of which shows you the steps to complete a specific task:
● How To: Improve Serialization Performance
● How To: Monitor the ASP.NET Thread Pool Using Custom Counters
● How To: Optimize SQL Indexes
● How To: Optimize SQL Queries
● How To: Page Records in .NET Applications
● How To: Perform Capacity Planning for .NET Applications
● How To: Scale .NET Applications
● How To: Submit and Poll for Long-Running Tasks
● How To: Time Managed Code Using QueryPerformanceCounter and

QueryPerformanceFrequency
● How To: Use ACT to Test Performance and Scalability
● How To: Use ACT to Test Web Services Performance
● How To: Use CLR Profiler
● How To: Use Custom Performance Counters from ASP.NET
● How To: Use EIF
● How To: Use SQL Profiler

How To:
Improve Serialization Performance

Summary
This How To shows you how to improve serialization performance. The How To
covers the XmlSerializer class that Web services use and the SoapFormatter and
BinaryFormatter classes that Microsoft® .NET remoting uses to marshal objects.
In addition to providing general performance tips, this How To gives specific
consideration to improving the performance of DataSet serialization.

Applies To
● .NET Framework version 1.1

Overview
Serialization is used to persist the state of an object so that the object can be saved and
then regenerated later. ASP.NET uses serialization to save objects in session state.
Serialization is also used when an object is passed across a remoting boundary, such
as an application domain, process, or computer. Finally, serialization is used if
parameters are passed to and from Web services.

The .NET Framework provides two serialization mechanisms:
● ASP.NET Web services use the XmlSerializer class to perform serialization.
● .NET remoting uses the two classes that implement IFormatter: the

BinaryFormatter and the SoapFormatter. To support serialization by a formatter
object, a type must be marked with the Serializable attribute.

Serialization performance is an important consideration for .NET applications
because serialization is used frequently. There are a number of techniques that you
can use to improve performance. These are described in this How To.

890 Improving .NET Application Performance and Scalability

What You Must Know
If you plan to use serialization, you should know the following:
● Consider the data contract between client and server, and ensure that your

interface is designed with efficiency of remote access in mind. For example, avoid
chatty interfaces, and, where necessary, implement a data façade to wrap existing
chatty interfaces and reduce round trips.

● The XmlSerializer used by Web services serializes both the public fields and
properties of a class.

● The BinaryFormatter and SoapFormatter classes used by .NET remoting require
that you serialize all of the fields of a class, including those marked as private,
whenever you pass an object by value to a remote method call.

● The XmlSerializer provides faster serialization of DataSet objects than the
BinaryFormatter and SoapFormatter because it does not serialize private data.
DataSet objects maintain collections of internal properties to supply functionality,
such as DataViews and XML Diffgrams which can be expensive to serialize.

● Any type can be serialized by the XmlSerializer class, provided that it has a public
constructor and at least one public member that can be serialized, and it does not
have declarative security. Types that include member variables that cannot be
handled by XmlSerializer, such as Hashtable, are not serialized.

● The BinaryFormatter produces a more compact byte stream than SoapFormatter.
SoapFormatter is generally used for cross-platform interoperability.

● When you use the Serializable attribute, .NET run-time serialization uses
reflection to identify the data that should be serialized. All nontransient fields are
serialized, including public, private, protected, and internal fields. XML
serialization uses reflection to generate special classes to perform the serialization.

● The ISerializable interface allows you to explicitly control how data is serialized.
● Binary serialization usually outperforms XML serialization because its output is

more compact.
● XML serialization cannot serialize classes such as HashTable and ListDictionary

that implement IDictionary. If you need to serialize objects that implement
IDictionary, you must implement your own custom serialization functionality.

● You should avoid serializing security sensitive data by annotating sensitive fields
with the NonSerialized or XmlIgnore attributes as described in “Use the
NonSerialized or XmlIgnore Attributes,” later in this How To.

 How To: Improve Serialization Performance 891

Improving Serialization Performance
There are multiple ways that you can improve run-time serialization performance.
For example, you can reduce the size of the serialized data stream by instructing the
run-time serializers to ignore specific fields within your class. Another way to
improve performance is to implement the ISerializable interface to gain explicit
control over the serialization (and deserialization) process.

Using the NonSerialized or XmlIgnore Attributes
You can use attributes to prevent specific fields in your class from being serialized.
This reduces the size of the output stream and reduces serialization processing
overhead. This technique is also useful to prevent security-sensitive data from being
serialized.

There are two attributes: NonSerialized and XmlIgnore. The one you should use
depends on the serializer that you are using.
● The SoapFormatter and BinaryFormatter classes used by .NET remoting

recognize the NonSerialized attribute.
● The XmlSerializer class used by Web services recognizes the XmlIgnore attribute.

The following code fragment shows the XmlIgnore attribute.

[Serializable]
public class Employee
{
 public string FirstName;
 [XmlIgnore]
 public string MiddleName;
 public string LastName;
}

Using ISerializable for Explicit Control
The ISerializable interface gives you explicit control over how your class is
serialized. However, you should only implement this interface as a last resort. New
formatters provided by future versions of the .NET Framework and improvements to
the framework provided by serialization cannot be used if you take this approach.

Note: In general, you should avoid implementing ISerializable for the following reasons:
• It requires derived classes to implement ISerializable to participate in serialization.
• It requires that you override the constructor and GetObjectData.
• It limits the type from taking advantage of future features and performance improvements.

892 Improving .NET Application Performance and Scalability

Implementing ISerializable
The ISerializable interface contains a single method, GetObjectData, which you use
to specify precisely which data should be serialized.

public interface ISerializable
{
 public void GetObjectData(SerializationInfo info, StreamingContext context);
}

The following code shows a simple implementation of the GetObjectData method.
Data is retrieved from the current object instance and stored in the SerializationInfo
object.

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
 info.AddValue("id", ID);
 info.AddValue("firstName", firstName);
 ...
 info.AddValue("zip", zip);
}

When you implement ISerializable, you must also create a new constructor that
accepts SerializationInfo and StreamingContext parameters. This constructor is
called by the .NET runtime to de-serialize your object. In the constructor, you read
data out of the supplied SerializationInfo object and store the data in the current
object instance, as shown in this example.

[Serializable]
public class CustomerInterface : ISerializable
{
 protected CustomerInterface(SerializationInfo info, StreamingContext context)
 {
 ID = info.GetInt32("id");
 firstName = info.GetString("firstName");
 ...
 zip = info.GetString("zip");
 }
 ...
}

Serializing Base Class Members
When you implement ISerializable, be sure to serialize base class members. If the
base class also implements ISerializable, you can call the base class’s GetObjectData.
If the base class does not implement ISerializable, you need to store each required
value.

 How To: Improve Serialization Performance 893

Versioning Considerations
If you add, remove, or rename the member variables of a class that you have
previously serialized, existing persisted objects cannot be successfully de-serialized.
This is especially true for classes that do not implement ISerializable and just call
GetValue. In this case, an exception is generated if the value you request is not
present in the serialized stream.

One way to address this issue is to use a SerializationInfoEnumerator to walk
through the items in the SerializationInfo object, and then use a switch to set values.
With this approach, you only restore those fields that are present in the serialized
stream and you can manually initialize any missing fields.

Improving DataSet Serialization
Many applications pass DataSet objects between remote tiers, although doing so
incurs a significant serialization overhead and can cause your application to not meet
its performance goals.

DataSets are complex objects with a hierarchy of child objects, and as a result,
serializing a DataSet is a processor-intensive operation. Also, DataSet objects are
serialized as XML even if you use the binary formatter. This means that the output
stream is not compact.

There are a number of techniques that you can use to improve DataSet serialization
performance.

Using Column Name Aliasing
You can try aliasing long column names with shorter names to reduce the size of the
serialized data. The following example shows how you can use aliases for column
names by using the as keyword in your SQL.

DataSet objDataset = new DataSet("Customers");
SqlDataAdapter myAdapter = new SqlDataAdapter("Select CustomerId as C,CompanyName
as D,ContactName as E,ContactTitle as F from Customers",myConnection);
myAdapter.Fill(objDataset);
Stream serializationStream = new
MemoryStream(byteData,0,byteData.Length,true,true);
serializationStream.Position=0;
iBinForm.Serialize(serializationStream,objDataset);

894 Improving .NET Application Performance and Scalability

Avoiding Serializing Multiple Versions of the Same Data
As soon as you make changes to the data in a DataSet you begin to maintain multiple
copies of the data. The DataSet maintains the original data along with the changed
values. If you do not need to serialize new and old values, call AcceptChanges before
you serialize a DataSet to reset the internal buffers. Depending upon the amount of
data held in the DataSet and the number of changes you make, this can significantly
reduce the amount of data serialized. This approach is shown in the following code
example.

// load some data into the dataset
customers.Fill(northwind, "Customers");
orders.Fill(northwind, "Orders");
// ... modify the data
northwind.AcceptChanges();
// accept the changes made and flush the internal buffers
// ... serialize the dataset

Reducing the Number of DataTables Serialized
If you don’t need to send all of the DataTables contained in a DataSet, consider
copying the DataTables you need to send into a separate DataSet. This will reduce
the amount of data serialized by reducing the DataTables processed and by
initializing the change buffers that are used by the DataView.

customers.Fill(northwind, "Customers");
orders.Fill(northwind, "Orders");
//... use or modify some data
DataSet subset = new DataSet();
// copy just the customer DataTable
subset.Tables.Add(northwind.Tables["customers"].Copy());
// ... serialize the subset DataSet

Overriding DataSet for Binary Serialization
By default, DataSets are serialized as XML even if you use the BinaryFormatter. This
leads to large serialization data streams. To produce a more compact output format,
you can consider overriding the DataSet class and implementing your own
serialization.

 How To: Improve Serialization Performance 895

Web Services Serialization Considerations
To reduce the size of serialized data sent to and from Web services you can consider a
number of compression techniques to compress the data streams. You can achieve
other optimizations by efficiently initializing the XmlSerializer class and by using
XmlIgnore. Consider the following approaches:
● Compressing the serialized data
● Initializing XmlSerializer by calling FromTypes on startup
● Using the XmlIgnore attribute

Compressing the Serialized Data
There are a number of ways that you can compress the serialized data passed to and
from Web services:
● Implement SoapExtensions on both server and client side to compress and

decompress the data.
● Implement an HttpModule to compress the response, for example by using gzip

compression, and then unzip the data on the client in the proxy. To do so, you
need to override the GetWebRequest and the GetWebResponse methods for the
Web service client proxy as shown here.

//overriding the GetWebRequest method in the Web service proxy
protected override WebRequest GetWebRequest(Uri uri)
{
 WebRequest request = base.GetWebRequest(uri);
 request.Headers.Add("Accept-Encoding", "gzip, deflate");
 return request;
}
//overriding the GetWebResponse method in the Web service proxy
protected override WebResponse GetWebResponse(WebRequest request)
{
 //decompress the response from the Web service
 return response;
}

● Use the HTTP compression features in Internet Information Services (IIS) 5.0,
and then decompress the response within the client-side proxy by using a utility
that understands IIS 5.0 compression. Once again, you need to override the
GetWebRequest and the GetWebResponse methods for the Web service client
proxy.

896 Improving .NET Application Performance and Scalability

Initializing XmlSerializer by Calling FromTypes on Startup
The first time XmlSerializer encounters a type, it generates code to perform
serialization and then it caches that code for later use. However, if you call the
FromTypes static method on the XmlSerializer, it forces XmlSerializer to
immediately generate and cache the required code for the types you plan to serialize.
This reduces the time taken to serialize a specific type for the first time. The following
example shows this approach.

static void OnApplicationStart()
{
 Type[] myTypes = new Type[] { Type.GetType("customer"), Type.GetType("order") };
 XmlSerializer.FromTypes(myTypes);
}

Using the XmlIgnore Attribute
You can consider using the XmlIgnore attribute, as described earlier to prevent any
field you do not need to serialize being included within the output stream.

Remoting Serialization Considerations
The .NET remoting infrastructure uses formatters that implement the IFormatter
interface to perform serialization. The two formatters provided by the
.NET Framework are SoapFormatter and BinaryFormatter, although you can
implement your own. When you use .NET remoting, all nontransient fields are
serialized. This includes private, protected, and internal fields.

Using the NonSerialized Attribute
To optimize performance and security, consider using the NonSerialized attribute as
described previously to prevent unnecessary or security-sensitive fields from being
serialized.

DataSets and Remoting
If your application uses DataSets and you experience serialization performance
issues, consider implementing a serialization wrapper class. By implementing a
serialization wrapper class, you can reduce the transient memory allocations that
remoting typically performs. For an explanation of the issue and a sample, see
Microsoft Knowledge Base article 829740, “Improving DataSet Serialization and
Remoting Performance,” at http://support.microsoft.com/default.aspx?scid=kb;en-us
;829740.

http://support.microsoft.com/default.aspx?scid=kb;en-us;829740
http://support.microsoft.com/default.aspx?scid=kb;en-us;829740

 How To: Improve Serialization Performance 897

Additional Resources
For more information, see the following resources:
● “Binary Serialization of ADO.NET Objects,” at http://msdn.microsoft.com/msdnmag

/issues/02/12/CuttingEdge/default.aspx
● Chapter 9, “Improving XML Performance”
● Chapter 10, “Improving Web Services Performance”
● Chapter 11, “Improving Remoting Performance”
● Chapter 12, “Improving ADO.NET Performance”

http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/12/CuttingEdge/default.aspx

How To:
Monitor the ASP.NET Thread Pool
Using Custom Counters

Summary
This How To shows you how to monitor the ASP.NET thread pool by creating a set
of custom performance counters. The How To also shows you how to modify the
maximum number of threads available to an ASP.NET application.

Applies To
● Microsoft® .NET Framework version 1.1

Overview
In this How To, you monitor the ASP.NET thread pool by creating a set of custom
performance counters. You then instrument an ASP.NET application by using these
counters. From the ASP.NET application, you set the performance counter values
every half second.

This technique enables you to monitor threading activity in your ASP.NET
application and to diagnose thread-related performance issues and bottlenecks.

Note: This solution is intended for development and testing purposes only. It is designed to help you
learn about, and monitor, threading and threading behavior in an ASP.NET application.

900 Improving .NET Application Performance and Scalability

Create Custom Performance Counters
In this section, you will create four custom performance counters as defined in
Table 1. All counters will be added to the category named ASP.NET Thread Pool,
and all counters will be of type PerformanceCounterType.NumberOfItems32.

Table 1: Custom Performance Counters

Counter name Description

Available Worker Threads The difference between the maximum number of thread-pool worker
threads and the number currently active.

Available IO Threads The difference between the maximum number of thread-pool I/O
threads and the number currently active.

Max Worker Threads The number of requests to the thread pool that can be active
concurrently. All requests above that number remain queued until
thread-pool worker threads become available.

Max IO Threads The number of requests to the thread pool that can be active
concurrently. All requests above that number remain queued until
thread-pool I/O threads become available.

Although it is possible to use the Microsoft Visual Studio® .NET Server Explorer to
create performance counters manually, the code that follows shows how to create
them from a console application.

Create a Console Application
Create an empty source file named CreateASPNETThreadCounters.cs and add the
following code. This code creates a simple console application that in turn creates
the relevant custom performance counters and applies the relevant settings to the
Microsoft Windows® registry.

using System;
using System.Diagnostics;

class MyAspNetThreadCounters
{
 [STAThread]
 static void Main(string[] args)
 {
 CreateCounters();
 Console.WriteLine("MyAspNetThreadCounters performance counter category " +
 "is created. [Press Enter]");
 Console.ReadLine();
 }

(continued)

 How To: Monitor the ASP.NET Thread Pool Using Custom Counters 901

(continued)

 public static void CreateCounters()
 {
 CounterCreationDataCollection col =
 new CounterCreationDataCollection();

 // Create custom counter objects
 CounterCreationData counter1 = new CounterCreationData();
 counter1.CounterName = "Available Worker Threads";
 counter1.CounterHelp = "The difference between the maximum number " +
 "of thread pool worker threads and the " +
 "number currently active.";
 counter1.CounterType = PerformanceCounterType.NumberOfItems32;

 CounterCreationData counter2 = new CounterCreationData();
 counter2.CounterName = "Available IO Threads";
 counter2.CounterHelp = "The difference between the maximum number of " +
 "thread pool IO threads and the number "+
 "currently active.";
 counter2.CounterType = PerformanceCounterType.NumberOfItems32;

 CounterCreationData counter3 = new CounterCreationData();
 counter3.CounterName = "Max Worker Threads";
 counter3.CounterHelp = "The number of requests to the thread pool "+
 "that can be active concurrently. All "+
 "requests above that number remain queued until " +
 "thread pool worker threads become available.";
 counter3.CounterType = PerformanceCounterType.NumberOfItems32;

 CounterCreationData counter4 = new CounterCreationData();
 counter4.CounterName = "Max IO Threads";
 counter4.CounterHelp = "The number of requests to the thread pool " +
 "that can be active concurrently. All "+
 "requests above that number remain queued until " +
 "thread pool IO threads become available.";
 counter4.CounterType = PerformanceCounterType.NumberOfItems32;

 // Add custom counter objects to CounterCreationDataCollection.
 col.Add(counter1);
 col.Add(counter2);
 col.Add(counter3);
 col.Add(counter4);
 // delete the category if it already exists
 if(PerformanceCounterCategory.Exists("MyAspNetThreadCounters"))
 {
 PerformanceCounterCategory.Delete("MyAspNetThreadCounters");
 }
 // bind the counters to the PerformanceCounterCategory
 PerformanceCounterCategory category =
 PerformanceCounterCategory.Create("MyAspNetThreadCounters",
 "", col);
 }
}

902 Improving .NET Application Performance and Scalability

Compile the Console Application
At a command prompt, use the following command line to compile your code.

csc.exe /out:CreateAspNetThreadCounters.exe /t:exe /r:system.dll
CreateASPNETThreadCounters.cs

Run AspNetThreadCounters.exe
To run the console application, run the following.

CreateAspNetThreadCounters.exe

Results
When you run CreateAspNetThreadCounters.exe, the following output is produced.

MyAspNetThreadCounters performance counter category is created. [Press Enter]

Use Regedt32.exe to validate that your performance counter category and your
custom performance counter are created beneath the following registry location.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

MyAspNetThreadCounters is the name of the performance counter category
and the counter names include Available Worker Threads, Available IO Threads,
Max Worker Threads, and Max IO Threads.

Create an ASP.NET Application to Refresh the Counters
To refresh the counters, you must retrieve information about the ASP.NET thread
pool, and for that, you must run code from within an ASP.NET application.

Create an ASP.NET Application
Follow these steps to create the application.

� To create the ASP.NET application

1. Create a new folder named C:\InetPub\wwwroot\AspNetThreadPoolMonitor\.
2. Use Internet Services Manager to mark this folder as an application and to create

a virtual directory.

 How To: Monitor the ASP.NET Thread Pool Using Custom Counters 903

3. Create the following three files in the folder: Global.asax, Sleep.aspx, and
StartWebApp.aspx.
Global.asax

<%@ Application Language=C# %>
<%@ import namespace="System.Threading" %>
<%@ import namespace="System.Diagnostics" %>

<script runat=server>

public bool MonitorThreadPoolEnabled = true;

protected void Application_Start(Object sender, EventArgs e)
{
 Thread t = new Thread(new ThreadStart(RefreshCounters));
 t.Start();
}

public void RefreshCounters()
{
 while (MonitorThreadPoolEnabled)
 {
 ASPNETThreadInfo t = GetThreadInfo();
 ShowPerfCounters(t);
 System.Threading.Thread.Sleep(500);
 }
}

protected void Application_End(Object sender, EventArgs e)
{
 MonitorThreadPoolEnabled = false;
}

public struct ASPNETThreadInfo
{
 public int MaxWorkerThreads;
 public int MaxIOThreads;
 public int MinFreeThreads;
 public int MinLocalRequestFreeThreads;
 public int AvailableWorkerThreads;
 public int AvailableIOThreads;

 public bool Equals(ASPNETThreadInfo other)
 {
 return (
 MaxWorkerThreads == other.MaxWorkerThreads &&
 MaxIOThreads == other.MaxIOThreads &&
 MinFreeThreads == other.MinFreeThreads &&
 MinLocalRequestFreeThreads == other.MinLocalRequestFreeThreads &&
 AvailableWorkerThreads == other.AvailableWorkerThreads &&
 AvailableIOThreads == other.AvailableIOThreads
);
 }
} (continued)

904 Improving .NET Application Performance and Scalability

(continued)

public ASPNETThreadInfo GetThreadInfo()
{
 // use ThreadPool to get the current status
 int availableWorker, availableIO;
 int maxWorker, maxIO;

 ThreadPool.GetAvailableThreads(out availableWorker, out availableIO);
 ThreadPool.GetMaxThreads(out maxWorker, out maxIO);

 ASPNETThreadInfo threadInfo;
 threadInfo.AvailableWorkerThreads = (Int16)availableWorker;
 threadInfo.AvailableIOThreads = (Int16)availableIO;
 threadInfo.MaxWorkerThreads = (Int16)maxWorker;
 threadInfo.MaxIOThreads = (Int16)maxIO;
 // hard code for now; could get this from machine.config
 threadInfo.MinFreeThreads = 8;
 threadInfo.MinLocalRequestFreeThreads = 4;
 return threadInfo;
}

public void ShowPerfCounters(ASPNETThreadInfo t)
{

 // get an instance of our Available Worker Threads counter
 PerformanceCounter counter1 = new PerformanceCounter();
 counter1.CategoryName = "MyAspNetThreadCounters";
 counter1.CounterName = "Available Worker Threads";
 counter1.ReadOnly = false;

 // set the value of the counter
 counter1.RawValue = t.AvailableWorkerThreads;
 counter1.Close();

 // repeat for other counters

 PerformanceCounter counter2 = new PerformanceCounter();
 counter2.CategoryName = "MyAspNetThreadCounters";
 counter2.CounterName = "Available IO Threads";
 counter2.ReadOnly = false;
 counter2.RawValue = t.AvailableIOThreads;
 counter2.Close();

 PerformanceCounter counter3 = new PerformanceCounter();
 counter3.CategoryName = "MyAspNetThreadCounters";
 counter3.CounterName = "Max Worker Threads";
 counter3.ReadOnly = false;
 counter3.RawValue = t.MaxWorkerThreads;
 counter3.Close();

(continued)

 How To: Monitor the ASP.NET Thread Pool Using Custom Counters 905

(continued)

 PerformanceCounter counter4 = new PerformanceCounter();
 counter4.CategoryName = "MyAspNetThreadCounters";
 counter4.CounterName = "Max IO Threads";
 counter4.ReadOnly = false;
 counter4.RawValue = t.MaxIOThreads;
 counter4.Close();
}
</script>

Sleep.aspx

<%@ Page language="C#" %>
<script runat=server>
 void Page_Load(Object sender, EventArgs e)
 {
 Response.Write("Sleep");
 System.Threading.Thread.Sleep(30000);
 }
</script>

StartWebApp.aspx

<%@ Page language="C#" %>
<script runat=server>
 void Page_Load(Object sender, EventArgs e)
 {
 Response.Write("This ASP.NET application has started.
");
 Response.Write("You can now close this page.");
 }
</script>

Start the ASP.NET Application
Start your ASP.NET application by opening Microsoft Internet Explorer and browsing
to the following page.

http://localhost/AspNetThreadPoolMonitor/StartWebApp.aspx

906 Improving .NET Application Performance and Scalability

View the Counters in Performance Monitor
Use the Performance Monitor tool to view the counters.

� To view the counters in Performance Monitor

1. At a command prompt, type perfmon.exe, and then press Enter.
2. On the toolbar, click New Counter Set. (If the New Counter Set button is

disabled, you already have a new counter set.)
3. On the toolbar, click Add.
4. In the Add Counters dialog box, for Performance object, click

MyASPNetThreadCounters.
5. In the Select counters from this list box, click Available IO Threads, and then

click Add.
6. In the Select counters from this list box, click Available Worker Threads,

and then click Add.
7. In the Select counters from this list box, click Max IO Threads, and then

click Add.
8. In the Select counters from this list box, click Max Worker Threads, and then

click Add.
9. Click Close.

10. On the toolbar, click Properties.
11. In the System Monitor Properties dialog box, click the Graph tab.
12. On the Graph tab, set Maximum for the Vertical scale to 20.
13. Click OK.

Note: If the counters show zero values, the ASP.NET application is not running.

Run a Test Page that Uses Threads
The Sleep.aspx test page can be used to keep an ASP.NET I/O thread busy. Open
multiple instances of your browser and, in each instance, open the Sleep.aspx page.
In Performance Monitor, you can see the number of available worker or I/O threads
changing, depending on your scenario. For example, if you do not have the hotfix
mentioned in Microsoft Knowledge Base article 816829, “FIX: When I/O Thread
Processes a Slow Request, Completions on Named Pipes Between Inetinfo.exe
and Aspnet_wp.exe Are Blocked,” at http://support.microsoft.com/default.aspx?scid
=kb;EN-US;816829, then only I/O threads change and not the worker threads.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;816829
http://support.microsoft.com/default.aspx?scid=kb;EN-US;816829

 How To: Monitor the ASP.NET Thread Pool Using Custom Counters 907

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: ASP.NET Performance” in the

“Checklists” section of this guide.
● Chapter 6, “Improving ASP.NET Performance.”
● For more information about the thread pool class, see “ThreadPool Class”

in .NET Framework Class Library on MDSN® at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreadingthreadpoolclasstopic.asp.

● For more information about the <processModel> element, see
“<processModel> Element” in .NET Framework General Reference on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html
/gngrfprocessmodelsection.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreadingthreadpoolclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreadingthreadpoolclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfprocessmodelsection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfprocessmodelsection.asp

How To:
Optimize SQL Indexes

Summary
This How To describes an approach for optimizing table indexes to increase query
performance. During the process, you use SQL Profiler, Index Tuning Wizard, and
SQL Query Analyzer to identify problems and analyze solutions.

Applies To
● Microsoft® SQL Server™ 2000

Overview
This How To helps you to optimize your queries by indexing your tables correctly.
The purpose of an index in SQL Server is to allow the server to retrieve requested
data, in as few I/O operations as possible, in order to improve performance. This
How To shows you how to use SQL Profiler, the Index Tuning Wizard, and SQL
Query Analyzer to identify areas that can be improved. The Index Tuning Wizard is
supplied with SQL Server and is available from Enterprise Manager, SQL Profiler,
and SQL Query Analyzer to identify the indexes and indexed views needed. You can
test the application with appropriate data, use SQL Profiler to measure query times,
and then use the Index Tuning Wizard with input from the profiler workload to
identify appropriate indexes and indexed views. You can use SQL Query Analyzer to
analyze the queries and validate the indexes suggested by the Index Tuning Wizard.

Note: This How To is not an exhaustive treatment of indexing, but it highlights many of the key
issues involved.

What You Must Know
Before optimizing indexes, you need to understand index design best practices. You
will need to apply these practices once you have identified queries that need
optimizing.

910 Improving .NET Application Performance and Scalability

Understand Effective Index Design
When designing indexes, follow these guidelines:
● Use indexes on tables with numerous rows, on columns that are used in the

WHERE clause of queries or in table joins, and on columns used in ORDER BY
and GROUP BY queries.

● Avoid infrequently used indexes on frequently updated columns. In addition,
avoid having many indexes on a table that is frequently updated. Otherwise, you
unnecessarily increase the insert and update times of your queries. To improve
performance, minimize the total width of the indexed columns.

● Use clustered and nonclustered indexes appropriately. Understand the purpose of
each and choose the correct type for your scenario.

● Use a covering index to reduce the query execution time of frequently used
statements. A covering index is a nonclustered index that has all the columns that
come in a WHERE clause and in the query column selection.

More Information

For more information about creating good indexes, see the following resources:
● “Creating and Managing Indexes” in Chapter 6 of SQL Server 2000 Administrator's

Pocket Consultant on TechNet at http://www.microsoft.com/technet/prodtechnol/sql/2000
/books/c06ppcsq.mspx#XSLTsection126121120120

● “Designing an Index” in the Microsoft SQL Server 2000 documentation on MSDN®
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/createdb
/cm_8_des_05_2ri0.asp

● “Designing an Indexed View” in the Microsoft SQL Server 2000 documentation on
MSDN at http://msdn.microsoft.com/library/en-us/createdb/cm_8_des_06_6ptj.asp

Understand the Data Distribution of Your Tables
The query optimizer selects indexes based on statistical analysis of the data it collects
about your query. A query will behave differently if there are 1,000 rows in a table
versus 1 million rows in the table. A table scan will be acceptable for small tables but
not for large tables. To identify problem areas and optimize indexes, you need to have
a good idea of the table sizes.

http://www.microsoft.com/technet/prodtechnol/sql/2000/books/c06ppcsq.mspx#XSLTsection126121120120
http://www.microsoft.com/technet/prodtechnol/sql/2000/books/c06ppcsq.mspx#XSLTsection126121120120
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/createdb/cm_8_des_05_2ri0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/createdb/cm_8_des_05_2ri0.asp
http://msdn.microsoft.com/library/en-us/createdb/cm_8_des_06_6ptj.asp

 How To: Optimize SQL Indexes 911

Summary of Steps
The following approach can help optimize table indexes:
1. Use SQL Profiler to capture data.
2. Use the Index Tuning Wizard to select the correct indexes to build.
3. Use SQL Query Analyzer to optimize queries and indexes.
4. Defragment the indexes.

Step 1. Use SQL Profiler to Capture Data
You can use SQL Profiler to identify queries and stored procedures that perform
poorly. SQL Profiler traces provide information about the duration of the query
execution, the number of read and write operations run to satisfy the query, and
much more.

Choose the Correct Events to Monitor
Each event that you trace results in more overhead, so minimize the number of
events to monitor. Make use of the SQL Profiler templates, which provide a number
of predefined traces. For example, you can use the SQLProfilerSP_Count template to
identify the most frequently used stored procedures.

For more information about using SQL Profiler, see “How To: Use SQL Profiler” in
the “How To” section of this guide.

Run SQL Profiler from a Remote Computer
SQL Profiler consumes computer resources, so do not run it on the same computer as
the SQL Server database you are profiling.

Identify Frequently Running Queries with Long Duration
Analyze the profiler log to understand the frequency with which queries are being
invoked and their duration. Deal with high duration, frequently run queries first.
Poorly performing SELECT statements may require that you add indexes, whereas
queries executing frequent updates may require that you remove surplus indexes.

912 Improving .NET Application Performance and Scalability

Step 2. Use the Index Tuning Wizard to Select the Correct
Indexes to Build

Use the Index Tuning Wizard to identify indexes and indexed views that need to be
created, and indexes that need to be dropped.

Generate a Workload
In order for the Index Tuning Wizard to recommend indexes and indexed views, you
need to provide it with a workload. The following are some good practices for
generating a workload.

Use Profiler Output as Workload
For existing systems and systems under development, SQL Profiler can be used to
provide source information to the Index Tuning Wizard. Run the application, capture
the SQL queries in a profiler trace, and include all default events and columns in the
trace that will be used as a workload.

Use SQL Query Analyzer to Feed the Workload
If you have not yet developed the system and cannot use SQL Profiler, you can run
the queries from SQL Query Analyzer and start the Index Tuning Wizard from it.

Limit the Workload Size
The Index Tuning Wizard can process a maximum of 32,000 queries. If you are
capturing profiler results of a performance or system test or you are capturing data
from an existing application in production, set up a filter to limit the amount of data
captured. For example, you may want to exclude queries with a near zero duration,
or focus on queries executing against a specific database.

Run the Index Tuning Wizard from a Remote Computer
If you want to optimize the indexes on an existing database in production, run the
Index Tuning Wizard from a remote computer to minimize the overhead on the
database production server.

Update Database Statistics Before You Run the Wizard
The Index Tuning Wizard will give better recommendations if the database statistics
are up to date. If you have an existing database that is not too large, you can make a
copy of the database, update the statistics, and run the workload and wizard on it.

 How To: Optimize SQL Indexes 913

Use Table Scaling on a Nonproduction Database
If you are running the Index Tuning Wizard on a nonproduction database and are
aware that your production database has a different number of rows and you cannot
make a copy of it, you can pass this information to the Index Tuning Wizard. In the
Select Tables to Tune dialog box, you can specify the number of rows in the
production server in the Projected Rows column.

Analyze Recommendations Using SQL Query Analyzer
The Index Tuning Wizard shows the top queries it has determined will benefit the
most from the index suggestions. Analyze these queries with and without the index
in SQL Query Analyzer. Evaluate the following questions to determine the
effectiveness of your index:
● Have you lowered the cost allocation for the specified operation?
● Have you decreased the overall CPU utilization, query duration, and number of

read and write operations?

You can monitor the execution plan and the server trace from SQL Query Analyzer
itself by selecting the View option for these modes under the Query menu item. If
you are using an existing application, do not try the evaluation on the production
database; instead, use an equivalent development database.

Apply Validated Recommendations in Production
You can use the Index Tuning Wizard to generate SQL scripts to implement any
recommended changes. These scripts can be run in production to implement the
necessary changes.

More Information
For more information about using the Index Tuning Wizard, see “Index Tuning
Wizard SQL Server 2000” on TechNet at http://www.microsoft.com/technet/prodtechnol
/sql/2000/maintain/tunesql.mspx.

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/tunesql.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/tunesql.mspx

914 Improving .NET Application Performance and Scalability

Step 3. Use SQL Query Analyzer to Optimize Queries
and Indexes

The Index Tuning Wizard cannot be used to optimize all types of queries. For
example, the wizard will not optimize cross-database queries, queries that use
temporary tables, or queries in triggers. You can manually optimize queries within
triggers by running them within SQL Query Analyzer.

You can use SQL Query Analyzer to examine the execution plan and cost distribution
of queries. To enable the execution plan as well as the trace, use the Show Execution
Plan and Show Server Trace menu options under the Query menu.

Analyze the Cost Distribution
Analyze the execution plan of the queries and identify costly operations and
operators that have been marked in red and for table scans. Optimize the most costly
query operations.

For more information about using SQL Query Analyzer, see “Graphically Displaying
the Execution Plan Using SQL Query Analyzer” in the SQL Server Books online.

Identify Indexes to Reduce Cost
Check the feasibility of adding an index to fix any table scans or clustered index
scans. Determine whether the execution plan uses existing indexes. Remove any
optimization hints in queries or stored procedures.

Note: You cannot use indexes for some operations, for example if the table being queried contains
too few data rows.

Apply the Index and Reevaluate the Query
Once you have applied the identified index, reevaluate the query in SQL Query
Analyzer (as mentioned in the first step) and analyze the cost distribution. The index
is useful if such parameters as cost, duration, and number of read operations are
lower in the trace tab than they are in the original query.

More Information
For more information about using SQL Query Analyzer to optimize indexes,
see “Tuning Indexes” on MSDN at http://msdn.microsoft.com/library/en-us/qryanlzr
/qryanlzr_5k8j.asp.

http://msdn.microsoft.com/library/en-us/qryanlzr/qryanlzr_5k8j.asp
http://msdn.microsoft.com/library/en-us/qryanlzr/qryanlzr_5k8j.asp

 How To: Optimize SQL Indexes 915

Step 4. Defragment Indexes
When initially built, an index has little or no fragmentation. The logical order of
index data matches the physical layout of the data on the disk. As data changes,
index pages of ordered data might be spread across the disk, resulting in more I/O
activity and decreased performance.

Index defragmentation can particularly benefit databases and indexes that have
numerous read-only operations. When defragmenting indexes, consider the
following suggestions:
● Focus on the larger indexes first, because the computer running SQL Server is less

likely to cache them.
● Identify the index defragmentation by using the DBCC SHOWCONTIG

command. The Logical scan fragmentation value gives the best indication of
defragmentation and should be as low as possible; a value between 0% and 10 %
is acceptable. If the index does not span multiple files, the Extents switches value
should be as close as possible to the Extents scanned value.

● Rectify the fragmentation by recreating the index or defragmenting it. If you can
afford to have the index offline, drop and recreate the index for best performance.
You can recreate an index by using DBCC REINDEX. Note that using DBCC
REINDEX holds locks and can block running queries and updates.
If having the index offline or potentially blocking queries is not acceptable, use
DBCC INDEXDEFRAG to defragment the leaf-level index pages, which improves
the performance of an index scan. Using INDEXDEFRAG is not as effective as
recreating the index, but in many cases it is a quicker option. It is also an online
option that does not hold long term locks that can block running queries or
updates. The time it takes to run INDEXDEFRAG depends on the amount of
defragmentation.

For large databases, it is a best practice to defragment the indexes at regular intervals.

More Information

For more information about defragmenting indexes, see “Microsoft SQL Server 2000
Index Defragmentation Best Practices” on TechNet at http://www.microsoft.com/technet
/prodtechnol/sql/2000/maintain/ss2kidbp.mspx.

Also, see “DBCC SHOWCONTIG” and “DBCC INDEXDEFRAG” in SQL Server
books online.

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/ss2kidbp.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/ss2kidbp.mspx

916 Improving .NET Application Performance and Scalability

Additional Resources
For more information, see the following resources:
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 12, “Improving ADO.NET Performance”
● Chapter 13, “Code Review: .NET Application Performance”
● Chapter 14, “Improving SQL Server Performance”
● “Checklist: ADO.NET Performance” in the “Checklists” section of this guide
● “Checklist: SQL Server Performance” in the “Checklists” section of this guide
● “How To: Optimize SQL Queries”

For more information about optimizing SQL indexes, see the following resources:
● Knowledge Base article 311826, “INF: Index Tuning Wizard Best Practices” at

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q311826
● “Improving Performance with SQL Server 2000 Indexed Views” on TechNet at

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/indexvw.mspx
● “Creating and Managing Indexes” in Chapter 6 of SQL Server 2000 Administrator's

Pocket Consultant on TechNet at http://www.microsoft.com/technet/prodtechnol/sql/2000
/books/c06ppcsq.mspx#xsltsection126121120120

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q311826
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/indexvw.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/books/c06ppcsq.mspx#xsltsection126121120120
http://www.microsoft.com/technet/prodtechnol/sql/2000/books/c06ppcsq.mspx#xsltsection126121120120

How To:
Optimize SQL Queries

Summary
You can use SQL Query Analyzer to examine the query execution plan of
Transact-SQL (T-SQL) queries. This How To describes how to optimize T-SQL
queries by using SQL Query Analyzer, and discusses how to analyze the individual
steps contained in an execution plan.

Applies To
● Microsoft® SQL Server™ 2000

Overview
To most effectively optimize queries, you should start by identifying the queries that
have the longest duration. You can do so by using SQL Profiler. Next, you analyze the
queries to determine where they are spending their time and whether they can be
improved. You can use the SQL Query Analyzer to help analyze query behavior.

Summary of Steps
The overall optimization process consists of two main steps:
1. Isolate long-running queries.
2. Identify the cause of long-running queries.

Step 1. Isolate Long-Running Queries
You can isolate long-running queries using SQL Profiler. For more information
about how to identify the queries that take the longest to execute, see “Isolating
a Slow-Running Query with SQL Profiler” in “How To: Use SQL Profiler” in the
“How To” section of this guide.

Step 2. Identify the Cause of Long-Running Queries
Several techniques can be used to identify the cause of long-running queries. The two
most commonly used options are:
● Using SET statements.
● Using SQL Query Analyzer options.

918 Improving .NET Application Performance and Scalability

Using SET Statements
Use such statements as SET SHOWPLAN_ALL, SET STATISTICS IO, SET
STATISTICS TIME, and SET STATISTICS PROFILE. For more information about
using these SET statements, see the SQL Server product documentation.

Using SQL Query Analyzer
SQL Query Analyzer displays query execution plans in text mode or graphical mode.

� To use SQL Query Analyzer

1. Start SQL Query Analyzer, connect to the server, and select the database that you
are working on.

2. Paste the query into the SQL Query Analyzer window.
If you are using SQL Profiler to trace queries, the query text can be copied from the
trace window and used within SQL Query Analyzer.

3. On the Query menu, click Display Estimated Execution Plan. The estimated
execution plan for the query is displayed. If the query window contains multiple
queries, an execution plan is displayed for each query.

4. On the Query menu, click Show Execution Plan, and then run the query in the
query window. Execution plans and query results now appear in separate panes
of the window so you can view them together.
Figure 1 shows an example of an execution plan along with the related query
information.

Figure 1
Query execution plan

 How To: Optimize SQL Queries 919

5. Place the mouse pointer over any icon displayed in the query execution plan.
Details of the query step are displayed, including information about the execution
and cost of the step, as shown in Figure 2.

Figure 2
Query execution details

Analyzing the Results
The icons in the query window graphically represent each step in the execution plan.
To read an execution plan, read from right to left and from bottom to top. To fully
understand an execution plan, you need to familiarize yourself with the various
icons that can be displayed. For more information, see “Graphically Displaying
the Execution Plan Using SQL Query Analyzer” in SQL Server books online at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql
/odp_tun_1_5pde.asp.

The complexity of the results can vary depending on the nature of the query.
The following list identifies some common things to look for:
● Red icons and warning messages. Look for icons that are color-coded red, and for

warning messages. You might see a warning message such as “Warning: Statistics
missing for the table.” If the Physical operation in the query step details is in red,
then it indicates that the query optimizer has chosen a less efficient query plan.
The graphical execution plan suggests remedial action for improving performance.
In the case of missing statistics you can right-click the icon, and click Manage
Statistics to create the missing statistics.

● Estimated cost. The estimated cost values indicate whether the query is
I/O intensive or CPU intensive.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_5pde.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_5pde.asp

920 Improving .NET Application Performance and Scalability

● Table scan and clustered index scan icons. Look for table scan and clustered
index scan icons, which indicate either that the table is small (not a problem),
that the indexes are not properly designed, or, if you have indexes in place, that
the optimizer has ignored the indexes. The Index Tuning Wizard can be used to
identify the indexes needed. You need to ensure that you drop all hints before
proceeding with the Index Tuning Wizard.

● Queries with the highest cost. When a batch of queries is executed, a query plan
is displayed for each query. The query cost is displayed for each query relative to
the batch. Concentrating optimization effort on the highest relative cost query in a
batch may yield the best improvements.
Some queries are inherently resource intensive — for example, queries that return
large number of rows back to the caller, or queries that perform many calculations.
In some cases, the only way to improve performance is to redesign the database or
rewrite the query.

Additional Resources
For more information, see the following resources:
● Chapter 14, “Improving SQL Server Performance”
● “Checklist: SQL Server Performance” in the “Checklists” section of this guide
● “How To: Optimize SQL Indexes”
● Microsoft Knowledge Base article 243589, HOW TO: Troubleshoot Slow-Running

Queries on SQL Server 7.0 or Later, at http://support.microsoft.com
/default.aspx?scid=kb;en-us;243589

http://support.microsoft.com/default.aspx?scid=kb;en-us;243589
http://support.microsoft.com/default.aspx?scid=kb;en-us;243589

How To:
Page Records in .NET Applications

Related Links
● Improving .NET Performance and Scalability home page
● Chapter 12, “Improving ADO.NET Performance”
● “Checklist: ADO.NET Performance” in the “Checklists” section of this guide

Summary
This How To presents a number of different paging solutions that enable you
to efficiently browse through large result sets. Each solution exhibits different
performance and scalability characteristics. The solution you choose depends on
the nature of your application and other factors, such as database server capacity,
load, network bandwidth, and the amount of data to be paged through.

Applies To
● Microsoft® .NET Framework version 1.1
● Microsoft SQL Server™ 2000

Overview
Many Web and Windows Forms applications need to work with large result sets.
For ease of use and efficiency, you may need to process and display the data in
distinct chunks or pages and allow the user to page backward and forward through
the results. A Web application’s search results page is a good example of where this
type of functionality is required.

There are a number of ways to tackle this problem. This How To describes the main
options, along with the relative pros and cons of each approach.

922 Improving .NET Application Performance and Scalability

When choosing a paging solution, you need to try to achieve a balance of the
following:
● Server-side processing. The number of rows that the database server must

process, together with any additional processing that the server needs to perform,
such as creating temporary tables or sorting data, affects database server resource
utilization. The server resource utilization affects the scalability of the solution.

● Bandwidth consumption. The number of rows returned to the client is an
important consideration, particularly in scenarios where client bandwidth is
limited.

● Client-side processing. The way in which the client handles retrieved records
is significant. This is particularly important when the client is an ASP.NET
application, which needs to scale and support multiple concurrent users.

Make sure that you avoid inefficient paging solutions like the following ones:
● Returning all rows for every request. With this approach, all the records are

retrieved from the database and are returned across the network. The client then
displays the required records. When the user moves to the next page, the server is
accessed again and all of the rows are once again retrieved. This approach places
unnecessary strain on the database server, consumes vast amounts of client
memory, and passes large amounts of data over the network.

● Caching all of the records in memory. With this approach, the client ASP.NET
application retrieves all of the rows and caches them. While this approach might
be appropriate for small amounts of application wide data, be aware of the
potential scalability problems that this approach can create especially with larger
amounts of cached data. For example, when a user leaves the site after five
minutes, the memory resident records are left on the Web server, consuming
valuable memory until the session times out.

What You Must Know
Regardless on the type of paging solution that you choose, you need to consider the
following guidelines:
● If you allow the user to specify the number of rows to be displayed, restrict

the range of options by providing choices (for example, 5, 15, 25, and 50) in a
drop-down list. Do not let the user specify an arbitrary page size that is out of
your control.

● Optimize your search query and use a WHERE clause to reduce the number of
rows returned.

● If you use stored procedures, optimize your query to minimize resource utilization
on the server. Use such tools as SQL Query Analyzer, SQL Profiler, and the Index
Tuning Wizard to analyze query and index performance.

 How To: Page Records in .NET Applications 923

● Consider caching where possible. For example, consider caching the resultant
DataSet (which usually contains static, nonvolatile data) on the data access client,
for example in the ASP.NET cache, and bind controls to it.

● If you use Oracle, use the OracleDataAdapter to load the requested page. The
OracleDataReader supports the same functionality as the SqlDataReader with
the same method names.
Several of the solutions presented in this How To use the SQL Server SELECT TOP
construct. With Oracle databases, you must replace the TOP keyword with
ROWNUM.
Also note that you create Oracle temporary tables by using the following syntax.

DECLARE GLOBAL TEMPORARY TABLE SESSION."#TEMP2" AS
(SELECT t.seq_nbr, t.id, k.amt, k.qty)

SELECT TOP
A simple and effective paging approach is to use the TOP keyword on your SELECT
query to restrict the size of the result set.

This approach relies on tables having a unique key column (such as an IDENTITY
column, or a unique product ID or customer ID). The following pseudocode shows
this technique.

SELECT TOP <pageSize> ProductID, ProductName, ProductPrice
FROM Products
WHERE [standard search criteria]
AND ProductID > <lastProductID>
ORDER BY [Criteria that leaves ProductID monotonically increasing]
GO

The client needs to maintain the lastProductID value and increment or decrement it
by the chosen page size between successive calls.

Solution Features
This solution exhibits the following features:
● It only works for result sets sorted by a monotonically (consistently) increasing

key column, which in practice limits the use of this approach.
● It does not cache data but pulls only the required records across the network.
● It supports simple navigation that enables the user to move to the next and

previous pages. In the above example, the client application just needs to maintain
the lastProductID value.

● It does not support advanced navigation that enables the user to move to a specific
page number.

924 Improving .NET Application Performance and Scalability

For tables that do not have a unique key column, you can also use SELECT TOP
in conjunction with a nested query. This approach is recommended for handling
user-specific queries and is described in the next section.

User-Specific Records
To provide paging through user-specific data, you can use SELECT TOP with nested
queries. The main advantages of this approach is that it does not require a unique key
column of any sort and it also supports advanced navigation, where the user is able
to move to the next, previous, first, and last pages, and is also able to move to a
specific page.

The following pseudocode illustrates this technique.

SELECT TOP <pageSize> CustomerID,CompanyName,ContactName,ContactTitle
 FROM
 (SELECT TOP <currentPageNumber * pageSize>
 CustomerID,CompanyName,ContactName,ContactTitle
 FROM
 Customers AS T1 ORDER BY ContactName DESC)
 AS T2 ORDER BY ContactName ASC

The inner SELECT statement selects a set of rows in descending order based (in this
example) on the ContactName column. The number of rows selected is equal to the
current page number times the page size. The outer SELECT statement then selects
the top n rows, where n is the page size, and presents the data in ascending order
based on the ContactName column.

The following code shows the above pseudocode implemented as a stored procedure
that can be used to page through the Customers table in the Northwind database.

CREATE PROCEDURE UserPaging
(
 @currentPage int = 1, @pageSize int =10
)
AS
 DECLARE @Out int, @rowsToRetrieve int, @SQLSTRING nvarchar(1000)

 SET @rowsToRetrieve = (@pageSize * @currentPage)

 SET NOCOUNT ON
 SET @SQLSTRING = N' SELECT TOP ' + CAST(@pageSize as varchar(10)) +
 'CustomerID,CompanyName,ContactName,ContactTitle
 FROM (SELECT TOP ' + CAST(@rowsToRetrieve as varchar(10)) +
 'CustomerID,CompanyName,ContactName,ContactTitle FROM Customers as T1
 ORDER BY contactname DESC)
 AS T2 ORDER BY contactname ASC'

 EXEC(@SQLSTRING)
 RETURN
 GO

 How To: Page Records in .NET Applications 925

Solution Features
This solution exhibits the following features:
● It does not cache data but pulls only the required records across the network.
● It does not require a unique key column.
● It supports advanced navigation where the user is able to move to the next,

previous, first, and last pages, and is also able to move to a specific page.
The client passes in the required current page number.

Performance can be significantly faster when you store records in the sort order in
which they will be retrieved, although it is not always practical to do so. A clustered
index physically stores the records sorted by the fields in the index. The drawback to
clustered indexes is that they can slow down write operations because each insert
needs to be sorted in sequence.

Application-Wide Records
To page through application-wide data (records that apply to all users), you can use a
global temporary table, which you can share across users. For example, this approach
would work well for paging through a product catalog.

The solution uses a global temporary table for the following reasons:
● It pulls together the query data.
● By including an IDENTITY column in the temporary table, you can assign unique

IDs to each row.
● You can use the unique IDs to provide advanced record navigation, including the

ability to move to the next, previous, first, and last pages, together with the ability
to move to a specific page.

You should base the lifetime of the temporary table on the volatility of your data and
how frequently you need to refresh the cached data.

The following stored procedure code shows this approach. The procedure starts
by calculating the offset using the current page number and page size, which are
supplied as parameters. As rows are selected and inserted, the IDENTITY column
ensures that each row has an incrementing, numeric key value. This column is used
to limit the range of rows returned to the client.

926 Improving .NET Application Performance and Scalability

CREATE PROCEDURE dbo.app_temp
(
 @PageNum int = 1,
 @PageSize int =10,
 @ShipCity nvarchar(15),
 @GreaterThanOrderDate datetime,
 @TotalRows int OUTPUT
)
AS
 DECLARE @iStart int, @iEnd int, @err int, @SQLSTRING nvarchar(3000)
 SET NOCOUNT ON
 SELECT @iStart = (((@PageNum - 1) * @PageSize) + 1)
 SELECT @iEnd = @PageNum*@PageSize

 --Check if the temporary table already exists. If so there is no
 --need to create it again.
 IF OBJECT_ID('tempdb..##TempTable1') IS NOT NULL
 BEGIN
 SELECT * from ##TempTable1 where I_ID between @iStart and @iEnd
 SELECT @TotalRows=COUNT(*) FROM ##TempTable1
 RETURN
 END
 -- creating table with as few columns as possible
 CREATE TABLE ##TempTable1
 (I_ID int identity(1,1) primary key, CustomerID nchar(5),
 OrderDate datetime,RequiredDate datetime, ShipName nvarchar(40))
 --inserting records
 SET @SQLSTRING = N'insert into ##TempTable1 '+
 ' SELECT '+'CustomerID,OrderDate,RequiredDate,
 ShipName FROM Orders' + ' Where
 ShipCity like '+''''+@ShipCity+''''+ ' AND OrderDate> '+''''+
 CAST(@GreaterThanOrderDate AS nvarchar(50))+''''+ ' Order by OrderDate'

 EXEC(@SQLSTRING)
 SELECT @TotalRows=COUNT(*) FROM ##TempTable1
 SELECT * from ##TempTable1 where I_ID between @iStart and @iEnd
 RETURN
GO

Solution Features
This solution exhibits the following features:
● It returns only the required records across the network.
● It works for tables that do not contain a unique primary key column. An

IDENTITY column is used on the temporary table to provide row uniqueness.
● It supports advanced navigation where the user is able to move to the next,

previous, first, and last pages, and is also able to move to a specific page.

 How To: Page Records in .NET Applications 927

Sample ASP.NET Solution Code
This section presents a sample ASP.NET application that uses the user-specific paging
solution and the application wide-paging solution described earlier.

User-Specific Paging from ASP.NET
This solution uses nested SELECT TOP statements to implement the user specific
paging solution outlined earlier. The test harness used in this solution consists of an
ASP.NET page containing a table that in turn contains a DataGrid and navigation
controls. The page navigation controls enable you to move to the first, last, next, and
previous pages, and also to a specific page. The Web page also displays the current
page number and total page count.

� To create the ASP.NET page

1. Create a blank Web page named Userpaging.aspx and add the following code.

<%@ Page Language="C#" Debug="true" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<script runat="server">

string _storedProc = "app_temp";
int _currentPageNumber = 1; // current selected page
int _totalRecords = 0; // total records in table
int _pageSize = 10; // number of rows per page
int _totalPages = 1; // total pages
string _connStr = "server=(local);database=
northwind;Trusted_Connection=yes";

private void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 BindData();
 }
 CreateLinks();
}

// The BindData method constructs a SQL query that uses nested SELECT TOP
// statements (as described earlier) to retrieve a specified page of data.
//
public void BindData()
{
 SqlConnection myConnection = new SqlConnection(_connStr);
 String strCmd = "";
 StringBuilder sb = new StringBuilder();

(continued)

928 Improving .NET Application Performance and Scalability

(continued)

 sb.Append("select top {0} CustomerID,CompanyName,ContactName,ContactTitle
from (select top {1} CustomerID,CompanyName,ContactName,ContactTitle from
Customers ");
 sb.Append("as t1 order by contactname desc) ");
 sb.Append("as t2 order by contactname asc");
 strCmd = sb.ToString();
 sb = null;

 // Set pseudoparameters: TableName, KeyField and RowIndex
 strCmd = String.Format(strCmd, _pageSize,
 _currentPageNumber * _pageSize);

 // Prepare the command
 SqlCommand myCommand = new SqlCommand(strCmd,myConnection);

 SqlDataAdapter sa = new SqlDataAdapter(myCommand);
 DataSet searchData = new DataSet("SearchData");
 try
 {
 myConnection.Open();
 sa.Fill(searchData);

 MyDataGrid.DataSource = searchData;
 MyDataGrid.DataBind();
 }
 finally
 {
 myConnection.Close();
 }

 CurrentPage.Text = _currentPageNumber.ToString();
 if (!Page.IsPostBack)
 {
 using (SqlConnection conn = new SqlConnection(_connStr))
 {
 SqlCommand cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT Count(*) FROM Customers";
 conn.Open();
 _totalRecords = (int)cmd.ExecuteScalar();
 _totalPages = _totalRecords / MyDataGrid.PageSize;
 TotalPages.Text = _totalPages.ToString();
 }
 }
 else
 {
 _totalPages = int.Parse (TotalPages.Text);
 }

(continued)

 How To: Page Records in .NET Applications 929

(continued)

 if (_currentPageNumber == 1)
 {
 PreviousPage.Enabled = false;
 if (_totalPages > 1)
 NextPage.Enabled = true;
 else
 NextPage.Enabled = false;
 }
 else
 {
 PreviousPage.Enabled = true;
 if (_currentPageNumber == _totalPages)
 NextPage.Enabled = false;
 else
 NextPage.Enabled = true;
 }
}

// The CreateLinks method creates a link button for each page in the target
table.
// Users of the Web form can use these to directly move to a specific page
number.
//
private void CreateLinks()
{
 Table tbl = new Table();
 TableRow tr = new TableRow();
 int j=0;
 for(int i=1;i<=int.Parse(TotalPages.Text);i++,j++)
 {
 if(j==20)
 {
 tbl.Rows.Add(tr);
 j=0;
 tr = new TableRow();
 }
 LinkButton link = new LinkButton();
 link.Text = i.ToString();
 link.CommandName = i.ToString();
 link.Command += new CommandEventHandler(NavigationLink_Click);

 link.CssClass="pageLinks";
 link.EnableViewState=true;
 TableCell cell = new TableCell();
 cell.Controls.Add(link);
 tr.Cells.Add(cell);
 }
 tbl.Rows.Add(tr);
 SpecificPage.Controls.Add(tbl);
}

(continued)

930 Improving .NET Application Performance and Scalability

(continued)

// This method handles the click event for the Next, Previous, First and Last
// link buttons.
//
protected void NavigationLink_Click (Object sender, CommandEventArgs e)
{
 switch (e.CommandName)
 {
 case "First":
 _currentPageNumber =1;
 break;
 case "Next":
 _currentPageNumber = int.Parse(CurrentPage.Text) + 1;
 break;
 case "Prev":
 _currentPageNumber = int.Parse(CurrentPage.Text) - 1;
 break;
 case "Last":
 _currentPageNumber =int.Parse(TotalPages.Text);
 break;
 default:
 _currentPageNumber=int.Parse(e.CommandName.ToString());
 break;
 }
 BindData();
}
</script>

<html>
 <body>
 <form runat=server>
 <table>
 <tr><td><!-- DataGrid goes here --></td></tr>
 <asp:DataGrid runat="server" AllowPaging="True"
AllowCustomPaging="True"
 ID="MyDataGrid">
 <PagerStyle Visible="False"></PagerStyle>
 </asp:DataGrid>
 <tr><td><!-- navigation goes here --></td></tr>

 <asp:LinkButton id="FirstPage" runat="server"
 CommandName="First"
 OnCommand="NavigationLink_Click"
 Text="[First Page]">
 </asp:LinkButton>
 <asp:LinkButton id="PreviousPage" runat="server"
 CommandName="Prev"
 OnCommand="NavigationLink_Click"
 Text="[Previous Page]">
 </asp:LinkButton>

(continued)

 How To: Page Records in .NET Applications 931

(continued)

 <asp:LinkButton id="NextPage" runat="server"
 CommandName="Next"
 OnCommand="NavigationLink_Click"
 Text="[Next Page]">
 </asp:LinkButton>
 <asp:LinkButton id="LastPage" runat="server"
 CommandName="Last"
 OnCommand="NavigationLink_Click"
 Text="[Last Page]">
 </asp:LinkButton>

 <asp:PlaceHolder runat="server" ID="SpecificPage"></asp:PlaceHolder>

 Page <asp:Label id="CurrentPage" runat="server"></asp:Label>
 of <asp:Label id="TotalPages" runat="server"></asp:Label>

 </table>
 </form>
 </body>
</html>

2. Save the Userpaging.aspx file.

� To configure IIS and the ASPNET user

1. Create a virtual directory called DataPaging in Internet Information Services (IIS).
2. Copy Userpaging.aspx to the IIS virtual directory.
3. Ensure that a Windows login exists for the local ASPNET account in your

SQL Server database.
To grant login and database access for the ASPNET account, use SQL Query
Analyzer to execute the following commands against the Northwind database.
Replace LocalMachine with your local computer name.

exec sp_grantlogin [LocalMachine\ASPNET]
exec sp_grantdbaccess [LocalMachine\ASPNET]

� To test the Web page and paging functionality

1. Use Internet Explorer and browse to http://localhost/DataPaging/Userpaging.aspx.
2. Test the paging functionality and the various types of navigation.

http://localhost/DataPaging/Userpaging.aspx

932 Improving .NET Application Performance and Scalability

Application-Specific Paging Solution
This solution uses a global temporary table to implement the application-wide
paging solution outlined earlier from an ASP.NET application.

� To create the required stored procedure

1. In SQL Query Analyzer, execute the following SQL script against the Northwind
database to create the stored procedure.
app_temp.sql

CREATE PROCEDURE dbo.app_temp
(
 @PageNum int = 1,
 @PageSize int =10,
 @ShipCity nvarchar(15),
 @GreaterThanOrderDate datetime,
 @TotalRows int OUTPUT
)
AS
 DECLARE @iStart int, @iEnd int, @err int, @SQLSTRING nvarchar(3000)
 SET NOCOUNT ON
 SELECT @iStart = (((@PageNum - 1) * @PageSize) + 1)
 SELECT @iEnd = @PageNum*@PageSize

 --Check if the temporary table already exists. If so there is no
 --need to create it again.
 IF OBJECT_ID('tempdb..##TempTable1') IS NOT NULL
 BEGIN
 SELECT * from ##TempTable1 where I_ID between @iStart and @iEnd
 SELECT @TotalRows=COUNT(*) FROM ##TempTable1
 RETURN
 END
 -- creating table with as few columns as possible
 CREATE TABLE ##TempTable1
 (I_ID int identity(1,1) primary key, CustomerID nchar(5),
 OrderDate datetime,RequiredDate datetime, ShipName nvarchar(40))
 --inserting records
 SET @SQLSTRING = N'insert into ##TempTable1 '+
 ' SELECT '+'CustomerID,OrderDate,RequiredDate,
 ShipName FROM Orders' + ' Where
 ShipCity like '+''''+@ShipCity+''''+ ' AND OrderDate> '+''''+
 CAST(@GreaterThanOrderDate AS nvarchar(50))+''''+ ' Order by OrderDate'

 EXEC(@SQLSTRING)
 SELECT @TotalRows=COUNT(*) FROM ##TempTable1
 SELECT * from ##TempTable1 where I_ID between @iStart and @iEnd
 RETURN
GO

 How To: Page Records in .NET Applications 933

2. Grant execute permissions to the ASPNET account. In SQL Query Analyzer,
execute the following commands against the Northwind database. Replace
LocalMachine with your local computer name.

grant execute on app_temp to [LocalMachine\ASPNET]

� To create Appwidepaging.aspx

1. Create a blank Web page named Appwidepaging.aspx in the virtual directory
called DataPaging and add the following code.

<%@ Page Language="C#" %>
<%@ import Namespace="System.Data" %>
<%@ import Namespace="System.Data.SqlClient" %>
<script runat="server">

 string _storedProc = "app_temp";
 int _currentPageNumber = 1; // current selected page
 int _totalRecords = 0; // total records in table
 int _pageSize = 10; // number of rows per page
 int _totalPages = 1; // total pages

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 BindData();
 }
 CreateLinks();
 }

 public void BindData()
 {
 SqlConnection myConnection = new SqlConnection("server=(local);database=
northwind;Trusted_Connection=yes");
 SqlCommand myCommand = new SqlCommand(_storedProc, myConnection);
 myCommand.CommandType = CommandType.StoredProcedure;

 myCommand.Parameters.Add("@PageNum", SqlDbType.Int).Value =
_currentPageNumber ;
 myCommand.Parameters.Add("@PageSize",SqlDbType.Int).Value = _pageSize;
 myCommand.Parameters.Add("@ShipCity",SqlDbType.NVarChar,15).Value = "%";
 ;

myCommand.Parameters.Add("@GreaterThanOrderDate",SqlDbType.DateTime).Value =
DateTime.Parse("7/4/1996");
 myCommand.Parameters.Add("@TotalRows", SqlDbType.Int).Direction =
ParameterDirection.Output;

(continued)

934 Improving .NET Application Performance and Scalability

(continued)

 SqlDataAdapter sa = new SqlDataAdapter(myCommand);
 DataSet searchData = new DataSet("SearchData");
 try
 {
 myConnection.Open();
 sa.Fill(searchData);

 MyDataGrid.DataSource = searchData;
 MyDataGrid.DataBind();
 }
 finally
 {
 myConnection.Close();
 }

 CurrentPage.Text = _currentPageNumber.ToString();

 if (!Page.IsPostBack)
 {
 _totalRecords = (int)(myCommand.Parameters["@TotalRows"].Value);
 _totalPages = _totalRecords / MyDataGrid.PageSize;
 TotalPages.Text = _totalPages.ToString();
 }
 else
 {
 _totalPages = int.Parse (TotalPages.Text);
 }

 if (_currentPageNumber == 1)
 {
 PreviousPage.Enabled = false;
 if (_totalPages > 1)
 NextPage.Enabled = true;
 else
 NextPage.Enabled = false;
 }
 else
 {
 PreviousPage.Enabled = true;
 if (_currentPageNumber == _totalPages)
 NextPage.Enabled = false;
 else
 NextPage.Enabled = true;
 }
 }

(continued)

 How To: Page Records in .NET Applications 935

(continued)

 private void CreateLinks()
 {
 Table tbl = new Table();
 TableRow tr = new TableRow();
 int j=0;
 for(int i=1;i<=int.Parse(TotalPages.Text);i++,j++)
 {
 if(j==20)
 {
 tbl.Rows.Add(tr);
 j=0;
 tr = new TableRow();
 }
 LinkButton link = new LinkButton();
 link.Text = i.ToString();
 link.CommandName = i.ToString();
 link.Command += new CommandEventHandler(NavigationLink_Click);

 link.CssClass="pageLinks";
 link.EnableViewState=true;
 TableCell cell = new TableCell();
 cell.Controls.Add(link);
 tr.Cells.Add(cell);
 }
 tbl.Rows.Add(tr);
 SpecificPage.Controls.Add(tbl);
 }

 protected void NavigationLink_Click (Object sender, CommandEventArgs e)
 {
 switch (e.CommandName)
 {
 case "First":
 _currentPageNumber =1;
 break;
 case "Next":
 _currentPageNumber = int.Parse(CurrentPage.Text) + 1;
 break;
 case "Prev":
 _currentPageNumber = int.Parse(CurrentPage.Text) - 1;
 break;
 case "Last":
 _currentPageNumber =int.Parse(TotalPages.Text);
 break;
 default:
 _currentPageNumber=int.Parse(e.CommandName.ToString());
 break;
 }
 BindData();
 }

(continued)

936 Improving .NET Application Performance and Scalability

(continued)

</script>
<html>
<head>
</head>
<body>
 <form runat="server">
 <table>
 <tbody>
 <tr>
 <td>
 <asp:DataGrid id="MyDataGrid" runat="server"
AllowPaging="True" AllowCustomPaging="True">
 <PagerStyle visible="False"></PagerStyle>
 </asp:DataGrid>
 </td>
 </tr>
 <tr>
 <td>
 <asp:LinkButton id="FirstPage" runat="server"
CommandName="First" OnCommand="NavigationLink_Click" Text="[First
Page]"></asp:LinkButton>
 <asp:LinkButton id="PreviousPage" runat="server"
CommandName="Prev" OnCommand="NavigationLink_Click" Text="[Previous
Page]"></asp:LinkButton>
 <asp:LinkButton id="NextPage" runat="server"
CommandName="Next" OnCommand="NavigationLink_Click" Text="[Next
Page]"></asp:LinkButton>
 <asp:LinkButton id="LastPage" runat="server"
CommandName="Last" OnCommand="NavigationLink_Click" Text="[Last
Page]"></asp:LinkButton>
 <asp:PlaceHolder id="SpecificPage"
runat="server"></asp:PlaceHolder>
 Page <asp:Label id="CurrentPage"
runat="server"></asp:Label>of <asp:Label id="TotalPages"
runat="server"></asp:Label></td>
 </tr>
 </tbody>
 </table>
 </form>
</body>
</html>

2. Save Appwidepaging.aspx.

� To test the Web page and paging functionality

1. Use Internet Explorer and browse to http://localhost/DataPaging/Appwidepaging.aspx.
2. Test the paging functionality and the various types of navigation.

http://localhost/DataPaging/Userpaging.aspx

 How To: Page Records in .NET Applications 937

Additional Considerations
In addition to the approaches described earlier in this How To, there are a number
of other paging approaches, although the alternatives tend to offer limited
performance and scalability characteristics. The additional approaches explained
in this section are:
● DataAdapter’s overloaded Fill method.
● DataGrid’s default paging feature.

DataAdapter’s Overloaded Fill Method
You can use the following overloaded Fill method of the DataAdapter to page
through rows.

public int Fill(
 DataSet dataSet,
 int startRecord,
 int maxRecords,
 string srcTable
);

The startRecord parameter indicates the zero-based index of the first record to
retrieve. The maxRecords parameter indicates the number of records, starting from
startRecord, to copy into the new DataSet.

The DataAdapter copies all of the results into a newly generated DataSet and
discards any unnecessary results. This means that a lot of unnecessary data could
be pulled across the network to the data access client, which is the primary drawback
to this approach. For example, if you have 1,000 records and want to retrieve records
900 through 950, the first 899 records are still pulled across the network and
discarded on the client side. This overhead is likely to be minimal for small result
sets, but could be significant when you page through larger sets of data. Therefore,
this approach is not a good choice for paging through large query result sets.

DataGrid’s Default Paging Feature
To display a single page, the DataGrid object’s default paging behavior retrieves all
of the records each time the user navigates to a new page. This approach is not a
good choice for paging through large query result sets.

938 Improving .NET Application Performance and Scalability

Additional Resources
For more information, see the following resources:
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 12, “Improving ADO.NET Performance”
● Chapter 13, “Code Review: .NET Application Performance”
● “Checklist: ADO.NET Performance” in the “Checklists” section of this guide
● Microsoft Knowledge Base article 318131, “HOW TO: Page Through

a Query Result for Better Performance,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;318131

http://support.microsoft.com/default.aspx?scid=kb;en-us;318131
http://support.microsoft.com/default.aspx?scid=kb;en-us;318131

How To:
Perform Capacity Planning
for .NET Applications

Summary
This How To describes how to perform capacity planning for Microsoft® .NET
applications using transaction cost analysis and predictive analysis. Transaction
cost analysis measures the cost of a user operation on the available server resource.
Predictive analysis applies a mathematical model to historical data to predict future
resource utilization.

Applies To
● ASP.NET version 1.0
● ASP.NET version 1.1

Overview
Capacity planning is the process of planning for growth and forecasting peak usage
periods in order to meet system and application capacity requirements. It involves
extensive performance testing to establish the application’s resource utilization and
transaction throughput under load. First, you measure the number of visitors the site
currently receives and how much demand each user places on the server, and then
you calculate the computing resources (CPU, RAM, disk space, and network
bandwidth) that are necessary to support current and future usage levels. This
How To describes two methodologies for capacity planning:
● Transaction cost analysis. Transaction cost analysis calculates the cost of the most

important user operations of an application in terms of a limiting resource. The
resource can be CPU, memory, disk, or network. You can then identify how many
simultaneous users can be supported by your hardware configuration or which
resource needs to be upgraded to support an increasing number of users and by
how much.

● Predictive analysis. Predictive analysis forecasts the future resource utilization of
your application based on past performance. To perform predictive analysis, you
must have historical data available for analysis.

940 Improving .NET Application Performance and Scalability

Note: The sample application referred to in this How To is not an actual application, and the data
used is not based on any actual test results. They are used only to illustrate the concepts in the
discussion.

Transaction Cost Analysis
The process of using transaction cost analysis for capacity planning consists of the
following steps:
1. Compile a user profile.

Compiling a user profile means understanding your business volumes and
usage patterns. Generally, you obtain usage information by analyzing log files.

2. Execute discrete tests.
Execute tests on specific user operations based on the profiles created in the
previous step.

3. Measure the cost of each operation.
Using the performance data captured in the previous step, calculate the cost
of each user operation.

4. Calculate the cost of an average user profile.
Calculate the cost of an average user profile by assuming a fixed period of activity
for an average user (for example, 10 minutes).

5. Calculate site capacity.
Based on the cost of each user profile, calculate the maximum number of users
supported by the site.

6. Verify site capacity.
Verify site capacity by running a script that reflects the user profile with an
increasing number of users and then comparing the results against those obtained
in previous steps.

The next sections describe each of these steps.

Step 1. Compile a User Profile
Compile a user profile from the existing production traffic data. The main resource
for identifying user operations is the Internet Information Services (IIS) log files. The
components extracted from usage profiles are as follows:
● A list of user profiles.
● The average duration of a user session.
● The total number of operations performed during the session.
● The frequency with which users perform each operation during the session.

 How To: Perform Capacity Planning for .NET Applications 941

� To compile a user profile

1. Identify the number of user requests for each page and the respective percentages.
The number of user requests for each page can be extracted from the log files.
Divide the number of requests for each page by the total number of requests to get
the percentage.
Table 1 illustrates a sample profile.

Table 1: User Requests per Page

ID URI Number of requests Percentages

1 /MyApp/login.aspx 18,234 35%

2 /MyApp/home.aspx 10,756 20%

3 /MyApp/logout.aspx 9,993 19%

4 /MyApp/SellStock.aspx 4,200 8%

5 /MyApp/BuyStock.aspx 9,423 18%

Total n/a 52,606 100%

2. Identify the logical operations and number of requests required to complete the
operation.
A user operation can be thought of as a single complete logical operation that can
consist of more than one request. For example, the login operation might require
three pages and two requests. The total number of operations performed in a
given time frame can be calculated by using the following formula:

Number of operations = Number of requests / Number of requests per
operation

The Requests per operation column in Table 2 shows how many times the page
was requested for a single operation.

Table 2: User Requests per Operation

ID

URI

Number of
requests

Requests per
operation

Number of
operations

1 /MyApp/login.aspx 18,234 2 9,117

2 /MyApp/logout.aspx 9,993 1 9,993

3 /MyApp/SellStock.aspx 4,200 2 2,100

4 /MyApp/BuyStock.aspx 9,423 3 3,141

Total n/a 41,850 8 24,351

942 Improving .NET Application Performance and Scalability

3. Identify the average user profile, session length, and operations per session. You
can analyze the IIS log files to calculate the average user session length and the
number of operations an average user performs during the session. The session
length for the sample application was calculated as 10 minutes from the IIS logs,
and the average user profile for the sample application is shown in Table 3.

Table 3: Average User Profile

Operation Number of operations executed during an average session

Login 1

SellStock 3

BuyStock 2

Logout 1

For more information about identifying user profiles, see “Workload Modeling” in
Chapter 16, “Testing .NET Application Performance.”

Step 2. Execute Discrete Tests
Run discrete tests for each user operation identified in Step 1 for a load at which your
system reaches maximum throughput. For example, you need to run separate tests
for Login, BuyStock, and SellStock operations. The test script only fires the requests
for a dedicated user operation.

The procedure for executing the tests consists of the following tasks:
● Set up the environment with the minimum number of servers possible. Make sure

that the architecture of your test setup mirrors your production environment as
closely as possible.

● Create a test script that loads only the operation in consideration without firing
any redundant requests.

● Define the point at which your system reaches maximum throughput for the user
profile. You can identify this point by monitoring the ASP.NET Applications\
Requests/Sec counter for an ASP.NET application when increasing the load on the
system. Identify the point at which Requests/Sec reaches a maximum value.

 How To: Perform Capacity Planning for .NET Applications 943

● Identify the limiting resource against which the cost needs to be calculated for a
given operation. List the performance counters you need to monitor to identify the
costs. For example, if you need to identify the cost of CPU as a resource for any
operation, you need to monitor the counters listed in Table 4.

Table 4: Performance Counters Used to Identify Cost

Object Counter Instance

Processor % Processor Time _Total

ASP.NET Applications Requests/Sec Your virtual directory

Note: Requests/Sec will be used to calculate the processor cost per request.

● Run load tests for a duration that stabilizes the throughput of the application. The
duration can be somewhere between 15 to 30 minutes. Stabilizing the throughput
helps create a valid, equal distribution of the resources over a range of requests.

Output
The output from executing this series of steps for each scenario would be a report like
the following:

Number of CPUs = 2
CPU speed = 1.3 GHz

Table 5 shows a sample report for the results of the load tests.

Table 5: Load Test Results

User operation Process\% Processor Time ASP.NET Applications\Requests/Sec

Login 90% 441

SellStock 78% 241

BuyStock 83% 329

Logout 87% 510

944 Improving .NET Application Performance and Scalability

Step 3. Measure the Cost of Each Operation
Measure the cost of each operation in terms of the limiting resource identified in
Step 2. Measuring the operation cost involves calculating the cost per request and
then calculating the cost per operation. Use the following formulas for these tasks:
● Cost per request. You can calculate the cost in terms of processor cycles required

for processing a request by using the following formula:
Cost (Mcycles/request) = ((number of processors x processor speed) x
processor use) / number of requests per second

For example, using the values identified for the performance counters in Step 2,
where processor speed is 1.3 GHz or 1300 Mcycles/sec, processor usage is 90
percent, and Requests/Sec is 441, you can calculate the page cost as:

((2 x 1,300 Mcycles/sec) x 0.90) / (441 Requests/Sec) = 5.30 Mcycles/request
● Cost per operation. You can calculate the cost for each operation by using the

following formula:
Cost per operation = (number of Mcycles/request) x number of pages for an
operation

The cost of the Login operation is:
5.30 x 3 = 15.9 Mcycles

If you cannot separate out independent functions in your application and need
one independent function as a prerequisite to another, you should try to run the
common function individually and then subtract the cost from all of the
dependent functions. For example, to perform the BuyStock operation, you need
to perform the login operation, calculate the cost of login separately, and then
subtract the cost of login from the cost of the BuyStock operation.
Therefore the cost of a single BuyStock operation can be calculated as follows:

Single cost of BuyStock operation = Total cost of BuyStock – Cost of Login
operation

The cost of a single BuyStock operation is:
39.36 – 15.92 = 23.44 Mcycles

 How To: Perform Capacity Planning for .NET Applications 945

Table 6 shows the cost of each user operation in a sample application using the
following scenario.

CPU Speed = 1300 MHz
Number of CPUs = 2
Overall CPU Mcycles = 2,600

Table 6: Cost per Operation for Login, SellStock, BuyStock, and Logout Operations

Us
er

Op

er
at

io
n

CP
U

%

 U
til

iz
at

io
n

To
ta

l n
et

CP

U
M

cy
cl

es

AS
P.

N
ET

Re

qu
es

ts
/S

ec

N
um

be
r

of

Re
qu

es
ts

Op
er

at
io

n

Co
st

 (
M

cy
cl

es
)

Pa

ge
s

w

ith
ou

t
lo

gi
n

Si
ng

le

op
er

at
io

n
co

st

Login 90% 2,340.00 441 3 15.92 3 15.92

SellStock 78% 2,028.00 241 5 42.07 2 26.16

BuyStock 83% 2,158.00 329 6 39.36 3 23.44

Logout 87% 2,262.00 510 5 22.18 2 6.26

The operation cost needs to be measured separately for each tier of an application.

Step 4. Calculate the Cost of an Average User Profile
The behavior of actual users can cause random crests and troughs in resource
utilization. However, over time these variations even out statistically to average
behavior. The user profile you compiled in Step 1 reflects average user behavior. To
estimate capacity, you need to assume an average user and then calculate the cost in
terms of the limiting resource identified in Step 2.

As shown in Table 7, during a ten-minute session, an average user needs 147.52
Mcycles of CPU on the server. The cost per second can be calculated as follows:

Average cost of profile in Mcycles/sec = Total cost for a profile / session length in
seconds

Thus, the average cost for the profile shown in Table 7 is:
147.52/600 = 0.245 Mcycles/sec

946 Improving .NET Application Performance and Scalability

This value can help you calculate the maximum number of simultaneous users your
site can support.

Table 7: Cost of an Average User Profile

Average User
Profile

Number of operations
executed during an
average session

Cost per operation
(Mcycles)

Total cost per
operation (Mcycles)

Login 1 15.92 15.92

SellStock 3 26.16 78.47

BuyStock 2 23.44 46.87

Logout 1 6.26 6.26

Total 147.52

Step 5. Calculate Site Capacity
Calculating site capacity involves knowing how many users your application can
support on specific hardware and what your site’s future resource requirements are.
To calculate these values, use the following formulas:
● Simultaneous users with a given profile that your application can currently

support. After you determine the cost of the average user profile, you can
calculate how many simultaneous users with a given profile your application can
support given a certain CPU configuration. The formula is as follows:

Maximum number of simultaneous users with a given profile = (number of
CPUs) x (CPU speed in Mcycles/sec) x (maximum CPU utilization) / (cost of
user profile in Mcycles/sec)

Therefore, the maximum number of simultaneous users with a given profile that
the sample application can support is:

(2 x 1300 x 0.75)/0.245 = 7,959 users
● Future resource estimates for your site. Calculate the scalability requirements for

the finite resources that need to be scaled up as the number of users visiting the
site increases. Prepare a chart that gives you the resource estimates as the number
of users increases.
Based on the formulas used earlier, you can calculate the number of CPUs
required for a given number of users as follows:

Number of CPUs = (Number of users) x (Total cost of user profile in
Mcycles/sec) / (CPU speed in MHz) x (Maximum CPU utilization)

 How To: Perform Capacity Planning for .NET Applications 947

If you want to plan for 10,000 users for the sample application and have a
threshold limit of 75 percent defined for the processor, the number of CPUs
required is:

10000 x 0.245 / (1.3 x 1000) x 0.75 = 2.51 processors
Your resource estimates should also factor in the impact of possible code changes
or functionality additions in future versions of the application. These versions may
require more resources than estimated for the current version.

Step 6. Verify Site Capacity
Run the load tests to verify that the transaction cost analysis model accurately
predicts your application capacity and future requirements.

Verify the calculated application capacity by running load tests with the same
characteristics you used to calculate transaction cost analysis. The verification script
is simply a collection of all transaction cost analysis measurement scripts, aggregated
and run as a single script.

The actual values and the estimated values should vary by an acceptable margin of
error. The acceptable margin of error may vary depending on the size of the setup
and the budget constraints. You do not need to run load tests each time you perform
transaction cost analysis. However, the first few iterations should confirm that
transaction cost analysis is the correct approach for estimating the capacity of your
application.

Predictive Analysis
Predictive analysis involves the following steps:
1. Collect performance data.

Collect performance data for the application in production over a period of time.
2. Query the existing historical data.

Query the historical data based on what you are trying to analyze or predict.
3. Analyze the historical performance data.

Use mathematical equations to analyze the data to understand the resource
utilization over a period of time.

4. Predict the future requirements.
Predict the future resource requirements based on the mathematical model
prepared in Step 2.

The next sections describe each of these steps.

948 Improving .NET Application Performance and Scalability

Step 1. Collect Performance Data
The performance data for the application needs to be collected over a period of time.
The greater the time duration, the greater the accuracy with which you can predict a
usage pattern and future resource requirements.

The performance counters and other performance data to be collected are based on
your performance objectives related to throughput, latency, and resource utilization.
The performance counters are collected to verify that you are able to meet your
performance objectives and your service level agreements. For information about
which counters to look at, see Chapter 15, “Measuring .NET Application
Performance.”

Be careful not to collect more than the required amount of data. Monitoring any
application incurs overhead that may not be desirable beyond certain levels for a live
application.

You might further instrument the code to analyze custom performance metrics.
One of the tools available for storing and analyzing this performance data in large
quantities is Microsoft Operations Manager (MOM).

Step 2. Query the Existing Historical Data
Query the historical data based on what you are trying to analyze. If your application
is CPU bound, you might want to analyze CPU utilization over a period of time.
For example, you can query the data for the percentage of CPU utilization for the
last 40 days during peak hours (9:00 A.M.–4:00 P.M.), along with the number of
connections established during the same period.

Step 3. Analyze the Historical Performance Data
Before you analyze the historical performance data, you must be clear about what
you are trying to predict. For example, you may be trying to answer the question,
“What is the trend of CPU utilization during peak hours?”

Analyze the data obtained by querying the database. The data obtained for a given
time frame results in a pattern that can be defined by a trend line. The pattern can be
as simple as a linear growth of the resource utilization over a period of time. This
growth can be represented by an equation for a straight line:

y = mx + b

where b is the x offset, m is the slope of the line, and x is an input. For the preceding
question, you would solve for x given y:

x = (y – b)/m

 How To: Perform Capacity Planning for .NET Applications 949

For the example in Step 1, the trend line is:
y = 0.36x + 53

where y is the CPU utilization and x is the number of observations. Figure 1 shows
the trend for this example.

C
P

U
 u

til
iz

at
io

n

Number of observations

y = 0.36x + 53

Figure 1

Trend of CPU utilization

Choosing the correct trend line is critical and depends on the nature of the source
data. Some common behaviors can be described by polynomial, exponential, or
logarithmic trend lines. You can use Microsoft Excel or other tools for trend line
functions for analysis.

Step 4. Predict Future Requirements
Using the trend lines, you can predict the future requirements. The predicted
resource requirements assume that the current trend would continue into the future.

For example, consider the trend line mentioned in Step 3. Assuming you do not want
the CPU utilization to increase beyond 75 percent on any of the servers, you would
solve for x as follows:

x = (y – 53)/0.36

Therefore:
x = (75 – 53)/0.36 = 61.11

Based on the current trends, your system reaches 75 percent maximum CPU
utilization when x = 61.11. Because the x axis shows daily measurements taken from
the peak usage hours of 9:00 A.M. to 4:00 P.M., one observation corresponds to one
day. Because there are 40 observations in this example, your system will reach 75
percent CPU utilization in the following number of days:

61.11 – 40 = 21.11

950 Improving .NET Application Performance and Scalability

Additional Resources
For more information, see the following resources:
● Chapter 3, “Design Guidelines for Application Performance”
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 6, “Improving ASP.NET Performance”
● Chapter 15, “Measuring .NET Application Performance”
● Chapter 16, “Testing .NET Application Performance”

How To:
Scale .NET Applications

Summary
There are two main approaches to scaling an application: scaling up and scaling out.
This How To helps you to determine which approach is suitable for your application,
and gives you guidelines on how to implement your chosen approach.

Applies To
● Microsoft® .NET Framework version 1.1

Overview
Scalability refers to the ability of an application to continue to meet its performance
objectives with increased load. Typical performance objectives include application
response time and throughput. When measuring performance, it is important to
consider the cost at which performance objectives are achieved. For example,
achieving a sub - second response time objective with prolonged 100% CPU
utilization would generally not be an acceptable solution.

This How To is intended to help you make informed design choices and tradeoffs
that in turn will help you to scale your application. An exhaustive treatment of
hardware choices and features is outside the scope of this document.

After completing this How To, you will be able to:
● Determine when to scale up versus when to scale out.
● Quickly identify resource limitation and performance bottlenecks.
● Identify common scaling techniques.
● Identify scaling techniques specific to .NET technologies.
● Adopt a step-by-step process to scale .NET applications.

952 Improving .NET Application Performance and Scalability

Scale Up vs. Scale Out
There are two main approaches to scaling:
● Scaling up. With this approach, you upgrade your existing hardware. You might

replace existing hardware components, such as a CPU, with faster ones, or you
might add new hardware components, such as additional memory. The key
hardware components that affect performance and scalability are CPU, memory,
disk, and network adapters. An upgrade could also entail replacing existing
servers with new servers.

● Scaling out. With this approach, you add more servers to your system to spread
application processing load across multiple computers. Doing so increases the
overall processing capacity of the system.

Pros and Cons
Scaling up is a simple option and one that can be cost effective. It does not introduce
additional maintenance and support costs. However, any single points of failure
remain, which is a risk. Beyond a certain threshold, adding more hardware to the
existing servers may not produce the desired results. For an application to scale up
effectively, the underlying framework, runtime, and computer architecture must also
scale up.

Scaling out enables you to add more servers in the anticipation of further growth,
and provides the flexibility to take a server participating in the Web farm offline for
upgrades with relatively little impact on the cluster. In general, the ability of an
application to scale out depends more on its architecture than on underlying
infrastructure.

When to Scale Up vs. Scale Out
Should you upgrade existing hardware or consider adding additional servers? To
help you determine the correct approach, consider the following:
● Scaling up is best suited to improving the performance of tasks that are capable of

parallel execution. Scaling out works best for handling an increase in workload or
demand.

● For server applications to handle increases in demand, it is best to scale out,
provided that the application design and infrastructure supports it.

 How To: Scale .NET Applications 953

● If your application contains tasks that can be performed simultaneously and
independently of one another and the application runs on a single processor
server, you should asynchronously execute the tasks. Asynchronous processing is
more beneficial for I/O bound tasks and is less beneficial when the tasks are CPU
bound and restricted to a single processor. Single CPU bound multithreaded tasks
perform relatively slowly due to the overhead of thread switching. In this case,
you can improve performance by adding an additional CPU, to enable true
parallel execution of tasks.

● Limitations imposed by the operating system and server hardware mean that you
face a diminishing return on investment when scaling up. For example, operating
systems have a limitation on the number of CPUs they support, servers have
memory limits, and adding more memory has less effect when you pass a certain
level (for example, 4 GB).

Load Balancing
There are many approaches to load balancing. This section contains a discussion of
the most commonly used techniques.

Web Farm
In a Web farm, multiple servers are load balanced to provide high availability of
service. This feature is currently only available in Windows® 2000 Advanced Server
and Datacenter Server. Figure 1 illustrates this approach.

Client

Load
Balancer

Web Farm

Web Server

Web Server

Web Server

Web Server

Client

Client

Client

Figure 1

Load balancing in a Web farm

954 Improving .NET Application Performance and Scalability

You can achieve load balancing by using hardware or software. Hardware solutions
work by providing a single IP address and the load balancer translates client requests
to the physical IP address of one of the servers in the farm.

Network Load Balancing (NLB)
Network Load Balancing (NLB) is a software solution for load balancing. NLB is
available with Windows 2000 Advanced Server and Datacenter Server. NLB
dispatches the client requests (sprays the connection) across multiple servers within
the cluster. As the traffic increases, you can add additional servers to the cluster, up to
a maximum of 32 servers.

More Information
● For more information, see the following resources:
● “Network Load Balancing” at http://www.microsoft.com/technet/prodtechnol

/windows2000serv/evaluate/w2khost/w2ktnlb.mspx
● “Network Load Balancing Technical Overview” at http://www.microsoft.com

/windows2000/techinfo/howitworks/cluster/nlb.asp

Cloning
You create a clone by adding another server with all of the same software, services,
and content. By cloning servers, you can replicate the same service at many nodes in
a Web farm, as shown in Figure 2.

Web layer

Business layer

Web layer

Business layer

Database

Cloned and Replicated
Across Nodes

Figure 2

Cloning

Figure 2 shows that you can clone your Web server by copying the same business
logic to each Web server.

http://www.microsoft.com/technet/prodtechnol/windows2000serv/evaluate/w2khost/w2ktnlb.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/evaluate/w2khost/w2ktnlb.mspx
http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/nlb.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/nlb.asp

 How To: Scale .NET Applications 955

Federated Database Servers
To support the anticipated growth of a system, a federation of servers running
Microsoft SQL Server™ 2000 can be used to host a database. With this approach, the
database is installed across all servers, and the tables that need to scale out are
horizontally partitioned (split into smaller member tables). Then you create a
distributed partitioned view that unifies the member tables to provide location
transparency.

More Information

For more information, see the following resources:
● “SQL Server Megaservers: Scalability, Availability, Manageability” at

http://www.microsoft.com/technet/prodtechnol/sql/2000/plan/ssmsam.mspx
● “Partitioning” in “Optimizing Database Performance” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/optimsql/odp_tun_1_11ev.asp

.NET Framework Technologies Scalability Considerations
When you scale .NET applications, considerations vary depending on the specific
.NET technology involved. You will make more informed decisions if you
understand the technology considerations from the start.

ASP.NET Applications or Web Services
When scaling an ASP.NET application or Web service, consider the following:
● Avoid using the in-process session state store, and avoid running the session state

server on a local Web server. You need a state store on a server that is accessible
from all servers in the Web farm.

● Use the ASP.NET session state service running on a remote server, or use SQL
Server as your session store.

● Use application state (and the Application object) only as a read-only store to
avoid introducing server affinity. ASP.NET application state is server-specific.

● Avoid machine-specific encryption keys to encrypt data in a database. Instead, use
machine-specific keys to encrypt a shared symmetric key, which you use to store
encrypted data in the database. For more information, see Chapter 14, “Building
Secure Data Access” in “Improving Web Application Security: Threats and
Countermeasures” at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/THCMCh14.asp.

http://www.microsoft.com/technet/prodtechnol/sql/2000/plan/ssmsam.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_11ev.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1_11ev.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh14.asp

956 Improving .NET Application Performance and Scalability

● Impersonating client identities to make database calls reduces the benefits of
connection pooling because multiple pools (one per client identity) are maintained
instead of a single shared pool. Consider using the trusted subsystem model
instead, and use a single, trusted server identity to connect to the database. For
more information, see “Data Access Security” in “Building Secure ASP.NET
Applications: Authentication, Authorization and Secure Communication” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/SecNetch12.asp.

Enterprise Services
When scaling serviced components in an Enterprise Services application, consider the
following:
● Avoid impersonating the original client in a remote Enterprise Services

application. Instead, authorize the client using COM+ roles and then use a trusted
server identity to access downstream databases and systems to take full advantage
of connection pooling.

● Avoid storing state in the Shared Property Manager (SPM) and consider using a
shared state store such as a database. The SPM is not scalable and introduces
server affinity.

● Consider Enterprise Services when you are working with transactions that span
across multiple databases, or when you need transactions to flow across
components. Be aware that using high transaction isolation levels unnecessarily
can result in contention, which reduces scalability.

● Ensure that client code that calls serviced components always calls the Dispose
method. Not doing so can quickly increase memory pressure and can increase the
chances of activity deadlocks, thus reducing scalability.

.NET Remoting
When scaling middle-tier remote components that use the .NET remoting
infrastructure, be aware that the default TCP channel cannot be load balanced using a
NLB solution in a server farm. Therefore, this channel does not provide a good
solution for scaling out. Although .NET remoting is not recommended for cross-
server communication, if you do use remoting, use the HTTP channel in a server
farm to provide the scale-out ability.

More Information

For more information, see “Prescriptive Guidance for Choosing Web Services,
Enterprise Services, and .NET Remoting” in Chapter 11, “Improving Remoting
Performance.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp

 How To: Scale .NET Applications 957

Process for Scaling .NET Applications
The following steps provide a high-level systematic approach to help you scale your
application.
1. Gather new requirements and performance objectives.
2. Assess the current system.
3. Choose a scaling technique.
4. Apply and validate.

Step 1: Gather New Requirements and Performance Objectives
To achieve new levels of application performance and processing capacity, you have
to clearly understand your performance objectives. To achieve scalability, you must
continue to meet your performance objectives as demand increases. Make sure that
you:
● Gather new requirements. New requirements usually come from marketing data,

past growth, anticipated growth, special events (for example, sales events), or
future needs.

● Quantify your objectives. Common performance objectives for server
applications include response time, throughput, and resource utilization.

Step 2: Assess the Current System
Assessing your current application architecture and infrastructure is important for
making effective scaling decisions. Make sure that you:
● Analyze the current system. Start by analyzing your application architecture;

understand how the parts of the application interact with each other. Identify your
current deployment architecture and analyze the current application infrastructure
that supports your application. Understand the current limits of your system in
terms of acceptable throughput and response time.

● Identify components that limit scalability. Identify components that would be
most affected if they need to scale up or scale out. These are the components that
are most likely to become bottlenecks when the workload increases. Prioritize
components that are critical to performance and the overall process handling
capacity of your application. Understand the dependencies between system
components. The following questions can help identify key issues to consider:
● Does your design partition your application into logical layers?
● Do you have logical partitioning and loosely coupled interfaces providing a

contract between layers?

958 Improving .NET Application Performance and Scalability

● Does your design consider the impact of resource affinity?
● Does your implementation manage memory efficiently? Does it minimize

hidden allocations; avoid the promotion of short-lived objects; avoid
unnecessary boxing; efficiently pass parameters of value types and reference
types; avoid excessive allocations and deallocations during string
concatenations; choose appropriate type of collection and array for functional
requirement; and so on?

● Does your code handle threads efficiently? Having too many threads consumes
resources, increases context switching and contention, and decreases
concurrency, resulting in a high CPU utilization rate. Having too few threads
unnecessarily constrains the throughput, resulting in underutilized CPU.

● Does your application handle exceptions efficiently? Does it avoid using
exceptions for regular application logic? Does it contain defensive code that
uses appropriate validations to avoid unnecessary exceptions? Does it use
finally blocks to guarantee that resources are cleaned up when exceptions
occur?

● Does your application efficiently manage Web pages? Does your application
optimize page size; avoid the unnecessary use of server controls; handle long-
running calls efficiently; cache and manage state (session state and view state)
across calls; perform efficient data binding; and interoperate with COM?

● Does your application efficiently manage business components? Does your
application avoid client impersonation in the middle tier; avoid thread affinity
and thread switches; use the appropriate transaction and isolation levels; free
resources quickly and efficiently; and use object pooling where appropriate?

● Does your application efficiently manage data access? Does it use efficient
paging techniques for large record sets? Does it efficiently serialize data, run
queries, manipulate BLOBs, handle dynamic SQL and stored procedures, and
handle concurrency and transactions appropriately?

● Identify server configuration and application parameters that limit scalability.
To optimize server configuration, you must iteratively identify and reduce
bottlenecks until you meet your performance and scalability objectives. To achieve
this, you need to understand server configuration settings and application tuning
options.

More Information
For more information, see the following resources:
● For a comprehensive review of design and implementation, see Chapter 4,

“Architecture and Design Review of a .NET Application for Performance and
Scalability” and Chapter 13, “Code Review: .NET Application Performance”.

● For information about tuning, see Chapter 17, “Tuning .NET Application
Performance.”

 How To: Scale .NET Applications 959

Step 3: Choose a Scaling Technique
Characterize the current workload for each of your performance-critical scenarios
and document them. Project the workload pattern for your scaling requirements.

Application Considerations
When designing your application for scalability, consider the following:
● State considerations. Prefer a stateless design where components do not hold

state between successive client requests. If you need to maintain state across client
requests, store it a shared data store such as SQL Server to allow shared access
across Web servers in a Web farm. For objects that require performance intensive
initialization, consider using Enterprise Services object pooling.

● Resource considerations. Eagerly release resources. Write code that makes
efficient use of the common language runtime (CLR) and garbage collector.
Factors that quickly contribute to resource pressure include:
● A large working set.
● Retaining unmanaged resources.
● Excessive boxing and unboxing.
● Throwing too many exceptions, for example because you use them to control

application flow.
● Inefficient string concatenation.
● Poor choice and implementation of arrays and collections.

● Caching considerations. ASP.NET can cache data using the caching API, output
caching, or partial page fragment caching. Regardless of the implementation
approach, you need to consider an appropriate caching policy that identifies what
data to cache, where to cache it, and how frequently to update the cache. To use
effective fragment caching, separate the static and dynamic areas of your page and
use user controls. You must also make sure to tune the memory limit for the cache
to perform optimally.

● Security considerations. Avoid impersonating the original caller in the middle
tier. Doing so prevents efficient connection pooling and severely limits scalability.
Consider using a trusted subsystem model and use a single service or process
identity to access the downstream database. If necessary, flow the original caller's
identity using stored procedure parameters.

● Threading considerations. Avoid thread affinity by carefully choosing the
threading model. Avoid single-threaded apartment (STA) components where
possible. If you do have to use them from ASP.NET, make sure that you use the
ASPCOMPAT attribute.

960 Improving .NET Application Performance and Scalability

● Database design considerations. Consider the following design techniques to
increase database responsiveness and throughput:
● Optimize your database schema for how your application will use the data.
● Use normalization for write operations.
● Consider denormalization for read operations if appropriate.
● Design for partitioning and distribution if appropriate.
● Optimize queries and stored procedures.
● Optimize indexes that are periodically maintained.
● Use stand-alone techniques or combinations of techniques such as distributed

partitioned views, data-dependent routing, and replication.

Infrastucture Considerations
There are many infrastructure techniques to handle increasing workload and manage
resources.
● Web and application servers

Common approaches include the following
● Scale up your Web server by upgrading to a faster server or by upgrading

existing hardware components.
● Scale out by spreading the workload across servers by adding additional

servers to a Web farm.
● Use NLB to scale out your middle-tier application server.
● Windows 2000 COM+ components are designed to be used in clusters of

Windows 2000 application servers to form a clustered business services tier.
Each server has identical sets of COM+ components, and Windows 2000
balances the cluster processing load by sending new requests to the server that
has the least processing load. This forms an easily administered cluster that can
quickly scale out with the addition of a new server.

● Database servers
SQL Server 2000 supports federation of servers with updatable distributed
partitioned views used to transparently partition data horizontally across a group
of servers. For more information, see “Scaling Out on SQL Server” at
http://www.microsoft.com/resources/documentation/sql/2000/all/reskit/en-
us/part10/c3861.mspx.

http://www.microsoft.com/resources/documentation/sql/2000/all/reskit/en-us/part10/c3861.mspx
http://www.microsoft.com/resources/documentation/sql/2000/all/reskit/en-us/part10/c3861.mspx

 How To: Scale .NET Applications 961

Step 4: Apply and Validate
The next step is to apply the changes and evaluate whether the updates or additions
have met the workload requirements. Do the following:
● Apply the optimization process as follows: Establish a baseline, collect data,

analyze results, and optimize the configuration.
● Apply the capacity planning process or predictive analysis to plan for current and

future usage levels. For more information, see “How To: Perform Capacity
Planning for .NET Framework Applications.”

● Apply the scaling technique that you chose in Step 3.

Additional Resources
For more information, see the following resources:
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 13, “Code Review: .NET Application Performance”

How To:
Submit and Poll for
Long-Running Tasks

Summary
This How To shows you how to make a long-running Web service call from an
ASP.NET application without blocking the Web page. The application calls the Web
service asynchronously and then displays a “Busy...Please Wait” page that polls the
Web service for completion. When the results are available, the application redirects
the client to a results page.

The techniques described in this How To also apply to other long-running tasks, such
as running a complex database query or calling a remote component.

Applies To
● Microsoft® .NET Framework version 1.0
● .NET Framework version 1.1

Overview
A common approach to handling long-running calls is to have the client poll for
results. After the request is submitted to the server, instead of waiting for the work to
complete, the server immediately sends a response to the client indicating that the
work is being processed. The client then polls the server for the final result.

You have probably seen this approach in action on various Web sites whether or not
you were aware of the implementation. For example, when you search for airline
flights on a Web site, it is common to see an animated .gif file while the server is
retrieving the results. By returning information to the client immediately rather than
waiting for the long-running task to complete, you free the ASP.NET request thread
to process other requests. The limited overhead associated with polling the server
every few seconds is significantly lower than the overhead of making a blocking call.

This functionality is commonly used when:
● Calling a database and running complex queries.
● Making lengthy calls to a Web service.
● Making lengthy calls to a remote component.

964 Improving .NET Application Performance and Scalability

Before You Begin
Create a new virtual directory named Longtask and then create a \bin subdirectory.
For example:

c:\inetpub\wwwroot\longtask
c:\inetpub\wwwroot\longtask\bin

Use Internet Services Manager to mark the directory as an Application. As you
follow the instructions in this How To, make sure to place all of the files that you
create in this directory.

Create a Test Web Service
You need a Web service for testing purposes. You can use an existing Web service, or
you can create a new one. To create a new test Web service, create a file named
MyWebService.asmx in the Longtask directory and add the following code.

mywebservice.asmx

<%@ WebService Language="c#" Class="MyWebService" %>
using System;
using System.Web.Services;
public class MyWebService
{
 public MyWebService() {}
 [WebMethod]
 public int LongRunningTask(int length)
 {
 DateTime start = DateTime.Now;
 System.Threading.Thread.Sleep(length);
 return (int)((TimeSpan)(DateTime.Now - start)).TotalSeconds;
 }
}

The Web method exposed by this Web service allows you to determine how long the
call should block by sleeping for an interval determined by the input parameter to
the LongRunningTask method.

Next, create a proxy for the Web service by running the following command from a
command prompt.

wsdl.exe /language:cs /namespace:ServiceNameSpace.localhost
 /out:c:\inetpub\wwwroot\longtask\proxy.cs
 http://localhost/longtask/mywebservice.asmx?WSDL

 How To: Submit and Poll for Long-Running Tasks 965

Note: Make sure that you place Proxy.cs in the Longtask virtual directory (for example, c:\inetpub
\wwwroot\longtask). Before you create the proxy, make sure that a Global.asax file does not exist in
the directory. If the file already exists, delete it; otherwise, errors may be generated when you create
the proxy.

Create a State Class
To enable the ASP.NET application to poll for the results of the asynchronous call,
create a state class that maintains key information about the Web service call. You
need this information to resynchronize the results from the callback with the caller’s
original request context.

You use the state object to store the following:
● The Web service object on which the call is made. You need to store the Web

service object on which the call is made to ensure that whenever the callback
returns, you call the EndXXX method on the object with the same call context as
the one used to call the BeginXXX method.

● SessionID. You need to store SessionID to ensure that whenever the results are
returned from the Web service through the callback mechanism, they are
associated with the caller’s session ID. This allows you to subsequently retrieve
the correct results for the correct client by using the appropriate session ID as a
lookup key.

Create a new file named Util.cs and add the following code for the MyState class.

util.cs

public class MyState
{
 public localhost.MyWebService _webServiceState;
 public string_sessionID;
 public MyState(localhost.MyWebService ws, string sessionid)
 {
 _webServiceState = ws;
 _sessionID = sessionid;
 }
}

966 Improving .NET Application Performance and Scalability

Create a Temporary Data Store
Create a data store to hold the results obtained from the Web service. The following
code uses a Hashtable storage implementation in which the session ID is used as the
lookup key. Choose an appropriate data store for your scenario based on your
requirements for reliability, ease of retrieval, and amount of data to be stored.

Create a file named Util.cs and add the following code for the TempDataStore class.

util.cs

public class TempDataStore
{
 private static Hashtable _table = new Hashtable();
 static TempDataStore (){}
 public static object GetRecords(string key)
 {
 lock(_table.SyncRoot)
 {
 return _table[key];
 }
 }
 public static void SetRecords(string key, object value)
 {
 lock(_table.SyncRoot)
 {
 _table.Add(key, value);
 }
 }
 public static void Remove(string key)
 {
 lock(_table.SyncRoot)
 {
 _table.Remove(key);
 }
 }
 public static void ClearAll()
 {
 lock(_table.SyncRoot)
 {
 _table.Clear();
 }
 }
}

 How To: Submit and Poll for Long-Running Tasks 967

Implement the Callback Method
When the results are returned from the Web service, they are stored in the data store
by using the session ID as the key until the data is polled for and retrieved by the
client ASP.NET application.

Retrieve the value for the relevant user by using the session ID as the key to the
temporary store. Create a new .aspx page named Longtask.aspx and add the
following code.

public void WSCallback(IAsyncResult ar)
{
 MyState myState = (MyState)ar.AsyncState;
 //retrieve the object on which EndXXX needs to be called
 localhost.MyWebService ws = myState._WebServiceState;
 //store the values in the data store
 TempDataStore.SetRecords(myState._SessionID,ws.BeginLongRunningTask(ar));
}

Make the Asynchronous Call
To make the asynchronous call, add a Call Web Service button to the Web page and
implement the button’s click event handler.

� To make the asynchronous call

1. Add a button control to the Longtask.aspx page.
2. Add the following code to the click event handler. This code calls the Web service

asynchronously and then redirects to a polling page.

MyWebService ws = new MyWebService();
AsyncCallback cb = new AsyncCallback(WSCallback);
Random rnd = new Random();
MyState myState = new MyState(ws,Session.SessionID);
ws.BeginLongRunningTask(rnd.Next(10000),cb, myState);
Response.Redirect("poll.aspx", false);

968 Improving .NET Application Performance and Scalability

Implement a Polling Mechanism
The ASP.NET application needs to poll the server periodically to find out if the long-
running task has completed. There are a number of ways to do this. Each approach
forces the client browser to refresh itself automatically. The options are:
● Use a Refresh header.

Response.AddHeader("Refresh","2;URL=poll.aspx");

● Use a <meta> tag.

<meta http-equiv="refresh" content="2;url=poll.aspx">

● Call the setTimeout method in the client script.

setTimeout("window.location.href = 'poll.aspx'",2000);

Note: Clients can disable the functionality of the <meta> tag and the setTimeout method with the
appropriate browser configuration. If this issue concerns you, you should use the Refresh header
approach.

The following example uses the <meta> tag. To use this approach, create a new .aspx
page named Poll.aspx. Check to see if the long-running task has completed by calling
TempDataStore.GetRecords. If this method returns a valid object, the task has
completed; otherwise, you need to continue to poll.

poll.aspx

<%@ Page language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<script runat=server>
public void Page_Load()
{
 object obj = TempDataStore.GetRecords(Session.SessionID);
 if(obj!=null)
 { //long task is complete, goto the results
 Response.Redirect("results.aspx", false);
 }
}
</script>
<html>
 <head>
 <meta http-equiv="refresh" content="2"/>
 </head>
 <body>
 Busy...Please wait ...
 </body>
</html>

 How To: Submit and Poll for Long-Running Tasks 969

This is a very simplified example. With a real implementation, you could implement
more functionality within the polling page. For example, you could:
● Use an animated .gif file for display purposes.
● Provide status updates or an elapsed second count.
● Put the polling page in a hidden IFrame to make the refresh operations

transparent to the user.

Display the Results
Next, you need to display the results of the long-running task to the user. Create a
new .aspx page named Results.aspx as follows.

results.aspx

<%@ Page language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<script runat=server>
public void Page_Load()
{
 object obj = TempDataStore.GetRecords(Session.SessionID);
 //double-check to make sure the results are still there
 if(obj!=null)
 {
 Response.Write(string.Format("Results: {0} Session:
{1}",(int)obj,Session.SessionID));
 //remove the results
 TempDataStore.Remove(Session.SessionID);
 }
}
</script>

Clean Up the Temporary Data Store
Create a Global.asax file and add cleanup code to clean up the temporary store if the
session terminates or the application’s OnEnd event is called. Add the following code
to Global.asax.

protected void Session_End(Object sender, EventArgs e)
{
 TempDataStore.Remove(Session.SessionID);
}

protected void Application_End(Object sender, EventArgs e)
{
 TempDataStore.ClearAll();
}

970 Improving .NET Application Performance and Scalability

In this application, you do not actually store any information in ASP.NET session
state. As a result, ASP.NET does not initialize session-state processing, and a new
session ID is generated for each request. Obtaining the results from the Web service is
dependent on the session ID, so you need to ensure that sessions are enabled. To do
so, add the following code to your application’s Global.asax:

protected void Session_Start(Object sender, EventArgs e)
{
 Session["valid'] = true;
}

Compile the Code
To compile the code, run the following command from within the virtual directory
that you created earlier (for example, c:\inetpub\wwwroot\longtask).

csc.exe /t:library /out:bin\helper.dll *.cs

Note: The c:\inetpub\wwwroot\longtask\bin directory must already exist, as described in “Before
You Begin” earlier in this How To.

Run the Sample
To run the sample, use Microsoft Internet Explorer to browse to http://localhost
/longtask/Longtask.aspx and click the Call Web Service button. The browser should be
redirected to Poll.aspx, which continues to refresh until the Web service is complete.
At this point, the browser is redirected to Results.aspx, where the results from the
Web service should be displayed.

http://localhost/longtask/Longtask.aspx
http://localhost/longtask/Longtask.aspx

 How To: Submit and Poll for Long-Running Tasks 971

Sample Code
The complete code for the ASP.NET application and the Web service, together with a
batch file that you can use to compile the code, is shown below.

Compile.bat

@echo off

set WORKING_DIR=c:\inetpub\wwwroot\longtask\
set WEB_SERVICE_URL=http://localhost/longtask/mywebservice.asmx?WSDL

echo.
echo WORKING_DIR=%WORKING_DIR%
echo WEB_SERVICE_URL=%WEB_SERVICE_URL%
echo.
if exist "global.asax" goto :RENAME

:GENERATEPROXY
echo.
echo Generating proxy.cs
echo.
wsdl.exe /language:cs /nologo /namespace:ServiceNameSpace.localhost
/out:%WORKING_DIR%proxy.cs %WEB_SERVICE_URL%
if exist "~global.asax" goto :RESTORE

:COMPILEDLL
echo.
echo Compiling %WORKING_DIR%bin\helper.dll
echo.
csc.exe /t:library /nologo /out:%WORKING_DIR%bin\helper.dll %WORKING_DIR%*.cs
goto :EXIT

:RENAME
echo.
echo Renaming %WORKING_DIR%global.asax to %WORKING_DIR%~global.asax
echo.
ren %WORKING_DIR%global.asax ~global.asax
goto :GENERATEPROXY

:RESTORE
echo.
echo Renaming %WORKING_DIR%~global.asax to %WORKING_DIR%global.asax
echo.
ren %WORKING_DIR%~global.asax global.asax
goto :COMPILEDLL

:EXIT
echo.
echo Done
echo.

972 Improving .NET Application Performance and Scalability

Mywebservice.asmx

<%@ WebService Language="c#" Class="MyWebService" %>
using System;
using System.Web.Services;
public class MyWebService
{
 public MyWebService() {}
 [WebMethod]
 public int LongRunningTask(int length)
 {
 DateTime start = DateTime.Now;
 System.Threading.Thread.Sleep(length);
 return (int)((TimeSpan)(DateTime.Now - start)).TotalSeconds;
 }
}

Util.cs

using System;
using System.Collections;
using ServiceNameSpace.localhost;

namespace ServiceNameSpace
{
 public class MyState
 {

 public MyWebService _webServiceState;
 public string _sessionID;
 public MyState(MyWebService ws,string sessionID)
 {
 _webServiceState = ws;
 _sessionID = sessionID;
 }
 }
 public class TempDataStore
 {
 private static Hashtable _table = new Hashtable();
 static TempDataStore (){}
 public static object GetRecords(string key)
 {
 lock(_table.SyncRoot)
 {
 return _table[key];
 }
 }

(continued)

 How To: Submit and Poll for Long-Running Tasks 973

(continued)

 public static void SetRecords(string key, object value)
 {
 lock(_table.SyncRoot)
 {
 _table.Add(key, value);
 }
 }
 public static void Remove(string key)
 {
 lock(_table.SyncRoot)
 {
 _table.Remove(key);
 }
 }
 public static void ClearAll()
 {
 lock(_table.SyncRoot)
 {
 _table.Clear();
 }
 }
 }
}

Longtask.aspx

<%@ Page language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<%@ Import Namespace="ServiceNameSpace.localhost" %>
<script runat=server>
public void WSCallback(IAsyncResult ar)
{
 MyState myState = (MyState)ar.AsyncState;
 //retrieve the object on which EndXXX needs to be called
 MyWebService ws = myState._webServiceState;
 //store the values in the data store
 TempDataStore.SetRecords(myState._sessionID,ws.EndLongRunningTask(ar));
}
private void Button1_Click(object sender, System.EventArgs e)
{
 MyWebService ws = new MyWebService();
 AsyncCallback cb = new AsyncCallback(WSCallback);
 Random rnd = new Random();
 MyState myState = new MyState(ws,Session.SessionID);
 ws.BeginLongRunningTask(rnd.Next(10000), cb, myState);
 Response.Redirect("poll.aspx", false);
}

(continued)

974 Improving .NET Application Performance and Scalability

(continued)

</script>
<html>
<body>
 <form id="Form1" method="post" runat="server">
<asp:Button id="Button1" runat="server" onclick="Button1_Click"
Text="Button"></asp:Button>
 </form>
</body>
</html>

Poll.aspx

<%@ Page language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<script runat=server>
public void Page_Load()
{
 object obj = TempDataStore.GetRecords(Session.SessionID);
 if(obj!=null)
 { //long task is complete, goto the results
 Response.Redirect("results.aspx", false);
 }
}
</script>
<html>
 <head>
 <meta http-equiv="refresh" content="2"/>
 </head>
 <body>
 Busy...Please wait ...
 </body>
</html>

Results.aspx

<%@ Page language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<script runat=server>
public void Page_Load()
{
 object obj = TempDataStore.GetRecords(Session.SessionID);
 //double-check to make sure the results are still there
 if(obj!=null)
 {
 Response.Write(string.Format("Results: {0} Session:
{1}",(int)obj,Session.SessionID));
 //remove the results
 TempDataStore.Remove(Session.SessionID);
 }
}
</script>

 How To: Submit and Poll for Long-Running Tasks 975

Global.asax

<%@ Application Language="c#" %>
<%@ Import Namespace="ServiceNameSpace" %>
<script runat=server>
protected void Session_Start(object sender, EventArgs e)
{
 //this is needed so we don't generate a new session with each request
 Session["valid"] = true;
}
protected void Session_End(Object sender, EventArgs e)
{
 TempDataStore.Remove(Session.SessionID);
}
protected void Application_End(Object sender, EventArgs e)
{
 TempDataStore.ClearAll();
}
</script>

Additional Resources
For more information, see the following resources:
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 13, “Code Review: .NET Application Performance”

How To:
Time Managed Code Using
QueryPerformanceCounter and
QueryPerformanceFrequency

Summary
This How To shows you how to create a managed wrapper class to
encapsulate the Microsoft® Win32® functions QueryPerformanceCounter and
QueryPerformanceFrequency. You can use this class to time the execution of
managed code. This How To also provides examples that show you how to use the
class to measure the overhead associated with boxing and string concatenation.

Applies To
● Microsoft .NET Framework version 1.1

Overview
You can use the Win32 functions QueryPerformanceCounter and
QueryPerformanceFrequency to measure the performance of your code to
nanosecond accuracy. For comparison, a nanosecond (ns or nsec) is one billionth
(10-9) of a second. A millisecond (ms or msec) is one thousandth of a second.

Note: At the time of this writing, the .NET Framework 2.0 (code-named “Whidbey”) provides a
wrapper to simplify using QueryPerformanceCounter and QueryPerformanceFrequency.

978 Improving .NET Application Performance and Scalability

Creating a QueryPerfCounter Wrapper Class
In this step, you will create a wrapper class to encapsulate the Win32 function calls
used to obtain performance information.

� To create the wrapper class

1. Use Microsoft Visual Studio® .NET or any text editor to create a new C# file named
QueryPerfCounter.cs. Add an empty class named QueryPerfCounter as shown.

public class QueryPerfCounter
{
}

2. Add a using statement to reference System.Runtime.InteropServices so that you
can make calls to native Win32 functions.

using System.Runtime.InteropServices;

3. Create the declarations to call the QueryPerformanceCounter and
QueryPerformanceFrequency Win32 APIs as shown.

[DllImport("KERNEL32")]
private static extern bool QueryPerformanceCounter(out long
lpPerformanceCount);

[DllImport("Kernel32.dll")]
private static extern bool QueryPerformanceFrequency(out long lpFrequency);

4. Add a constructor. In the constructor, call QueryPerformanceFrequency, passing a
global variable to hold a value that will be used to calculate a duration in
nanoseconds.

private long frequency;

public QueryPerfCounter()
{
 if (QueryPerformanceFrequency(out frequency) == false)
 {
 // Frequency not supported
 throw new Win32Exception();
 }
}

 How To: Time Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency 979

5. Create a Start method that gets the current value from
QueryPerformanceCounter. Use a global variable to store the retrieved value.

public void Start()
{
 QueryPerformanceCounter(out start);
}

6. Create a Stop method that gets the current value from
QueryPerformanceCounter. Use another global variable to store the
retrieved value.

public void Stop()
{
 QueryPerformanceCounter(out stop);
}

7. Create a Duration method that accepts the number of iterations as an argument
and returns a duration value. Use this method to calculate the number of ticks
between the start and stop values. Next, multiply the result by the frequency
multiplier to calculate the duration of all the operations, and then divide by the
number of iterations to arrive at the duration per operation value.

public double Duration(int iterations)
{
 return ((((double)(stop - start)*
 (double) multiplier) /
 (double) frequency)/iterations);
}

Your code in QueryPerfCounter.cs should resemble the following.

QueryPerfCounter.cs

// QueryPerfCounter.cs
using System;
using System.ComponentModel;
using System.Runtime.InteropServices;

public class QueryPerfCounter
{
 [DllImport("KERNEL32")]
 private static extern bool QueryPerformanceCounter(
 out long lpPerformanceCount);

 [DllImport("Kernel32.dll")]
 private static extern bool QueryPerformanceFrequency(out long lpFrequency);

(continued)

980 Improving .NET Application Performance and Scalability

(continued)

 private long start;
 private long stop;
 private long frequency;
 Decimal multiplier = new Decimal(1.0e9);

 public QueryPerfCounter()
 {
 if (QueryPerformanceFrequency(out frequency) == false)
 {
 // Frequency not supported
 throw new Win32Exception();
 }
 }

 public void Start()
 {
 QueryPerformanceCounter(out start);
 }

 public void Stop()
 {
 QueryPerformanceCounter(out stop);
 }

 public double Duration(int iterations)
 {
 return ((((double)(stop - start)* (double) multiplier) / (double)
frequency)/iterations);
 }
}

To compile the code, use the following command line.

csc.exe /out:QueryPerfCounter.dll /t:library /r:System.dll QueryPerfCounter.cs

Using the Wrapper Class
To use the QueryPerfCounter wrapper class in your code, you need to reference
QueryPerfCounter.dll and then instantiate the QueryPerfCounter class. Your client
code should resemble the following.

QueryPerfCounter myTimer = new QueryPerfCounter();
// Measure without boxing
myTimer.Start();
for(int i = 0; i < iterations; i++)
{
 // do some work to time
}
myTimer.Stop();
// Calculate time per iteration in nanoseconds
double result = myTimer.Duration(iterations);

 How To: Time Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency 981

The following sections show examples of how to use the wrapper to time the
execution of managed code.

Validating Your QueryPerfCounter Class
In the following example, you will validate your QueryPerfCounter class by creating
a simple console application. The application puts a thread to sleep for a specified
time so that you can compare the results against your own timing results.

The following example code puts a thread to sleep for one second and loops five
times. As a result, each iteration should take one second, and the total duration
should be five seconds.

ValidateQueryPerfCounter.cs

// ValidateQueryPerfCounter.cs
using System;

public class ValidateQueryPerfCounter
{
 public static void Main()
 {
 RunTest();
 }

 public static void RunTest()
 {
 int iterations=5;

 // Call the object and methods to JIT before the test run
 QueryPerfCounter myTimer = new QueryPerfCounter();
 myTimer.Start();
 myTimer.Stop();

 // Time the overall test duration
 DateTime dtStartTime = DateTime.Now;

 // Use QueryPerfCounters to get the average time per iteration
 myTimer.Start();

 for(int i = 0; i < iterations; i++)
 {
 // Method to time
 System.Threading.Thread.Sleep(1000);
 }
 myTimer.Stop();

 // Calculate time per iteration in nanoseconds
 double result = myTimer.Duration(iterations);

(continued)

982 Improving .NET Application Performance and Scalability

(continued)

 // Show the average time per iteration results
 Console.WriteLine("Iterations: {0}", iterations);
 Console.WriteLine("Average time per iteration: ");
 Console.WriteLine(result/1000000000 + " seconds");
 Console.WriteLine(result/1000000 + " milliseconds");
 Console.WriteLine(result + " nanoseconds");

 // Show the overall test duration results
 DateTime dtEndTime = DateTime.Now;
 Double duration = ((TimeSpan)(dtEndTime-dtStartTime)).TotalMilliseconds;
 Console.WriteLine();
 Console.WriteLine("Duration of test run: ");
 Console.WriteLine(duration/1000 + " seconds");
 Console.WriteLine(duration + " milliseconds");
 Console.ReadLine();
 }
}

To compile the code above, use the following command line.

csc.exe /out:ValidateQueryPerfCounter.exe /r:System.dll,QueryPerfCounter.dll
/t:exe ValidateQueryPerfCounter.cs

Note the reference to the QueryPerfCounter.dll assembly that you built earlier.

Results
When you run ValidateQueryPerfCounter.exe, the output will resemble the
following.

Iterations: 5
Average time per iteration:
0.999648279320416 seconds
999.648279320416 milliseconds
999648279.320416 nanoseconds

Duration of test run:
5.137792 seconds
5137.792 milliseconds

 How To: Time Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency 983

Example A: Boxing Overhead
In the following console application example, you will use your wrapper class,
QueryPerfCounter, from your QueryPerfCounter.dll to measure the performance
cost of boxing an integer.

BoxingTest.cs

// BoxingTest.cs
using System;

public class BoxingTest
{
 public static void Main()
 {
 RunTest();
 }

 public static void RunTest()
 {
 int iterations=10000;

 // Call the object and methods to JIT before the test run
 QueryPerfCounter myTimer = new QueryPerfCounter();
 myTimer.Start();
 myTimer.Stop();

 // variables used for boxing/unboxing
 object obj = null;
 int value1 = 12;
 int value2 = 0;

 // Measure without boxing
 myTimer.Start();

 for(int i = 0; i < iterations; i++)
 {
 // a simple value copy of an integer to another integer
 value2 = value1;
 }
 myTimer.Stop();

 // Calculate time per iteration in nanoseconds
 double result = myTimer.Duration(iterations);
 Console.WriteLine("int to int (no boxing): " + result + " nanoseconds");

 // Measure boxing
 myTimer.Start();

(continued)

984 Improving .NET Application Performance and Scalability

(continued)

 for(int i = 0; i < iterations; i++)
 {
 // point the object to a copy of the integer
 obj = value1;
 }
 myTimer.Stop();

 // Calculate time per iteration in nanoseconds
 result = myTimer.Duration(iterations);
 Console.WriteLine("int to object (boxing): " + result + " nanoseconds");

 // Measure unboxing
 myTimer.Start();

 for(int i = 0; i < iterations; i++)
 {
 // copy the integer value from the object to a second integer
 value2 = (int)obj;
 }
 myTimer.Stop();

 // Calculate time per iteration in nanoseconds
 result = myTimer.Duration(iterations);
 Console.WriteLine("object to int (unboxing): " + result + " nanoseconds");
 Console.ReadLine();
 }
}

Compiling the Sample
To compile the code, use the following command line.

csc.exe /out:BoxingTest.exe /r:System.dll,QueryPerfCounter.dll /t:exe
BoxingTest.cs

Results
Run BoxingTest.exe. The results show you the overhead when boxing occurs.

int to int (no boxing): 1.22920650529606 nanoseconds
int to object (boxing): 77.132708207328 nanoseconds
object to int (unboxing): 2.87746068285215 nanoseconds

In the scenario above, an additional object is created when the boxing occurs.

 How To: Time Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency 985

Example B: String Concatenation
In this example, you will use the QueryPerfCounter class to measure the
performance impact of concatenating strings. This example allows you to increase
iterations so that you can observe the impact as the number of iterations grows.

StringConcatTest.cs

// StringConcatTest.cs
using System;
using System.Text;

public class StringConcatTest
{
 public static void Main()
 {
 RunTest(10);
 RunTest(100);
 }

 public static void RunTest(int iterations)
 {
 // Call the object and methods to JIT before the test run
 QueryPerfCounter myTimer = new QueryPerfCounter();
 myTimer.Start();
 myTimer.Stop();

 Console.WriteLine("");
 Console.WriteLine("Iterations = " + iterations.ToString());
 Console.WriteLine("(Time shown is in nanoseconds)");

 // Measure StringBuilder performance
 StringBuilder sb = new StringBuilder("");
 myTimer.Start();
 for (int i=0; i<iterations; i++)
 {
 sb.Append(i.ToString());
 }

 myTimer.Stop();

 // Pass in 1 for iterations to calculate overall duration
 double result = myTimer.Duration(1);
 Console.WriteLine(result + " StringBuilder version");

 // Measure string concatenation
 string s = string.Empty;
 myTimer.Start();
 for (int i=0; i<iterations; i++)
 {
 s += i.ToString();
 }

(continued)

986 Improving .NET Application Performance and Scalability

(continued)

 myTimer.Stop();

 // Pass in 1 for iterations to calculate overall duration
 result = myTimer.Duration(1);
 Console.WriteLine(result + " string concatenation version");
 Console.ReadLine();
 }
}

Compiling the Sample
To compile the code, use the following command line.

csc.exe /out:StringConcat.exe /r:System.dll,QueryPerfCounter.dll /t:exe
StringConcat.cs

Results
With a small number of concatenations, the benefits of using StringBuilder are less
obvious. However, with a hundred concatenations, the difference is more apparent.
For example:

10 Iterations

Iterations = 10
12292.0650529606 StringBuilder version
20393.6533833211 string concatenation version

100 Iterations

Iterations = 100
62019.0554944832 StringBuilder version
112304.776165686 string concatenation version

Additional Resources
● For more information, see the following resources:
● Chapter 5, “Improving Managed Code Performance”
● Chapter 13, “Code Review: .NET Application Performance”
● Chapter 15, “Measuring .NET Application Performance”

How To:
Use ACT to Test Performance
and Scalability

Summary
This How To shows you how to use the Application Center Test (ACT) tool to
perform load tests. It describes how to configure ACT and establish project settings,
and how to manually modify ACT scripts to address common requirements, such as
using ACT with applications that use view state and a variety of different
authentication mechanisms.

Applies To
● Microsoft® Application Center Test (ACT)
● Microsoft Visual Studio® .NET 2003 Enterprise Developer and Enterprise

Architect editions

Overview
Application Center Test (ACT) is designed to stress test Web servers and analyze
performance and scalability problems with Web applications. ACT simulates a large
group of users by opening multiple connections to the server and rapidly sending
HTTP requests.

ACT is installed with Visual Studio .NET 2003 Enterprise Developer or Enterprise
Architect edition. Before beginning this How To, you must have one of these two
versions of Visual Studio .NET installed.

You can use the tool directly within the Visual Studio .NET integrated development
environment (IDE), though this method provides limited project configuration
options. Full options are available when you use the stand-alone ACT application.

988 Improving .NET Application Performance and Scalability

What You Must Know
When using ACT for stress and load testing, be aware of the following limitations:
● With a single ACT client, you can only run one test at a time.
● ACT is processor-intensive, which quickly stresses the client computer. This

additional stress to the client computer can distort your results.
● ACT supports only synchronous communication to the server.

If you need to run concurrent tests from the same client, you may consider
downloading the Web Application Stress Tool (WAST). Note that WAST is not
supported. You can download WAST from http://www.microsoft.com/downloads
/details.aspx?FamilyID=e2c0585a-062a-439e-a67d-75a89aa36495&DisplayLang=en.

Summary of Steps
The following steps guide you through the process of creating and running a simple
test using ACT to simulate the usage of your application by multiple users:
1. Create an ACT project.
2. Create a test.
3. Set test properties.
4. Run the test.
5. Analyze the output.

Step 1. Create an ACT Project
A project is a container for a test or multiple tests that make up a suite. You must have
a project before creating a test.

� To create a new ACT project

1. Start Microsoft Application Center Test from the Start menu by pointing
to All Programs, Microsoft Visual Studio .NET 2003, Visual Studio .NET
Enterprise Features, and then clicking Microsoft Application Center Test.

2. On the File menu, click New Project.
3. In the New Project dialog box, type MyTestProject in the Name box, and then

click OK.

http://www.microsoft.com/downloads/details.aspx?FamilyID=e2c0585a-062a-439e-a67d-75a89aa36495&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=e2c0585a-062a-439e-a67d-75a89aa36495&DisplayLang=en

 How To: Use ACT to Test Performance and Scalability 989

Changing the Log File Location
Properties for a project include the location of the ACT log file. The log file contains
the output of any Test.Trace method call used in the test script. By default, ACT
writes the log to the ACT installation folder.

� To change the log file location

1. On the Actions menu, click Properties.
2. In the Properties dialog box, click Debugging.
3. In the Folder to save log to box, browse to a folder of your choice, and then

click OK.

Step 2. Create a Test
You can create a test script manually, or you can have ACT record your interaction
with a Web application. The record feature may require you to make changes to the
script for some test scenarios.

Recording an ACT Test
To create a test file by using the Record a new test feature of the ACT tool, follow
these steps.

� To record an ACT test

1. On the Actions menu, click New Test.
2. In the Welcome dialog box, click Next.
3. In the Test Source dialog box, choose Record a new test, and then click Next.
4. In the Browser Record dialog box, click Start recording. A browser window

opens.
5. Type the URL of the page you want to start the test from.
6. From this browser instance, perform the required operations on the test pages.

For example, place an order for books after searching the site, adding books to
a shopping cart, and supplying payment information.

7. Close the browser instance.
8. In the Browser Record dialog box, click Stop recording, and then click Next.
9. In the Test name box, type in a name for your test.

10. Click Next, and then click Finish.

Note: Recording the test creates a test script that does not work with view state and multiple
users. For more information about working with view state, see “View State” later in this How To.

990 Improving .NET Application Performance and Scalability

Step 3. Set Properties for a Test
Before you run the load test against your application, you can modify the test
features to reflect your test requirements. To set test properties, right-click the test and
click Properties. Properties of the test that can be modified include the test load level,
test duration, number of users, performance counters to be monitored, and reporting
features.

Simultaneous Browser Connections (Test Load Level)
Simultaneous browser connections equate to the number of unique connections
made to your Web server. The number of users should equal or exceed this value
because each browser instance hits the page as a different user. If you need to
simulate 20 concurrent connections to the application, set this value to 20.

Test Duration
You can choose to run your test for a specified amount of time or for a given number
of iterations. Each has a different purpose:
● Run test for a specific duration. Choose this option when you want load or

stress test results for a given amount of time. Make sure that the test runs long
enough to capture the minimum number of user operations. Generally, for
applications where one full cycle of operations takes t1 amount of time, run the
test for at least 2 * t1.

● Run test a specified number of times. This option does not use warm-up time,
and begins logging the test results right away. In general, choose this option for
investigative tests rather than for load and stress tests.

Warm-up Time
The delay that occurs as objects are initialized and as your application reaches a
steady state can skew test results. Use a warm-up time to allow initialization activity
to stabilize before collecting performance data. You can determine an approximate
warm-up time by watching the time it takes for the CPU utilization value to stabilize,
or by looking at the requests per seconds of the previous test results before it reached
a steady state.

Users (Users Tab)
The Users setting allows you to specify the users that the tool will use for the test run.
You have two options:
● You can have ACT automatically generate the users needed for the test run.

– or –
● You can specify a User group, which has predefined users.

 How To: Use ACT to Test Performance and Scalability 991

The number of users defined in the User group needs to be equal to or greater than
the number of simultaneous browser connections, because each browser instance hits
the page as a different user.

Creating New Users
If you need to create more users, you can do so through the ACT user interface.

� To create new users

1. In the main window of the ACT tool, right-click the Users folder for your project
and click Add to create a new user group. Specify an appropriate group name.

2. Select the user group for which you need to generate users, and, on the main
Actions menu, click Generate users. Specify the number of users and the required
user details, and then click OK. ACT generates the specified number of users with
the details supplied.

3. To import users from other data sources, select the user group for which you need
to import users, and, on the main Actions menu, click Import users. Select the
data source file and follow the wizard instructions.

For Web applications that require specific user name and password combinations,
you can create users in a user group, and then the group can be selected from this
tab on the properties page.

Note that all iterations of the script use the same user unless the test script
programmatically calls Test.GetNextUser. For more information about the
Test object’s methods, see the ACT Help file.

Step 4. Run the Test
The next step is to run the load test against your application.

� To run the test

1. On the Actions menu, click Start Test.
2. Wait for the test to finish. You should see a live graph showing requests per

second.
3. When the test is complete, click Close.
4. On the Actions menu, click View Latest Results. You can also click Results in

the tree view.

992 Improving .NET Application Performance and Scalability

Step 5. Analyze the Output
ACT produces output immediately and displays it in the Test Status window as
your test runs. The Test Status window shows the time elapsed and time remaining,
requests per second (RPS), and three types of errors: HTTP, DNS, and Socket. Before
using the test results, you should investigate any errors and resolve them.

When a test is complete, you can view the latest results by right-clicking the test
name from the project tree on the left pane and then clicking View Latest Results.
The most commonly used performance measurements are displayed to the right of
the test name.

Table 1: ACT Results

Item Details

Test Run Name The display name for the report. Right-click the report to rename it or
delete it from the project.

Date Started The date and time the test run started.

Total Run Time The test run duration, in seconds.

Total Iterations The number of times the test looped through the test script during the
test run.

Total Requests The total number of requests sent during the test run.

Connections The number of simultaneous browser connections property value at the
time the test run occurred.

Avg Requests/sec The average number of requests sent, per second. The value is
calculated with data collected over a one-second time period.

Avg Time to First Byte
(msecs)

The average time between sending the request and receiving the first
byte of the server response.

Avg Time to Last Byte
(msecs)

The average time between sending the request and receiving the end of
the server response.

HTTP Errors The sum of all responses with result codes in the 400–499 and 500–
599 ranges.

DNS Errors The sum of all DNS errors.

Socket Errors The sum of all socket connection errors.

 How To: Use ACT to Test Performance and Scalability 993

Monitoring Client Health
Running ACT places a load on the client computer. Specifically, ACT places a load on
the processor and uses memory. Monitor basic health indicators on the client to verify
that the client computer is not overloaded, which could produce inaccurate results.
Use the following System Monitor performance counters, shown in Table 2, to
monitor display system health.

Table 2: Monitoring ACT Client Health

Counter Details

Processor \ % Processor Time Should not have sustained usage of more than 75%.

Memory \ Available Mbytes Should not be less than 20–25% of client memory.

Common Tasks
You generally need to customize an ACT test script to configure it for your specific
application requirements. The most common areas that require specific configuration
include:
● Think time
● Authentication
● Secure Sockets Layer (SSL)
● ViewState
● Cookies
● Tracing
● Web Services

Think Time
By default, ACT executes requests in your test as fast as the client computer is
capable of sending them. The default behavior of the ACT client tests the raw
throughput of your application but does not represent the real-world behavior
of users. You need to use Test.Sleep to simulate user interaction. Inserting calls
to Test.Sleep allows you to specify a delay, in milliseconds, between requests to
simulate user reaction time. For example:

' 5 second delay between user steps:
Sub Step1()
 'Some work as a first step
End Sub
Call Test.Sleep(5000)
Sub step2()
 'Some work as second step
End Sub

994 Improving .NET Application Performance and Scalability

You can also use Test.Sleep to simulate the time it takes to fill out a form. In this case,
you need to insert sleep times after the initial page request, and before submitting the
form.

Sub CreateLogin()
 ' request new account page
 Call Test.Sleep(5000)
 ' create login code
End Sub

Authentication
ACT supports anonymous, Integrated Windows, basic, digest, and Passport
authentication mechanisms for test execution. If you use the record test feature to
create test scripts, you need to modify the test scripts to support Integrated Windows
and passport authentication. The discussion that follows describes how to do so.

Windows Authentication
ACT supports Integrated Windows authentication while testing, but you cannot
record tests for a Web application that has the Integrated Authentication option
enabled within Internet Information Services (IIS). The following steps show you
how to work around this problem.

� To record by using an application that uses Windows authentication

1. Enable basic authentication, in addition to Integrated Windows authentication,
on your IIS server.

2. Record the ACT test script for testing your application. Provide the appropriate
domain, user name, and passwords for your Web application when prompted by
the tool.

3. Change the Web application configuration back to Integrated Windows
authentication.

4. Comment out or delete the following line of each request in the test script, which
was recorded in Step 2.

oHeaders.Add "Authorization", "Basic XYZ"

5. Set up the ACT users (using a separate user group if needed) with the proper
domains, user names, and passwords that you want to simulate.

 How To: Use ACT to Test Performance and Scalability 995

6. For each request, change the following line in the script:

oRequest.HTTPVersion = "HTTP/1.0"

to:

oRequest.HTTPVersion = "HTTP/1.1"

7. Run the ACT test script.

Passport
Microsoft .NET Passport is a suite of services that enable single sign-on for user
authentication. Passport Web applications use Secure Sockets Layer (SSL); as a result,
you cannot use ACT to record sessions against applications that use Passport
authentication. Because the implementation of Passport can vary depending on the
application design, you have to modify the test script manually.

For more information and code samples that show you how to modify test scripts for
applications that implement Passport, see Performance Testing Microsoft .NET Web
Applications, available from Microsoft Press® at http://www.microsoft.com/MSPress/books
/5788.asp.

Basic and Digest
You can record sessions against applications that use basic and digest authentication,
without any test script modification. Your test script contains the relevant code, as
shown below.

For basic authentication:

oHeaders.Add "Authorization", "Basic xyz="

For digest authentication:

oHeaders.Add "Authorization", "Digest username="+chr(34)+"domain\username"+_
chr(34)+", realm="+chr(34)+"MyApp"+chr(34)+", qop="+chr(34)+"auth"+_
chr(34)+", algorithm="+chr(34)+"MD5"+chr(34)+", uri="+chr(34)+_
"/MyDir/"+chr(34)+", nonce="+chr(34)+"xyz"+chr(34)+",_
nc=00000001, cnonce="+chr(34)+"xyz"+chr(34)+", response="_
+chr(34)+"xyz"+chr(34)

Anonymous
ACT automatically supports anonymous authentication for both the recording and
the execution of your test script.

http://www.microsoft.com/mspress/books/5788.asp
http://www.microsoft.com/mspress/books/5788.asp

996 Improving .NET Application Performance and Scalability

Secure Sockets Layer (SSL)
Recording an ACT test script with an SSL-enabled Web application is not supported.
This is because ACT records the test by using a proxy, and the data is already
encrypted when it reaches the proxy. To work around this issue, use the following
steps.

� To record an ACT test script with an SSL-enabled Web application

1. Disable SSL on the Web server and record the ACT test script.
2. After recording the test, modify the call to Test.CreateConnection in the test file.

Specify port 443 instead of port 80, and set the bUseSSL parameter to true.

The basic syntax for Test.CreateConnection is:

MyConnection = Test.CreateConnection(strServer, lPort, bUseSSL)

The connection syntax without enabling SSL on the Web server is:

MyConnection = Test.CreateConnection("WebServerName", 80, False)

The connection syntax with SSL enabled on the Web server is:

MyConnection = Test.CreateConnection("WebServerName", 443, True)

View State
ASP.NET uses view state to maintain state passed between the browser and Web
server by using hidden form elements on a page. ACT does not natively support
ASP.NET view state. The view state information recorded in the ACT script is only
valid for the user identity used to record the script. Therefore, errors occur if the view
state is reused by a test script. To solve the problem, parse the response and encode
the view state manually.

� To use view state with ACT

1. Open the test script recorded by ACT that you want to modify. Your recorded
script may look like the following, which is generated by the registration page
for the IBuySpy sample application.

oRequest.Body = "__VIEWSTATE=dDwtMTMxMzQyNDA4ODs7bDxSZWdpc3RlckJ0bj"
oRequest.Body = oRequest.Body +
"s%2BPh66%2F3Nf3WRINSe993%2B9pPGt%2B0je&Name=a&Emai"
oRequest.Body = oRequest.Body +
"l=a@a.com&Password=a&ConfirmPassword=a&RegisterBtn"
oRequest.Body = oRequest.Body + ".x=0&RegisterBtn.y=0"

 How To: Use ACT to Test Performance and Scalability 997

2. Replace the ACT view state GUID with a variable.
The view state variable is identified by the "__VIEWSTATE=" variable in the
response body.
Replace this GUID with a variable. Make sure you remove the entire view state
and replace it with the strViewState variable — some of it may be concatenated to
the second line. After making the change for view state (and adding script to
automatically use a new user for the registration process), the body of your POST
should look like this:

oRequest.Body = "__VIEWSTATE=" & strViewState
oRequest.Body = oRequest.Body + &Name=a&Emai"
oRequest.Body = oRequest.Body +
"l=a@a.com&Password=a&ConfirmPassword=a&RegisterBtn"
oRequest.Body = oRequest.Body + ".x=0&RegisterBtn.y=0"

3. At the top of the test, outside all subroutines, declare the variable used to
represent the view state in the test script.

Dim StrViewState

4. Declare the following variables at the beginning of the GET subroutine in the test
script.

Dim Pos1, Pos2

5. Add the following snippet of code to the GET request. Add the code between the
Begin and End view state parsing comments. Additional code in the subroutine is
shown below to show you where to add these lines in the GET subroutine.

If (oResponse is Nothing) Then
 Test.Trace "Error: Failed to receive response for URL to " +
"/StoreVBVS/register.aspx"
Else
 ' Begin viewstate parsing
 If InStr(oResponse.Body, "__VIEWSTATE") Then
 Pos1 = InStr(InStr(oResponse.Body, "__VIEWSTATE"), oResponse.Body,
"value=")
 Pos2 = InStr(Pos1, oResponse.Body, ">")
 strViewstate = Mid(oResponse.Body, Pos1 + 7, Pos2 - Pos1 - 10)
 ' Manually encode viewstates:
 ' Replace all occurrences of "+" with "%2B"
 viewst = Replace(viewst, "+", "%2B")
 ' Replace all occurrences of "=" with "%3D"
 viewst = Replace(viewst, "=", "%3D")
 End If
 ' End viewstate parsing
 strStatusCode = oResponse.ResultCode
 End If
 oConnection.Close
 End If
End Sub

998 Improving .NET Application Performance and Scalability

Final Script
After you’ve made these view state modifications, your test script should look like
the following.

Sub SendRequestxx()
 Dim StrViewState
 Dim Pos1, Pos2

 If fEnableDelays = True then Test.Sleep (2333)
 Set oConnection = Test.CreateConnection("localhost", 80, false)

 If (oConnection is Nothing) Then
 Test.Trace "Error: Unable to create connection to localhost"
 Else
 Set oRequest = Test.CreateRequest
 oRequest.Path = "/StoreCS/register.aspx"
 oRequest.Verb = "GET"
 oRequest.HTTPVersion = "HTTP/1.0"
 set oHeaders = oRequest.Headers
 oHeaders.RemoveAll
 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*"
 oHeaders.Add "Referer", "http://localhost/StoreCS/Login.aspx"
 oHeaders.Add "Accept-Language", "en-us"
 oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;
.NET CLR 1.0.3705; .NET CLR 1.1.4322)"
 oHeaders.Add "Host", "(automatic)"
 oHeaders.Add "Cookie", "(automatic)"
 Set oResponse = oConnection.Send(oRequest)

 If (oResponse is Nothing) Then
 Test.Trace "Error: Failed to receive response for URL to " +
"/StoreCS/register.aspx"
 Else

 ' Begin viewstate parsing
 If InStr(oResponse.Body, "__VIEWSTATE") Then
 Pos1 = InStr(InStr(oResponse.Body, "__VIEWSTATE"), oResponse.Body,
"value=")
 Pos2 = InStr(Pos1, oResponse.Body, ">")
 strViewstate = Mid(oResponse.Body, Pos1 + 7, Pos2 - Pos1 - 10)
 strViewstate = Replace(strViewstate, "+", "%2B")
 strViewstate = Replace(strViewstate, "=", "%3D")
 End If
 ' End viewstate parsing

 strStatusCode = oResponse.ResultCode
 End If

 oConnection.Close
 End If
End Sub

 How To: Use ACT to Test Performance and Scalability 999

Cookies
Cookies are handled automatically. You can specify them by using the Headers.Add
method as follows.

Headers.Add "Cookie", "(automatic)"

Tracing
You can enable tracing to troubleshoot problems. You either enable tracing on the
project for all tests, or you enable tracing within a test. To enable tracing at the project
level, right-click the ACT project to display the Properties dialog box, and then
enable tracing options on the Debugging tab. To enable tracing within your test,
specify Test.TraceLevel as follows.

Test.TraceLevel=-1 '-1 logs all information

Test.TraceLevel has the following options:
● – 1: Log all information
● 0: Disable logging
● 1: Log internal program information only
● 2: Log external information only from the Test.Trace method. This option is the

default.

You can add custom messages to your trace output. To do so, use the Test.Trace
method as follows.

Test.Trace("Just a test") ' Just a test is a custom message

The default location for the trace log file is “%ProgramFiles%\Microsoft
ACT\ACTTrace.log” on the test controller computer. The log is cycled when a
new test is run. If you want to preserve the log, copy it to a different location.

Note: Recorded scripts will capture errors a server sends.

If you build a script manually, insert your script in the following If statement to
capture any error pages that are returned.

Set oResponse = oConnection.Send(oRequest)
If (oResponse is Nothing) Then
 Test.Trace "Error: Failed to receive response for URL to " + "/session.aspx"
End If
oConnection.Close

1000 Improving .NET Application Performance and Scalability

Web Services
For information about how to use ACT to test Web services, see “How To: Use ACT to
Test Web Services” in the “How To” section of this guide.

Additional Resources
For more information, see the following resources:
● Chapter 15, “Measuring .NET Application Performance”
● Chapter 16, “Testing .NET Application Performance”
● “How To: Use ACT to Test Web Services Performance” in the “How To” section of

this guide
● Performance Testing Microsoft .NET Web Applications, available from Microsoft Press

at http://www.microsoft.com/MSPress/books/5788.asp

http://www.microsoft.com/mspress/books/5788.asp

How To:
Use ACT to Test Web Services
Performance

Summary
Microsoft® Application Center Test (ACT) does not directly support the testing of
Web services, so you must manually modify your test scripts to make the tool work
correctly. This How To walks you through the creation of an ACT test script file that
you can use to load test a Web service.

Applies To
● Microsoft Application Center Test (ACT). This tool is included with Microsoft

Visual Studio® .NET Enterprise Developer and Enterprise Architect Editions.
● Microsoft .NET Framework versions 1.0 and 1.1.

Overview
ACT is designed for stress testing Web servers and analyzing performance and
scalability problems with Web applications. Visual Studio .NET Enterprise Developer
and Enterprise Architect Editions include ACT. You can use ACT directly within the
integrated development environment (IDE), though this method provides limited
project configuration options. Full options are available only when you use the
stand-alone ACT application.

ACT does not directly support the testing of Web services, so you must manually
modify your test scripts to make the tool work correctly. This How To walks you
through the creation of an ACT test script file that you can use to load test a Web
service. The sample code for the Web service used in this example is available in
“Sample: Simple Web Service” later in this How To.

1002 Improving .NET Application Performance and Scalability

Summary of Steps
This How To includes the following steps:
1. Create an empty ACT test.
2. Create the SOAP request.
3. Copy the SOAP envelope to the test script file.
4. Modify the SOAP envelope.
5. Add request headers to the test file.
6. Add Send Request to complete the test file.

Step 1. Create an Empty ACT Test
In this step, you create an empty ACT test named ACTTest.

� To create an empty test

1. Start ACT. In the Actions dialog box, click New Test.
2. In the Welcome dialog box, click Next.
3. In the Test Source dialog box, click Create an empty test, and then click Next.
4. Click Next.
5. In the Test name field, type a name for the test (in this case, ACTTest).
6. Click Next, and then click Finish.

Step 2. Create the SOAP Request
Invoke the Web service from Microsoft Internet Explorer® by entering the path of the
Web service to be tested. Then select the Web method you want to test. A Web service
Help page is displayed that contains the following sample SOAP request and
response.

POST /HelloTest/WS/ACTSampleWS.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Hello"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Hello xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

 How To: Use ACT to Test Web Services Performance 1003

Step 3. Copy the SOAP Envelope to the Test Script File
Copy the entire SOAP envelope from the browser window to the Clipboard, and then
paste it into your test script as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Hello xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

Step 4. Modify the SOAP Envelope
You need to modify the SOAP envelope in two ways:
● Replace double quotation marks with "& chr(34) &" in the copied

SOAP envelope.
● Convert the SOAP envelope to a request body.

Replace Double Quotation Marks with "& chr(34) &" in the
Copied SOAP Envelope
You need to replace the double quotation marks with "& chr(34) &". You can use the
ACT Replace menu item to automate this task.

� To replace double quotation marks by using ACT

1. On the Edit menu, click Replace.
2. In the Find what edit box, add one double quotation mark (").
3. In the Replace with edit box, type "& chr(34) & ", including quotation marks on

each side.
4. Click Replace All.

Note that there is no undo option for this action.

Convert the SOAP Envelope to a Request Body
You need to add Body = " to the first line (make sure that there are no spaces after the
double quotation marks) and Body = Body & " to all of the following lines of the
modified SOAP envelope. Also, add a quotation mark at the end of each line of the
SOAP request.

1004 Improving .NET Application Performance and Scalability

Sample SOAP Envelope
After you’ve made these two modifications, the SOAP envelope looks like the
following.

Body = "<?xml version="&chr(34)&"1.0"&chr(34)&" encoding="&chr(34)&"utf-
8"&chr(34)&"?>"
Body = Body & "<soap:Envelope
xmlns:xsi="&chr(34)&"http://www.w3.org/2001/XMLSchema-instance"&chr(34)&"
xmlns:xsd="&chr(34)&"http://www.w3.org/2001/XMLSchema"&chr(34)&"
xmlns:soap="&chr(34)&"http://schemas.xmlsoap.org/soap/envelope/"&chr(34)&">"
Body = Body & "<soap:Body>"
Body = Body & "<Hello xmlns="&chr(34)&"http://tempuri.org/"&chr(34)&" />"
Body = Body & "</soap:Body>"
Body = Body & "</soap:Envelope>"

Step 5. Add Request Headers to the Test File
Add the following code to the beginning of the test script. Place this code
immediately before the SOAP request you pasted into the test.

Dim oConnection
Dim oRequest
Dim oRepsonse
set oConnection = Test.CreateConnection("<Web Server Name Here>", 80, false)
set oRequest = Test.CreateRequest

oRequest.Path = "<Web Service Path Here>"
oRequest.Verb = "POST"
oRequest.HTTPVersion = "HTTP/1.1"

oRequest.Headers.RemoveAll
oRequest.Headers.Add "Host", "(automatic)"
oRequest.Headers.Add "SOAPAction", "<Web Service Namespace here>"
oRequest.Headers.Add "Content-Type", "text/xml; charset=utf-8"
oRequest.Headers.Add "Content-Length", "(automatic)"

Note: You must replace <Web Service Path Here> with your Web service path, and you must replace
<Web Service Namespace here> with your Web service namespace.

 How To: Use ACT to Test Web Services Performance 1005

Obtaining the Web Service Path
Obtain the Web service path from the generated output that is displayed in the
browser. Sample output is shown here. Use the Web service path from the POST
line of the request.

POST /HelloTest/WS/ACTSampleWS.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/Hello"

The path for this sample is /HelloTest/WS/ACTSampleWS.asmx.

Obtaining the Web Service Namespace
Obtain the Web service namespace from the generated output displayed in the
browser. Copy the Web service path from the SOAPAction: line of the request.

oRequest.Headers.Add "SOAPAction", "http://tempuri.org/Hello"

The path for this sample is http://tempuri.org/Hello.

Step 6. Add Send Request to Complete the Test File
Add the following code to send the request to the end of the script file.

oRequest.Body = Body
Set oResponse = oConnection.Send(oRequest)

Final Test Script
The following example shows a test script after the modifications discussed in
this How To have been applied. This script is suitable for testing a Web service.

Dim oConnection
Dim oRequest
Dim oRepsonse
set oConnection = Test.CreateConnection("localhost", 80, false)
set oRequest = Test.CreateRequest

 oRequest.Path = "/HelloTest/WS/ACTSampleWs.asmx"
 oRequest.Verb = "POST"
 oRequest.HTTPVersion = "HTTP/1.1"

(continued)

1006 Improving .NET Application Performance and Scalability

(continued)

 oRequest.Headers.RemoveAll
 oRequest.Headers.Add "Host", "(automatic)"
 oRequest.Headers.Add "SOAPAction", "http://tempuri.org/Hello"
 oRequest.Headers.Add "Content-Type", "text/xml; charset=utf-8"
 oRequest.Headers.Add "Content-Length", "(automatic)"

Body = "<?xml version="&chr(34)&"1.0"&chr(34)&" encoding="&chr(34)&"utf-
8"&chr(34)&"?>"
Body = Body & "<soap:Envelope
xmlns:xsi="&chr(34)&"http://www.w3.org/2001/XMLSchema-instance"&chr(34)&"
xmlns:xsd="&chr(34)&"http://www.w3.org/2001/XMLSchema"&chr(34)&"
xmlns:soap="&chr(34)&"http://schemas.xmlsoap.org/soap/envelope/"&chr(34)&">"
Body = Body & "<soap:Body>"
Body = Body & "<Hello xmlns="&chr(34)&"http://tempuri.org/"&chr(34)&" />"
Body = Body & "</soap:Body>"
Body = Body & "</soap:Envelope>"

oRequest.Body = Body
Set oResponse = oConnection.Send(oRequest)

Sample: Simple Web Service
The following simple Web service code returns a “Hello World” string when the
“Hello” Web method is called. You can use this sample to check that your ACT test
script functions correctly.

SampleWS.asmx

<%@ webservice language=c# class=SampleWS.HelloWorld %>
using System.Web.Services;

namespace SampleWS
{
 public class HelloWorld
 {
 [WebMethod]
 public string Hello()
 {
 return "Hello World";
 }
 }
}

 How To: Use ACT to Test Web Services Performance 1007

.NET Framework Version 1.1 Considerations
.NET Web services support HTTP GET, HTTP POST, and SOAP protocols. By default,
in .NET Framework 1.1, HTTP GET and HTTP POST are both disabled.

Enabling HTTP GET and HTTP POST
You can enable the HTTP GET and HTTP POST protocols either for a specific Web
service using Web.config or for the entire computer using Machine.config.

Web Config
Use the following configuration in a specific Web.config file in the virtual root
directory where the Web service resides. The following configuration enables both
HTTP GET and HTTP POST.

<configuration>
 <system.web>
 <webServices>
 <protocols>
 <add name="HttpGet"/>
 <add name="HttpPost"/>
 </protocols>
 </webServices>
 </system.web>
</configuration>

Machine.config
The following example enables HTTP GET, HTTP POST, and SOAP; it also enables
HTTP POST for requests from localhost.

<protocols>
 <add name="HttpSoap"/>
 <add name="HttpPost"/>
 <add name="HttpGet"/>
 <add name="HttpPostLocalhost"/>
</protocols>

More Information
For more information about enabling these protocols, see Knowledge Base
article 819267, “INFO: HTTP GET and HTTP POST Are Disabled by Default” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;819267.

http://support.microsoft.com/default.aspx?scid=kb;en-us;819267

1008 Improving .NET Application Performance and Scalability

Additional Resources
For more information, see the following resources:
● For information about using ACT for load testing and stress testing, see

“How To: Use ACT to Test Performance and Scalability” in the “How To” section
of this guide.

● Chapter 15, “Measuring .NET Application Performance.”
● Chapter 16, “Testing .NET Application Performance.”
● For detailed information about ACT, see “Microsoft Application Center Test 1.0,

Visual Studio .NET Edition” on MSDN® at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/act/htm/actml_main.asp.

● Performance Testing Microsoft .NET Web Applications, available from Microsoft
Press® at http://www.microsoft.com/MSPress/books/5788.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp
http://www.microsoft.com/MSPress/books/5788.asp

How To:
Use CLR Profiler

Summary
This How To shows you how to use the CLR Profiler tool to investigate your
application’s memory allocation profile. You can use CLR Profiler to identify code
that causes memory problems, such as memory leaks and excessive or inefficient
garbage collection.

Applies To
● CLR Profiler

Overview
CLR Profiler enables you to look at the managed heap of a process and investigate
the behavior of the garbage collector. Using the various views in the tool, you can
obtain useful information about the execution, allocation, and memory consumption
of your application.

CLR Profiler is not a starting point for analyzing problems. Rather, it helps you
identify and isolate problematic code and track down memory leaks. Using CLR
Profiler, you can identify code that allocates too much memory, causes too many
garbage collections, and holds on to memory for too long.

Note: CLR Profiler is an intrusive tool that causes your application’s performance to be significantly
slower than normal (somewhere between 10 to 100 times slower). The tool is not designed for use
in production environments.

Downloading CLR Profiler
CLR Profiler is downloaded as a self-extracting executable file. The expanded
contents include the source code and the executable file (CLRProfiler.exe). The
download also contains a comprehensive document that provides detailed
information on CLR Profiler.

1010 Improving .NET Application Performance and Scalability

Download CLR Profiler
● CLR Profiler is available as an Internet download from Microsoft

Download Center at http://download.microsoft.com/download/4/4/2
/442d67c7-a1c1-4884-9715-803a7b485b82/clr%20profiler.exe.

What You Must Know
The primary function of CLR Profiler is to enable you to understand how your
application interacts with the managed, garbage-collected heap. Some of the
more important things that you can investigate include:
● Who allocates what on the managed heap.
● Which objects survive on the managed heap.
● Who is holding on to objects.
● What the garbage collector does over the lifetime of your application.

Results of profiling are stored in log files. You can view these files in various ways
by using the view menus in CLR Profiler to display the corresponding graphs. Table 1
lists the most useful views.

Table 1: CLR Profiler Views

View Description

Histogram Allocated Types Gives you a high-level view of what object types are allocated (by
allocation size) during the lifetime of your application. This view also
shows those objects that are allocated in the large object heap
(objects larger than 85 KB).

This view allows you to click parts of the graph so that you can see
which methods allocated which objects.

Histogram Relocated Types Displays the objects that the garbage collector has moved because
they have survived a garbage collection.

Objects By Address Provides a picture of what is on the managed heap at a given time.

Histogram By Age Allows you to see the lifetime of the objects on the managed heap.

Allocation Graph Graphically displays the call stack for how objects were allocated.
You can use this view to:

• See the cost of each allocation by method.

• Isolate allocations that you were not expecting.

• View possible excessive allocations by a method.

(continued)

http://download.microsoft.com/download/4/4/2/442d67c7-a1c1-4884-9715-803a7b485b82/clr profiler.exe
http://download.microsoft.com/download/4/4/2/442d67c7-a1c1-4884-9715-803a7b485b82/clr profiler.exe

 How To: Use CLR Profiler 1011

Table 1: CLR Profiler Views (continued)

View Description

Assembly, Module, Function,
and Class Graph

These four views are very similar. They allow you to see which
methods pulled in which assemblies, functions, modules, or
classes.

Heap Graph Shows you all of the objects in the managed heap, along with their
connections.

Call Graph Lets you see which methods call which other methods and how
frequently.

You can use this graph to get a feel for the cost of library calls and
to determine how many calls are made to methods and which
methods are called.

Time Line Displays what the garbage collector does over the lifetime of the
application. Use this view to:

• Investigate the behavior of the garbage collector.

• Determine how many garbage collections occur at the three
generations (Generation 0, 1, and 2) and how frequently they
occur.

• Determine which objects survive garbage collection and are
promoted to the next generation.

You can select time points or intervals and right-click to show who
allocated memory in the interval.

Call Tree View Provides a text-based, chronological, hierarchical view of your
application’s execution. Use this view to:

• See what types are allocated and their size.

• See which assemblies are loaded as result of method calls.

• Analyze the use of finalizers, including the number of finalizers
executed.

• Identify methods where Close or Dispose has not been
implemented or called, thereby causing a bottleneck.

• Analyze allocations that you were not expecting.

Profiling Applications
In this section, you create small sample C# console applications and then profile the
applications by using CLR Profiler.

Creating Sample Applications for Profiling
The complete source code for the sample applications is available at the end of this
How To. See “Sample: ProfilerSample1” and “Sample: ProfileSample2.”

1012 Improving .NET Application Performance and Scalability

� To create sample console applications for profiling

1. Create a folder named ProfilerSample in which to store the sample code.
2. In the ProfilerSample folder, create two C# files named ProfilerSample1.cs and

ProfileSample2.cs. Copy the sample code from “Sample: ProfilerSample1” and
“Sample: ProfileSample2,” located at the end of this How To, into the text files.

3. Open a command window, switch to the ProfilerSample folder, and compile the
code by using the following commands.

csc /t:exe /out:ProfilerSample1.exe ProfilerSample1.cs

csc /t:exe /out:ProfilerSample2.exe ProfilerSample2.cs

Using CLR Profiler to Profile the Application
In this step, you profile ProfilerSample1.exe.

� To use CLR Profiler to profile the application

1. Start CLR Profiler (CLRProfiler.exe)
2. Make sure that the following check boxes are selected:

● Profiling active
● Allocations
● Calls

3. Click Start Application.
4. In the Open window, navigate to the ProfilerSample folder where you have saved

the sample code and select the ProfilerSample1.exe application.
5. Interact with the application as needed and then close the application.

Profiling ASP.NET Applications
● Use the following steps to profile ASP.NET applications.

� To profile an ASP.NET application

1. Start CLR Profiler.
2. Make sure that the following check boxes are selected:

● Profiling active
● Allocations
● Calls

 How To: Use CLR Profiler 1013

3. On the File menu, click Profile ASP.NET.
CLR Profiler shuts down Internet Information Services (IIS), adds environment
variables that are needed for profiling, and restarts IIS. CLR Profiler then prompts
you to load the ASP.NET application and waits for the ASP.NET worker process
to start.

4. Use Microsoft Internet Explorer to browse to the ASP.NET application you want
to profile.
You can also run your Web application by using a client tool such as Microsoft
Application Center Test (ACT.)

5. When you have finished running the application, click Kill ASP.NET in the CLR
Profiler main window.
CLR Profiler shuts down IIS, removes the environment variables, and restarts IIS.

Note: Sometimes the current version of the tool does not respond to the page load in Step 4. If this
problem occurs, try changing the ASP.NET process identity to SYSTEM in the <ProcessModel>
element in Machine.config. After you finish profiling your application, be certain that you change the
application’s identity back to machine.

Identifying Common Garbage Collection Issues
You can use CLR Profiler.exe to identify and isolate problems related to garbage
collection. These include the following memory consumption issues:
● Excessive allocations
● Unknown allocations
● Memory leaks

They also include the following garbage collection issues:
● Excessive collections
● Long-lived objects
● Percentage of time spent performing garbage collection

Note: For more detailed information about using CLR Profiler to solve common problems related to
garbage collection, see “Common Garbage Collection Problems and How They are Reflected In These
Views” in CLRProfiler.doc, which is located in the installation folder of CLR Profiler.

1014 Improving .NET Application Performance and Scalability

Identifying Where Your Application Allocates Memory
Whenever you are dealing with memory consumption issues, it is very important to
know where your application allocates memory.

To identify where your application allocates memory, follow these steps:
1. Run CLR Profiler on the sample application.
2. Analyze allocated memory types.
3. Determine who is allocating the memory.
4. Evaluate what you can do to reduce the allocations.

Step 1. Run CLR Profiler on the Sample Application
Start CLR Profiler and run the ProfilerSample1.exe application that you created
earlier.

Step 2. Analyze Allocated Memory Types
On the View menu, click Histogram Allocated Types. CLR Profiler displays a
window similar to the one shown in Figure 1.

Figure 1

Histogram Allocated Types view in CLR Profiler

 How To: Use CLR Profiler 1015

This graph displays objects that have been allocated during the lifetime of the
application. In this example, almost 2 gigabytes (GB) of objects have been allocated,
nearly all of them strings. The reason is that when you perform string concatenation
in the way that the sample code does, the Microsoft .NET Framework allocates a new
longer string and copies the old and extended components into it.

Use the Histogram Allocated Types view to watch for objects that are allocated in the
large object heap (those objects larger than 85 KB). You can select specific bar graphs
in the left or right pane, and then right-click to see who allocated the memory. This
view gives you a high-level view of the objects that are being allocated during the
lifetime of your application.

Step 3. Determine Who is Allocating the Memory
On the View menu, click Allocation Graph. Alternatively, you could click in one of
the string regions in the graph shown in Figure 1, then right-click and click Show
Who Allocated. Clicking this menu item shows specific details about selected
allocations rather than all allocations. CLR Profiler displays the graph shown in
Figure 2.

Figure 2

Allocation graph in CLR Profiler

In this example, you can see that nearly all of the memory is being allocated from the
String.Concat method.

1016 Improving .NET Application Performance and Scalability

The Allocation Graph view enables you to:
● See the cost of each allocation by method.
● Analyze allocations that you were not expecting.
● View possible excessive allocations by a function.
● Compare different methods of doing the same work.

Step 4. Evaluate What You Can Do to Reduce the Allocations
Now that you know where your application allocates memory, evaluate what you can
do to reduce the memory consumption. In this example, one option is to use
StringBuilder rather then using string concatenation.

Analyzing Your Application’s Allocation Profile
Your application’s allocation profile shows you where objects are allocated, the
objects’ lifetime, and garbage collection behavior. In the following walk-through, the
application holds on to objects (and memory) longer than necessary. This walk-
through uses the ProfilerSample2.exe sample application that you created earlier.

To analyze your application’s allocation profile, follow these steps:
1. Run CLR Profiler on the sample application.
2. Identify long-lived objects.
3. Analyze GC behavior over the lifetime of your application.
4. Evaluate whether and how to reduce object lifetime.

 How To: Use CLR Profiler 1017

Step 1. Run CLR Profiler on the Sample Application
Start CLR Profiler and run the ProfilerSample2.exe application.

Step 2. Identify Long-Lived Objects
The sample code allocates 100,000 SolidBrush objects, and some strings, resulting in
a total allocation of about 9 MB. Most of this allocation is SolidBrush objects. By
selecting the Histogram Reallocated Types view, you can see that about 4 MB of
memory is reallocated for SolidBrush objects. This data indicates that SolidBrush
objects are surviving garbage collections and are being promoted to higher
generations.

To determine the type of objects that are being promoted and the amount of memory
these objects use, click Objects by Address on the View menu (see Figure 3).

Figure 3
Objects by Address view in CLR Profiler

Note that generations 1 and 2 are mostly composed of SolidBrush objects.

1018 Improving .NET Application Performance and Scalability

Step 3. Analyze GC Behavior over the Lifetime of Your Application
To view more details, click Time Line on the View menu. Zoom in by setting Vertical
Scale to 5 and Horizontal Scale to 1, and then scroll to the right. You should see a
window similar to that shown in Figure 4.

Figure 4

Time Line view in CLR Profiler

In this figure you can see a “double sawtooth” pattern. The generation 0 collections
get rid of strings but retain the brushes (in other words, the brushes survive the
collections). After a while, a generation 1 collection cleans up the brushes. The double
sawtooth pattern indicates that the generation 0 collections are not able to reclaim all
of the memory, and objects are getting promoted which forces a higher generation
collection later on.

At this point, you can see that objects are surviving the garbage collections and you
need to investigate. A possible area to look at first is the SolidBrush finalizers.

On the main menu of the tool, click Call Tree to open the call tree. To see a list of the
finalizers that are called, click through the thread tabs until you find the finalizer
thread.

 How To: Use CLR Profiler 1019

The call tree shows that NATIVE FUNCTION (UNKNOWN ARGUMENTS) has
triggered a total of 1,000,234 calls. Because the objects are not cleaned up until the
finalizer thread is run, the objects are prevented from being collected and as a result
are promoted. Figure 5 shows a sample call tree view window.

Figure 5
Call Tree view in CLR Profiler

Step 4. Evaluate Whether and How to Reduce Object Lifetimes
Once you know which objects are long-lived, see if you can reduce their lifetimes. In
this case, you simply need to make sure that SolidBrush is disposed of immediately
after it is no longer needed, by wrapping it in a using block.

1020 Improving .NET Application Performance and Scalability

Sample: ProfilerSample1
ProfilerSample1 concatenates strings. The sample code for ProfilerSample1 is
as follows.

ProfilerSample1.cs

using System;
public class ProfilerSample1
{
 static void Main (string[] args)
 {
 int start = Environment.TickCount;
 for (int i = 0; i < 1000; i++)
 {
 string s = "";
 for (int j = 0; j < 100; j++)
 {
 s += "Outer index = ";
 s += i;
 s += " Inner index = ";
 s += j;
 s += " ";
 }
 }
 Console.WriteLine("Program ran for {0} seconds",
 0.001*(Environment.TickCount - start));
 }
}

Compiling the Sample
Use the following command line to compile the code.

csc.exe /t:exe ProfilerSample1.cs

 How To: Use CLR Profiler 1021

Sample: ProfilerSample2
ProfilerSample2 is a simple application that allocates 100,000 SolidBrush objects and
some strings. This results in a total allocation of approximately 9 MB. The sample
code for ProfilerSample2 is as follows.

ProfilerSample2.cs

using System;
using System.Drawing;

public class ProfilerSample2
{
 static void Main()
 {
 int start = Environment.TickCount;
 for (int i = 0; i < 100*1000; i++)
 {
 Brush b = new SolidBrush(Color.Black); // Brush has a finalizer
 string s = new string(' ', i % 37);

 // Do something with the brush and the string.
 // For example, draw the string with this brush - omitted...
 }
 Console.WriteLine("Program ran for {0} seconds",
 0.001*(Environment.TickCount - start));
 }
}

Compiling the Sample
Use the following command line to compile the code.

csc.exe /t:exe ProfilerSample2.cs

1022 Improving .NET Application Performance and Scalability

Additional Resources
For more information, see the following resources:
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability”
● Chapter 5, “Improving Managed Code Performance”
● Chapter 13, “Code Review: .NET Application Performance”
● “Checklist: Managed Code Performance,” in the “Checklists” section of this guide

For more information about using CLR Profiler, see the following resources:
● For detailed information about using CLR Profiler to solve common problems

related to garbage collection, see “Common Garbage Collection Problems and
How They are Reflected In These Views,” in CLRProfiler.doc, which is located in
the installation folder of the CLRProfiler.exe tool.

● To learn about the important performance factors of managed code, see MSDN
article, “Writing High-Performance Managed Applications: A Primer,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/highperfmanagedapps.asp.

● For information about how the garbage collector works and how to optimize
garbage collection, see MSDN article, “Garbage Collector Basics and Performance
Hints,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet
/html/dotnetgcbasics.asp.

● For information about using CLR Profiler to compare and contrast the
performance difference between two ways to code a solution, see the
MSDN TV episode, “Profiling Managed Code with the CLR Profiler,” at
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20030729CLRGN
/manifest.xml.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dotnetgcbasics.asp
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20030729CLRGN/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20030729CLRGN/manifest.xml

How To:
Use Custom Performance
Counters from ASP.NET

Summary
This How To shows you how to create custom performance counters and use them to
monitor ASP.NET application performance. Performance counters can help you fine-
tune your application and maximize the performance of the code you have written.

Applies To
● Microsoft® .NET Framework version 1.1

Overview
You can instrument your code with custom performance counters. The
System.Diagnostics namespace provides access to the performance counter
libraries. You should create your custom performance counters outside ASP.NET, by
using either a console application or Microsoft Visual Studio® .NET Server Explorer.
You can then use Performance Monitor to view your custom performance counters’
activity.

Creating Performance Counters
You should create your performance counters outside ASP.NET. Creating a
performance counter category requires permissions that the default ASP.NET account
does not have. The ASP.NET account can read the custom performance counters once
they have been created. Do not run ASP.NET as SYSTEM or as an administrative
account because doing so poses a security risk.

1024 Improving .NET Application Performance and Scalability

Creating a Single Performance Counter
Using PerformanceCounterCategory

If you only need to create a single counter, you can use
PerformanceCounterCategory to do so. If you need to create multiple
performance counters, see “Creating Multiple Performance Counters Using
CounterCreationDataCollection,” later in this How To.

� To create a single performance counter using PerformanceCounterCategory

1. Create a new text file named CreateCounter.cs and add the following code.

// CreateCounter.cs

using System;
using System.Diagnostics;

public class CustomCounter
{
 public static void Main()
 {
 Console.WriteLine("Creating custom counter");
 CreateCounter();
 Console.WriteLine("Done");
 Console.ReadLine();
 }

 public static void CreateCounter()
 {
 if (!PerformanceCounterCategory.Exists("MySingleCategory"))
 {
 PerformanceCounterCategory.Create ("MySingleCategory",
 "My New Perf Category Description", "MyCounter",
 "My New Perf Counter Desc");
 }
 else
 {
 Console.WriteLine("Counter already exists");
 }
 }
}

2. Compile the code using the following command line.

csc.exe /out:CreateCounter.exe /t:exe /r:system.dll CreateCounter.cs

3. Run CreateCounter.exe from a command prompt to create your new performance
counter.

CreateCounter.exe

 How To: Use Custom Performance Counters from ASP.NET 1025

Results
When you run CreateCounter.exe, the following output is produced.

Creating custom counter
Done

Validating Your Performance Counter Category and Performance
Counter
Use Regedt32.exe to verify that your performance counter category and your
custom performance counter are created in the following registry folder.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

The performance counter category is named MySingleCategory, and the
performance counter is named MyCounter.

More Information
Use the Create method of the PerformanceCounterCategory class to create a
performance counter category and a single counter at the same time. A performance
counter category enables you to group your performance counters. For example,
ASP.NET is a performance counter category that contains such performance counters
as Requests Current, Requests Queued, and so on.

Creating Multiple Performance Counters Using
CounterCreationDataCollection

If you need to create multiple counters, you can use a
CounterCreationDataCollection to programmatically create the custom counter(s)
and category. This technique enables you to create the category and multiple counters
at the same time.

1026 Improving .NET Application Performance and Scalability

� To create multiple performance counters using CounterCreationDataCollection

1. Create a new text file named CreateCounters.cs and add the following code.

CreateCounters.cs

using System;
using System.Diagnostics;

public class CustomCounters
{
 public static void Main()
 {
 Console.WriteLine("Creating custom counters");
 CreateCounters();
 Console.WriteLine("Done");
 Console.ReadLine();
 }

 public static void CreateCounters()
 {
 CounterCreationDataCollection col =
 new CounterCreationDataCollection();

 // Create two custom counter objects.
 CounterCreationData counter1 = new CounterCreationData();
 counter1.CounterName = "Counter1";
 counter1.CounterHelp = "Custom counter 1";
 counter1.CounterType = PerformanceCounterType.NumberOfItemsHEX32;

 CounterCreationData counter2 = new CounterCreationData();

 // Set the properties of the 'CounterCreationData' object.
 counter2.CounterName = "Counter2";
 counter2.CounterHelp = "Custom counter 2";
 counter2.CounterType = PerformanceCounterType.NumberOfItemsHEX32;

 // Add custom counter objects to CounterCreationDataCollection.
 col.Add(counter1);
 col.Add(counter2);

 // Bind the counters to a PerformanceCounterCategory
 // Check if the category already exists or not.
 if(!PerformanceCounterCategory.Exists("MyMultipleCategory"))
 {
 PerformanceCounterCategory category =
 PerformanceCounterCategory.Create("MyMultipleCategory",
 " My New Perf Category Description ", col);
 }
 else
 {
 Console.WriteLine("Counter already exists");
 }
 }
}

 How To: Use Custom Performance Counters from ASP.NET 1027

2. Compile the code using the following command line.

csc.exe /out:CreateCounters.exe /t:exe /r:system.dll CreateCounters.cs

3. Run CreateCounters.exe from a command prompt to create your new performance
counters.

CreateCounters.exe

Results
When you run CreateCounters.exe, the following output is produced.

Creating custom counter
Done

Validating Your Performance Counter Category and Your Custom
Performance Counters
Use Regedt32.exe to validate that your performance counter category and your
custom performance counters are created in the following registry folder.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

MyMultipleCategory is the name of the performance counter category, and Counter1
and Counter2 are the names of the performance counters.

Using Server Explorer
If you have Visual Studio .NET, you can create a custom performance counter
manually by using Server Explorer.

� To create a custom performance counter with Server Explorer

1. Open Server Explorer and connect to your local server.
2. Right-click Performance Counters and select Create New Category.
3. Enter MyCategory in the category name box and optionally enter a description in

the Performance Counter Builder box.
4. Click New at the bottom of the form and enter MyCounter in the counter name

box.
5. Click OK.

1028 Improving .NET Application Performance and Scalability

Using Your Performance Counter in Code
Once you have created your custom performance counter, you can use it to
instrument your ASP.NET application. You can set a counter’s value either by
incrementing it with the PerformanceCounter.Increment method or by setting it to a
specific value by calling PerformanceCounter.RawValue.

Calling PerformanceCounter.Increment
The following ASP.NET page shows you how to use your custom counter. This code
calls PerformanceCounter.Increment to set the new counter value.

IncrementCounter.aspx
<%@ language=C# %>
<%@ import namespace="System.Diagnostics" %>

<script runat=server>

 void IncrementCounter(Object sender, EventArgs e)
 {
 // get an instance of our perf counter
 PerformanceCounter counter = new PerformanceCounter();
 counter.CategoryName = "mySingleCategory";
 counter.CounterName = "myCounter";
 counter.ReadOnly = false;

 // increment and close the perf counter
 counter.Increment();
 counter.Close();
 Response.Write("Counter is incremented");
 }

</script>
<form runat=server>
 <input type="submit" id="btnSubmit" Value="Increment Counter"
 OnServerClick="IncrementCounter" runat=server />
</form>

 How To: Use Custom Performance Counters from ASP.NET 1029

Calling PerformanceCounter.RawValue
The following ASP.NET page shows you how to call PerformanceCounter.RawValue
to set your performance counter’s value to a specific value.

SetCounter.aspx
<%@ language=C# %>
<%@ import namespace="System.Diagnostics" %>

<script runat=server>
 void SetCounterValue(Object sender, EventArgs e)
 {
 // get an instance of our perf counter
 PerformanceCounter counter = new PerformanceCounter();
 counter.CategoryName = "mySingleCategory";
 counter.CounterName = "myCounter";
 counter.ReadOnly = false;

 long myValue;

 if("" != txtCounterValue.Value)
 {
 myValue = Int32.Parse(txtCounterValue.Value);
 // set the value of the counter
 counter.RawValue = myValue;
 counter.Close();
 Response.Write("Counter value is set");
 }
 else
 {
 Response.Write(
 "Enter a numeric value such as 10 for the performance counter");
 }
 }

</script>

<form runat=server>
 <input type="text" id="txtCounterValue" runat="server" />
 <input type="submit" id="btnSubmit" Value="Set Counter Value"
 OnServerClick="SetCounterValue" runat=server />
</form>

1030 Improving .NET Application Performance and Scalability

Monitoring Your Performance Counter
You can monitor your custom performance counter by using Performance Monitor.

� To monitor your performance counter

1. In the Administrative Tools program group, click Performance Monitor.
2. Add your performance counter to the monitored counters window.

Your performance counter is listed under MyCategory in the Performance Object
list.

3. Start your ASP.NET application and use a browser to access the instrumented
page.

4. Note how Performance Monitor displays the counter value.

Additional Resources
For more information see the following resources:
● Chapter 15, “Measuring .NET Application Performance”
● Chapter 6, “Improving ASP.NET Performance”
● Microsoft Knowledge Base article 815159, “HOW TO: Analyze ASP.NET

Web Application Performance by Using the Performance Administration Tool,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;815159.

● Microsoft Knowledge Base article 316365, “INFO: ROADMAP for How
to Use the .NET Performance Counters,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;316365.

http://support.microsoft.com/default.aspx?scid=kb;en-us;815159
http://support.microsoft.com/default.aspx?scid=kb;en-us;316365
http://support.microsoft.com/default.aspx?scid=kb;en-us;316365

How To:
Use EIF

Summary
This How To shows you how to use the Enterprise Instrumentation Framework
(EIF) to instrument Microsoft® .NET applications for improved manageability.

Applies To
● Microsoft Visual Studio® .NET 2002 with the .NET Framework 1.0 SP2 or later
● Microsoft Visual Studio® .NET 2003 with the .NET Framework 1.1

Overview
The Microsoft Enterprise Instrumentation Framework (EIF) enables you to
instrument .NET applications to provide better manageability in a production
environment. EIF is the recommended approach for instrumenting .NET applications.
It provides a unified API for instrumentation that uses the existing eventing, logging,
and tracing mechanisms built into the Microsoft Windows® operating system, such as
Windows Event Log, Windows Trace Log, and Windows Management
Instrumentation (WMI). Members of an operations team can use existing monitoring
tools to diagnose application health, faults, and other conditions.

An application instrumented with EIF can provide extensive information such as
errors, warnings, audits, diagnostic events, and business-specific events. This you
how to instrument your application by using EIF.

What You Must Know
EIF is installed to C:\Program Files\Microsoft Enterprise Instrumentation\ and
starts a Windows service named Windows Trace Session Manager. Documentation
is available in EnterpriseInstrumentation.chm in the Docs subfolder.

1032 Improving .NET Application Performance and Scalability

Event Sinks
The default provides three event sinks:
● WMI. This event sink is the slowest of the standard eventing mechanisms on

Windows 2000 systems; therefore, you should only use it for events that occur
infrequently or high-visibility events.

● Windows Event Trace. This event sink is suitable for higher-frequency eventing;
for example, where your application generates hundreds or even thousands of
events per second.

● Windows Event Log. This event sink is suitable for lower-frequency events, such
as errors, warnings, or high-level audit messages.

Event Sources
EIF events are always raised from a specific event source. The configuration of that
event source determines whether the event is raised or not, what information the
event contains, and to which eventing, tracing, or logging mechanism the event is
routed.

EIF supports the following event sources:
● SoftwareElement event source. You define and use a SoftwareElement event

source to allow members of your operation team to control instrumentation
behavior at a granular level. For example, individual classes or pages can use
specific SoftwareElement event sources.

● Application event source. Event sources that are raised without specifying an
explicit event source use the Application event source. This event source is
created and managed automatically and is simple to use. Use it where individual
control over a specific software element is not required. This option is particularly
suited for most lower-frequency management events, such as notifications and
errors.

● Request event source. Request tracing is a key feature of EIF that allows you to
trace business processes by following an execution path through a distributed
application. In contrast to tracing a specific class or component, request tracing
works between defined start and end points in the application’s code. Any events
raised along this execution path include information that identifies them as being
part of that defined execution path or request. The Request event source inherits
much of its functionality from the SoftwareElement event source.

 How To: Use EIF 1033

Downloading and Installing EIF
EIF is distributed as a free download from Microsoft Download Center.

� To download EIF

● Download two files, ReadMe.htm and EnterpriseInstrumentation.exe,
from the Microsoft Download Center at http://www.microsoft.com/downloads
/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en.

� To install EIF

1. Read ReadMe.htm for installation instructions and known issues.
2. Double-click EnterpriseInstrumentation.exe to install EIF.
3. In the Enterprise Instrumentation Setup Wizard, install EIF by selecting the

default options.

Instrument an Application
The standard event schema includes events for errors, audits, administrative events,
and diagnostic trace events. These can be raised from two event sources:
● An application or software element
● A request

To instrument an application, open the application source and then perform the
following actions:
1. Create a simple console application.
2. Add references to the required assemblies.
3. Add using statements.
4. Add an empty installer class.
5. Add code to raise events using the Application event source.
6. Add code to raise events using a SoftwareElement event source
7. Compile the application.
8. Enable tracing in TraceSessions.config.
9. Run InstallUtil.exe against your project.

10. Bind events to event sinks.

http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=80DF04BC-267D-4919-8BB4-1F84B7EB1368&displaylang=en

1034 Improving .NET Application Performance and Scalability

Step 1. Create a Simple Console Application
Create a new C# console application, and add a simple class as shown in the
following code.

using System;
namespace Client
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 Console.WriteLine("Hello");
 }
 }
}

Step 2. Add References to the Required Assemblies
In this step, you add references to the required EIF assemblies.

� To add references from Visual Studio .NET

1. In Solution Explorer, right-click the References folder, and then click Add
Reference.

2. Select the following components:
● Microsoft.EnterpriseInstrumentation.dll
● Microsoft.EnterpriseInstrumentation.Schema.dll
● System.Configuration.Install.dll

3. Click Select, and then click OK.

Note: If you are using the command-line tools, you will add the references during compilation in
Step 7.

Step 3. Add using Statements
Add the following using directives to the top of Class1.cs.

using System.ComponentModel; // Required by the RunInstaller attribute
using Microsoft.EnterpriseInstrumentation;
using Microsoft.EnterpriseInstrumentation.Schema;
using Microsoft.EnterpriseInstrumentation.RequestTracing;

 How To: Use EIF 1035

Step 4. Add an Empty Installer Class
At the top of the Client namespace, add an empty class that inherits from
ProjectInstaller. Decorate the class with the RunInstaller attribute as follows.

[RunInstaller(true)]
public class MyProjectInstaller : ProjectInstaller {}

The installer class is instantiated by the InstallUtil.exe utility. The installer class
creates the application’s instrumentation configuration file,
EnterpriseInstrumentation.config, which, among other things, controls how
instrumentation events are routed to event sinks.

Note: If your application has multiple classes, for example, an ASP.NET application with multiple Web
Forms, you must only perform this step in one of the Web Forms. If you duplicate the class in each
of your Web Forms, you will get a compilation error.

Step 5. Add Code to Raise Events Using the Application
Event Source

Add the following lines of code to your application’s Main method.

TraceMessageEvent.Raise("This is a trace event.");
ErrorMessageEvent.Raise("This is an error event.", 1, "CODE");
AuditMessageEvent.Raise("This is an audit event.");
AdminMessageEvent.Raise("This is an admin event.");

You can call the Raise method of the appropriate object anywhere in your
application, whenever you want to raise a trace, error, audit, or administration
event. Note that the error event has a message, severity, and error code.

Enterprise Instrumentation implicitly defines and manages an event source for the
entire application. By using the Raise methods on the classes shown in the previous
code fragment, you use the Application event source.

Because you do not need to define or reference an event source explicitly when
raising events, this option provides the simplest programming model.

1036 Improving .NET Application Performance and Scalability

Step 6. Add Code to Raise Events Using a SoftwareElement
Event Source

With this approach, each class has its own event source definition, so this option is
appropriate for classes or pages that require a specialized eventing configuration.

� To raise events using a SoftwareElement event source

1. Add the following static instance of an event source inside your Class1 class.

public static EventSource es = new EventSource("MyComponent");

2. Add the following code to the Main method to raise an event using the new event
source.

// raise an event using the new event source
TraceMessageEvent.Raise(es, "Using a new event source");

For Request Tracing Event Sources Only
You can also enable request tracing to trace a specific business process such
as credit card validation or order processing. To do so, you must first declare a
RequestEventSource object and identify the object by using the name of the request
that you want to trace. For example:

private static RequestEventSource TracedRequestEventSource =
 new RequestEventSource("PlaceOrder");

Then you must add the following code around the request that you want to trace,
which may be made up of multiple method calls.

using (RequestTrace request = new RequestTrace(TracedRequestEventSource))
{
 // Business logic and Method calls that are part of the request
 ...
} // request.Dispose is called here which completes the request trace

Any events raised by methods inside the using block that defines the scope of the
request trace include information that identifies them as being part of that defined
execution path, or request.

Note: Instead of the C# using statement, you could use a try/finally block (or in Visual Basic® .NET,
a Try/Finally block) and explicitly call request.Dispose in the finally block to ensure that the request
trace completes.

 How To: Use EIF 1037

Step 7. Compile the Application
If you are using Visual Studio .NET, on the Build menu, click Build Solution. If
you are using the command-line tools, use a compilation statement similar to the
following. Note that these instructions assume that your class file is named
MyApp.cs.

csc.exe /out:MyApp.exe /t:exe /r:system.dll;
"C:\Program Files\Microsoft Enterprise Instrumentation\Bin\
Microsoft.EnterpriseInstrumentation.dll";
"C:\Program Files\Microsoft Enterprise Instrumentation\Bin\
Microsoft.EnterpriseInstrumentation.Schema.dll";
System.Configuration.Install.dll MyApp.cs

Note: Enter this code as a single command line.

Step 8. Enable Tracing in TraceSessions.config
The TraceSessions.config file is located in the <EIF installation folder>\Bin\Trace
Service folder. By default, the EIF installation folder is C:\Program Files\Microsoft
Enterprise Instrumentation.

Edit the TraceSessions.config file and change the enabled attribute of the <session>
element to “true” as shown in the following fragment.

<?xml version="1.0" encoding="utf-8" ?>
<configuration xmlns="http://.../TraceSessions.xsd">
 <defaultParameters ... />
 <sessionList>
 <session name="TraceSession" enabled="true" fileName="..." />
 </sessionList>
</configuration>

1038 Improving .NET Application Performance and Scalability

Step 9. Run InstallUtil.exe Against Your Project
Run the Visual Studio .NET Command Prompt as a user who has Administrator
permissions. Access the folder in which your project’s compiled executable file is
located. Run InstallUtil.exe from the command line with your project’s compiled
executable file and any supporting components as parameters.

Run InstallUtil.exe against your project. For example:

C>:\YourProject\bin\Debug>installutil.exe myproj.exe

Running this utility against your project creates an EnterpriseInstrumentation.config
file in your application’s output folder. For example, for a debug build:

C>:\YourProject\bin\Debug\EnterpriseInstrumentation.config

Note: InstallUtil.exe is included with the .NET Framework. For more information about InstallUtil.exe
command-line arguments, see “Installer Tool (InstallUtil.exe),” in the .NET Framework SDK
documentation.

When Installutil.exe is finished running, you should see the following lines of output
at the command prompt.

The Commit phase completed successfully.
The transacted install has completed.

Note: If you get an error, see the “Internal Error and Informational Events” topic in the EIF
documentation.

Step 10. Bind Events to Event Sinks
By changing the EnterpriseInstrumentation.config file, you can bind events generated
by various event sources to various event sinks, including WMI, Windows Trace Log,
or the Windows Event Log.

� To edit EnterpriseInstrumentation.config

1. Open EnterpriseInstrumentation.config in your project’s output folder.
2. Locate the following <filter> element.

<filter name="defaultSoftwareElementFilter"
 description="A default filter for the Software Element event sources." />

 How To: Use EIF 1039

3. Replace the element you located with the following elements.

<filter name="defaultSoftwareElementFilter"
 description=" A default filter for the Software Element event sources.">
 <eventCategoryRef name="All Events">
 <eventSinkRef name="wmiSink" />
 <eventSinkRef name="traceSink" />
 <eventSinkRef name="logSink" />
 </eventCategoryRef>
</filter>

Notice that in this fragment, an <eventCategoryRef> element has been added as
a child of the <filter> element, with one <eventSinkRef> element for each of the
sinks that you want events routed to. The fragment routes application and
software element events to WMI, Windows Event Log, and Windows Trace Log.

Note: You can comment out lines in EnterpriseInstrumentation.config using the standard comment
tags, <!-- and -->. For example, <!-- <eventSinkRef name="wmiSink" /> -->

View the Logs
Run your console application to generate various event messages and then view the
log output as described here.

Windows Trace Log
To view output in the Windows Trace Log, start the Trace Viewer sample application
located in the Trace Viewer folder.

� To view the Windows Trace Log

1. Start the TraceView.exe application, which is located in the following folder.

C:\Program Files\Microsoft Enterprise Instrumentation\Samples\Trace
Viewer\TraceViewer.exe

2. On the File menu, click Open and open the following file.

C:\Program Files\Microsoft Enterprise Instrumentation\Bin\Trace
Service\Logs\TraceLog.log

3. On the View menu, click Add/Remove Columns.
4. Select MachineName and Message and click Add.
5. Click OK. You will see the additional columns.

An alternative approach is to use the trace log reader sample located in the Trace Log
Reader folder beneath the Samples folder.

1040 Improving .NET Application Performance and Scalability

Important Attributes of an Event
Table 1 shows some of the important values that can be retrieved from each event.

Table 1: Sample Event Attributes

Value Description

Message A custom string you can supply when the event is fired.

ProcessName The application generating the event. This will be the ASP.NET
process if the event is fired from an ASP.NET application or
Web service.

EventSourceName This is "Application" by default, but you can set it to a named
component to group events.

EventSequenceNumber and
RequestSequenceNumber

Use these numbers to determine the order in which events
occurred. Use these values instead of TimeStamp.

TimeStamp When the event occurred. Use EventSequenceNumber and
RequestSequenceNumber to order events.

RootRequestName and
RequestName

A named request, for example, NorthwindSite.Order.Create.
The two names are different only if there are nested requests.

Windows Event Log
To view the contents of the Windows Event Log, use the Event Viewer program
(Eventvwr.exe) located in the Administrative Tools folder.

� To view the Windows Event Log

1. On the Start menu, click Run.
2. Type Eventvwr.exe and click OK.
3. In the left pane, click Application.
4. On the View menu, click Filter.
5. Change the Event source to Application (MyApp), and then click OK. The event

messages that use the Application event source will be displayed.
6. On the View menu, click Filter and change the Event source to MyComponent

and then click OK. The event message that uses the MyComponent event source
will be displayed.

WMI
To view WMI events, install the WMI SDK, which is available for free download
at http://www.microsoft.com/msdownloa/platformsdk/sdkupdate/.

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

 How To: Use EIF 1041

Sample Output from Instrumentation
A typical instrumentation event output will look like the following example,
regardless of the mechanism used to view the event.

Microsoft.EnterpriseInstrumentation.Schema.TraceMessageEvent
{
 String Message = "Creating customer: begin"
 Int32 ProcessID = 3620
 String ProcessName =
"C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_wp.exe"
 String ThreadName = ""
 ComPlusInfo ComPlus = <null>
 WindowsSecurityInfo WindowsSecurity = <null>
 ManagedSecurityInfo ManagedSecurity = <null>
 String StackTrace = ""
 String EventSourceInstance = "aab5cf6c-dbbd-45c9-ae4f-3d989a90902e"
 String EventSourceName = "Application"
 Int64 EventSequenceNumber = 1
 String EventSchemaVersion = "7.0.5000.0"
 DateTime TimeStamp = 8/18/2003 1:09:43 PM
 String AppDomainName = "/LM/w3svc/1/root/NorthwindSite-2-127056712222343750"
 String MachineName = "NORTHWIND-LONDON-01"
 String RootRequestName = ""
 String RootRequestInstance = ""
 String RequestInstance = ""
 String RequestName = ""
 Int64 RequestSequenceNumber = 0
 Int32 EventLogEntryTypeID = 4
}

Issues with ASP.NET Applications
If you are using EIF to instrument ASP.NET applications or Web services, you need to
be aware of the following issues:
● Using the Windows Event Log. The ASPNET local account cannot register a

Windows Event Log event source, but it can write events if the event source has
already been registered by an administrator. To handle this issue, make sure that
the local user is a local administrator before running InstallUtil against the
application’s instrumented assemblies.

● Using WMI. The ASPNET account cannot fire WMI events on Windows XP
(prior to SP1) and Windows 2000 (prior to SP3). Install the latest service pack to fix
this issue. If you cannot install the latest service pack, you can use the workaround
described in the topic, “Raising Events from ASP.NET Web Applications,” in the
EIF documentation.

1042 Improving .NET Application Performance and Scalability

Additional Resources
For more information about EIF, see the EIF documentation. The documentation
installed with EIF contains reference materials and walk-throughs for more complex
instrumentation examples.

The documentation is provided as a compiled help file (.chm) at the following
location.

C:\Program Files\Microsoft Enterprise
Instrumentation\Docs\EnterpriseInstrumentation.chm

How To:
Use SQL Profiler

Summary
This How To describes how to use SQL Profiler to analyze long-running queries and
stored procedures. SQL Profiler traces can capture a wide variety of trace data that
can be analyzed interactively, or saved for offline analysis. This How To outlines both
interactive and offline analysis of trace data.

Applies To
● Microsoft® SQL Server™ 2000

Overview
You can use the SQL Profiler tool to debug, troubleshoot, monitor, and measure your
application’s SQL statements and stored procedures. SQL Profiler captures activity
occurring in SQL Server, driven by requests from your client application.

The tool enables you to select precisely which events you want to monitor. For
example, you might want to see when stored procedures are called, when they
complete, how long they take to execute, how many logical reads occur during
execution, and so on. You can also filter the trace, which is particularly useful when
your database is under heavy load and a large amount of trace information is
generated. SQL Profiler provides a set of templates with predefined event selection
criteria. The templates are designed to capture commonly required events. You can
modify and extend the templates or create your own. Trace data can be displayed
interactively, or it can be captured directly to a trace file or database table.

1044 Improving .NET Application Performance and Scalability

What You Must Know
When you begin profiling, the following guidelines will help you use the tool most
effectively:
● Filter the captured information. In a high-traffic database, filtering enables you

to capture only the required information. Consider using one of the predefined
filters to:
● Filter by ApplicationName to trace data specific to one application.
● Filter by DatabaseName specify to your application if the server is hosting

several databases.
● Filter by Duration to measure query performance.
● Filter by a specific object in ObjectName, and by a specific user in LoginName.

● Consider saving trace information to a file. Instead of watching the trace
information on-screen, you can capture the results to a file. This technique is
useful for offline analysis. You can also use captured trace information as input
to the SQL Server Index Tuning Wizard or insert it into a SQL Server table.

Note: Sending trace data directly to a SQL Server table can incur performance overhead. It is
often better to trace to a file and then import the data to a table later.

To save trace output to a file from the trace output window, click Save As on the
File menu, click Trace File, and then specify a file location and a name. Trace files
are given the .trc extension.
To capture output directly to a file, specify the file name details on the General tab
of the Trace Properties dialog box. You should also set the maximum file size to
prevent the file from growing indefinitely. Then when the file reaches the
maximum size, a new file will be created.

● Consider saving data to a file before sending it to a database table. The
interception mechanism for capturing information can itself slow the application,
depending on the volume of data captured and the number of client requests.
Capturing profiler data to a database table is relatively slow compared to saving to
a file. If you need to save data to database table, consider saving the data to a file
first and then importing it to a database table. Doing so reduces the trace overhead
and improves trace performance.
The following statement creates a table named 1108 in the current database and
imports the trace information from MyTrace.trc into that table.

SELECT * INTO trace1108 FROM ::fn_trace_gettable('C:\MyTrace.trc', default)

 How To: Use SQL Profiler 1045

Default Templates
SQL Server provides eight predefined templates to track events for a set of common
tasks. These templates are described in Table 1 together with typical usage scenarios.

Table 1: Default Templates

Template name Description Usage scenario

SQLProfilerSP_Counts Contains events to track how
often stored procedures are
executed.

Use to identify the most
commonly used stored procedure,
so that you can fine-tune it.

SQLProfilerStandard Captures an extensive range of
events and data.

Use as a start point or for
general monitoring purposes.

SQLProfilerTSQL Captures events that relate to
Transact SQL (T-SQL).

Use to intercept and verify
SQL statements for debugging
purposes.

SQLProfilerTSQL_Duration Events for measuring the
execution cost (duration in
milliseconds) of T-SQL queries
and stored procedures.

Use to track down long-running
queries.

SQLProfilerTSQL_Grouped Similar to SQLProfilerStandard,
but with information grouped and
organized. Use as a start point
for general monitoring and
troubleshooting.

Because this template groups
information by user, it can be
used to track requests specific
to a problematic user. An
example is an application that
uses Windows® authentication
to connect to SQL Server, where
problems are occurring that relate
to a specific user.

SQLProfilerTSQL_Replay Captures events that can be used
to replay the exact steps at a
later stage or on another server.

Use to troubleshoot and
reproduce problems.

SQLProfilerTSQL_SPs Provides extensive logging for
stored procedures, including
queries executed within stored
procedures.

Use to troubleshoot stored
procedures.

SQLProfilerTuning Contains events needed to
capture the execution cost and
related data.

Use to track query costs.

The remainder of this How To shows you how to profile two common
performance-related scenarios using SQL Profiler.

1046 Improving .NET Application Performance and Scalability

Isolating a Long-Running Query with SQL Profiler
If your application has a performance problem that you think might be caused by
a particularly long-running query, you can use the SQLProfilerTSQL_Duration
template to analyze query durations. You can either analyze the queries interactively,
or you can save information to an output file and analyze the data offline.

Identifying a Long-Running Query Interactively
The most immediate way of analyzing query performance is to use SQL Profiler to
show trace information interactively.

� To identify a long-running query interactively

1. Start SQL Profiler.
2. On the File menu, click New, and then click Trace.
3. Specify the relevant connection details to connect to the computer running

SQL Server.
The Trace Properties dialog box appears.

4. In the Template name list, click SQLProfilerTSQL_Duration.
5. Click the Events tab.

Notice that two key events are selected:
● RPC:Completed from the Stored Procedures event class
● SQL:BatchCompleted from the T-SQL event class

6. Click Run to run the trace.
7. Start SQL Query Analyzer.
8. Run the queries you want to analyze. For example, using the Pubs database,

you might run the following query.

select au_id, au_lname + ' ' + au_fname, phone from authors where au_lname like
'G%' order by au_lname
select * from authors
Select au_id from authors

 How To: Use SQL Profiler 1047

9. View the trace output in SQL Profiler. Note that durations are given in
milliseconds.
Figure 1 shows sample output.

Figure 1
Sample SQL Profiler output using the SQLProfilerTSQL_Duration template

10. Stop the trace.

Note: Your duration times may vary from those shown, and may even appear as zero if the
database server has a small load.

Identifying a Long-Running Query from Trace Output
As an alternative to the interactive approach, you can save trace information to an
output file and analyze the data offline. The trace information can then be imported
into a database table for further analysis. This approach is useful where large sets of
trace data need to be analyzed.

The following steps show you how to save trace data to a trace file and then import it
into a trace table for analysis. A stored procedure named AnlzTrcExec is provided to
aid in data analysis.

Note: When trace data is saved to a file, the values in the EventClass column are converted into
integer values. To increase readability, the AnlzTrcExec procedure uses a lookup table named
trace_events so that the event class can be displayed as text.

1048 Improving .NET Application Performance and Scalability

� To identify a long-running query from trace output

1. In SQL Profiler, on the File menu, click New, and then click Trace.
2. Specify the relevant connection details to connect to the computer running

SQL Server.
The Trace Properties dialog box appears.

3. In the Template name list, select SQLProfilerTSQL_Duration.
4. Select the Save to file check box, specify the trace file name as c:\MyTrace.trc,

and then click Save.
5. On the Data Columns tab, select the following data columns, clicking Add after

each selection:
● CPU
● IntegerData
● Reads
● StartTime
● Writes

6. Click Run.
7. In SQL Query Analyzer, run the queries you want to analyze. For example,

using the Pubs database, you might run the following query.

select au_id, au_lname + ' ' + au_fname, phone from authors where au_lname like
'G%' order by au_lname
select * from authors
Select au_id from authors

8. Stop the trace.
9. In SQL Query Analyzer, import the trace file into the database of your choice by

using the following query:

SELECT * INTO MyTraceTable FROM ::fn_trace_gettable('C:\MyTrace.trc', default)

10. Run the following query to create a trace events lookup table.

if exists (select * from dbo.sysobjects
 where id = object_id(N'[trace_events]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
 drop table [trace_events]
 create table trace_events ([EventClass] int, [EventName] varchar(31))
 Insert trace_events values (10,'RPC:Completed')
 Insert trace_events values (11,'RPC:Starting')
 Insert trace_events values (12,'SQL:BatchCompleted')
 Insert trace_events values (13,'SQL:BatchStarting')
 Insert trace_events values (14,'Login')

(continued)

 How To: Use SQL Profiler 1049

(continued)

 Insert trace_events values (15,'Logout')
 Insert trace_events values (16,'Attention')
 Insert trace_events values (17,'ExistingConnection')
 Insert trace_events values (18,'ServiceControl')
 Insert trace_events values (19,'DTCTransaction')
 Insert trace_events values (20,'Login Failed')
 Insert trace_events values (21,'EventLog')
 Insert trace_events values (22,'ErrorLog')
 Insert trace_events values (23,'Lock:Released')
 Insert trace_events values (24,'Lock:Acquired')
 Insert trace_events values (25,'Lock:Deadlock')
 Insert trace_events values (26,'Lock:Cancel')
 Insert trace_events values (27,'Lock:Timeout')
 Insert trace_events values (28,'DOP Event')
 Insert trace_events values (33,'Exception')
 Insert trace_events values (34,'SP:CacheMiss')
 Insert trace_events values (35,'SP:CacheInsert')
 Insert trace_events values (36,'SP:CacheRemove')
 Insert trace_events values (37,'SP:Recompile')
 Insert trace_events values (38,'SP:CacheHit')
 Insert trace_events values (39,'SP:ExecContextHit')
 Insert trace_events values (40,'SQL:StmtStarting')
 Insert trace_events values (41,'SQL:StmtCompleted')
 Insert trace_events values (42,'SP:Starting')
 Insert trace_events values (43,'SP:Completed')
 Insert trace_events values (44,'Reserved ')
 Insert trace_events values (45,'Reserved ')
 Insert trace_events values (46,'Object:Created')
 Insert trace_events values (47,'Object:Deleted')
 Insert trace_events values (48,'Reserved')
 Insert trace_events values (49,'Reserved')
 Insert trace_events values (50,'SQL Transaction')
 Insert trace_events values (51,'Scan:Started')
 Insert trace_events values (52,'Scan:Stopped')
 Insert trace_events values (53,'CursorOpen')
 Insert trace_events values (54,'Transaction Log')
 Insert trace_events values (55,'Hash Warning')
 Insert trace_events values (58,'Auto Update Stats')
 Insert trace_events values (59,'Lock:Deadlock Chain')
 Insert trace_events values (60,'Lock:Escalation')
 Insert trace_events values (61,'OLE DB Errors')
 Insert trace_events values (67,'Execution Warnings')
 Insert trace_events values (68,'Execution Plan')
 Insert trace_events values (69,'Sort Warnings')
 Insert trace_events values (70,'CursorPrepare')
 Insert trace_events values (71,'Prepare SQL')
 Insert trace_events values (72,'Exec Prepared SQL')
 Insert trace_events values (73,'Unprepare SQL')
 Insert trace_events values (74,'CursorExecute')
 Insert trace_events values (75,'CursorRecompile')
 Insert trace_events values (76,'CursorImplicitConversion')

(continued)

1050 Improving .NET Application Performance and Scalability

(continued)

 Insert trace_events values (77,'CursorUnprepare')
 Insert trace_events values (78,'CursorClose')
 Insert trace_events values (79,'Missing Column Statistics')
 Insert trace_events values (80,'Missing Join Predicate')
 Insert trace_events values (81,'Server Memory Change')
 Insert trace_events values (82,'User Configurable')
 Insert trace_events values (83,'User Configurable')
 Insert trace_events values (84,'User Configurable')
 Insert trace_events values (85,'User Configurable')
 Insert trace_events values (86,'User Configurable')
 Insert trace_events values (87,'User Configurable')
 Insert trace_events values (88,'User Configurable')
 Insert trace_events values (89,'User Configurable')
 Insert trace_events values (90,'User Configurable')
 Insert trace_events values (91,'User Configurable')
 Insert trace_events values (92,'Data File Auto Grow')
 Insert trace_events values (93,'Log File Auto Grow')
 Insert trace_events values (94,'Data File Auto Shrink')
 Insert trace_events values (95,'Log File Auto Shrink')
 Insert trace_events values (96,'Show Plan Text')
 Insert trace_events values (97,'Show Plan ALL')
 Insert trace_events values (98,'Show Plan Statistics')
 Insert trace_events values (99,'Reserved')
 Insert trace_events values (100,'RPC Output Parameter')
 Insert trace_events values (101,'Reserved')
 Insert trace_events values (102,'Audit Statement GDR')
 Insert trace_events values (103,'Audit Object GDR')
 Insert trace_events values (104,'Audit Add/Drop Login')
 Insert trace_events values (105,'Audit Login GDR')
 Insert trace_events values (106,'Audit Login Change Property')
 Insert trace_events values (107,'Audit Login Change Password')
 Insert trace_events values (108,'Audit Add Login to Server Role')
 Insert trace_events values (109,'Audit Add DB User')
 Insert trace_events values (110,'Audit Add Member to DB')
 Insert trace_events values (111,'Audit Add/Drop Role')
 Insert trace_events values (112,'App Role Pass Change')
 Insert trace_events values (113,'Audit Statement Permission')
 Insert trace_events values (114,'Audit Object Permission')
 Insert trace_events values (115,'Audit Backup/Restore')
 Insert trace_events values (116,'Audit DBCC')
 Insert trace_events values (117,'Audit Change Audit')
 Insert trace_events values (118,'Audit Object Derived Permission')
 Go

 How To: Use SQL Profiler 1051

11. Create a stored procedure named AnlzTrcExec by running the following code:

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[AnlzTrcExec]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)
 drop procedure [dbo].[AnlzTrcExec]
 GO

 Create Proc AnlzTrcExec @trc nvarchar(255), @len int = 60, @Top int = 100,
@EventClass nvarchar(20) = 'all', @TextData nvarchar(255) = 'none' as
 declare @cmd nvarchar(2048)
 declare @TopV as nvarchar(20)
 SET @TopV = ' 100 PERCENT '
 if @Top != 100
 BEGIN
 SET @TopV = ' ' + cast(@Top as nvarchar(4)) + ' '
 END
 set @cmd = ' SELECT TOP' + @TopV + ' e.EventName,
 Count(*) as CountOfEvents,AVG(Duration) AS AvgDuration,MIN(Duration) AS
MinDuration,MAX(Duration) AS MaxDuration,
 SUM(a.Duration) AS [SumDuration],SUBSTRING(a.TextData, 1, '+ cast(@Len as
nvarchar(4)) + ') AS [Substring from Text Data],
 MIN(starttime) as MinStartTime,MAX(starttime) as MaxStartTime,AVG(CPU) AS
AvgCPU,MIN(CPU) AS MinCPU,MAX(CPU) AS MaxCPU,
 AVG(Reads)AS AvgReads,MIN(Reads) AS MinReads,MAX(Reads) AS
MaxReads,AVG(Writes) AS AvgWrites,MIN(Writes) AS MinWrites,
 MAX(Writes) AS MaxWrite,AVG(IntegerData) AS AvgIntegerData,MIN(IntegerData) AS
MinIntegerData,MAX(IntegerData) AS MaxIntegerData
 FROM dbo.' + @Trc +' a LEFT OUTER JOIN
 dbo.trace_events e
 ON a.EventClass = e.EventClass
 WHERE 1=1'
 if @textdata != 'none'
 begin
 set @cmd = @cmd + ' AND a.TextData like ''%' + @TextData + '%'
 end
 if @eventclass != 'all'
 begin
 set @cmd = @cmd + ' AND a.EventClass IN (' + @EventClass + ')'
 end
 set @cmd = @cmd +
 ' GROUP BY SUBSTRING(a.TextData, 1, '+ cast(@Len as nvarchar(4)) + '),
e.EventName
 HAVING (SUM(a.Duration) > 0)
 ORDER BY SUM(a.Duration) DESC'
 exec(@cmd)
GO

Note: The AnlzTrcExec procedure is used to analyze the trace events used within this How To.
It uses the trace_events table to provide English output names for the EventClass column and
also provides several summary options. The stored procedure takes up to four parameters:
trace table name, number of characters to group on from the query text, number of queries
to return information for, and event class name. Only the trace table name is required.

1052 Improving .NET Application Performance and Scalability

12. Run the stored procedure using the following statement.

AnlzTrcExec 'MyTraceTable'

Trace data is displayed using default options.

Note: Only queries with a nonzero duration are shown in the summary information.

13. Run the following query.

AnlzTrcExec 'MyTraceTable', 20, 10, 41

The top 10 'SQL:StmtCompleted' events are returned (ordered by the sum of
duration) grouped on the first 20 characters of each query text.

Filtering Events
You can use a filter to view only those queries that take longer than a specified
duration.

� To filter based on duration

1. Stop the trace if it is currently running, either by clicking the Stop selected trace
icon on the toolbar or by clicking Stop Trace on the File menu.

2. On the File menu, click Properties.
The Trace Properties dialog box appears.

3. On the Filters tab, expand Duration from Trace event criteria, and then expand
Greater than or equal to and enter a value.. A value of 1000 milliseconds, for
example, would cause the filter to show only those queries that take longer than
one second to run.

4. Click Run.
5. Run the queries you want to analyze. For example, using the Pubs database:

select au_id, au_lname + ' ' + au_fname, phone from authors where au_lname like
'G%' order by au_lname
select * from authors
Select au_id from authors

6. Using SQL Profiler, view the trace data. Only information satisfying the filter is
captured.

After capturing trace information, you can click the Duration column in the output
window to sort in order of duration. You can view the slowest-running queries in the
TextData column.

Note: If no queries match the filter, you may need to lower the value for the Greater than or equal to
value.

 How To: Use SQL Profiler 1053

Tracking Heavily Used Stored Procedures
If your application uses numerous stored procedures, you may want to target
your fine-tuning to those stored procedures that are used most heavily. The
SQLProfilerSP_Counts template aids in this process, as described in the steps
that follow.

� To track heavily used stored procedures

1. Start SQL Profiler.
2. On the File menu, click New, and then click Trace.
3. Specify the relevant connection details to connect to the computer running

SQL Server.
The Trace Properties dialog box appears.

4. In the Template name list, select SQLProfilerSP_Counts.
5. Click Run to run the trace.

Running the trace displays the following events: EventClass, ServerName,
DatabaseID, ObjectID and SPID.
The most frequently referenced ObjectIDs are listed first.

6. You can now run your client application and begin database profiling. Figure 2
shows sample output.

Figure 2
Sample SQL Profiler output using the SQLProfilerSP_Counts template

1054 Improving .NET Application Performance and Scalability

Identifying Stored Procedures
To find the name of the stored procedure given a specific ObjectID, you can use
the following query. Replace <ObjectID> with the value you see in the SQL Profiler
output window.

Select name from sysobjects where id = <ObjectID>

Identifying Execution Duration
If you want to find out how long a stored procedure took to run, you need to capture
the SP:Completed event. To identify the execution duration of individual statements
within a stored procedure, use SP:StmtCompleted.

� To identify stored procedure execution duration

1. Stop the trace if it is already running.
2. On the File menu, click Properties.
3. On the Events tab, expand the Stored procedures event class present in the

Available Event Class list box and select SP:Completed.
4. Click Add, and then click Run.
5. Run the stored procedures you want to analyze. For example, using SQL Query

Analyzer and the Pubs database:

sp_help authors

SQL Query Analyzer displays a list of stored procedure executions.

� To identify statement execution duration within a stored procedure

1. Stop the trace if it is already running.
2. On the File menu, click Properties.
3. On the Events tab, expand the Stored Procedures event class and

select SP:StmtCompleted.
4. Click Add, and then click Run.

SQL Profiler shows statement and stored procedure execution.
5. Run the stored procedures you want to analyze. For example, using SQL Query

Analyzer and the Pubs database:

sp_help authors

SQL Query Analyzer displays a list of statement executions.

 How To: Use SQL Profiler 1055

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: SQL Server Performance” in the

“Checklists” section of this guide.
● Chapter 14, “Improving SQL Server Performance.”
● For more information about using SQL Profiler, see Microsoft Knowledge Base

Article 325297, “Support WebCast: How to Effectively Use SQL Server Profiler,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;325297.

http://support.microsoft.com/default.aspx?scid=kb;en-us;325297

Index
+ operator, 237
+= operator, 603
// operator, 424
/3GB switch, 815–816

.NET application tuning, 815–816
SQL scaling, 639, 641, 680

/optionexplicit, 257
/optionstrict, 257
/unsafe, 613
@OutputCache directive, 300, 304
[in] attribute, 356
[out] attribute, 356

A
absolute URLs, 330
accumulators, 239
ACT

acronym defined, 987
.NET application measurement, 690

ACT for performance and scalability, 987–1000
ACT results, 992
anonymous authentication, 995
authentication, 994–995
basic authentication, 995
common tasks, 993–1000
cookies, 999
creating a test, 989
creating ACT projects, 988–989
digest authentication, 995
final script, 998
monitoring ACT client health, 993
.NET Passport, 995
new user creation, 991
output analyzing, 992
recording an ACT test, 989
set test properties, 990
simultaneous browser connections, 990
SSL, 996
steps, 988–992
test duration, 990
test running, 992
Test.Sleep, 993–994
think time, 993–994
tracing, 999
users setting, 991
view state, 996–997
warm-up time, 990

ACT for performance and scalability (continued)
Web services, 1000
Windows authentication, 994–995

ACT for Web services testing, 1001–1008
adding headers to test file, 1004
additional resources, 1008
empty ACT test creation, 1002
final test script, 1005–1006
HTTP GET protocols, 1007
HTTP POST protocols, 1007
Machine.config, 1007
.NET Framework 1.1, 1007
overview, 1001
request body, 1003
SOAP envelope copying, 1003
SOAP envelope modifying, 1003–1004
SOAP envelope sample, 1004
SOAP request creation, 1002
steps, 1002–1005
test file completion, 1005
Web service namespace, 1005
Web service path, 1005
Web service sample, 1006
Web.config, 1007

activation
checklists, 871
.NET remoting, 491–492

activation models, 480–481, 491–492
choosing, 486

address attribute, 446
Address Windowing Extensions. See AWE
administrators, 681
ADO.NET, 505–566

abstracting data access, 508–509
acquiring late and releasing early, 513
additional resources, 566–567
architecture, 507–509
architecture diagram, 507
BLOBs, 536, 558–563

CommandBehavior.SequentialAccess,
559–560

GetBytes method, 559–560
Oracle, 561–562
OracleLob.Read, 561–562
OracleLob.Write method, 563
READTEXT command, 560–561
SQL Server 2000, 560–562
UpdateText function, 562

1058 Improving .NET Application Performance and Scalability

ADO.NET (continued)
command, 531–536

BLOBs, 536
columns and rows, 532
CommandBehavior.SequentialAccess

enumeration, 536
CommandBuilder objects, 536
Command.ExecuteNonQuery

method, 534–535
dynamic SQL, 532
ExecuteNonQuery method, 534
ExecuteScalar method, 534–535
paging, 532
Parameters collection, 532
parameters with dynamic SQL, 532
parameters with stored procedures, 532
round trips, 533
single values, 534–535
SQL input and parameter objects, 531–532
SQL statements, 533
stored procedures, 532
wide rows, 536

connection pooling, 734–735, 833
connections, 522–530

close, 522–523
closing in C#, 524–525
closing in Visual Basic .NET, 523
CommandBehavior.CloseConnection

enumeration, 525–526
DataReader object, 525–526
Dispose, 522–523
explicit closing, 522–523
Fill, 526
in methods, 522
more information, 530
OleDbConnection, 526–527
pool connections, 527–530
pooling on .NET Framework, 529–530
Update, 526
using statement, 524–525

data access, 732–736
data access layer, 511
data access metrics, 564–565
data caching, 511–512
data returning, 514
DataAdapter object, 508
database provider types, 553
DataReader, 546–548

CommandBehavior.CloseConnection
method, 546–547

CommandBehavior.SequentialAccess, 548
ExecuteReader method, 548
GetOrdinal, 548
object closing, 546
pending data cancellation, 547–548

ADO.NET (continued)
DataSet, 549–550

concurrency models, 550
custom classes, 518
DataReader, 518
DataView object, 549–550
indexed searching, 549
layers, 517
primary keys, 549
serialization, 549
XML, 518

DataSet vs. DataReader, 545
DataView object, 508
design, 511–519
disposable resources, 513
Enlist property, 558
exception handling, 518
exception management, 553
implementation considerations, 519
layers, 517–519
metrics, 564–565
.NET Framework

data providers, 520–522
provider categories, 520

normalization, 519
objects, 508, 623
ODBC data sources, 521
Oracle, 521, 561–562
overview, 505
paging records, 563–564
parameters, 541–543

Parameters collection, 542
SQL statements, 542
SqlParameter objects, 543–544
stored procedures, 541–543
types, 543

performance and scalability issues, 509–510
round trips, 513–514, 533
schemas, 551
service accounts, 512
SQL Server 6.5 , 520
SQL Server 7.0 , 520
SQL Server 2000, 521, 560–562
SQL Server, 541
SQLXML managed classes, 521
stored procedures, 515–517, 537–543

Command.Prepare method, 539
CommandType.StoredProcedure, 539
CommandType.Text, 538
ExecuteNonQuery, 540
OleDbCommand object, 538
output parameters, 540
SET NOCOUNT ON, 541
SQL Server, 541
SqlCommand object, 539

 Index 1059

ADO.NET (continued)
System.Data.ODBC, 521
System.Data.OleDb, 520
System.Data.OracleClient, 521
System.Data.SqlClient, 520
transaction types, 515
transactions, 554–558

ADO.NET transactions, 555–556
deadlock, 557
DTC, 556
Enlist property, 558
isolation levels, 557
pooled objects, 558
SQL transactions, 555

tuning, 833–834
typed DataSets, 552
types, 543, 552
Windows authentication, 514
XML and DataSet objects, 550–551

OpenXML method, 551
schemas, 551

affinity
architecture and design of .Net applications, 143
ASP.NET, 274
need for evaluating, 92, 96
processors in .NET application tuning, 822–823
resource affinity, 106–107
server affinity, 466

aliasing column names, 893
allocation patterns, 286
anonymous access, 328, 995
ANSI

isolation levels, 114–115, 655
unicode to ANSI conversions, 356, 612

apartment type, 364
apartment-model, 365
Application Center Test. See ACT
application logic, 582
application performance. See design guidelines

for applications; .NET application measurement
application performance goals, .NET application

testing, 766
application state

Application object, 309
ASP.NET, 308–310
ASP.NET performance, 308–310
checklists, 853
code reviews of .NET applications, 600–601
more information, 310
read-only data, 309
STA COM objects, 309
static properties, 309

applications
allocation patterns, 286
boundaries, 435
exception management, 320

appRequestQueueLimit, 712, 818–819
approach of this guide, 11–12
Appwidepaging.aspx, 933–936
architecture. See also architecture and design

of .Net applications
ADO.NET, 507–509
ASP.NET, 269–270
ASP.NET performance, 269–270
best practices at a glance, 17–22
COM interop, 347–349
design guidelines for application

performance, 102–104
Enterprise Services, 372–374
IIS, 332
IJW and managed extensions for C++, 346–347
interop performance, 345–347
managed code performance, 181–182
P/Invoke, 345–346
PIAs, 348
RCW, 348–349
review process for .Net applications, 136–137
XML performance, 411–413

architecture and design of .Net applications, 135–175
acquiring late and releasing early, 153, 157
additional resources, 175
application domains vs. processes, 151
appropriate data structures, 166
architecture and design review process, 136–137
asynchronous execution, 154–155
BLOBs, 170
business layer, 160
caching, 157–160
chatty interfaces, 147
class design, 173–174
classes and virtual methods, 174
communication, 146–151
concurrency, 152–155
concurrenent task execution, 152
concurrent sessions and, 164
concurrent sessions and average session data

per user, 164
coupling and cohesion, 144–146
custom collections, 166
data access, 166–170
data location caching, 159–160
data ownership by its class, 173
data structures and algorithms, 165–166
database, 160
DataSet objects, 167
deployment and infrastructure, 138–144
design cohesiveness, 145–146

1060 Improving .NET Application Performance and Scalability

architecture and design of .Net applications
(continued)

distributed architecture, 138–139
distributed communication selection, 139
DTC, 169
encryption, 150
Enterprise Services, 157, 164
error codes, 172
exception catching, 173
exception handling, 171
exception handling boundaries, 172
exceptions to control application flow, 171–172
exchanging data with a remote server, 148–149
expiration policy for caching, 160–161
fine-grained locks, 153
firewalls, 140
IEnumerable, 166
in-process session state, 144
infrastructure restrictions, 140–141
interaction across boundaries, 140
IPC, 151
late binding, 146
layers, 167
load balancing, 144
logical layers, 143
long-running calls, 150–151
loosely coupled design, 145
message queues, 150
methods that take variable parameters

in classes, 174
.NET Remoting, 163
network bandwidth restrictions, 141–142
objects, 163
overview, 135
paging through data, 169
Parameters collection, 168
pooling, 156–157
presentation layer, 159
read-write cache, 144
remote calls, 147
remote servers, 148–149
repeated data access code, 170
required data processing, 169
resource affinity, 143
resource management, 156–157
resource sharing with other applications, 142
review process, 136–137
scaling out support, 143
scaling up support, 142
secure communication requirements, 150
serializable objects, 164
server affinity and scalability goals, 144
spanning multiple data stores, 169
SSL, 141
state management, 160–164

architecture and design of .Net applications
(continued)

stateless components, 162–163
stored procedures, 168
synchronization primitive, 154
thread creation on a per-request basis, 153
thread safe types by default, 153
thread safety, 153
transaction isolation level, 154
transaction levels, 154
view state, 164
virtual methods in classes, 174
volatile data caching, 159
Web services, 163

ArrayList
code reviews of .NET applications, 585, 586
collection types, 252

arrays
additional considerations, 243
checklists, 867
code reviews of .NET applications, 583–586
jagged vs. multidimensional, 241–242
managed code performance, 240–243
strongly typed, 241
vs. collections, 24–25, 241

ASAP deactivation, 386–387
ASPCOMPAT attribute

to call STA COM objects, 323, 813
code reviews of .NET applications, 610
threading, 365

ASP.NET, 267–342. See also code reviews
of .NET applications; custom counters

additional resources, 342
affinity, 274
allocation pattern, 286
application state, 308–310
architecture, 269–270
ASP.NET performance, 318–323
batch compiling pages, 290
blocking on long-running tasks, 276
buffering, 289
cache API, 298–299
CacheDependency class, 298–299
caching

for cost reduction, 276–277
explained, 297–300
guidelines, 300–306
reducing round trips, 275

Close method, 285
code reviews of .NET applications, 597–611
COM interop, 323–325
connection pooling, 272
credentials, 273
cryptography, 273
data access, 325–327

 Index 1061

ASP.NET (continued)
data binding, 295–297
DataBinder.Eval, 296
debug, 290–291
deployment, 336–341
design, 272–278
diagram, 270
Dispose method, 285
exceptions, 278
HTTP Modules, 316–317
HttpResponse.IsClientConnected property, 275
identities, 272
IIS, 332–335
implementation, 279
interop performance, 352–353
layers, 336
LCEs, 399
logical partitioning, 273–274
monitoring custom counters, 1023–1030
.NET application performance, 708–722
Ngen.exe, 264
output buffering, 275
output caching, 299
overview, 31–33, 267
Page.DataBind, 296
Page.IsPostBack property, 289
pages, 287–292
pages in code reviews, 620
per-request impersonation, 286
performance and scalability issues, 270–271
performance counters, 708–719
performance table, 727
pipeline code, 316
pooled resources, 284, 285
Repeater control diagram, 294
resource management, 284–286
Response.Redirect method, 275, 291–292
security, 328–331
server controls, 292–295
Server.Transfer method, 275
session state, 310–313
STA objects from, 365
state management, 307–308
string management, 317–318
thread pool, 31–32, 282
threading

explained, 279–281
guidelines, 281–284
recommendations, 280

timeout in Web services, 459–460
tuning .NET application, 804–823
VaryBy attributes, 305
view state, 292, 314–316
volatility, 276–277
vs. IIS 6.0, 334

ASP.NET applications
EIF, 1041
scaling, 955–956

ASP.NET\Request Execution Time, 714
AspNetThreadCounters.exe, 902
.aspx pages, 604–607
assemblies

content updates, 339–340
Ngen.exe, 263

asynchronous calls
checklists, 865
code reviews of .NET applications, 623
explained for managed code performance, 215
overview, 23
threading, 283–284

asynchronous communication
design guidelines for application

performance, 111–112
vs. synchronous communication, 488–489

asynchronous events, 316
asynchronous execution, 154–155
asynchronous guidelines, 216–218
asynchronous invocation

checklists, 882
code reviews of .NET applications, 590
timeouts, 882

asynchronous processing, 590–591
asynchronous Web methods

checklists, 882
for I/O operations Web services, 453–454
Web services, 452–456
and worker threads, 455

atomic transactions, 116
attachments

checklists, 884
overview, 35

audience, 5
AuthenTec, Inc., xl
authentication

ACT for performance and scalability, 994–995
for anonymous access, 328

AuthenticationOption.Integrity, 403
AutoComplete, 615–616
automatic growth, 680
AWE

acronym defined, 639
SQL server deployment, 680

B
Background Intelligent Transfer Service. See BITS
bandwidth restrictions, 141–142
Barber, Scott, xxxix–xl
base addresses, 265

1062 Improving .NET Application Performance and Scalability

base classes
Dispose method, 209–210
serialization, 892

Base64 encoding
encryption, 472
overview, 35
Web services, 467

baselines, 760
basic authentication

ACT for performance and scalability, 995
PreAuthenticate property, 620

basic types, 312
batch compiling pages in ASP.NET performance, 290
BeginInvoke, 590
best practices

at a glance
architecture and design solutions, 17–22
development solutions, 22–37
performance, 17–38
solution testing, 37–38

for performance testing, 763–764
binary large objects. See BLOBs
binary serialization. See serialization
BinaryFormatter

code reviews of .NET applications, 623
.NET remoting, 501
remoting, 487, 498–499, 501
serialization, 889

binding. See data binding; early binding; late binding
BITS, 468
blittable types

code reviews of .NET applications, 612
interop performance, 354–355

BLOBs
acronym defined, 558–559
ADO.NET, 536, 558–563
architecture and design of .Net applications, 170
checklists, 846
code reviews of .NET applications, 631–632
overview, 29

blocking
described, 93
design of ASP.NET performance, 276
preventing with finalizer code, 210

Bohling, Brandon, xli–xlii
bottlenecks, 786–788. See also .NET application tuning

CPU bottlenecks, 789–791
I/O bottlenecks, 679
memory bottlenecks, 792–794

boundaries
and associated performance hits, 373
Enterprise Services performance, 373–374
in remoting, 482

boundary crossing reduction, 184–185

boxing
code reviews of .NET applications, 573
issues, 245
overhead, 250
overview, 24

boxing and unboxing
checklists, 866
collections and boxing, 227
DirectCast operator, 228
guidelines, 226–228
managed code performance, 226–228
overhead measuring, 227

bridge providers, 520
budgets, 62–63
BufferResponse, 461
buffers

code reviews of .NET applications, 605
for I/O operations, 578
pages in ASP.NET performance, 289
pinning, 211

bulk data transfer
overview, 34
Web services, 466–471

burst load scenarios, 813
business layer

architecture and design of .Net applications, 160
caching, 120
design guidelines for application

performance, 131–132
byte array, 467

C
C#

closing connections in, 524
example of Dispose method, 202–203
foreach and for, 236

cache API, 298–299
cache data loading, 122
cache utilization, 714–715
CacheDependency class, 298–299
CacheDuration, 461
caching

architecture and design of
.Net applications, 157–160

cache API, 298–299
caching the right data, 302–303
checklists, 849, 883
code reviews of .NET applications, 598
compiled style sheets, 426–427
for cost reduction in ASP.NET, 276–277
design guidelines, for application

performance, 119–122
explained for ASP.NET, 297–300

 Index 1063

caching (continued)
guidelines for ASP.NET, 300–306
kernel caching, 306
memory limit configuration, 302
more information, 306
.NET application performance, 714–715, 735
output caching, 299
output caching to cache relatively

stable pages, 303–304
partial page caching, 300
refreshing appropriately, 303
right cache location, 304
sensitive data, 329
separating dynamic data from

static data, 301–302
VaryBy attributes, 305
Web services, 464–465
XML schemas, 422

callers, 388
calling patterns, 381
calls

authenticating with IIS, 496
long-running, 619–620

CAOs
.NET remoting, 491–492
remoting, 481

capacity planning, 939–950
average user profile costs, 945–946
CPU utilization, 949
discrete testing, 942–943
future requirements, 949
historical data, 948
MOM, 948
operation costs, 944–945
performance data, 948–949
predictive analysis, 947–949
scenario output, 943
site capacity calculation, 946–947
site capacity verification, 947
TCA vs. predictive analysis, 939
user profile costs, 945–946
user request profiles, 940–942

capacity testing overview, 740
Cartesian products, 650
CAS

acronym defined, 362, 862
checklists, 862, 868
CLR, 362
code reviews of .NET applications, 595
declarative demands vs. imperative

demands, 259
interop performance, 362–363
link demands vs.full demands, 259–260
managed code performance, 258–259
.NET application performance, 707

CAS (continued)
overview, 26
SuppressUnmanagedCode attribute, 363
SuppressUnmanagedCodeSecurity

attribute, 258–259
TLBIMP /unsafe switch, 363

caveats, 20
Enterprise Services, 376–377
remoting, 483
Web services, 436

CCW acronym defined, 393
channels

checklists, 872
remoting, 486

chatty interfaces
architecture and design of .Net applications, 147
and data facades, 20
Enterprise Services performance, 382
.NET application performance, 732
.NET remoting, 488–489

checklists, 841–886
ADO.NET performance, 843–846

BLOBs, 846
command, 844
connections, 844
DataReader, 845
DataSet, 845
design, 843
exception management, 846
Microsoft .NET Framework providers, 843
parameters, 845
stored procedures, 844
transactions, 846
types, 846
XML and DataSet objects, 845

application series checklist, 842
architecture and design of

.Net applications, 847–850
caching, 849
class design, 850
communication, 848
concurrency, 848
coupling and cohesion, 847
data access, 850
data structures and algorithms, 849
deployment and infrastructure, 847
exception handling, 850
resource management, 848
state management, 849

ASP.NET performance, 851–856
application state, 853
caching, 853
COM interop, 855
data access, 855
data binding, 853

1064 Improving .NET Application Performance and Scalability

checklists (continued)
ASP.NET performance (continued)

deployment, 856
design, 851
exception management, 855
HTTP modules, 854
pages, 852
resource management, 852
security considerations, 856
server controls, 852
session state, 854
state management, 853
string management, 854
threading, 851
view state, 854

database server checklist, 842
design checklist, 841
Enterprise Services performance, 857–859

design, 857
LCEs, 858
object pooling, 857
queued components, 858
resource management, 858
security, 858
state management, 857
synchronization, 859
threading, 859
transactions, 858

implementation, 53–54
interop performance, 861–862

CAS, 862
design, 861
marshaling, 861
Marshal.ReleaseComObject, 861
monitoring interop performance, 862
threading, 862

managed code performance, 863–869
arrays, 867
asynchronous calls, 865
boxing and unboxing, 866
CAS, 868
class design, 863
collections, 867–868
design, 863
exception management, 866
GC guidelines, 864
iterating and looping, 867
locking and synchronization, 865–866
Ngen.exe, 869
pinning, 865
reflection and late binding, 868
string operations, 867
threading, 865

checklists (continued)
remoting, 871–873

activation, 871
channels, 872
design, 871
formatters, 872
hosts, 872
lifetime considerations, 871
MBR, 872
MBV, 872
serialization and marshaling, 873

SQL Server, 875–879
deployment, 879
execution plan recompiles, 877
execution plans, 877
indexes, 876
monitoring, 878
queries, 876
scaling, 875
schema, 875
SQL XML, 878
stored procedures, 877
transactions, 877
tuning, 878

Web services, 881–884
asynchronous invocation, 882
asynchronous Web methods, 882
attachments, 884
caching, 883
COM interop, 884
connections, 881
design, 881
“fire-and-forget” communication, 882
serialization, 883
state management, 883
threading, 882
timeouts, 882
WebMethods, 883

XML, 885–886
design, 885
parsing, 885
validating, 885
writing, 886
XPath, 886
XSLT, 886

chunky interfaces
design guidelines for application

performance, 108
interop performance, 350–351

class design
architecture and design of

.Net applications, 173–174
checklists, 850, 863
code reviews of .NET applications, 596
managed code performance, 186–189

 Index 1065

classes. See also serialization
and Close or Dispose, 204
and DLL relationships in Enterprise Services, 380
from ServicedComponent, 371
and virtual methods, 174
XML, 411–413, 415

client calls
asynchronous, 488
and CLR, 486
IDisposable, 352
IIS, 495
managed code performance, 207

client-activated objects. See CAOs
client-side asynchronous calls for

UI responsiveness, 216
client-side proxy classes, 434
client-side validation

pages in ASP.NET performance, 292
security considerations, 329

cloning, 954
Close

ADO.NET, 522–523
ASP.NET, 285

CLR. See also CLR Profiler tool; managed code
architecture diagram, 181
CAS, 362
exceptions, 172, 232
hosts, 495
and interop, 343
managed code, 701–707
managed code implementation, 190
Ngen.exe, 28
overview, 179–182
performance counters, 802
tuning, 801–803

CLR performance
code reviews of .NET applications, 578–579
workstation GC, 192–193

CLR Profiler tool, 1009–1022
additional resources, 1022
allocation profile analyzing, 1016–1019
CLR Profiler views, 1010–1011
code samples, 1020–1021
downloading, 1009–1010
essential knowledge, 1010–1011
GC issues, 1013–1019
memory allocation, 1014–1019
.NET application measurement, 691
overview, 1009
profiling applications, 1011–1012
profiling ASP.NET applications, 1012–1013
steps, 1014–1019

clustered indexes
effective design, 910
in SQL Server, 660–662
user-specific records, 925

coarse- and fine-grained locks, 114
coarse-grained services, 92
coarse-grained wrappers, 110
Code Access Security. See CAS
code paths. See also performance-critical code paths

timing for .NET application performance, 707
code reviews of .NET applications, 569–633

additional resources, 633
ASP.NET, 597–611

application state, 600–601
AspCompat, 610
.aspx pages, 604–608, 610
buffering, 605
caching, 598
data access, 608
data binding, 609
debugging, 606
efficient management, 602–603
exceptions, 603–604
long-running block operations, 602
Machine.config, 611
Page.IsPostBack, 605
Response.Redirect, 605
Response.Write, 603
server controls, 608
Server.CreateObject, 610
session state, 599–600
STA COM components, 600, 610
StringBuilder, 603
strings, 603
threading and synchronization

features, 601–602
timeouts, 607
tracing, 606
try\finally, 603
unmanaged code, 610
validation, 605
view state, 607

boxing, 573
common performance issues, 571–572
data access, 608, 624–632

BLOBs, 631–632
command, 626
CommandType.Text, 627
connections, 624–625
DataReader, 629
DataSet, 629–630
paging, 632
parameters, 628–629
pooling, 625

1066 Improving .NET Application Performance and Scalability

code reviews of .NET applications (continued)
data access (continued)

stored procedures, 626–627
T-SQL, 627–628
transactions, 630–631

data binding, 609
DataSet vs. DataReader, 608
Enterprise Services, 614–618

AutoComplete, 615–616
COM+ transactions, 617
JIT, 614
LCEs, 616–617
object pooling, 614
queued components, 616
RCW, 615
resources, 615–616
SetAbort, 615–616
Synchronization attribute, 617

exceptions, 572, 603–604
FxCop, 571
interop, 611–614

blittable types, 612
COM objects, 613
marshal, 612
P/Invoke, 612
pinning, 613
/unsafe, 613

Machine.config, 611
managed code and CLR performance, 574–596

application logic, 582
ArrayList, 585, 586
arrays, 583–586
asynchronous invocation results, 590
asynchronous processing, 590–591
BeginInvoke, 590
buffers for I/O operations, 578
class design, 596
code access security, 595
collections, 584–586
DataSet objects, 591
declarative security, 595
efficiency, 575–576
exception handling, 581–583
finalizers, 576–577
finally blocks, 582–583
foreach, 579, 585
GC.Collect, 576
Hashtable, 586
Int checking, 592
ISerializable, 591
late binding, 594
locking and synchronization, 586–589
locking object type, 588
looping and recursion, 578–579

code reviews of .NET applications (continued)
managed code and CLR performance (continued)

memory management, 574–578
Mutex object, 587, 859
.NET Framework classes, 594
Ngen.exe, 596–597
on error goto, 592–593
Option Explicit, 593, 606
Option Strict, 593
properties, 596
ReaderWriterLock objects, 588
reflection and late binding, 594–595
rethrowing exceptions, 583
sealing, 596
serialization, 591–592
shared libraries, 597
SortedList, 586
StringBuilder, 572, 580–581
StringBuilder class, 593
strings, 580–581
strongly typed collections, 585
synchronized attribute, 587
System.Object, 594–595
“this”, 587–588
threading, 589–590
Thread.Resume, 589
Thread.Suspend, 589
try/catch blocks, 582–583
unmanaged code, 595
unmanaged resources, 577
value types, 585
variables, 596
Visual Basic, 592–593
volatile fields, 589
Windows Forms applications, 597

overview, 569–570
remoting, 622–624

ADO.NET objects, 623
asynchronous calls, 623
BinaryFormatter, 623
HttpChannel, 622
MarshalByRef, 622
MarshalByValue, 622
NonSerialized attribute, 622

resource cleanup, 572
string management, 572
threading, 573
Web services, 618–621

ASP.NET pages, 620
ConnectionManagement element, 621
long-running calls, 619–620
PreAuthenticate property, 620
primitive types, 618
thread pool tuning, 621

 Index 1067

code reviews of .NET applications (continued)
Web services (continued)

timeouts, 620
UnsafeAuthenticatedConnectionSharing,

621
Web methods, 618–619
Web service clients, 619–621
XMLIgnore attribute, 620

cohesion. See coupling and cohesion
collection guidelines for managed code

performance, 246–251
collection types, 251–255

ArrayList class, 252
Hashtable, 252
HybridDictionary, 252
ListDictionary, 253
managed code performance, 251–255
NameValueCollection, 253
Queue, 253
SortedList, 254
Stack, 254
StringCollection, 255
StringDictionary, 255

collections
and boxing, 227
boxing issues, 245
boxing overhead, 250
checklists, 867–868
code reviews of .NET applications, 584–586
collection type choice, 247
collection types, 251–255
custom collections, 248
efficiency with data in, 251
enumeration overhead, 246, 248–250
explained for managed code

performance, 244–246
guidelines for managed code

performance, 246–251
IEnumerable interface, 250
initializing, 248
more information, 255–256
searching, 247
sorting, 247
thread safety, 245
vs. arrays, 241

column name aliasing, 893
COM+ services, 371
COM+ transactions, 617
COM Callable Wrapper. See CCW
COM components, 392
COM interop

architecture, 347–349
ASPCOMPAT to Call STA COM objects, 323, 813
ASP.NET performance, 323–325
checklists, 855, 884

COM interop (continued)
COM objects in session or application states, 324
interop performance, 366–367
STA objects in session state, 324
Web services, 472–473

COM objects
code reviews of .NET applications, 613
managed code performance, 205
.NET application tuning, 813
in session state or application state, 324

command
ADO.NET, 531–536
checklists, 844
code reviews of .NET applications, 626

CommandBehavior.CloseConnection
ADO.NET, 546–547
connections, 525–526

CommandBehavior.SequentialAccess, 536, 548,
559–560

CommandBuilder objects, 536
Command.ExecuteNonQuery method, 534–535
Command.Prepare method, 539
CommandType.StoredProcedure, 539
CommandType.Text

ADO.NET, 538
code reviews of .NET applications, 627

Common Language Runtime. See CLR
communication

architecture and design of
.Net applications, 146–151

checklists, 848
distributed architecture, 107

community and newsgroup support, 14
Compare method, 240
Compile.bat, 971
complex object graphs

code review, 575
managed code, 198

Component Services tool
.NET application performance, 725
trusted server model, 402

compression
architecture and design of

.Net applications, 141–142
priorities, 111

concurrency
architecture and design of

.Net applications, 152–155
checklists, 848
design guidelines for application

performance, 114–116
distributed architecture, 114
overview, 93

concurrency models, 550
concurrent users, 81

1068 Improving .NET Application Performance and Scalability

configuration settings, 678
connection pooling. See also pooling

ADO.NET, 734–735, 833
ASP.NET design, 272
Enterprise Services, 956
further information, 530
IDisposable, 352
impersonating clients, 377
middle tier impersonation, 403
object pooling, 613
per-request impersonation, 329
resource management, 117, 157, 284
round trips, 513
trusted server model, 402
Windows authentication, 514

ConnectionGroupName attribute, 446–447
ConnectionManagement element, 621
connections

ADO.NET, 522–530
checklists, 844, 881
code reviews of .NET applications, 624–625
.NET application tuning, 831, 834

console application, 900–902
constraint defining for SQL Server, 645–646
content updates, 339–340
contention

ASP.NET, 279–281
described, 93
design guidelines for applications, 114
.NET application performance, 705–706
.NET application tuning, 812–814
Web services, 449–451

contributors and reviewers, 15
cookies, 999
core data, 101
cost distribution, 914
costs. See capacity planning
CounterCreationDataCollection, 1025–1027
counters. See custom counters; metrics;

performance counters
coupling and cohesion

architecture and design of
.Net applications, 144–146

checklists, 847
described, 105
design guidelines for application

performance, 105–107
high cohesion, 106

covering indexes in SQL Server, 663
CPU

bottlenecks, 789–791
.NET application tuning, 789–791
utilization, 949

cpuMask attribute, 335
credentials, 273

critical scenarios, 80
CRM acronym defined, 639
cryptography, 273
custom collections, 248
custom counters. See also thread pools

ASP.NET monitoring, 1023–1030
additional resources, 1030
CounterCreationDataCollection, 1025–1027
monitoring counters, 1030
multiple counters, 1025–1027
overview, 1023
PerformanceCounterCategory, 1024–1025
PerformanceCounter.Increment, 1028
PerformanceCounter.RawValue, 1029
Server Explorer, 1027
single counter, 1024–1025
using counters in code, 1028–1029
validating, 1025, 1027

ASP.NET thread pool, 899–907
additional resources, 907
AspNetThreadCounters.exe, 902
console application, 900–902
counter refreshing application, 902–905
Performance Monitor, 906
test page, 906

.NET application performance, 694
custom hosts, 497–498
Customer Relationship Management. See CRM

D
data. See historical data; reporting data
data access. See also code reviews of .NET applications

architecture and design of
.Net applications, 166–170

ASP.NET performance, 325–327
caching data, 327
checklists, 850, 855
code reviews of .NET applications, 608, 624–632
DataReader object, 327
metrics, 564–565
overview, 28–31
paging for large result sets, 326
preventing users from requesting too

much data, 327
data access layer, 511

abstracting data access, 508–509
design guidelines for applications, 132–133

data binding
ASP.NET performance, 295–297
checklists, 853
code reviews of .NET applications, 609
DataBinder.Eval method, 296–297
Page.DataBind, 295–297

 Index 1069

data caching
ADO.NET, 511–512
data access, 327
overview, 33

data compression, 895
data definition language. See DDL
data distribution of tables, 910
data facades, 500–501

and chatty interfaces, 20
data manipulation language. See DML
data paging, 111
data providers, 520–522
data structures and algorithms, 849
data types, 646–647
DataAdapter, 937
databases

caching, 120, 160
partitioning, 102
provider types, 553
SQL indexes statistics, 912
SQL Server logs, 679

DataBinder.Eval method, 296–297, 609
Page.DataBind, 296–297, 609

DataGrid, 29
hierarchies of controls, 294
large result sets, 326
paging feature, 937
view state, 164, 719

DataReader, 545–548
ADO.NET, 546–548
checklists, 845
code reviews of .NET applications, 629
connections, 525–526
data access, 327

DataSet, 545, 549–550
ADO.NET, 549–550
architecture and design of .Net applications, 167
checklists, 845
code reviews of .NET applications, 591, 629–630
.NET remoting, 502
overview, 36
remoting, 896
serialization, 29, 889
serialization techniques, 889, 893–894

column name aliasing, 893
vs. DataReader, 30, 608
XML, 414

DataView object, 549–550
DBCC OPENTRAN command, 675
DDL and DML, 670–671
deadlock, 557
debug, 290–291
Debug class, 694–695

debugging
code reviews of .NET applications, 606
deployment, 338
disabling for .NET application tuning, 819
role in CLR, 182

declarative demands vs. imperative demands, 259
declarative referential integrity. See DRI
declarative security, 595
deep hierarchies, 294–295
demands. See declarative demands; full demands;

imperative demands; link demands
deployment

architecture design guidelines, 94–96
ASP.NET performance, 336–341
checklists, 847, 856
content updates, 339–340
HTTP compression, 341
HTTP pipeline, 337–338
page precompiling, 341
perimeter caching, 341
process hops, 337
remote middle tiers, 337
scaling, 98–102
tracing and debugging, 338
Web garden configuring, 341
XCOPY, 340

deployment topology, 18
design. See also architecture and design of

.Net applications
ASP.NET performance, 272–278

affinity evaluation, 274
blocking on long-running tasks, 276
checklists, 851
exception avoidance, 278
partitioning applications logically, 273–274
round trip reduction, 275
security, 272–273
use caching, 276–277

.NET remoting, 485–490
Web services, 439–443

bulk data transfer, 442–443
caching issues, 442
chunky interfaces, 439
input validation, 441–442
literal message Encoding, 440
local Web services, 443
message-based programming

vs. RPC Style, 439–440
primitive types, 440
server state, 441

XML performance, 414–417
design guidelines for applications, 89–134

acquire late, release early, 118
additional resources, 133–134
application functionality into logical layers, 106

1070 Improving .NET Application Performance and Scalability

design guidelines for applications (continued)
architecture and design issues, 102–104
asynchronous communication, 111–112
bad design, 104
batch work to reduce network calls, 111
browser client considerations., 129
business layer considerations, 131–132
cache data loading, 122
caching, 119–122
chunky interfaces, 108
coarse- and fine-grained locks, 114
communication, 107–113
concurrency, 114–116
constraints and assumptions, 96
contention, 114
coupling and cohesion, 105–107
data access layer considerations, 132–133
data caching decisions, 120–121
data minimization, 110–111
data passing between layers, 108–109
data structures and algorithms, 125–126
database partitioning at design time, 102
deployment, 94–98
deployment architecture, 94–96
design guidelines summary, 127–128
design implications and tradeoffs, 100–102
design principles, 92–93
design process principles, 91–92
desktop applications considerations, 128
diagram, 127–128
distributed architecture, 95–96, 103
distributed coherent caches, 122
early binding, 106
expiration policy and scavenging

mechanism, 121–122
“fire and forget” invocation model, 113
guidelines, 99
high cohesion, 106
isolation levels, 114–115
layered design, 97, 103
lock times, 114
logical layers, 106
long-running atomic transactions, 116
loose coupling, 105
message queuing, 112–113
minimize session data, 124
nondistributed architecture, 95–96
object creation and destruction, 118
overview, 89–90
per-user data caching, 119–122
performance profile categories, 127–128
pooling shared or scarce resources, 117
poor design, 104
pre-assigning size, 126
principles, 90–93

design guidelines for applications (continued)
remote application logic, 98
remote communication mechanism, 107–108
resource affinity, 106–107
resource management, 116–119
resource throttling, 118–119
scale out support, 99–100
scale up vs. scale out, 98–102
scaling out: get more boxes, 99
scaling up: get a bigger box, 99
server affinity, 96
session resources freeing, 124–125
session variables and business logic, 125
state management, 123–125
state store options, 124
stateful vs. stateless design, 123
staying in the same process, 97
threads as a shared resource, 117
transaction isolation level selection, 114–115
transitions across boundaries, 111
value and reference types, 126
volatile data caching, 121
Web layer considerations, 130–131

development solutions
ASP.NET, 31–33
best practices at a glance, 22–37
data access performance, 28–31
Enterprise Services performance, 36–37
interop performance, 37
managed code performance, 22–28
.NET remoting performance, 35–36
Web service performance, 34–35

diagnostic information, 232
digest authentication, 995
DIME, 35

acronym defined, 35
Direct Internet Message Encapsulation. See DIME
DirectCast operator, 228
DisableAsyncFinalization registry key

Enterprise Services performance, 392
.NET application tuning, 829

disk controllers, 679
disk counters, 796–797
disk defragmenting, 797
disk I/O

.NET application performance, 699–700

.NET application tuning, 796–797
Diskpar.exe, 797
Display Execution Plan option, 667
disposable resources, 204

exception management, 320
Dispose, 204–210

ADO.NET, 522–523
ASP.NET, 285
C# example of, 202–203

 Index 1071

Dispose (continued)
checklist, 864
Enterprise Services performance, 391, 393–394

Dispose pattern, 201–203, 208
distributed architecture

communication, 107
concurrency, 114
diagram of layering, 103
nondistributed architecture, 95–96
overview, 18, 138–139

distributed coherent caches, 122
Distributed Transaction Coordinator. See DTC
DLLs, 380
DML and DDL, 670–671
Document Object Model. See DOM
DOM

SQL XML, 672
XML performance, 411, 416, 419, 420

DRI, 644–645
DTC

acronym defined, 380, 399
ADO.NET, 556
architecture and design of .Net applications, 169

dynamic data
scaling, 101
separating from static data, 301–302

dynamic SQL, 532

E
early binding

design guidelines for application
performance, 106

design guidelines for applications, 106
vs. reflection, 256

efficient types
blittable types, 354
designing, 22

EIF
acronym defined, 27, 692, 1031
additional resources, 1042
application compiling, 1037
ASP.NET application issues, 1041
binding events to event sinks, 1038–1039
console application creation, 1034
downloading and installing, 1033
essential knowledge, 1031–1033
events

attributes, 1040
raising with application event source, 1035
raising with SoftwareElement event

source, 1036
sinks, 1032
sources, 1032

EIF (continued)
How To, 1031–1042
installer class, 1035
InstallUtil.exe, 1038
instrumentation output, 1041
instrumenting applications, 1033–1039
logs, 1039–1041
.NET application performance, 694
overview, 1031
references, 1034
request tracing, 1036
TraceSessions.config, 1037
using, 1034
Windows Event Log, 1040
Windows Trace Log, 1039–1040
WMI, 1040–1041

EnableSession, 462
encryption

architecture and design of .Net applications, 150
Base64 encoding, 472
for Enterprise Services performance, 403

engineering fundamentals, 57–69
assumption validation, 65
budgets, 62–63
categories and key considerations, 64
components, 62
cost, 65
diagrams, 51, 59
life cycle, 65–67
measuring, 64–65
metrics, 62
next steps, 67
overview, 57
performance and scalability frame, 64
performance designing, 63–64
performance managing, 58
performance priorities, 63
QoS requirements, 58
reactive vs. proactive approach, 58
scenarios, 65
setting objectives, 60–62
summary, 69
terminology, 68
validating assumptions, 65

Enlist property, 558
Enterprise Instrumentation Framework. See EIF
Enterprise Resource Planning. See ERP
Enterprise Services, 369–406. See also code reviews

of .NET applications
additional information, 406–407
architecture, 372–374
architecture and design of .Net applications, 164
AuthenticationOption.Integrity, 403
boundary considerations, 373–374
caveats, 376–377

1072 Improving .NET Application Performance and Scalability

Enterprise Services (continued)
chatty interfaces, 382
code reviews of .NET applications, 614–618
COM+, 205
COM+ services, 371
connection pooling, 956
design, 379–382
DisableAsyncFinalization registry key

method, 392
Dispose method, 391, 393–394
DLL and class relationships, 380
DTC, 380
explicit interfaces, 381–382
with JIT activation, 384–388
LCEs, 396–399
library applications, 379–380
Marshal.Release method, 393
metrics table, 725
.NET application performance, 725–727
.NET application tuning, 824–829
object pooling, 382–388

based on calling patterns, 381
idle time management, 390
to reduce object creation overhead, 380–381

overview, 36–37, 369–370
performance and scalability issues, 377–378
prescriptive guidance

Enterprise Services, 375–377
.NET remoting, 481–482
Web service, 434–436

QC, 394–396
Release method, 393–394
ReleaseComObject, 392, 393–394
resource management, 390–394
scaling, 956
security, 402–403
state management, 389–390
stateless components, 382
Synchronization attribute, 404–405
threading, 404
transactions, 399–402

enumerated types, 543
error information, 229
parameters, 543

enumeration overhead
collections, 248–250
managed code, 246

Equals method, 188
ERP acronym defined, 639
error codes, 172
error information, 229
errors and exceptions performance counters, 715–716
ETW

acronym defined, 27, 692
.NET application performance, 693

event sinks, 1032, 1038–1039
Event Tracing for Windows. See ETW
exception avoidance, 278
exception catching

architecture and design of .Net applications, 173
diagnostic information, 232
managed code performance, 231

exception handling
ADO.NET, 518
architecture and design of .Net applications, 171
checklists, 850
code reviews of .NET applications, 581–583
overview, 24
role in CLR, 182

exception management
ADO.NET, 553
application exceptions, 320
avoiding, 320–322
checklists, 846, 855, 866
disposable resources, 320
Global.asax error handler, 319
managed code performance, 228–232
more information, 323
timeouts, 322

exceptions
ASP.NET, 278
CLR, 172
code reviews of .NET applications, 572, 603–604
.NET application performance, 705, 715–716
try/finally block, 320

ExecuteNonQuery, 534, 540
ExecuteReader method, 548
ExecuteScalar method, 534–535
execution plans

checklists, 877
recompiles, 877
SQL Server, 666–669

executionTimeout, 817–818
expiration policy, 121–122
explicit interfaces, 381–382
Explicit option, 257
explicit transactions, 665
explicit types vs. reflection, 256
Extensible Stylesheet Language Transformation.

See XSLT
Extension objects, 427

F
facades

.NET remoting, 500–501
round trips, 351

fast track to the guide, 39–54
application life cycle, 50–51
approach, 41

 Index 1073

fast track to the guide (continued)
designing for performance, 43–44
guidance implementation, 53–54
performance measuring, 45
performance objectives setting, 41–42
performance testing, 46–48
performance throughout the life cycle, 51–52
performance tuning, 49
RACI chart, 52–53
who does what, 52

features of this guide, 4–5
federated database servers, 955
feedback and support, 13–14
field access, 233–234
Fill

connections, 526
paging solutions, 937

final script, 998
Finalize, 204–210

checklist, 864
finalizers, 207

code reviews of .NET applications, 576–577
preventing blocking, 210

finally blocks
code reviews of .NET applications, 582–583
managed code performance, 230

fine-grained lock statement, 222–223
fine-grained locks

architecture and design of .Net applications, 153
locking and synchronization, 221–222

“fire and forget” invocation model, 113
“fire-and-forget” communication, 882
FireInParallel property, 398
firewalls, 140
fn_trace_gettable, 673–674
for vs. foreach, 236, 250–251, 585
foreach

IEnumerable interface, 579
vs. for, 236, 250–251, 585

foreach statement, 579, 585
formatters

checklists, 872
remoting, 487
to serialize data, 623

forwards
Brandon Bohling, xli–xlii
Connie U. Smith, xlv–xlvi
Rico Mariani, xliii–xliv
Scott Barber, xxxix–xl

fragment caching, 300
framework for performance, 12–13
free-threaded objects, 366
FromTypes static method, 896
full demands vs. link demands, 259–260
functional mapping, 50

fundamentals of performance engineering.
See engineering fundamentals

FxCop, 571

G
Garbage Collection. See GC
GC

checklists, 864
CLR Profiler tool, 1013–1019
configuration flag, 335
explained, 190–193
with GC.Collect, 362
guidelines, 193–198
key methods, 192
Marshal.ReleaseComObject, 362
role in CLR, 182

GC.Collect
code reviews of .NET applications, 576
Marshal.ReleaseComObject, 362

GetBytes method, 559–560
GetObjectData methods, 892
GetOrdinal, 548
Global.asax

error handler, 319
submitting and polling, 975

granular locks, 221
granular synchronization, 404–405
guide

applying to life cycle, 6–7
applying to roles, 6–7
approach of this guide, 11–12
audience, 5
contributors and reviewers, 15–16
fast track to the guide, 39–54
features of, 4–5
feedback and support, 13–14
framework for performance, 12–13
how to use this guide, 5–7
life cycle mapping, 7
organization of this guide, 8–11
primary technologies addressed by, 3
scope of the guide, 40
scope of this guide, 2–3
summary, 16
team, 14
ways to use, 6

H
Hashtable

code reviews of .NET applications, 586
collection types, 252

hidden allocations, 198

1074 Improving .NET Application Performance and Scalability

hierarchies, 294–295. See also deep hierarchies
high cohesion, 106
historical data

capacity planning, 948
SQL Server, 640

Hoare, Tony, xliii
holding state, 490
host choosing, 485–486
hosts

checklists, 872
remoting, 485, 495–497

hotspots described, 93
How To

ACT for performance and scalability, 987–1000
(see also ACT for performance and scalability)

acronym defined, 1000
client health monitoring, 993
common tasks, 993–1000
overview, 987
steps, 988–992

ACT for Web services testing, 1001–1008
(see also ACT for Web services testing)

additional resources, 1008
final test script, 1005–1006
.NET Framework 1.1, 1007
overview, 1001–1008
simple Web service sample, 1006
steps, 1002–1005
step 1. empty ACT test, 1002
step 2. SOAP request, 1002
step 3. SOAP envelope copying, 1003
step 4. SOAP envelope

modifying, 1003–1004
step 5. request headers, 1004–1005
step 6. test file completion, 1005

ASP.NET custom counters for
monitoring, 1023–1030 (see also custom
counters)

additional resources, 1030
CounterCreationDataCollection, 1025–1027
monitoring counters, 1030
overview, 1023
PerformanceCounterCategory, 1024–1025
Server Explorer, 1027
using in code, 1028–1029

ASP.NET thread pool with custom
counters, 899–907 (see also custom counters)

additional resources, 907
overview, 899–905
test page with threads, 906
viewing, 906

capacity planning, 939–950 (see also capacity
planning)

overview, 939–940
predictive analysis steps, 947–949

How To (continued)
capacity planning (continued)

prediction step 1. performance data, 948
prediction step 2. querying

historical data, 948
prediction step 3. analyzing

historical data, 948–949
prediction step 4. future requirements, 949
TCA steps, 940–947
TCA step 1. compiling a user

profile, 940–942
TCA step 2. discrete test execution, 942–943
TCA step 3. cost measurement, 944–945
TCA step 4. average user behavior cost,

945–946
TCA step 5. calculating site

capacity, 946–947
TCA step 6. verify site capacity, 947

CLR Profiler tool, 1009–1022 (see also CLR
Profiler tool)

additional resources, 1022
GC issues, 1013
memory allocation, 1014–1019
overview, 1009
profiling applications, 1011–1012
profiling ASP.NET applications, 1012–1013
samples, 1020–1021
steps, 1014–1019

EIF, 1031–1042 (see also EIF)
additional resources, 1042
ASP.NET application issues, 1041
essential knowledge, 1031–1033
instrumenting applications, 1033–1039
overview, 1031
step 1. creating console applications, 1034
step 2. adding references to assemblies, 1034
step 3. add using, 1034
step 4. add installer class, 1035
step 5. add code to Raise events using

application event source, 1035
step 6. add code to Raise events using

SoftwareElement source, 1036
step 7. application compiling, 1037
step 8. enable tracing in

TraceSessions.config, 1037
step 9. run InstallUtil.exe, 1038
step 10. bind events to event

sinks, 1038–1039
view the logs, 1039–1041

index, 887
paging solutions, 921–938

additional considerations, 937
additional resources, 938
application-wide data, 925–926
overview, 921–922

 Index 1075

How To (continued)
paging solutions (continued)

sample ASP.NET solution code, 927–936
SELECT TOP, 923–925
See also paging solutions

QueryPerformanceCounter and
QueryPerformanceFrequency, 977–986
(see also QueryPerformanceCounter and
QueryPerformanceFrequency)

example A: boxing overhead, 983–984
example B: string concatenation, 985–986
overview, 977

scaling, 951–961 (see also scaling)
federated database servers, 955
load balancing techniques, 953–954
.NET Framework scalability, 955–956
.NET scaling process, 956–961
overview, 951
up vs. out, 952–953

serialization, 889–897 (see also serialization)
addtional resources, 897
essential knowledge, 890
improving DataSet serialization, 893–894
improving performance, 891–893
remoting serialization, 896
Web services serialization, 895–896

SQL indexes, 909–916 (see also SQL indexes)
additional resources, 915
data distribution, 910
effective design, 910
essential knowledge, 909–910
overview, 909
step 1. SQL profiler to capture data, 911
step 2. wizard to select indexes, 912–913
step 3. SQL Query Analyzer, 914
step 4. index defragmenting, 915

SQL Profiler, 1043–1055 (see also SQL Profiler)
additional resources, 1055
default templates, 1045
essential knowledge, 1044
heavily used stored procedures, 1053–1054
isolating a long-running query, 1046–1052
overview, 1043

SQL queries, 917–920 (see also SQL queries)
additional resources, 920
overview, 917

submit and poll for long-running tasks, 963–975
(see also submitting and polling)

additional resources, 975
sample code, 971–975

use this guide, 5–7
HtmlTextWriter object, 318
HTTP compression, 341
HTTP keep-alives, 497

HTTP modules
ASP.NET, 316–317
ASP.NET performance, 316–317
asynchronous events, 316
checklists, 854
more information, 317
pipeline code, 316

HTTP pipeline, 337–338
HttpChannel

code reviews of .NET applications, 622
remoting, 498

HttpResponse.IsClientConnected property, 275
<httpRuntime> element

appRequestQueueLimit, 712, 818–819
ASP.NET runtime settings, 806
executionTimeout, 817–818
maxRequestLength, 34, 467, 821, 831
minFreeThreads, 808
.NET application tuning, 806, 821

HttpRuntime object, 433
HybridDictionary, 252

I
I/O. See disk I/O; network I/O
I/O bottlenecks, 679
IDE acronym defined, 987
identities, 272
IDisposable

connection pooling, 352
interop performance, 352
managed code performance, 208
resource management for ASP.NET

performance, 285
idle time, 827
IEnumerable interface

architecture and design of .Net applications, 166
collections, 248–250

IIS 6 in .NET application tuning, 816
IIS

architecture diagram, 332
ASP.NET performance, 332–335
call authenticating in .NET remoting, 496
cpuMask attribute, 335
GC configuration flag, 335
HTTP keep-alives, 497
load balance using NLB, 497
process model, 332–333
processor mask bit patterns, 335
remoting, 485
vs. the ASP.NET model, 334
in Web services, 433
workstation GC, 336

IIS tuning, 837–838

1076 Improving .NET Application Performance and Scalability

IJW
acronym defined, 345
and managed extensions for

C++ architecture, 346–347
and unicode conversions, 356

IList, 468–470
imperative demands vs. declarative demands, 259
impersonation in the middle tier, 403
implementation considerations

ASP.NET performance, 279
Web services, 444
XML performance, 418

[in] attributes
code review, 612
marshaling, 356

in-process stores, 717–718
Index Tuning Wizard. See ITW
indexed searching, 549
indexed views, 647
indexes. See also SQL indexes

checklists, 876
.NET application performance, 735
SQL Server, 660–664
SQL Server fragmentation, 681

InProc, session state, 310
input, 744–751
InstallUtil.exe, 1038
instrumentation

.NET application performance, 691–695
overview of managed code, 27

Int checking, 592
integrated development environment. See IDE
Intel Corporation, xlii
interfaces. See also chatty interfaces; chunky interfaces;

explicit interfaces
Idisposable, 285
IEnumerable interface

architecture and design of
.Net applications, 166

collections, 248–250
foreach, 579

ISerializable interface
ASP.NET, 312
code reviews of .NET applications, 591
serialization, 891–893

Internet server application programming interface.
See ISAPI

interop, 343–367
additional resources, 367–368
architecture, 345–347
ASP.NET and late binding, 352–353
blittable types, 354–355

interop (continued)
CAS, 362–363
checklists, 862
chunky interfaces, 350–351
and CLR, 182, 343
code reviews of .NET applications, 611–614
design, 350–352
IDisposable, 352
implemention considerations, 353
late binding and reflection, 352–353
marshaling, 354–357
Marshal.ReleaseComObject, 357–362
.NET application performance, 731–732
overview, 37
performance counters, 366–367
round trips, 350–351
and scalability issues, 349–350
threading, 364–366
unicode to ANSI conversions, 356
unmanaged resources, 352

interprocess communication. See IPC
IntPtr, 356
introduction, 1–16
IPC

acronym defined, 151
Enterprise Services, 372
process hops, 337

IpSec, 690
ISAPI, 433
ISerializable interface

ASP.NET, 312
code reviews of .NET applications, 591
serialization, 891–893

isolation levels
ADO.NET, 557
design guidelines for applications, 114–115
SQL Server, 665

It Just Works. See IJW
ItemDataBound event, 297
iterating and looping

avoiding expense, 233–234
avoiding repetitive field or property

access, 233–234
checklists, 867
frequently called code, 235
managed code performance, 233–236
recursion, 236

ITW
acronym defined, 664
SQL indexes, 912–913

IXmlSerializable type, 470–471

 Index 1077

J
jagged arrays, 241–242
JIT activation

ASAP deactivation, 386–387
object pooling, 384–388, 614
role in CLR, 182

Juniper Communications, xxxix

K
kernel caching

caching, 306
process model, 333–334

key scenarios, 81
keys, 644–645
Knuth, Donald E., xliii

L
L&S Computer Technology, Inc., xlvi
large data transfer, 34
large result sets, 326
late binding. See also reflection and late binding

architecture and design of .Net applications, 146
code reviews of .NET applications, 594
interop performance, 352–353
reflection and late binding, 257

latency
bandwidth, 142
defined, 68
Mscorwks.dll, 193
.NET application performance, 687
.NET application testing, 742–743
partitioning, 273–274

layered design, 97
layers

ADO.NET performance, 517–519
architecture and design of .Net applications, 167
ASP.NET deployment, 336
distributed architecture, 103
partitioning applications, 273–274

LCEs
ASP.NET, 399
checklists, 858
code reviews of .NET applications, 616–617
Enterprise Services performance, 396–399
FireInParallel property, 398
multicast scenarios, 398–399
queued components, 399
service architecture, 397

leaf objects, 207–208
lease time tuning, 494–495
lease timeouts, 832–833

leases, 493
library applications, 379–380
life cycle

applying guidance, 50–52
diagram, 41
engineering fundamentals, 65–67
mapping and this guide, 6–7
.NET application performance, 689

lifetime considerations checklists, 871
link demands vs.full demands, 259–260
ListDictionary, 253
Literate Programming, xliii
load balancing

architecture and design of .Net applications, 144
techniques, 953–954
using NLB, 497

load testing
diagram, 46
overview, 46–47, 739
process for .NET application, 744–751
report template, 768–769

loading
.NET application performance, 718–719
role in CLR, 182

lock statement, 222–223
lock times

design guidelines for application
performance, 114

transactions, 401–402
locking and synchronization, 220–224

acquiring late and releasing early, 220
avoiding unless required, 220
checklists, 865–866
code reviews of .NET applications, 586–589
fine-grained locks, 221–222
granular locks, 221
guidelines, 220–224
lock statement, 222–223
locking “this”, 219, 223
mechanism choices, 218–219
ReaderWriterLock, 224
thread safety as default, 222

locks
for granular synchronization, 404–405
.NET application performance, 736–737
performance counters, 736–737
SQL Server, 654–656

log file tools, 691
logical layers

architecture and design of .Net applications, 143
design guidelines for applications, 106

logical partitioning, 273–274
long-running atomic transactions, 116
long-running block operations, 602
long-running calls, 32

1078 Improving .NET Application Performance and Scalability

long-running tasks. See submitting and polling
Longtask.aspx, 973–974
looping. See iterating and looping
loops, 290–291
loose coupling. See also LCEs

design guidelines for application
performance, 105

loosely coupled design, 145
loosely coupled events. See LCEs

M
Machine.config

ACT for Web services testing, 1007
code reviews of .NET applications, 611

managed code, 179–266. See also code reviews
of .NET applications

+ operator, 237
additional resources, 266
allocation profile, 194
allocations, 191
architecture, 181–182
arrays, 240–243
assembly preferences, 185
asynchronous calls explained, 215
asynchronous guidelines, 216–218
asynchronous methods on the server for

I/O bound operations, 216–217
base address, 265
boundary crossing reduction, 184–185
boxing and unboxing explained, 226–228
buffer pinning, 211
C# example of Dispose method, 202–203
calling Dispose method multiple times, 209–210
CAS, 258–259
class design, 186–189
client calls, 207
client-side asynchronous calls for

UI responsiveness, 216
Close method, 201
code reviews of .NET applications, 574–596

looping and recursion, 578–579
collection guidelines, 246–251
collection types, 251–255
collections explained, 244–246
COM objects, 205
complex object graphs, 198
design, 183–186
disposable resources, 204
Dispose guidelines, 204–210
Dispose method, 200–201, 208
Dispose pattern, 201–203, 208
Enterprise Services (COM+), 205
enumeration overhead, 246
Equals method, 188

managed code (continued)
exception catching, 231
exception management, 228–232
exception management design, 186
finalize and dispose

explained, 199–201
guidelines, 204–210

Finalize guidelines, 204–210
Finalize method, 199–200
finalizers, 207
finally block, 230
foreach vs. for, 236
GC

collection, 191
explained, 190–193
guidelines, 193–198

GC.Collect method, 194
generations, 191
hidden allocations, 198
IDisposable, 200, 208
implementation considerations, 190
iterating and looping, 233–236
key GC methods, 192
leaf objects, 207–208
locking and synchronization, 218–219, 220–224

explained, 218–219
guidelines, 220–224

logical layers, 185
long-running calls, 197
managed threads, 212
member variables, 189
memory preallocation and chunking, 198
MethodImplOptions.Synchronized

attribute, 222–223
Mscorsvr.dll, 192–193
Mscorwks.dll, 192–193
new, 190
Ngen.exe

explained, 261–262
guidelines, 263–265

On Error/Goto error handling, 230–231
/optionexplicit, 257
/optionstrict, 257
overloaded methods, 188
overview, 22–28, 179
parallel vs. synchronous tasks, 214
performance and scalability issues, 183
pinning, 211
private vs. public member variables, 189
property accession costs, 189
ReaderWriterLock attribute, 224
reflection and late binding, 256–257
resource management design, 184
rethrowing, 231
sealed keyword, 187

 Index 1079

managed code (continued)
server GC, 192–193
short-lived objects, 196–197
sorting, 243
string operations, 236–240
StringBuilder class, 238–239
SuppressUnmanagedCodeSecurity

attribute, 258–259
System.Threading.Timer class, 213–214
“this”, 587–588
thread pools, 212
thread safe classes, 186–187
thread safe cleanup code, 210
Thread.Abort, 214
threading

explained, 212
guidelines, 212–215

Thread.Resume, 214
threads as a shared resources, 186
Thread.Suspend, 214
ToLower, 240
try\catch block, 229–231
unneeded member variables, 197
using statement in C#, 206
validation code, 229–230
value types, 188
value types and reference types, 225
virtual members, 187
Visual Basic .NET example of Dispose

method, 203
volatile fields, 189
weak references with cached data, 195
working set considerations, 260–261
workstation GC, 192–193

managed threads, 212
management, 602–603
Mariani, Rico, xliii–xliv, 63
marshal, 612
Marshal by Reference Objects. See MBROs
marshal-by-reference objects. See MBR
marshal-by-value objects. See MBV
MarshalByRef, 622
MarshalByValue, 622
marshaling. See also serialization

checklists, 861, 873
interop performance, 354–357
IntPtr, 356
in .NET remoting, 500–501
[out] attributes, 356
pinning of short-lived objects, 356
target methods, 354
unicode to ANSI conversions, 356

Marshal.Release method, 393

Marshal.ReleaseComObject
checklists, 861
GC, 362
interop performance, 357–362
overview, 37
ReleaseComObject, 358–361

maxconnection attribute
.NET application tuning, 807, 829–830
Web services, 444–448

maxIoThreads attribute, 807–808
maxRequestLength, 34, 467, 821, 831
maxWorkerThreads attribute, 807–808
MBR

checklists, 872
objects, 499–500

MBROs, 492
MBV

checklists, 872
objects, 500

MDL acronym defined, 699
member variables, 189
memory

allocation with CLR Profiler tool, 1014–1019
bottlenecks, 792–794
code reviews of .NET applications, 574–578
.NET application performance, 697–699, 703–704
.NET application tuning, 792–794
recycling settings in the IIS 6 manager, 816
SQL Server, 680–681

Memory Descriptor List. See MDL
memory limit

caching, 302
deployment, 338

memoryLimit attribute, 805, 815, 818–819
message queuing

architecture and design of .Net applications, 150
design guidelines for applications, 112–113
remoting, 489

message-based programming vs. RPC style, 439–440
metadata and role in CLR, 182
method parameter, 467
MethodImplOptions.Synchronized

attribute, 222–223
methods

Close method, 201
Dispose method, 208–210
Dispose method explained, 200
Equals method, 188
GC.Collect method, 194
Visual Basic .NET example of Dispose

method, 203
metrics. See also .NET application tuning

ADO.NET, 564–565
ASP.NET, 708–710

1080 Improving .NET Application Performance and Scalability

metrics (continued)
CLR and managed code, 701–707
CPU bottlenecks, 789–791
defined, 68
.NET application performance, 688–690
.NET application performance issues, 702
.NET application testing, 764–768

Microsoft Distributed Transaction Coordinator.
See DTC

Microsoft .NET Framework providers checklists, 843
Microsoft OLE DB Provider for ODBC, 520
Microsoft Operations Manager. See MOM
Microsoft Windows Message Queuing. See MSMQ
middle tier impersonation, 403
minFreeThreads, 808
minIoThreads, 451
minIoThreads setting, 282
minLocalRequestFreeThreads attribute, 809
minWorkerThreads, 451
minWorkerThreads setting, 282
modeling. See performance modeling
MOM

acronym defined, 948
capacity planning, 948
.NET application measurement, 690

monitoring, 676–677
MoveToContent method, 421
Mscorsvr.dll, 192–193
Mscorwks.dll, 192–193
MSDASQL, 520
MSMQ

acronym defined, 394
remoting, 489

MTA
acronym defined, 364
session state, 600
vs. STA, 364

MTAThread attribute, 366
MTOM, 35
multicast scenarios, 398–399
multidimensional arrays, 241, 583

vs. jagged arrays, 241–242
multiple readers, 224
multithreaded apartment. See MTA
multithreading, 23
Mutex objects, 587, 859
mutexes

granular synchronization, 404–405
synchronization scenarios, 404–405

MyWebService.asmx, 972

N
namespaces

ADODB.Connection, 324
data provider types, 553
Microsoft.Data.Odbc., 521
obtaining Web service namespace, 1005
System.Data, 509
System.Data.Odbc., 521
System.Data.OracleClient, 521
System.Data.SqlTypes, 553
System.Diagnostics, 27, 1023
System.EnterpriseServices, 20, 377, 436, 483, 489
System.Messaging, 489
System.Reflection, 352
System.Web.Services.Protocols, 434, 451
System.Xml, 411–413

NameValueCollection, 253
Native Image Generator utility. See Ngen.exe
native providers, 520
.NET application measurement, 685–737

additional resources, 737
ADO.NET/Data Access, 732–736

caching, 735
connection pooling, 734–735
indexes, 735
locks, 736–737
measurement issues, 732–734
OleDbConnection, 734
performance counters, 733
SqlConnection, 734
transactions, 736

ASP.NET, 708–722
ASP.NET\Request Execution Time, 714
cache utilization, 714–715
exceptions, 715–716
in-process stores, 717–718
loading, 718–719
measurement issues, 708–710
metrics, 708–710
page cost, 720–722
page size, 719–720
queues, 712
remote session stores, 717–718
requests, 711
response time and latency, 713–714
sessions, 716–718
throughput, 710
TTFB, 713
TTLB, 713–714
view state, 719
worker process restarts, 722

 Index 1081

.NET application measurement (continued)
CLR and managed code, 701–707

CAS, 707
code path timing, 707
contention, 705–706
exceptions, 705
memory, 703–704
metrical issues, 702
performance counters, 702
threading, 706
working set, 705

Enterprise Services, 725–727
Component Services tool, 725–726
measurement issues, 725
object pooling, 726–727
third-party tools, 727

goals, 687–688
latency, 687
resource utilization, 688
throughput, 687
workload profile, 688

instrumentation, 691–695
choices, 692–693
custom counters, 694
EIF, 694
ETW, 693
Trace and Debug classes, 694–695
WMI, 693

interop, 731–732
chatty interfaces, 732
measurement issues, 731

life cycle, 689
metrics, 689
.NET Framework, 700
overview, 37, 685
profiling tools, 691

CLR Profiler, 691
SQL Profiler, 691
SQL Query Analyzer, 691

remoting, 727–730
measurement issues, 727–728
serialization tuning, 729–730
TCP connections, 730
throughput, 728–729

system resources, 695–700
disk I/O, 699–700
memory, 697–699
network I/O, 700–701
processor, 696–697

tools and techniques, 690–691
ACT, 690
IpSec, 690
log file tools, 691
metrics, 690
MOM, 690

.NET application measurement (continued)
tools and techniques (continued)

NetMon, 690
network monitoring, 690
profiling tools, 691
System Monitor, 690

Web services, 722–724
measurement issues, 722–723
serialization costs, 723–724

workload profile, 688
.NET application testing, 739–777

additional resources, 776–777
analysis of performance data, 774–776

potential bottlenecks, 776
processor vs. user load, 775
response time vs. user load, 775
throughput vs. user load, 774

best practices for performance testing, 763–764
do, 763
do not, 764

load testing process, 744–751
input, 744
output, 751
steps, 745–751
step 1. identify key scenarios, 746
step 2. identify workload, 746
step 3. identify metrics, 747–748
step 4. create test cases, 748–749
step 5. simulate load, 749
step 6. analyze the results, 750

metrics, 764–767
for all servers, 764–765
application performance goals, 766
SQL Server-specific, 766–767
Web server-specific, 765–767

overview, 38, 739–740
performance objectives, 742–743
performance testing, 741–744

goals, 741–742
latency, 742–743
objectives, 742–744
resource utilization, 743
response time, 742–743
workload, 743–744

reporting, 768–773
load test report template, 768–769
performance objectives, 770
SQL Server metrics, 773
Web server metrics, 771–772
workload profile, 770

stress-testing, 751–756
input, 752
steps, 752–756
step 1. identify key scenarios, 753
step 2. identify workload, 753–754

1082 Improving .NET Application Performance and Scalability

.NET application testing (continued)
stress-testing (continued)

step 3. identify metrics, 754–755
step 4. create test cases, 755
step 5. simulate load, 756
step 6. analyze the results, 756

testing considerations, 760–762
baselines, 760
client stress, 760
duration, 761
redundant requests, 762
simultaneous vs. concurrent users, 762
think time, 760–761
warm up time, 762–763

tools, 744
workload modeling, 757–759

actions for place order profile, 758
sample user profile, 759

.NET application tuning, 779–839
additional resources, 839–840
ADO.NET tuning, 833–835

bottlenecks, 834
connections, 834
metrics, 833–834
options, 834
pool size, 834–835

ASP.NET tuning, 804–823
bottlenecks, 809–811
configuration overview, 804–806
<httpRuntime> element, 806
maxconnection attribute, 807
maxIoThreads attribute, 807–808
maxWorkerThreads attribute, 807–808
metrics, 809–810
minFreeThreads attribute, 808
minLocalRequestFreeThreads

attribute, 809
<processModel> element, 805
thread pool attributes, 806–809

bottlenecks, 786–788
granularity, 788
identifying, 786
measuring response times, 787
measuring throughput, 787
performance counters, 789
resource utilization, 788

categories for tuning, 780–781
CLR tuning, 801–803

bottlenecks, 803–804
metrics, 802

CPU bottlenecks, 789–791
disk I/O, 796–797

metrics, 796–797
tuning options, 797–799

.NET application tuning (continued)
Enterprise Services tuning, 824–829

application pooling, 825–826
DisableAsyncFinalization registry key, 829
idle time, 827
metrics, 824
packet privacy, 827–828
pool size, 826–827
thresholds, 826–827
tuning options, 825–829

IIS tuning, 837–838
memory, 792–795

bottlenecks, 792–794
configuration overview, 792
deciding when to add memory, 794
page file optimization, 794–795
tuning options, 794

.NET Framework tuning, 801
Network I/O, 799–800

bottleneck identification, 800
configuration overview, 799
metrics, 800
tuning options, 800–801

overview, 38, 779–780
performance tuning process, 781–785

1. establish a baseline, 783
2. collect data, 783–784
3. analyzing results, 784–785
4. configuring, 785
5. testing and measuring, 785
constant workloads, 783–784
formatting results, 784

remoting tuning, 832–833
lease timeouts, 832–833

SQL Server tuning, 835–837
bottlenecks, 836
memory, 836
metrics, 835
options, 836
RAID, 837
statistics updating, 836

system tuning, 789
tuning options, 811–823

\3GB switch, 815–816
burst load scenarios, 813
COM objects, 813
evaluating changes, 814, 820
<httpRuntime> element, 821
IIS 6, 816
maxRequestLength attribute, 821
memoryLimit attribute, 815
<processModel> element, 818–819
requestQueueLimit attribute, 818–819
session state disabling, 820

 Index 1083

.NET application tuning (continued)
tuning options (continued)

threading settings for reducing
contention, 812–814

timeout configuring, 817–818, 820
tracing and debugging disabling, 819
view state configuring, 821
Web gardens, 822–823

Web services tuning, 829–831
connection priorities, 831
maxconnection attribute, 829–831
maxRequestLength parameter, 831
options, 829
responseDeadlockInterval attribute, 831
thread pool, 829

.NET applications. See architecture and design
of .Net applications; code reviews of .NET
applications; .NET application measurement;
.NET application tuning

.NET Framework
classes, 594
connections, 529–530
data providers, 520–522
.NET application measurement, 700
providers checklists, 843
serialization, 889
tuning, 801

.NET Passport, 995

.NET remoting
activation, 491–492
activation model, 486
additional resources, 503
application boundaries, 482
application domains, 485
architecture, 480
architecture and design of .Net applications, 163
BinaryFormatter attribute, 501
BinaryFormatter classes, 889
CAOs, 491–492
caveats, 483
channels, 486
chatty interfaces, 488–489
custom hosts, 497–498
data facades, 500–501
DataSets, 502
design, 485–490
formatters, 487
holding state, 490
host choosing, 485–486
HTTP keep-alives, 497
IIS, 496–498
implemention, 491
lease time tuning, 494–495
leases, 493

.NET remoting (continued)
lifetime considerations, 493–495
MBR objects, 499–500
MBV objects, 500
NonSerialized attribute, 501
object release, 493
overview, 35–36
performance and scalability issues, 484
prescriptive guidance

Enterprise Services, 375–377
.NET remoting, 481–482
Web service, 434–436

recommendations, 482–483
round trips, 488–489
SAOs, 492
serialization and marshaling, 500–501
single call objects, 492
singletons, 492
SoapFormatter class, 889
synchronous vs. asynchronous

communication, 488–489
timeout tuning, 494

NetMon, 690
Netstat.exe tool, 728, 730
network I/O

.NET application measurement, 700–701

.NET application tuning, 799–800
networks, 690
new, 190
newsgroups, 14
Ngen.exe

acronym defined, 596
additional resources, 266
ASP.NET, 264
assemblies, 263
base addresses, 265
checklists, 869
and CLR, 28
code reviews of .NET applications, 596–597
explained, 261–262
guidelines, 263–265
managed code, 185
overview, 28
running, 262
startup time, 261
working set, 262

NLB
load balance with, 497
scaling, 954

non-blittable types. See blittable types
non-clustered indexes. See clustered indexes
nondistributed architecture. See distributed

architecture

1084 Improving .NET Application Performance and Scalability

NonSerialized attribute
code reviews of .NET applications, 622
.NET remoting, 501
serialization, 891, 896

normalization
ADO.NET, 519
SQL Server, 644

O
object lifetime

CLR Profiler, 1017
.NET remoting, 493–495
remoting, 481

object orientation, 435, 481–482. See also orientation
object pooling

ADO.NET, 558
calling patterns, 381
checklists, 857
code reviews of .NET applications, 614
connection pooling, 613
Enterprise Services performance, 382–389
explained, 383–384
JIT activation, 384–388
.NET application measurement, 726–727
pool size, 388–389

object release, 493
object types, 588
objects

ADO.NET, 508, 623
architecture and design of .Net applications, 163
creation and destruction, 118
orientation vs. service orientation, 21
reducing creation overhead

with pooling, 380–381
ODBC data sources, 521
OLAP

acronym defined, 639
and OLTP workloads, 639, 642, 643

OLE DB Provider for ODBC, 520
OleDbCommand object, 538
OleDbConnection

connections, 526–527
.NET application measurement, 734

OLTP
acronym defined, 639
and OLAP workloads, 639, 642, 643
SQL Server tuning, 674

on error goto, 592–593
On Error/Goto error handling, 230–231
OneWay attibute, 489
online analytical processin. See OLAP
online transaction processing. See OLTP
OpenXML method, 551
Option Explicit, 593, 606

Option Strict, 593
/optionexplicit, 257
/optionstrict, 257
Oracle, 521, 561–562
OracleLob.Read, 561–562
OracleLob.Write method, 563
organization of this guide, 8–11
orientation

object vs. service, 21–22, 481–482
table, 375, 435, 482

[out] attributes
code review, 612
marshaling, 356

output buffering, 275
output caching

ASP.NET, 299
to cache relatively stable pages, 303–304
Web services, 464

output parameters, 540
@OutputCache directive, 300, 304

P
P/Invoke

architecture, 345–346
code reviews of .NET applications, 611–614
interop performance, 366–367
pinning, 357

packet privacy
authentication for Enterprise Services

performance, 403
.NET application tuning, 827–828

page constructors, 324
page content partitioning, 290
page cost, 720–722
page size, 719–720
Page.DataBind

data binding, 295–297, 609
DataBinder.Eval method, 296–297, 609

Page.IsPostBack
code reviews of .NET applications, 605
pages in ASP.NET performance, 289

pages
checklists, 852
output caching, 303–304

pages in ASP.NET, 287–292
batch compiling, 290
buffering, 289
caching efficiency, 290
client-side validation, 292
debug, 290–291
loop optimizing, 290–291
overview, 31
page size trimming, 287–288
Page.IsPostBack property, 289

 Index 1085

pages in ASP.NET (continued)
Response.Redirect, 291–292
Server.Transfer, 291–292

paging
code reviews of .NET applications, 632
DataGrid, 937
for large result sets, 326, 533

paging solutions, 921–938
additional considerations, 937

DataAdapter, 937
DataGrid, 937
Fill method, 937

additional resources, 938
application-wide data, 925–926
overview, 29
sample ASP.NET solution code, 927–936

application-specific paging
solution, 932–936

Appwidepaging.aspx, 933–936
user-specific paging from

ASP.NET, 927–931
SELECT TOP, 923–925

user-specific data, 924–925
parallel tasks, 214
parallelism, 217
parameters

ADO.NET, 541–543
checklists, 845
code reviews of .NET applications, 628–629
enumerated types, 543

Parameters collection
ADO.NET, 542
architecture and design of .Net applications, 168
command, 532

parsing checklists, 885
partial page caching, 300
partitioning applications logically, 273–274
patterns and practices, 1059–1062
pending data cancellation, 547–548
per-request basis

thread creation, 153
threading, 283

per-request impersonation
connection pooling, 329
resource management for ASP.NET

performance, 286
security considerations, 329

per-user data caching, 119–122
performance. See also architecture and design of

.Net applications; .NET application measurement
best practices at a glance, 17–38
budgets defined, 68
category diagram, 43
defined, 68
measuring with Ngen.exe, 264

performance and scalability
engineering fundamentals, 64
issues of ASP.NET performance, 270–271
issues of SQL Server, 642
issues of XML performance, 413

performance counters. See also metrics;
.NET application measurement

ADO.NET/Data Access, 733
ASP.NET, 708–719
CAS, 707
CLR, 802
contention, 705–706
disk I/O, 699–700
exceptions, 705
interop performance, 366–367, 731
memory, 697–699, 703–704
memory bottlenecks, 792–794
.NET application measurement, 702
.NET application tuning, 786–789, 796–797,

809–810
.NET remoting, 728–729
network I/O, 700–701
overview, 27
processor, 696–697
threading, 706
working set, 705

performance data analysis, 774–776
performance hits, 373
performance modeling, 73–87

additional resources, 87–88
best practices, 77
budget, 76
concurrent users, 81
critical scenarios, 80
diagram, 44–45, 79
essential knowledge, 76
execution time, 82, 84
information in the model, 77–78
inputs, 78
key scenarios, 81
modeling performance, 75–76
outputs, 78–79
overall structure, 74–75
overview, 73–74
performance model document, 77–78
process diagram, 79–86
purpose, 75–76
resource utilization, 83, 84
risk management, 76
simultaneous users, 81
step 1. identify key scenarios, 80–81
step 2. identify workload, 81
step 3. identify performance objectives, 82
step 4. identify budget, 82–83
step 5. identify processing steps, 84

1086 Improving .NET Application Performance and Scalability

performance modeling (continued)
step 6. allocate budget, 84–85
step 7. evaluate, 85–86
step 8. validate, 86
test cases with goals, 79

Performance Monitor
custom counters, 906
to monitor CLR exceptions, 232
SQL Server, 677

performance objectives
defined, 68
.NET application testing, 742–743, 770

Performance Solutions, 73
performance testing. See also .NET application testing

.NET application testing, 741–744
performance tuning process

.NET application tuning, 781–785
overview, 49

performance-critical code paths, 257
PerformanceCounterCategory, 1024–1025
PerformanceCounter.Increment, 1028
PerformanceCounter.RawValue, 1029
perimeter caching

deployment, 341
Web services, 465

PIAs, 348
pinning

checklists, 865
code reviews of .NET applications, 613
managed code performance, 211
of short-lived objects, 357

pipeline code, 316
place order profile, 758
platform invoke. See P/Invoke
+ operator, 237
+= operator, 603
polling. See also submitting and polling

for asynchronous invocation results, 590
pool connections, 527–530
pooled objects. See object pooling
pooled resources, 284
pooling. See also connection pooling

architecture and design of
.Net applications, 156–157

code reviews of .NET applications, 625
design guidelines for applications, 117
.NET application tuning, 825–827, 834–835

PreAuthenticate property, 620
PreAuthenticate property attribute, 448–449
preprocessing in XML, 414
presentation layer

architecture and design of .Net applications, 159
caching, 120

Primary Interop Assemblies. See PIAs

primary keys, 549
primary technologies addressed by this guide, 3
primitive types

code reviews of .NET applications, 618
remoting, 501
Web services, 440

process hops, 337
process model

IIS, 332–333
kernel cache, 333–334
Web gardens, 334–335

<processModel> element, 805, 815, 818–819, 822, 1013
processor, 696–697
processor mask bit patterns, 335
processor vs. user load, 775
profiling tools, 691. See also CLR Profiler tool
progressive processing, 93
properties, 596
property access, 233–234
proxy classes, 434

Q
QAForums.com, xl
QC

acronym defined, 394
architecture, 394–395
checklists, 858
code reviews of .NET applications, 616
Enterprise Services performance, 394–396
LCEs, 399

QoS
acronym defined, 17
attributes, 42
engineering fundamentals, 58
improving performance, 133
performance model, 78

Quality-of-Service. See QoS
queries

checklists, 876
overview, 31
prioritizing, 911
SQL Profiler, 677
SQL Server, 649–660

QueryPerformanceCounter and
QueryPerformanceFrequency, 977–986

boxing overhead example, 983–984
QueryPerfCounter class validating, 981–982
QueryPerfCounter wrapper class, 978–980
QueryPerfCounter.cs, 979–980
string concatenation example, 985–986
wrapper class using, 980–981

QueryPerformanceCounter API, 473

 Index 1087

Queue, 253
Queued Components. See QC
queueing, 395–396. See also QC
queues, 712

R
RACI

acronym defined, 52
RACI chart, 52–53

RAID
.NET application tuning, 837
SQL Server, 679

Rational Developer Network public forums, xl
RCW

architecture, 348–349
code reviews of .NET applications, 615
ReleaseComObject, 358–359

read-only data, 309
ReaderWriterLock, 224
ReaderWriterLock objects, 588
ReadOnly attribute, 313
READTEXT command, 560–561
records. See paging solutions
reference types, 225
reflection

vs. early binding, 256
vs. explicit types, 256

reflection and late binding. See also late binding
checklists, 868
code reviews of .NET applications, 594–595
early binding, 256
Explicit option, 257
explicit types, 256
late binding avoidance, 257
managed code performance, 256–257
Strict option, 257
System.Object data type, 257

Release method, 393–394
ReleaseComObject

code review, 576
Enterprise Services performance, 392, 393–394
Marshal.ReleaseComObject, 358–361

remote communication, 107–108
remote interfaces, 20–21
remote middle tiers, 337
remote procedure calls. See RPCs
remote servers, 148–149
remote session stores, 717–718
remoting, 477–503. See also code reviews

of .NET applications
activation, 480, 491–492
activation models, 486
architecture, 479–481

remoting (continued)
asyncrhonous and synchronous

communication, 488–489
BinaryFormatter, 487, 498–499, 501
boundaries, 482
CAOs, 481
caveats, 483
channels, 486
code reviews of .NET applications, 622–624
DataSet, 896
design, 485–490
formatters, 487
hosts, 485, 495–497
http keep-alives, 497
HttpChannel, 498
IIS, 485
implementation considerations, 491
lifetime considerations, 493–494
message queuing, 489
MSMQ, 489
.NET application measurement, 727–730
.NET remoting architecture, 480
.NET remoting leases, 493
NLB, 497
object lifetime, 481
object release, 493
OneWay attibute, 489
overview, 477–478
performance and scalability issues, 484
primitive types, 501
role in CLR, 182
SAOs, 480, 486
SoapFormatter, 487, 498–499
state management, 490
TcpChannel, 498
trusted server scenarios, 497–498

remoting tuning, 832–833
Repeater control, 294–295
reporting data, 640
reporting load tests, 768–773
requestQueueLimit attribute, 818–819
requests, 711
resource affinity. See affinity
resource cleanup

code reviews of .NET applications, 572
overview, 23

resource management
checklists for Enterprise Services, 858
connection pooling, 117, 157, 284
design guidelines for applications, 116–119
for Enterprise Services, 390–394

resource management for ASP.NET, 284–286
application allocation pattern, 286
IDisposable interface, 285
per-request impersonation, 286

1088 Improving .NET Application Performance and Scalability

resource management for ASP.NET (continued)
resource pooling, 284, 285
resources holding periods, 286

resource pooling
described, 93
resource management for ASP.NET, 284, 285

resource throttling, 118–119
resource utilization

defined, 68
.NET application measurement, 688

response time
and latency, 713–714
vs. user load, 775

responseDeadlockInterval attribute
.NET application tuning, 831
Web services, 461

Response.Redirect
ASP.NET, 275
code reviews of .NET applications, 605
pages in ASP.NET performance, 291–292

Response.Write
code reviews of .NET applications, 603
string management, 317–318

Results.aspx, 974
rethrowing exceptions

code reviews of .NET applications, 583
managed code performance, 231

reviewers, 15–16
roles and this guide, 6–7
round trips

ADO.NET, 513–514, 533
ASP.NET, 275
connection pooling, 513
described, 92
design of ASP.NET performance, 275
facades, 351
interop performance, 350–351
.NET remoting, 488–489
Web services, 463

rows, 536
RPC style vs. message-based programming, 439–440,

463
RPCs, 163
Runtime Callable Wrapper. See RCW

S
SAOs, 480. See also activation

remoting, 480, 486, 492
scaling. See also design guidelines for applications

applications, 98–102
architecture and design of

.Net applications, 142–143
ASP.NET, 270–271

scaling (continued)
bottlenecks, 100
defined, 68
deployment issues, 98–102
.NET applications, 951–961

additional resources, 961
application techniques, 959–960
ASP.NET applications, 955–956
cloning, 954
current system, 957–958
Enterprise Services, 956
federated database servers, 955
infrastructure techniques, 960
load balancing techniques, 953–954
.NET Framework, 955–958
.NET remoting, 956, 957–961
new requirements, 957
NLB, 954
overview, 951
technique choosing, 959–960
up vs. out, 952–953
validating, 961
Web farm, 953–954
Web services, 955–956

.NET remoting, 484
SQL Server, 639–641
SQL Server checklists, 875
stateless components, 101
Web services, 437–438
XML performance, 413

scenarios
burst load, 813
defined, 68
trusted servers, 497–498

schemas
ADO.NET, 551
checklists, 875
SQL Server, 643–647

scope of this guide, 2–3
diagram, 40

sealed keyword, 187
sealing, 187, 596
search scope, 424
security

for ASP.NET performance, 328–331
authentication for anonymous access, 328
caching sensitive data, 329
client-side validation, 329
per-request impersonation, 329
segregating content, 329
SSL, 329–331
traffic constraining, 328

checklists, 856, 858

 Index 1089

security (continued)
for Enterprise Services performance, 402–403

impersonation in the middle tier, 403
packet privacy authentication, 403
trusted server models, 402

role in CLR, 182
Select Tables to Tune dialog box, 913
serializable objects, 164
serialization. See also marshaling

ADO.NET, 549
base class members, 892
checklists, 873, 883
code reviews of .NET applications, 591–592
costs in ASP.NET performance, 308
costs in .NET application measurement, 723–724
DataSet and remoting, 896
DataSet serialization techniques, 889, 893–894

binary serialization, 893
column name aliasing, 893
DataTable reduction, 893
multiple serializations, 894

described, 889
GetObjectData methods, 892
ISerializable interface, 891–893
and marshaling in .NET remoting, 500–501
NonSerialized attribute, 891, 896
overview, 25
priorities, 110
remoting, 896
SerializationInfoEnumerator, 893
tuning in application measurement, 729–730
versioning considerations, 893
Web services, 895–896

data compression, 895
FromTypes static method, 896
XmlIgnore attribute, 896

XmlIgnore attribute, 891, 896
XmlSerializer class, 889, 896

SerializationInfoEnumerator, 893
server affinity. See affinity
server applications, 358–361
server controls

ASP.NET performance, 292–295
checklists, 852
code reviews of .NET applications, 608
deep hierarchies, 294–295
view state, 292–293

Server Explorer, 1027
server-activated objects. See SAOs
Server.CreateObject

code reviews of .NET applications, 610
session state, 324

Server.Transfer
ASP.NET, 275
pages in ASP.NET performance, 291–292

service accounts, 512
service orientation, 21, 435, 481–482.

See also orientation
ServicedComponent, 371
session expiration, 331
session state

ASP.NET performance, 310–313
basic types to reduce serialization costs, 312
checklists, 854
choosing a state store, 311
code reviews of .NET applications, 599–600
disabling, 312
disabling for .NET application tuning, 820
early binding, 324
InProc, 310
more information, 313–314, 325
MTA, 600
overview, 33
page constructor, 324
ReadOnly attribute, 313
Server.CreateObject, 324
SQL Server, 310
STA COM objects, 313
STA objects in, 324
StateServer, 310
Web services, 466

sessions, 716–718
SET NOCOUNT ON, 541, 666
SET statements, 918
SetAbort, 615–616
shared libraries, 597
Shared Property Manager. See SPM
simultaneous users, 81
single call objects, 492
single values, 534–535
single writers, 224
single-threaded apartment. See STA
SingleCall objects, 486
singletons, 486, 492
site capacity cost calculation, 946–947
Skip method, 421–422
// operator, 424
Smith, Connie U., xlv–xlvi, 73
SMP servers overview, 26
SOAP. See ACT for Web services testing
SOAP Message Transmission Optimization

Mechanism. See MTOM
SOAP messages with attachments. See SwA
SoapFormatter, 889

remoting, 487, 498–499
software performance engineering. See SPE
SortedList

code reviews of .NET applications, 586
collection types, 254

1090 Improving .NET Application Performance and Scalability

sorting
collections, 247
managed code, 243

sp_ prefix, 666
SPE acronym defined, xlv
sp_executesql, 657
SPID acronym defined, 674
sp_lock, 674
SPM acronym defined, 389
sp_who2, 674
SQL indexes

additional resources, 916
choosing correct events to monitor, 911
cost distribution, 914
data distribution of tables, 910
database statistics, 912
defragmenting, 915
effective design, 642, 910
ITW, 912–913
optimizing, 914
query prioritizing, 911
Select Tables to Tune dialog box, 913
SQL Profiler, 911
SQL Query Analyzer, 912–914
table scaling, 913
workload size limiting, 912

SQL Profiler, 1043–1055
additional resources, 1055
default templates, 1045
essential knowledge, 1044
heavily used stored procedures, 1053–1054
isolating a long-running query, 1046–1052
.NET application measurement, 691
overview, 1043
SQL indexes, 911
SQL queries, 917–920

SQL queries, 917–920
analyzing results, 919–920
long-running queries, 917–919
SET statements, 918
SQL Profiler, 917

SQL Query Analyzer
.NET application measurement, 691
SQL indexes, 912–914

SQL Server 6.5 , 520
SQL Server 7 , 520
SQL Server 2000 , 520–521, 560–562
SQL Server, 637–682

\3GB switch, 639, 641, 680
additional resources, 682
ADO.NET, 541
checklists, 875–879
connections, 527–528
deployment, 678–681

administrators, 681

SQL Server (continued)
automatic growth, 680
AWE, 680
configuration settings, 678
database logs, 679
disk controllers, 679
I/O bottlenecks, 679
index fragmentation, 681
memory, 680–681
RAID, 679
tempdb database, 679

deployment checklists, 879
execution plan recompiles, 669–671
execution plans, 666–669

actual vs. estimated rows and
executions, 668

bookmarks, 667–668
DDLs and DMLs, 670–671
Display Execution Plan option, 667
hash joins, 667
sp_executesql, 669
stored procedures, 669
table and index scans, 667
temporary tables, 671

indexes, 660–664
composite indexes, 663
covering indexes, 663
create indexes based on use, 661
foreign keys, 662
highly selective indexes, 662–663
ITW, 664
keeping index keys small, 661
multiple indexes, 663
range data for clustered indexes, 662
unused indexes, 664
WHERE clauses, 664

metrics, 766–767
metrics in .NET application testing, 773
monitoring, 676–677

Performance Monitor, 677
statistics, 676–677

monitoring checklists, 878
.NET application tuning, 835–837
overview, 637–638
performance and scalability issues, 642
prioritizing efforts, 638
queries, 649–660

avoiding expensive operators, 652
correctly formed, 650
fully qualifying database objects, 660
limiting hints, 660
locking, 654–656
minimizing cursor use, 658–659
NOLOCK, 656
performance and scalability, 650

 Index 1091

SQL Server (continued)
queries (continued)

READUNCOMMITTED, 656
returning only needed rows and

columns, 651–652
stored procedures or parameterized

queries, 656–657
Table variables, 659
TABLOCK, 656
triggers, 659
UPDLOCK, 656
WHERE clauses, 652–654

scaling up vs. scaling out, 639–641
criteria, 641
historical data, 640
optimizing, 640
reporting data, 640

schema, 643–647
constraints, 645–646
data types, 646–647
DRI, 644–645
indexed views, 647
keys, 644–645
normalization, 644
OLAP and OLTP workloads, 639, 642, 643
table partitioning, 647–649

session state, 310
SQL XML, 672

OPENXML, 672
stored procedures, 666

SET NOCOUNT ON statement, 666
sp_ prefix, 666

summary, 682
testing, 675–676
transactions, 664–665

data use, 665
explicit transactions, 665
isolation levels, 665
keeping transactions short, 665
performance issues, 642
user input, 665
using resources in the same order, 665

tuning, 672–675
DBCC OPENTRAN command, 675
small queries, 673–674
sp_lock, 674
sp_who2, 674
SQL Profiler, 673
waittime value, 674–675
waittype value, 674–675

tuning checklists, 878
SQL statements, 533
SQL transactions, 555

SQL XML
checklists, 878
SQL Server, 671–672

SqlCommand object, 539
SqlConnection, 734
SqlParameter objects, 543–544
SQLProfiler TSQL_Duration template, 673
SQLXML managed classes, 521
SSL

ACT for performance and scalability, 996
architecture and design of .Net applications, 141
security considerations, 329–331

STA
acronym defined, 271
vs. MTA, 364

STA COM objects
application state, 309
session state, 313

STA components
code reviews of .NET applications, 600, 610
threading, 404

STA objects
from ASP.NET, 365
overview, 33
in session state, 323–324

STA Spy tool, 367
Stack, 254
state management

architecture and design of
.Net applications, 160–164

ASP.NET performance, 307–308
checklists, 849, 853, 857, 883
Enterprise Services performance, 389–390
remoting, 490
serialization costs, 308
storing simple state, 307–308
Web services, 465–466

state stores, 311
stateless components

architecture and design of
.Net applications, 162–163

Enterprise Services performance, 382
scaling, 101

StateServer, 310
static data, 301–302
static properties, 309
statistics

SQL Server, 676–677
updating for .NET application tuning, 836

stored procedures
ADO.NET, 515–517, 537–543
checklists, 844, 877
code reviews of .NET applications, 626–627

1092 Improving .NET Application Performance and Scalability

stored procedures (continued)
command, 532
overview, 29–30
Windows authentication, 515–517

streaming Web services, 468
stress testing

diagram, 48
.NET application testing, 751–756
overview, 47, 740

Strict option, 257
string management

ASP.NET performance, 317–318
checklists, 854
code reviews of .NET applications, 572
HtmlTextWriter object, 318
more information, 318
overview, 24
Response.Write, 317
StringBuilder object, 318

string operations
checklists, 867
Compare method, 240
managed code performance, 236–240
System.String data type, 236
ToLower, 240

StringBuilder
as an accumulator, 239
code reviews of .NET applications, 572, 580–581,

593, 603
string concatenations, 238–239
string management, 318

StringCollection, 255
StringDictionary, 255
strings, 580, 603
stripe sets, 797
strongly typed arrays, 241, 583
strongly typed collections

code reviews of .NET applications, 585
to prevent casting overhead, 251

submitting and polling, 963–975
asynchronous call, 967
callback method, 967
code compilation, 970
Compile.bat, 971
Global..asax, 975
Longtask.aspx, 973–974
MyWebService.asmx, 972
Poll.aspx, 974
polling mechanism, 968–969
results, 969
Results.aspx, 974
sample code, 971–975
sample running, 970
state class, 965
temporary data store, 966

submitting and polling (continued)
temporary data store cleaning, 969–970
Util.cs, 972–973
Web service for testing, 964

support and newsgroups, 14
SuppressUnmanagedCode attribute, 363
SuppressUnmanagedCodeSecurity attribute

code review, 595
managed code, 258–259

SwA
acronym defined, 472
Web services, 472

symmetric multiprocessor servers. See SMP servers
synchronization. See also locking and synchronization

checklists, 859
code reviews of .NET applications, 601–602
method level, 153
mutexes, 404–405
primitives, 154

Synchronization attribute
code reviews of .NET applications, 617
Enterprise Services performance, 404–405

synchronized attribute, 587
synchronous tasks, 214
synchronous vs. asynchronous

communication, 488–489
System Monitor, 690
system process ID. See SPID
system resources, 695–700
system tuning, 789
System.Data, 509
System.Data.ODBC, 521
System.Data.OleDb, 520
System.Data.OracleClient, 521
System.Data.SqlClient, 520
System.Object, 249, 452, 594–595
System.Object data type, 257
System.Object return type, 246
System.Object type, 573
System.String data type, 236
System.Threading.Timer class, 213–214
System.Xml, 411

T
T-SQL, 627–628
table partitioning, 647–649
table scaling, 913
target methods, 354
TCA

acronym defined, 720
vs. predictive analysis, 939

TCP connections, 730
TcpChannel, 498

 Index 1093

team who created this guide, 14
technologies addressed by this guide, 3
tempdb database, 679
testing considerations, 760–762
testing solutions, 37–38
testing SQL Server, 675–676
Test.Sleep, 993–994
think time

ACT for performance and scalability, 993–994
workload modeling, 759

third-party tools, 727
thread pools. See also custom counters

attributes for .NET application tuning, 806–809
managed code performance, 213
.NET application performance, 812–813
.NET application tuning, 829
tuning for .NET applications, 621

thread safety
architecture and design of .Net applications, 153
cleanup code, 210
collections, 245
locking and synchronization, 222

thread settings, 449–451
Thread.Abort, 214
ThreadAbortException, 458
threading

as a shared resource, 117
apartment-model objects from Web services, 365
ASPCOMPAT attribute, 365
ASP.NET

performance, 279–281
recommendations, 280
thread pool, 282

asynchronous calls, 283–284
blocking, 283
checklists, 851, 859, 862, 865, 882
code reviews of .NET applications, 573, 601–602
cross-apartment calls, 364
formula for reducing contention, 279–281
guidelines

ASP.NET performance, 281–284
managed code performance, 212–215

interop performance, 364–366
managed code performance, 212
minIoThreads, 282
minWorkerThreads setting, 282
MTAThread attribute, 366
.NET application measurement, 706
.NET applications, 601–602
per-request basis, 283
role in CLR, 182
settings for reducing contention, 812–814
STA components, 404
STA objects from ASP.NET, 365
WaitHandle class, 214, 218

Thread.Resume
code reviews of .NET applications, 589
managed code performance, 214

Thread.Suspend
code reviews of .NET applications, 589
managed code performance, 214

/3GB switch
.NET application tuning, 815–816
SQL scaling, 639, 641, 680

thresholds, 826–827
throughput

defined, 68
.NET application measurement, 687, 710, 728–729
vs. user load, 774

tiers, 19
time managed code. See QueryPerformanceCounter

and QueryPerformanceFrequency
time to first byte. See TTFB
time to last byte. See TTLB
timeout configuring, 817–818, 820
Timeout property, 458–461
timeouts

checklists, 882
exception management, 322
.NET applications

code reviews, 607, 620
measurement, 716–718
tuning, 817–818, 832–833

.NET remoting tuning, 494
WaitHandle class, 459
Web services, 458–461

TLBIMP /unsafe switch, 363
ToLower, 240
tool support, 564–565
tools, 744. See also CLR Profiler tool
Trace and Debug classes

.NET application measurement, 694–695
overview, 27

TraceSessions.config, 1037
tracing

ACT for performance and scalability, 999
code reviews of .NET applications, 606
deployment, 338
disabling for .NET application tuning, 819
fn_trace_gettable, 673–674

Transact-SQL. See T-SQL
Transaction Cost Analysis. See TCA
transaction isolation level selection, 114–115
transaction levels, 154
transaction type, 515
transactions

ADO.NET, 554–558
checklists, 846, 858, 877
code reviews of .NET applications, 630–631
Enterprise Services performance, 399–402

1094 Improving .NET Application Performance and Scalability

transactions (continued)
isolation level, 400–401
lock times, 401–402
mechanisms, 399–400
.NET application measurement, 736
.NET overview, 30
SQL Server, 664–665

trusted server models, 402
trusted server scenarios, 497–498
try\catch blocks

code reviews of .NET applications, 582–583
managed code, 229–231

try\finally
code reviews of .NET applications, 603
exception management, 320

TTFB
.NET application measurement, 713
.NET application testing, 742–743

TTLB
.NET application measurement, 713–714
.NET application testing, 742–743

tuning. See also .NET application tuning
categories, 780–781
checklists, 878
options, 789–791, 811–823, 825–829
SQL Server, 672–675

type conversions
enumerated types, 543
ItemDataBound event, 297
strongly typed arrays, 241
types, 552–553

typed DataSets, 552
types. See also basic types; blittable types; explicit

types; object types; primitive types; value types
ADO.NET, 543, 552
checklists, 846
locking and synchronization, 224–225
type conversions, 552–553
Web services, 440

U
unboxing. See boxing and unboxing
unicode to ANSI conversions

code review, 612
marshaling, 356

unmanaged code
code reviews of .NET applications, 595, 610
managed code performance, 185

unmanaged resources
and client calls, 207
code reviews of .NET applications, 577

/unsafe, 613

UnsafeAuthenticatedConnectionSharing, 447–448,
621

Update, 526
UpdateText function, 562
URLs from Web services, 468
use caching, 276–277
user load

vs. response time, 775
vs. throughput, 774

user profile
performance testing, 770
stress testing, 754, 758–759
TCA, 940–942, 945–946

user request profiles, 940–942
users setting, 991
using statement in C#, 206

connections, 524–525
Util.cs, 972–973

V
validation. See client-side validation;

XML performance
validation code, 229–230
value types

code reviews of .NET applications, 585
and reference types, 126, 225

variables, 596
VaryBy attributes, 305
view state

ACT for performance and scalability, 996–997
ASP.NET performance, 314–316
checklists, 854
code reviews of .NET applications, 607
configuring for .NET application tuning, 821
DataGrid, 164, 719
determining size, 316
disabling, 314–315
minimizing objects, 315
.NET application measurement, 719
server controls, 292–293

virtual methods in classes
architecture and design of .Net applications, 174
design, 850
sealing, 187, 596

Visual Basic .NET
closing connections, 523
code reviews of .NET applications, 592–593
DirectCast operator, 228
example of Dispose method, 203
On Error/Goto error handling, 230–231
reflection and late binding, 257

Visual Studio .NET integrated development
environment. See IDE

 Index 1095

volatile data caching
architecture and design of .Net applications, 159
design guidelines for applications, 121

volatile fields
code reviews of .NET applications, 589–590
managed code, 189

W
W3C acronym defined, 411
WaitHandle class

threading guidelines, 214, 218
timeouts, 459

waittime value, 674–675
waittype value, 674–675
warm up time, 762–763
weak references

with cached data, 195
code review, 576

Web farm
diagram, 97
scaling, 953–954

Web gardens
configuration deployment, 341
.NET application tuning, 822–823
process model, 334–335

Web layer, 130–131
Web methods, 618–619
Web server metrics, 771–772
Web service clients, 619–621
Web services, 431–475. See also code reviews

of .NET applications
ACT for performance and scalability, 1000
additional information, 475
address attribute, 446
affinity, 466
apartment-model objects from, 365
application boundaries, 435
architecture, 433–434
ASP.NET timeout, 459–460
asynchronous invocation, 456–457, 619
asynchronous Web methods, 452–456

for I/O operations, 453–454
and worker threads, 455

attachments, 472
Base64 encoding, 467
BufferResponse, 461
bulk data transfer, 466–471
byte array as a method parameter, 467
CacheDuration, 461
caching, 464–465
caveats, 436
checklists, 881–884
client-side proxy classes, 434

Web services (continued)
code reviews of .NET applications, 618–621
COM interop, 472–473
ConnectionGroupName attribute, 446–447
connections, 444–448
contention, 449–451
design, 439–443
EnableSession, 462
HttpRuntime object, 433
IIS, 433
IList, 468–470
implementation considerations, 444
ISAPI, 433
IXmlSerializable type, 470–471
local Web services, 443
maxconnection attribute, 444–448
measuring and analyzing performance, 473
minIoThreads, 451
minWorkerThreads, 451
.NET application measurement, 722–724
object orientation vs. service orientation, 435
one-way (fire-and-forget)

communication, 451–452
output caching, 464
overview, 34–35, 431–432
performance and scalability issues, 437–438
perimeter caching, 465
PreAuthenticate property attribute, 448–449
prescriptive guidance

Enterprise Services, 375–377
.NET remoting, 481–482
Web service, 434–436

primitive types, 440, 461
proxy classes, 434
recommendations, 482–483
responseDeadlockInterval attribute, 461
returning a URL from, 468
round trips, 463
scaling, 955–956
serialization, 462–464, 895–896
session state, 466
state management, 465–466
streaming, 468
SwA, 472
thread settings, 449–451
ThreadAbortException, 458
threading, 449–451
Timeout property, 458–461
timeouts, 458–461
types, 440
UI responsiveness, 457
UnsafeAuthenticatedConnectionSharing

attribute, 447–448
Web service calling, 456–457
WebMethod attribute, 461–462

1096 Improving .NET Application Performance and Scalability

Web services (continued)
XML compression, 463
XmlIgnore attribute, 462–463
XmlSerializer class, 889
XmlValidatingReader, 441

Web Services Description Language. See WSDL
Web Services Enhancements. See WSEs
Web services tuning, 829–831
Web.config, 1007
WebMethod

checklists, 883
Web services, 461–462

Williams, Lloyd G., 73
Window Management Instrumentation. See WMI
Windows authentication

ACT for performance and scalability, 994–995
ADO.NET, 514
connection pooling, 514

Windows Forms applications, 597
Windows Server 2003, 306
WMI

acronym defined, 692
.NET application measurement, 693
overview, 27

worker process restarts, 722
worker threads and asynchronous Web methods, 455
working set

managed code performance, 260–261
.NET application measurement, 705
Ngen.exe, 262
overview, 26

workload
defined, 68
modeling in .NET application testing, 757–759
profiling in .NET application measurement, 688
profiling in .NET application testing, 743

workstation GC, 336
World Wide Web Consortium. See W3C
WS-I Attachments Profile 1.0, 35, 472
WSDL, 434
WSEs, 19, 375

attachments checklist, 884
MTOM, 472
Web services, 434–435, 473–475

X
XCOPY deployment, 340
XML

compression, 463
DataSet, 414
and DataSet objects checklists, 845
namespaces, 413
related classes, 411–413, 415

XML (continued)
schemas, 422
SQLXML, 521
System.Xml, 411

XML Path Language. See XPath
XML performance, 409–430

additional resources, 430
architecture, 411–413
design, 414–417
document size, 428
DOM, 411, 416, 419, 420
element and attribute names, 417
hard-coding transformations, 416–417
implementation considerations, 418
MoveToContent method, 421
namespaces and principal types, 413
overview, 409–410
parsing, 418–421
performance and scalability issues, 413
Skip method, 421–422
streaming interfaces, 416
validating, 421–422
validating large documents, 415–416
writing, 422–423
XML class choices, 415
XmlDocument, 420
XmlNameTable class, 417–418
XmlReader, 420
XmlTextReader class, 419
XmlTextWriter, 423
XmlValidatingReader, 419, 422
XPath queries, 423–425
XSLT processing, 425–429

XmlDataDocument, 424
XmlDocument, 420
XmlIgnore attribute

code reviews of .NET applications, 620
serialization, 891, 896

XmlNameTable class, 417–418
XmlReader, 420
XmlSerializer class, 889, 896
XmlTextReader class, 419
XmlTextWriter, 423
XmlValidatingReader

Web services, 441
XML performance, 419, 422

XPath
checklists, 886
described, 423
search scope, 424
// operator, 424
XML performance, 423–425
XmlDataDocument, 424, 426
XPathDocument, 424, 426
XPathNavigator class, 425

 Index 1097

XPathDocument
XPath, 424
XSLT, 426

XPathNavigator class, 425
XSLT, 425–429

acronym defined, 425
caching compiled style sheets, 426–427
checklists, 886
complex transformations, 428
Extension objects, 427
hard-coding transformations, 416–417
output document, 428
writing efficiently, 428–429
XPathDocument class, 426

Xtremesoft AppMetrics, 727

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

About Microsoft patterns & practices

Microsoft patterns & practices guides contain specific recommendations illustrating how to design,
build, deploy, and operate architecturally sound solutions to challenging business and technical
scenarios. They offer deep technical guidance based on real-world experience that goes far beyond
white papers to help enterprise IT professionals, information workers, and developers quickly
deliver sound solutions.

IT Professionals, information workers, and developers can choose from four types of patterns &
practices:

● Patterns—Patterns are a consistent way of documenting solutions to commonly occurring
problems. Patterns are available that address specific architecture, design, and implementation
problems. Each pattern also has an associated GotDotNet Community.

● Reference Architectures—Reference Architectures are IT system-level architectures that
address the business requirements, LifeCycle requirements, and technical constraints for
commonly occurring scenarios. Reference Architectures focus on planning the architecture
of IT systems.

● Reference Building Blocks and IT Services—References Building Blocks and IT Services are
re-usable sub-system designs that address common technical challenges across a wide range
of scenarios. Many include tested reference implementations to accelerate development.
Reference Building Blocks and IT Services focus on the design and implementation of sub-
systems.

● Lifecycle Practices—Lifecycle Practices provide guidance for tasks outside the scope of
architecture and design such as deployment and operations in a production environment.

Patterns & practices guides are reviewed and approved by Microsoft engineering teams, consultants,
Product Support Services, and by partners and customers. Patterns & practices guides are:

● Proven—They are based on field experience.

● Authoritative—They offer the best advice available.

● Accurate—They are technically validated and tested.

● Actionable—They provide the steps to success.

● Relevant—They address real-world problems based on customer scenarios.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Patterns & practices guides are designed to help IT professionals, information workers, and
developers:

Reduce project cost
● Exploit the Microsoft engineering efforts to save time and money on your projects.

● Follow the Microsoft recommendations to lower your project risk and achieve predictable
outcomes.

Increase confidence in solutions
● Build your solutions on proven Microsoft recommendations so you can have total confidence in

your results.

● Rely on thoroughly tested and supported guidance, but production quality recommendations and
code, not just samples.

Deliver strategic IT advantage
● Solve your problems today and take advantage of future Microsoft technologies with practical

advice.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

patterns & practices: Current Titles
October 2003

Title Link to Online Version Book

Patterns

Enterprise Solution Patterns http://msdn.microsoft.com/practices/type/Patterns
using Microsoft .NET /Enterprise/default.asp

Microsoft Data Patterns http://msdn.microsoft.com/practices/type/Patterns
/Data/default.asp

Reference Architectures

Application Architecture for http://msdn.microsoft.com/library/default.asp?url=
.NET: Designing Applications /library/en-us/dnbda/html/distapp.asp
and Services

Enterprise Notification http://msdn.microsoft.com/library/default.asp?url=
Reference Architecture for /library/en-us/dnentdevgen/html/enraelp.asp
Exchange 2000 Server

Improving Web Application http://msdn.microsoft.com/library/default.asp?url=
Security: Threats and /library/en-us/dnnetsec/html/ThreatCounter.asp
Countermeasures

Microsoft Accelerator http://www.microsoft.com/technet/treeview
for Six Sigma /default.asp?url=/technet/itsolutions/mso/sixsigma

/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Guide: /default.asp?url=/technet/prodtechnol/ad
Volume 1: Planning /windows2000/deploy/adguide/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Series /default.asp?url=/technet/prodtechnol/ad
Volume 2: Deployment and /windows2000/deploy/adguide/default.asp
Operations

Microsoft Content Integration http://msdn.microsoft.com/library/default.asp?url=
Pack for Content Management /library/en-us/dncip/html/cip.asp
Server 2001 and SharePoint
Portal Server 2001

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 1: Planning

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 2: Deployment

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 1: Planning /default.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 2: Deployment /default.asp

Microsoft Solution http://www.microsoft.com/technet/treeview
for Intranets /default.asp?url=/technet/itsolutions/mso

/msi/Default.asp

Microsoft Solution for http://www.microsoft.com/downloads
Securing Wireless LANs /details.aspx?FamilyId=CDB639B3-010B-47E7-B23

4-A27CDA291DAD&displaylang=en

Microsoft Systems http://www.microsoft.com/technet/treeview
Architecture— /default.asp?url=/technet/itsolutions/edc
Enterprise Data Center /Default.asp

Microsoft Systems http://www.microsoft.com/technet/treeview/
Architecture— default.asp?url=/technet/itsolutions/idc/default.asp
Internet Data Center

The Enterprise Project http://www.microsoft.com/technet/treeview
Management Solution /default.asp?url=/technet/itsolutions/mso/epm

/default.asp

UNIX Application http://msdn.microsoft.com/library/default.asp?url=
Migration Guide /library/en-us/dnucmg/html/ucmglp.asp

Reference Building Blocks and IT Services

.NET Data Access http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/daag.asp

Application Updater http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/updater.asp

Asynchronous Invocation http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnpag/html/paiblock.asp

Authentication in ASP.NET: http://msdn.microsoft.com/library/default.asp?url=
.NET Security Guidance /library/en-us/dnbda/html/authaspdotnet.asp

Building Interoperable Web http://msdn.microsoft.com/library/default.asp?url=
Services: WS-I Basic /library/en-us/dnsvcinter/html/wsi-bp_msdn_
Profile 1.0 landingpage.asp

Building Secure ASP.NET http://msdn.microsoft.com/library/default.asp?url=
Applications: Authentication, /library/en-us/dnnetsec/html/secnetlpMSDN.asp
Authorization, and Secure
Communication

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Caching Application Block http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/Cachingblock.asp

Caching Architecture Guide for http://msdn.microsoft.com/library/default.asp?url=
.Net Framework Applications /library/en-us/dnbda/html/CachingArch.asp?frame=

true

Configuration Management http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/cmab.asp

Data Access Application Block http://msdn.microsoft.com/library/default.asp?url=
for .NET /library/en-us/dnbda/html/daab-rm.asp

Designing Application-Managed http://msdn.microsoft.com/library/?url=/library
Authorization /en-us/dnbda/html/damaz.asp

Designing Data Tier Components http://msdn.microsoft.com/library/default.asp?url=
and Passing Data Through Tiers /library/en-us/dnbda/html/BOAGag.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Application Block for .NET /library/en-us/dnbda/html/emab-rm.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/exceptdotnet.asp

Microsoft .NET/COM Migration http://msdn.microsoft.com/library/default.asp?url=
and Interoperability /library/en-us/dnbda/html/cominterop.asp

Microsoft Windows Server http://www.microsoft.com/downloads/
2003 Security Guide details.aspx?FamilyId=8A2643C1-0685-4D89-B655-

521EA6C7B4DB&displaylang=en

Monitoring in .NET Distributed http://msdn.microsoft.com/library/default.asp?url=
Application Design /library/en-us/dnbda/html/monitordotnet.asp

New Application Installation http://www.microsoft.com/business/reducecosts
using Systems Management /efficiency/manageability/application.mspx
Server

Patch Management using http://www.microsoft.com/technet/treeview/
Microsoft Systems Management default.asp?url=/technet/itsolutions/msm/swdist/
Server - Operations Guide pmsms/pmsmsog.asp

Patch Management Using http://www.microsoft.com/technet/treeview/
Microsoft Software Update default.asp?url=/technet/itsolutions/msm/swdist/
Services - Operations Guide pmsus/pmsusog.asp

Service Aggregation Application http://msdn.microsoft.com/library/default.asp?url=
Block /library/en-us/dnpag/html/serviceagg.asp

Service Monitoring and Control http://www.microsoft.com/business/reducecosts
using Microsoft Operations /efficiency/manageability/monitoring.mspx
Manager

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

User Interface Process http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/uip.asp

Web Service Façade for http://msdn.microsoft.com/library/default.asp?url=
Legacy Applications /library/en-us/dnpag/html/wsfacadelegacyapp.asp

Lifecycle Practices

Backup and Restore for http://www.microsoft.com/technet/treeview/default.asp
Internet Data Center ?url=/technet/ittasks/maintain/backuprest/Default.asp

Deploying .NET Applications: http://msdn.microsoft.com/library/default.asp?url=
Lifecycle Guide /library/en-us/dnbda/html/DALGRoadmap.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview/default.
Server Operations Guide asp?url=/technet/prodtechnol/exchange/exchange

2000/maintain/operate/opsguide/default.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 1: Planning /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 2: Deployment /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
Operations Guide /default.asp?url=/technet/prodtechnol/sql/maintain

/operate/opsguide/default.asp

Operating .NET-Based http://www.microsoft.com/technet/treeview
Applications /default.asp?url=/technet/itsolutions/net/maintain

/opnetapp/default.asp

Production Debugging for http://msdn.microsoft.com/library/default.asp?url=
.NET-Connected Applications /library/en-us/dnbda/html/DBGrm.asp

Security Operations for http://www.microsoft.com/technet/treeview
Microsoft Windows 2000 Server /default.asp?url=/technet/security/prodtech

/win2000/secwin2k/default.asp

Security Operations Guide for http://www.microsoft.com/technet/treeview
Exchange 2000 Server /default.asp?url=/technet/security/prodtech

/mailexch/opsguide/default.asp

Team Development with Visual http://msdn.microsoft.com/library/default.asp?url=
Studio .NET and Visual /library/en-us/dnbda/html/tdlg_rm.asp
SourceSafe

This title is available as a Book

	Improving .NET Application Performance and Scalability
	Letter to Our Customers
	Contents
	Forewords
	Foreword by Scott Barber
	Foreword by Brandon Bohling
	Foreword by Rico Mariani
	Foreword by Connie U. Smith

	Introduction
	Summary
	Overview
	Why We Wrote This Guide
	Scope of This Guide
	Technologies in Scope

	Features of This Guide
	Audience
	How to Use This Guide
	Ways to Use the Guide
	Applying the Guidance to Your Role
	Applying the Guidance to Your Life Cycle

	Organization of This Guide
	Performance Best Practices at a Glance
	Fast Track
	Parts
	Part I, “Introduction to Engineering for Performance”
	Part II, “Designing for Performance”
	Part III, “Application Performance and Scalability”
	Part IV, “Database Server Performance and Scalability”
	Part V, “Measuring, Testing, and Tuning”
	Checklists
	How Tos

	Approach Used in This Guide
	Give Performance Due Consideration Up Front
	Set Objectives and Measure
	Know the Cost

	Framework for Performance
	Feedback and Support
	Feedback on the Guide
	Technical Support
	Community and Newsgroup Support

	The Team Who Brought You This Guide
	Contributors and Reviewers
	Tell Us About Your Success
	Summary

	Performance Best Practices at a Glance
	Summary
	Architecture and Design Solutions
	Development Solutions
	Improving Managed Code Performance
	Improving Data Access Performance
	Improving ASP.NET Performance
	Improving Web Services Performance
	Improving .NET Remoting Performance
	Improving Enterprise Services Performance
	Improving Interop Performance

	Testing Solutions

	Fast Track — A Guide for Getting Started and Applying the Guidance
	Summary
	Goal and Scope
	The Approach
	Set Performance Objectives
	Performance Objectives
	Quality of Service Attributes

	Design for Performance
	Performance and Scalability Frame
	Performance Modeling

	Measuring Performance
	Know the Cost
	Validate

	Testing Performance
	Load Testing
	Stress Testing

	Tuning Performance
	Applying the Guidance to Your Application Life Cycle
	Functional Mapping
	Performance Throughout the Life Cycle

	Who Does What?
	RACI Chart

	Implementing the Guidance
	Summary

	Part I: Introduction to Engineering for Performance
	Chapter 1: Fundamentals of Engineering for Performance
	Overview
	Managing Performance
	Quality-of-Service Requirements
	Reactive vs. Proactive Approach

	Engineering for Performance
	Set Objectives and Measure
	Set Performance Objectives
	Metrics
	Know Your Budgets

	Design for Performance
	Give Performance Due Consideration from the Start
	Performance and Scalability Frame

	Measure
	Know the Cost
	Validate Assumptions
	Scenarios

	Life Cycle
	Where to Go from Here
	Terms You Need to Know
	Summary

	Part II: Designing for Performance
	Chapter 2: Performance Modeling
	Objectives
	Overview
	How to Use This Chapter
	Why Model Performance?
	Risk Management
	Budget
	What You Must Know
	Best Practices

	Information in the Performance Model
	Inputs
	Outputs
	Performance Model Document
	Test Cases with Goals

	Process
	Step 1. Identify Key Scenarios
	Critical Scenarios
	Significant Scenarios

	Step 2. Identify Workload
	Step 3. Identify Performance Objectives
	Step 4. Identify Budget
	Execution Time
	Resource Utilization
	Additional Considerations

	Step 5. Identify Processing Steps
	Step 6. Allocate Budget
	Assigning Execution Time to Steps
	Assigning Resource Utilization Requirements

	Step 7. Evaluate
	Step 8. Validate
	More Information

	Summary
	Additional Resources

	Chapter 3: Design Guidelines for Application Performance
	Objectives
	Overview
	How to Use This Chapter
	Principles
	Design Process Principles
	Design Principles

	Deployment Considerations
	Consider Your Deployment Architecture
	Nondistributed Architecture
	Distributed Architecture

	Identify Constraints and Assumptions Early
	Evaluate Server Affinity
	Use a Layered Design
	Stay in the Same Process
	Do Not Remote Application Logic Unless You Need To

	Scale Up vs. Scale Out
	Scale Up: Get a Bigger Box
	Scale Out: Get More Boxes
	Guidelines
	Consider Whether You Need to Support Scale Out
	Consider Design Implications and Tradeoffs Up Front
	Consider Database Partitioning at Design Time
	More Information

	Architecture and Design Issues
	Coupling and Cohesion
	Design for Loose Coupling
	Design for High Cohesion
	Partition Application Functionality into Logical Layers
	Use Early Binding Where Possible
	Evaluate Resource Affinity
	More Information

	Communication
	Choose the Appropriate Remote Communication Mechanism
	Design Chunky Interfaces
	Consider How to Pass Data Between Layers
	Minimize the Amount of Data Sent Across the Wire
	Batch Work to Reduce Calls Over the Network
	Reduce Transitions Across Boundaries
	Consider Asynchronous Communication
	Consider Message Queuing
	Consider a “Fire and Forget” Invocation Model
	More Information

	Concurrency
	Reduce Contention by Minimizing Lock Times
	Balance Between Coarse- and Fine-Grained Locks
	Choose an Appropriate Transaction Isolation Level
	Avoid Long-Running Atomic Transactions
	More Information

	Resource Management
	Treat Threads As a Shared Resource
	Pool Shared or Scarce Resources
	Acquire Late, Release Early
	Consider Efficient Object Creation and Destruction
	Consider Resource Throttling
	More Information

	Caching
	Decide Where to Cache Data
	Decide What Data to Cache
	Decide the Expiration Policy and Scavenging Mechanism
	Decide How to Load the Cache Data
	Avoid Distributed Coherent Caches
	More Information

	State Management
	Evaluate Stateful vs. Stateless Design
	Consider Your State Store Options
	Minimize Session Data
	Free Session Resources As Soon As Possible
	Avoid Accessing Session Variables from Business Logic
	More Information

	Data Structures and Algorithms
	Choose an Appropriate Data Structure
	Pre-Assign Size for Large Dynamic Growth Data Types
	Use Value and Reference Types Appropriately
	More Information

	Design Guidelines Summary
	Desktop Applications Considerations
	Browser Client Considerations
	Web Layer Considerations
	Business Layer Considerations
	Data Access Layer Considerations
	Summary
	Additional Resources

	Chapter 4: Architecture and Design Review of a .NET Application for Performance and Scalability
	Objectives
	Overview
	How to Use This Chapter
	Architecture and Design Review Process
	Deployment and Infrastructure
	Do You Need a Distributed Architecture?
	What Distributed Communication Should You Use?
	Do You Have Frequent Interaction Across Boundaries?
	What Restrictions Does Your Infrastructure Impose?
	Do You Consider Network Bandwidth Restrictions?
	Do You Share Resources with Other Applications?
	Does Your Design Support Scaling Up?
	Does Your Design Support Scaling Out?
	Does Your Design Use Logical Layers?
	Does Your Design Consider the Impact of Resource Affinity?
	Does Your Design Support Load Balancing?

	Coupling and Cohesion
	Is Your Design Loosely Coupled?
	How Cohesive Is Your Design?
	Do You Use Late Binding?

	Communication
	Do You Use Chatty Interfaces?
	Do You Make Remote Calls?
	How Do You Exchange Data with a Remote Server?
	Do You Have Secure Communication Requirements?
	Do You Use Message Queues?
	Do You Make Long-Running Calls?
	Could You Use Application Domains Instead of Processes?

	Concurrency
	Do You Need to Execute Tasks Concurrently?
	Do You Create Threads on a Per-Request Basis?
	Do You Design Thread Safe Types by Default?
	Do You Use Fine-Grained Locks?
	Do You Acquire Late and Release Early?
	Do You Use the Appropriate Synchronization Primitive?
	Do You Use an Appropriate Transaction Isolation Level?
	Does Your Design Consider Asynchronous Execution?

	Resource Management
	Does Your Design Accommodate Pooling?
	Do You Acquire Late and Release Early?

	Caching
	Do You Cache Data?
	Do You Know Which Data to Cache?
	Do You Cache Volatile Data?
	Have You Chosen the Right Cache Location?
	What Is Your Expiration Policy?

	State Management
	Do You Use Stateless Components?
	Do You Use .NET Remoting?
	Do You Use Web Services?
	Do You Use Enterprise Services?
	Have You Ensured Objects to be Stored in Session Stores are Serializable?
	Do You Depend On View State?
	Do You Know the Number of Concurrent Sessions and Average Session Data per User?

	Data Structures and Algorithms
	Do You Use Appropriate Data Structures?
	Do You Need Custom Collections?
	Do You Need to Extend IEnumerable for Your Custom Collections?

	Data Access
	How Do You Pass Data Between Layers?
	Do You Use Stored Procedures?
	Do You Process Only the Required Data?
	Do You Need to Page Through Data?
	Do Your Transactions Span Multiple Data Stores?
	Do You Manipulate BLOBs?
	Are You Consolidating Repeated Data Access Code?

	Exception Handling
	Do You Use Exceptions to Control Application Flow?
	Are Exception Handling Boundaries Well Defined?
	Do You Use Error Codes?
	Do You Catch Exceptions Only When Required?
	More Information

	Class Design Considerations
	Does Your Class Own the Data That It Acts Upon?
	Do Your Classes Expose Interfaces?
	Do Your Classes Contain Virtual Methods?
	Do Your Classes Contain Methods that Take Variable Parameters?

	Summary
	Additional Resources

	Part III: Application Performance and Scalability
	Chapter 5: Improving Managed Code Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Performance and Scalability Issues
	Design Considerations
	Design for Efficient Resource Management
	Reduce Boundary Crossings
	Prefer Single Large Assemblies Rather Than Multiple Smaller Assemblies
	Factor Code by Logical Layers
	Treat Threads as a Shared Resource
	Design for Efficient Exception Management

	Class Design Considerations
	Do Not Make Classes Thread Safe by Default
	Consider Using the sealed Keyword
	Consider the Tradeoffs of Virtual Members
	Consider Using Overloaded Methods
	Consider Overriding the Equals Method for Value Types
	Know the Cost of Accessing a Property
	Consider Private vs. Public Member Variables
	Limit the Use of Volatile Fields

	Implementation Considerations
	Garbage Collection Explained
	Allocation
	Collection
	Generations
	Key GC Methods Explained
	Server GC vs. Workstation GC

	Garbage Collection Guidelines
	Identify and Analyze Your Application’s Allocation Profile
	Avoid Calling GC.Collect
	Consider Using Weak References with Cached Data
	Prevent the Promotion of Short-Lived Objects
	Set Unneeded Member Variables to Null Before Making Long-Running Calls
	Minimize Hidden Allocations
	Avoid or Minimize Complex Object Graphs
	Avoid Preallocating and Chunking Memory

	Finalize and Dispose Explained
	Finalize
	Dispose
	Close

	Dispose Pattern
	C# Example of Dispose
	Visual Basic .NET Example of Dispose

	Finalize and Dispose Guidelines
	Call Close or Dispose on Classes that Support It
	Disposable Resources
	COM Objects
	Enterprise Services (COM+)

	Use the using Statement in C# and Try/Finally Blocks in Visual Basic .NET to Ensure Dispose Is Called
	The using Statement in C#

	Do Not Implement Finalize Unless Required
	Implement Finalize Only If You Hold Unmanaged Resources across Client Calls
	Move the Finalization Burden to the Leaves of Object Graphs
	If You Implement Finalize, Implement IDisposable
	If You Implement Finalize and Dispose, Use the Dispose Pattern
	Suppress Finalization in Your Dispose Method
	Allow Dispose to Be Called Multiple Times
	Call Dispose On Base Classes and On IDisposable Members
	Keep Finalizer Code Simple to Prevent Blocking
	Provide Thread Safe Cleanup Code Only if Your Type Is Thread Safe

	Pinning
	If You Need to Pin Buffers, Allocate Them at Startup

	Threading Explained
	Managed Threads and Operating System Threads

	Threading Guidelines
	Minimize Thread Creation
	Use the Thread Pool When You Need Threads
	Use a Timer to Schedule Periodic Tasks
	Consider Parallel vs. Synchronous Tasks
	Do Not Use Thread.Abort to Terminate Other Threads
	Do Not Use Thread.Suspend and Thread.Resume to Pause Threads
	More Information

	Asynchronous Calls Explained
	Asynchronous Guidelines
	Consider Client-Side Asynchronous Calls for UI Responsiveness
	Use Asynchronous Methods on the Server for I/O Bound Operations
	Avoid Asynchronous Calls That Do Not Add Parallelism

	Locking and Synchronization Explained
	Determine That You Need Synchronization
	Determine the Approach
	Determine the Scope of Your Approach

	Locking and Synchronization Guidelines
	Acquire Locks Late and Release Them Early
	Avoid Locking and Synchronization Unless Required
	Use Granular Locks to Reduce Contention
	Avoid Excessive Fine-Grained Locks
	Avoid Making Thread Safety the Default for Your Type
	Use the Fine-Grained lock (C#) Statement Instead of Synchronized
	Avoid Locking “this”
	Coordinate Multiple Readers and Single Writers By Using ReaderWriterLock Instead of lock
	Do Not Lock the Type of the Objects to Provide Synchronized Access

	Value Types and Reference Types
	Value Types
	Reference Types

	Boxing and Unboxing Explained
	Boxing and Unboxing Guidelines
	Avoid Frequent Boxing and Unboxing Overhead
	Collections and Boxing

	Measure Boxing Overhead
	Use DirectCast In Your Visual Basic .NET Code

	Exception Management
	Do Not Use Exceptions to Control Application Flow
	Use Validation Code to Reduce Unnecessary Exceptions
	Use the finally Block to Ensure Resources Are Released
	Replace Visual Basic .NET On Error Goto Code with Exception Handling
	Do Not Catch Exceptions That You Cannot Handle
	Be Aware That Rethrowing Is Expensive
	Preserve as Much Diagnostic Information as Possible in Your Exception Handlers
	Use Performance Monitor to Monitor CLR Exceptions
	More Information

	Iterating and Looping
	Avoid Repetitive Field or Property Access
	Optimize or Avoid Expensive Operations Within Loops
	Copy Frequently Called Code into the Loop
	Consider Replacing Recursion with Looping
	Use for Instead of foreach in Performance-Critical Code Paths

	String Operations
	Avoid Inefficient String Concatenation
	Use + When the Number of Appends Is Known
	Use StringBuilder When the Number of Appends Is Unknown
	Treat StringBuilder as an Accumulator
	Use the Overloaded Compare Method for Case-Insensitive String Comparisons

	More Information

	Arrays
	Prefer Arrays to Collections Unless You Need Functionality
	Use Strongly Typed Arrays
	Use Jagged Arrays Instead of Multidimensional Arrays
	Additional Considerations

	Collections Explained
	Collection Issues
	Boxing Issues
	Thread Safety
	Enumeration Overhead

	Collection Guidelines
	Analyze Your Requirements Before Choosing the Collection Type
	Do You Need to Sort Your Collection?
	Do You Need to Search Your Collection?
	Do You Need to Access Each Element by Index?
	Do You Need a Custom Collection?

	Initialize Collections to the Right Size When You Can
	Consider Enumerating Overhead
	Prefer to Implement IEnumerable with Optimistic Concurrency
	Consider Boxing Overhead
	Consider for Instead of foreach
	Implement Strongly Typed Collections to Prevent Casting Overhead
	Be Efficient with Data in Collections

	Collection Types
	ArrayList
	Hashtable
	HybridDictionary
	ListDictionary
	NameValueCollection
	Queue
	SortedList
	Stack
	StringCollection
	StringDictionary
	More Information

	Reflection and Late Binding
	Prefer Early Binding and Explicit Types Rather Than Reflection
	Avoid Late Binding
	Avoid Using System.Object in Performance-Critical Code Paths
	Enable Option Explicit and Option Strict in Visual Basic .NET

	Code Access Security
	Consider SuppressUnmanagedCodeSecurity for Performance-Critical Trusted Scenarios
	Prefer Declarative Demands Rather Than Imperative Demands
	Consider Using Link Demands Rather Than Full Demands for Performance-Critical, Trusted Scenarios

	Working Set Considerations
	More Information

	Ngen.exe Explained
	Startup Time
	Working Set
	Running Ngen.exe

	Ngen.exe Guidelines
	Scenarios Where Startup Time Is Paramount Should Consider Ngen.exe for Their Startup Path
	Scenarios That Benefit from the Ability to Share Assemblies Should Adopt Ngen.exe
	Scenarios with Limited or No Sharing Should Not Use Ngen.exe
	Do Not Use Ngen.exe with ASP.NET Version 1.0 and 1.1
	Consider Ngen.exe with ASP.NET Version 2.0
	Measure Performance with and without Ngen.exe
	Regenerate Your Image When You Ship New Versions
	Choose an Appropriate Base Address
	More Information

	Summary
	Additional Resources

	Chapter 6: Improving ASP.NET Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Performance and Scalability Issues
	Design Considerations
	Consider Security and Performance
	Partition Your Application Logically
	Evaluate Affinity
	Reduce Round Trips
	Avoid Blocking on Long-Running Tasks
	Use Caching
	Avoid Unnecessary Exceptions

	Implementation Considerations
	Threading Explained
	Formula for Reducing Contention
	More Information

	Threading Guidelines
	Tune the Thread Pool by Using the Formula to Reduce Contention
	Consider minIoThreads and minWorkerThreads for Burst Load
	Do Not Create Threads on a Per-Request Basis
	Avoid Blocking Threads
	Avoid Asynchronous Calls Unless You Have Additional Parallel Work
	More Information

	Resource Management
	Pool Resources
	Explicitly Call Dispose or Close on Resources You Open
	Do Not Cache or Block on Pooled Resources
	Know Your Application Allocation Pattern
	Obtain Resources Late and Release Them Early
	Avoid Per-Request Impersonation

	Pages
	Trim Your Page Size
	Enable Buffering
	Use Page.IsPostBack to Minimize Redundant Processing
	Partition Page Content to Improve Caching Efficiency and Reduce Rendering
	Ensure Pages Are Batch Compiled
	Ensure Debug Is Set to False
	Optimize Expensive Loops
	Consider Using Server.Transfer Instead of Response.Redirect
	Use Client-Side Validation

	Server Controls
	Identify the Use of View State in Your Server Controls
	Use Server Controls Where Appropriate
	Avoid Creating Deep Hierarchies of Controls
	More Information

	Data Binding
	Avoid Using Page.DataBind
	Minimize Calls to DataBinder.Eval
	More Information

	Caching Explained
	Cache API
	Output Caching
	Partial Page or Fragment Caching

	Caching Guidelines
	Separate Dynamic Data from Static Data in Your Pages
	Configure the Memory Limit
	More Information

	Cache the Right Data
	Refresh Your Cache Appropriately
	Cache the Appropriate Form of the Data
	Use Output Caching to Cache Relatively Static Pages
	Choose the Right Cache Location
	Use VaryBy Attributes for Selective Caching
	Use Kernel Caching on Windows Server 2003
	More Information

	State Management
	Store Simple State on the Client Where Possible
	Consider Serialization Costs

	Application State
	Use Static Properties Instead of the Application Object to Store Application State
	Use Application State to Share Static, Read-Only Data
	Do Not Store STA COM Objects in Application State
	More Information

	Session State
	Choosing a State Store
	Prefer Basic Types to Reduce Serialization Costs
	Disable Session State If You Do Not Use It
	Avoid Storing STA COM Objects in Session State
	Use the ReadOnly Attribute When You Can
	More Information

	View State
	Disable View State If You Do Not Need It
	Minimize the Number of Objects You Store In View State
	Determine the Size of Your View State

	HTTP Modules
	Avoid Long-Running and Blocking Calls in Pipeline Code
	Consider Asynchronous Events
	More Information

	String Management
	Use Response.Write for Formatting Output
	Use StringBuilder for Temporary Buffers
	Use HtmlTextWriter When Building Custom Controls
	More Information

	Exception Management
	Implement a Global.asax Error Handler
	Monitor Application Exceptions
	Use Try/Finally on Disposable Resources
	Write Code That Avoids Exceptions
	Set Timeouts Aggressively
	More Information

	COM Interop
	Use ASPCOMPAT to Call STA COM Objects
	Avoid Storing COM Objects in Session State or Application State
	Avoid Storing STA Objects in Session State
	Do Not Create STA Objects in a Page Constructor
	Supplement Classic ASP Server.CreateObject with Early Binding
	More Information

	Data Access
	Use Paging for Large Result Sets
	More Information

	Use a DataReader for Fast and Efficient Data Binding
	Prevent Users from Requesting Too Much Data
	Consider Caching Data
	More Information

	Security Considerations
	Constrain Unwanted Web Server Traffic
	Turn Off Authentication for Anonymous Access
	Validate User Input on the Client
	Avoid Per-Request Impersonation
	Avoid Caching Sensitive Data
	Segregate Secure and Non-Secure Content
	Only Use SSL for Pages That Require It
	Use Absolute URLs for Navigation
	Consider Using SSL Hardware to Offload SSL Processing
	Tune SSL Timeout to Avoid SSL Session Expiration
	More Information

	IIS 6.0 Considerations
	Process Model
	Kernel Mode Caching
	Web Gardens
	IIS 6.0 vs. the ASP.NET Process Model
	Enabling Web Gardens by Using IIS 6.0
	Enabling Web Gardens by Using the ASP.NET Process Model
	Configuring the cpuMask Attribute

	Garbage Collector Configuration Flag
	When to Use the Workstation GC
	Configuring the Workstation GC

	Deployment Considerations
	Avoid Unnecessary Process Hops
	Understand the Performance Implications of a Remote Middle Tier
	Short Circuit the HTTP Pipeline
	Configure the Memory Limit
	Disable Tracing and Debugging
	Ensure Content Updates Do Not Cause Additional Assemblies to Be Loaded
	Avoid XCOPY Under Heavy Load
	Consider Precompiling Pages
	Consider Web Garden Configuration
	Consider Using HTTP Compression
	Consider Using Perimeter Caching

	Summary
	Additional Resources

	Chapter 7: Improving Interop Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Platform Invoke (P/Invoke)
	IJW and Managed Extensions for C++
	COM Interop
	Primary Interop Assemblies (PIAs)
	Runtime Callable Wrapper

	Performance and Scalability Issues
	Design Considerations
	Design Chunky Interfaces to Avoid Round Trips
	Reduce Round Trips with a Facade
	Implement IDisposable if You Hold Unmanaged Resources Across Client Calls
	Reduce or Avoid the Use of Late Binding and Reflection
	ASP.NET and Late Binding

	Implementation Considerations
	Marshaling
	Explicitly Name the Target Method You Call
	Use Blittable Types Where Possible
	Avoid Unicode to ANSI Conversions Where Possible
	Use IntPtr for Manual Marshaling
	Use [in] and [out] to Avoid Unnecessary Marshaling
	Avoid Aggressive Pinning of Short-Lived Objects

	Marshal.ReleaseComObject
	Consider Calling ReleaseComObject in Server Applications
	How ReleaseComObject Works
	When to Call ReleaseComObject
	When Not to Call ReleaseComObject
	How to Call ReleaseComObject
	More Information

	Do Not Force Garbage Collections with GC.Collect

	Code Access Security (CAS)
	Consider Using SuppressUnmanagedCode for Performance-Critical Trusted Scenarios
	Consider Using TLBIMP /unsafe for Performance-Critical Trusted Scenarios

	Threading
	Reduce or Avoid Cross-Apartment Calls
	Use ASPCOMPAT When You Call STA Objects from ASP.NET
	Calling Apartment-Model Objects from Web Services

	Use MTAThread When You Call Free-Threaded Objects
	Avoid Thread Switches by Using Neutral Apartment COM Components

	Monitoring Interop Performance
	Use Performance Counters for P/Invoke and COM Interop
	Use CLR Spy to Identify Interop Problems

	Summary
	Additional Resources

	Chapter 8: Improving Enterprise Services Performance
	Objectives
	Overview
	How to Use This Chapter
	Component Services Provided By Enterprise Services
	Architecture
	Boundary Considerations

	Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting
	Object Orientation and Service Orientation
	Application Boundaries
	Recommendations for Web Services, Enterprise Services, and .NET Remoting
	Caveats

	Performance and Scalability Issues
	Design Considerations
	Use Enterprise Services Only if You Need To
	Use Library Applications if Possible
	Consider DLL and Class Relationships
	Use Distributed Transactions Only if You Need To
	Use Object Pooling to Reduce Object Creation Overhead
	Design Pooled Objects Based on Calling Patterns
	Use Explicit Interfaces
	Design Less Chatty Interfaces
	Design Stateless Components

	Object Pooling
	Object Pooling Explained
	Object Pooling with JIT Activation

	Return Objects to the Pool Promptly
	With JIT Activation, Use ASAP Deactivation
	Without JIT Activation, the Caller Controls Lifetime

	Monitor and Tune Pool Size
	Preload Applications That Have Large Minimum Pool Sizes

	State Management
	More Information

	Resource Management
	Optimize Idle Time Management for Server Applications
	Always Call Dispose
	Calling Dispose

	DisableAsyncFinalization Registry Setting
	If You Call COM Components, Consider Calling ReleaseComObject
	Calling ReleaseComObject
	Marshal.Release

	Summary of Dispose, ReleaseComObject, and Release Guidelines

	Queued Components
	Use Queued Component to Decouple Client and Server Lifetimes
	Do Not Wait for a Response from a Queued Component

	Loosely Coupled Events
	Consider the Fire in Parallel Option
	Potential Pitfalls

	Avoid LCE for Multicast Scenarios
	Use Queued Components with LCE from ASP.NET
	Do Not Subscribe to LCE Events from ASP.NET

	Transactions
	Choose the Right Transaction Mechanism
	Choose the Right Isolation Level
	Configuring the Isolation Level

	Use Compensating Transactions to Reduce Lock Times
	More Information

	Security
	Use a Trusted Server Model if Possible
	Avoid Impersonation in the Middle Tier
	Use Packet Privacy Authentication Only if You Need Encryption

	Threading
	Avoid STA Components

	Synchronization Attribute
	Use Locks or Mutexes for Granular Synchronization

	Summary
	Additional Resources

	Chapter 9: Improving XML Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Performance and Scalability Issues
	Design Considerations
	Choose the Appropriate XML Class for the Job
	Consider Validating Large Documents
	Process Large Documents in Chunks If Possible
	Use Streaming Interfaces
	Consider Hard-Coded Transformations
	Consider Element and Attribute Name Lengths
	Consider Sharing the XmlNameTable

	Implementation Considerations
	Parsing XML
	Use XmlTextReader to Parse Large XML Documents
	Use XmlValidatingReader for Validation
	Consider Combining XmlReader and XmlDocument
	On the XmlReader, Use the MoveToContent and Skip Methods to Skip Unwanted Items
	More Information

	Validating XML
	Use XmlValidatingReader
	Do Not Validate the Same Document More Than Once
	Consider Caching the Schema
	More Information

	Writing XML
	Use XmlTextWriter

	XPath Queries
	Use XPathDocument to Process XPath Statements
	Avoid the // Operator by Reducing the Search Scope
	Compile Both Dynamic and Static XPath Expressions
	More Information

	XSLT Processing
	Use XPathDocument for Faster XSLT Transformations
	Consider Caching Compiled Style Sheets
	Caching Extension Objects

	Split Complex Transformations into Several Stages
	Minimize the Size of the Output Document
	Write Efficient XSLT
	More Information

	Summary
	Additional Resources

	Chapter 10: Improving Web Services Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Client-Side Proxy Classes

	Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting
	Object Orientation and Service Orientation
	Application Boundaries
	Recommendations for Web Services, Enterprise Services, and .NET Remoting
	Caveats
	More Information

	Performance and Scalability Issues
	Design Considerations
	Design Chunky Interfaces to Reduce Round Trips
	Prefer Message-Based Programming Over RPC Style
	Use Literal Message Encoding for Parameter Formatting
	Prefer Primitive Types for Web Services Parameters
	Avoid Maintaining Server State Between Calls
	Consider Input Validation for Costly Web Methods
	Consider Your Approach to Caching
	Consider Approaches for Bulk Data Transfer and Attachments
	Avoid Calling Local Web Services

	Implementation Considerations
	Connections
	Configure The maxconnection Attribute
	Before Making the Change
	Evaluating the Change

	Prioritize and Allocate Connections Across Discrete Web Services
	Use a Single Identity for Outbound Calls
	Consider UnsafeAuthenticatedConnectionSharing with Windows Integrated Authentication
	Use PreAuthenticate with Basic Authentication

	Threading
	Tune the Thread Pool by Using the Formula for Reducing Contention
	Consider minIoThreads and minWorkerThreads for Intermittent Burst Load
	More Information

	One-Way (Fire-and-Forget) Communication
	Asynchronous Web Methods
	Use Asynchronous Web Methods for I/O Operations
	Do Not Use Asynchronous Web Methods When You Depend on Worker Threads

	Asynchronous Invocation
	Consider Calling Web Services Asynchronously When You Have Additional Parallel Work
	Use Asynchronous Invocation to Call Multiple Unrelated Web Services
	Call Web Services Asynchronously for UI Responsiveness

	Timeouts
	Set Your Proxy Timeout Appropriately
	Set Your ASP.NET Timeout Greater Than Your Web Service Timeout
	Abort Connections for ASP.NET Pages That Timeout Before a Web Services Call Completes
	Consider the responseDeadlockInterval Attribute

	WebMethods
	Serialization
	Reduce Serialization with XmlIgnore
	Reduce Round Trips
	Consider XML Compression
	More Information

	Caching
	Consider Output Caching for Less Volatile Data
	Consider Providing Cache-Related Information to Clients
	Consider Perimeter Caching

	State Management
	Use Session State Only Where It Is Needed
	Avoid Server Affinity

	Bulk Data Transfer
	Using a Byte Array Web Method Parameter
	Base 64 Encoding

	Returning a URL from the Web Service
	Using Streaming
	Implementing IList
	Implementing IXmlSerializable

	More Information

	Attachments
	SOAP Messages with Attachments (SwA)

	COM Interop
	More Information

	Measuring and Analyzing Web Services Performance
	More Information

	Web Service Enhancements
	More Information

	Summary
	Additional Resources

	Chapter 11: Improving Remoting Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Activation
	Server-Activated Objects
	Client-Activated Objects

	Object Lifetime

	Prescriptive Guidance for Web Services, Enterprise Services, and .NET Remoting
	Object Orientation and Service Orientation
	Application Boundaries
	Recommendations for Web Services, Enterprise Services, and .NET Remoting
	Caveats

	Performance and Scalability Issues
	Design Considerations
	Use .NET Remoting for Communicating between Application Domains in the Same Process
	Choose the Right Host
	Choose the Right Activation Model
	Choose the Right Channel
	Choose the Right Formatter
	Choose Between Synchronous or Asynchronous Communication
	Minimize Round Trips and Avoid Chatty Interfaces
	Avoid Holding State in Memory

	Implementation Considerations
	Activation
	Client-Activated Objects (CAOs)
	Server-Activated Objects (SAOs)
	Singleton
	SingleCall

	Lifetime Considerations
	.NET Remoting Leases
	Object Release
	Tune Default Timeouts Based on Need
	Tuning the Lease Time

	Hosts
	Recommendations
	Use IIS to Authenticate Calls
	Turn Off HTTP Keep-Alives When Using IIS
	Host in IIS if You Need to Load Balance Using NLB
	Use a Custom Host Only in Trusted Server Scenarios

	Channels
	Formatters
	MarshalByRef vs. MarshalByValue
	Marshal-by-Reference
	Marshal-by-Value

	Serialization and Marshaling
	Consider Using a Data Facade
	Marshal Data Efficiently and Prefer Primitive Types
	Reduce Serialized Data by Using NonSerialized
	Prefer the BinaryFormatter

	DataSets and Remoting
	Summary
	Additional Resources

	Chapter 12: Improving ADO.NET Performance
	Objectives
	Overview
	How to Use This Chapter
	Architecture
	Abstracting Data Access
	More Information

	Performance and Scalability Issues
	Design Considerations
	Design Your Data Access Layer Based on How the Data Is Used
	Cache Data to Avoid Unnecessary Work
	Connect by Using Service Accounts
	Acquire Late, Release Early
	Close Disposable Resources
	Reduce Round Trips
	Implicit Round Trips

	Return Only the Data You Need
	Use Windows Authentication
	Choose the Appropriate Transaction Type
	Use Stored Procedures
	More Information

	Prioritize Performance, Maintainability, and Productivity when You Choose How to Pass Data Across Layers
	Consider How to Handle Exceptions
	Use Appropriate Normalization

	Implementation Considerations
	.NET Framework Data Providers
	Use System.Data.SqlClient for SQL Server 7.0 and Later
	Use System.Data.OleDb for SQL Server 6.5 or OLE DB Providers
	Use System.Data.ODBC for ODBC Data Sources
	Use System.Data.OracleClient for Oracle
	Use SQLXML Managed Classes for XML Data and SQL Server 2000
	More Information

	Connections
	Open and Close the Connection in the Method
	Explicitly Close Connections
	Closing Connections in Visual Basic .NET
	Closing Connections in C#
	Closing Connections with the Using Statement in C#

	When Using DataReaders, Specify CommandBehavior.CloseConnection
	Do Not Explicitly Open a Connection if You Use Fill or Update for a Single Operation
	Avoid Checking the State Property of OleDbConnection
	Pool Connections
	Monitoring Pooling

	More Information

	Commands
	Validate SQL Input and Use Parameter Objects
	Using Parameters with Stored Procedures
	Using Parameters with Dynamic SQL

	Retrieve Only the Columns and Rows You Need
	Support Paging Over Large Result Sets
	Batch SQL Statements to Reduce Round Trips
	More Information

	Use ExecuteNonQuery for Commands That Do Not Return Data
	Use ExecuteScalar to Return Single Values
	Use CommandBehavior.SequentialAccess for Very Wide Rows or for Rows with BLOBs
	More Information

	Do Not Use CommandBuilder at Run Time

	Stored Procedures
	Use Stored Procedures
	More Information

	Use CommandType.Text with OleDbCommand
	Use CommandType.StoredProcedure with SqlCommand
	Consider Using Command.Prepare
	Use Output Parameters Where Possible
	Consider SET NOCOUNT ON for SQL Server

	Parameters
	Use the Parameters Collection When You Call a Stored Procedure
	Use the Parameters Collection When You Build SQL Statements
	Explicitly Create Stored Procedure Parameters
	Specify Parameter Types
	Cache Stored Procedure SqlParameter Objects
	More Information

	DataSet vs. DataReader
	DataReader
	Close DataReader Objects
	Consider Using CommandBehavior.CloseConnection to Close Connections
	Cancel Pending Data
	Consider Using CommandBehavior.SequentialAccess with ExecuteReader
	Use GetOrdinal When Using an Index-Based Lookup

	DataSet
	Reduce Serialization
	More Information

	Use Primary Keys and Rows.Find for Indexed Searching
	Use a DataView for Repetitive Non-Primary Key Searches
	Use the Optimistic Concurrency Model for Datasets
	More Information

	XML and DataSet Objects
	Do Not Infer Schemas at Run Time
	Perform Bulk Updates and Inserts by Using OpenXML
	More Information

	Typed DataSets
	More Information

	Types
	Avoid Unnecessary Type Conversions

	Exception Management
	Transactions
	Use SQL Transactions for Server-Controlled Transactions on a Single Data Store
	Use ADO.NET Transactions for Client-Controlled Transactions on a Single Data Store
	Use DTC for Transactions That Span Multiple Data Stores
	Keep Transactions as Short as Possible
	Use the Appropriate Isolation Level
	Avoid Code That Can Lead to Deadlock
	Set the Connection String Enlist Property to False
	More Information

	Binary Large Objects
	Use CommandBehavior.SequentialAccess and GetBytes to Read Data
	More Information

	Use READTEXT to Read from SQL Server 2000
	More Information

	Use OracleLob.Read to Read from Oracle Databases
	More Information

	Use UpdateText to Write to SQL Server Databases
	More Information

	Use OracleLob.Write to Write to Oracle Databases
	More Information

	Avoid Moving Binary Large Objects Repeatedly

	Paging Records
	More Information

	Analyzing Performance and Scalability of Data Access
	Tool Support
	More Information

	Summary
	Additional Resources

	Chapter 13: Code Review: .NET Application Performance
	Objectives
	Overview
	How to Use This Chapter
	FxCop
	More Information

	Common Performance Issues
	Resource Cleanup
	Exceptions
	String Management
	Threading
	Boxing
	Managed Code and CLR Performance
	Memory Management
	Do You Manage Memory Efficiently?
	Do You Call GC.Collect?
	Do You Use Finalizers?
	Do You Use Unmanaged Resources Across Calls?
	Do You Use Buffers for I/O Operations?

	Looping and Recursion
	Do You Repetitively Access Properties?
	Do You Use Recursion?
	Do You Use foreach?
	Do You Perform Expensive Operations Within Your Loops?

	String Operations
	Do You Concatenate Strings?
	Do You Use StringBuilder?
	Do You Perform String Comparisons?
	More Information

	Exception Handling
	Do You Catch Exceptions You Cannot Handle?
	Do You Control Application Logic with Exception Handling?
	Do You Use Finally Blocks to Ensure Resources Are Freed?
	Do You Use Exception Handling Inside Loops?
	Do You Rethrow Exceptions?

	Arrays
	Do You Use Strongly Typed Arrays?
	Do You Use Multidimensional Arrays?

	Collections
	Have You Considered Arrays?
	Do You Enumerate Through Collections?
	Do You Initialize the Collection to an Approximate Final Size?
	Do You Store Value Types in a Collection?
	Have You Considered Strongly Typed Collections?
	Do You Use ArrayList?
	Do You Use Hashtable?
	Do You Use SortedList?

	Locking and Synchronization
	Do You Use Mutex Objects?
	Do You Use the Synchronized Attribute?
	Do You Lock “this”?
	Do You Lock The Type of an Object?
	Do You Use ReaderWriterLock?
	More Information

	Threading
	Do You Create Additional Threads?
	Do You Call Thread.Suspend or Thread.Resume?
	Do You Use Volatile Fields?
	Do You Execute Periodic Tasks?

	Asynchronous Processing
	Do You Poll for Asynchronous Invocation Results?
	Do You Call EndInvoke After Calling BeginInvoke?
	More Information

	Serialization
	Do You Serialize Too Much Data?
	Do You Serialize DataSet Objects?
	Do You Implement ISerializable?
	More Information

	Visual Basic Considerations
	Have You Switched Off int Checking?
	Do You Use On Error Goto?
	Do You Turn on Option Strict and Explicit?
	Do You Perform Lots of String Concatenation?

	Reflection and Late Binding
	Do You Use .NET Framework Classes that Use Reflection?
	Do You Use Late Binding?
	Do You Use System.Object to Access Custom Objects?
	More Information

	Code Access Security
	Do You Use Declarative Security?
	Do You Call Unmanaged Code?
	More Information

	Class Design Considerations
	Do You Use Properties?
	Do You Define Only the Required Variables As Public?
	Do You Seal Your Classes or Methods?
	Ngen.exe
	Do You Precompile Windows Forms Applications?
	Do You Create Large Shared Libraries?

	ASP.NET
	Do You Use Caching?
	Do You Use Session State?
	Do You Use Application State?
	Do You Use Threading and Synchronization Features?
	Do You Manage Resources Efficiently?
	Do You Manage Strings Efficiently?
	Do You Manage Exceptions Efficiently?
	Have You Optimized Your Web Pages?
	Do You Use View State?
	Do You Use Server Controls?
	Do You Access Data From Your ASPX Pages?
	Do You Use Data Binding?
	Do You Call Unmanaged Code From ASPX Pages?
	Have You Reviewed the Settings in Machine.config?
	More Information

	Interop
	More Information

	Enterprise Services
	Do You Use Object Pooling?
	Do You Manage Resources Efficiently?
	Do You Use Queued Components?
	Do You Use Loosely Coupled Events?
	Do You Use COM+ Transactions?
	Do You Use the Synchronization Attribute?
	More Information

	Web Services
	Web Methods
	Web Service Clients
	Have You Considered Calling Web Services Asynchronously?
	Do You Make Long-Running Calls to Web Services?
	Do You Use XMLIgnore To Reduce the Amount of Data Sent Over the Wire?
	Are Client Timeouts Greater Than Your Web Service Timeout?
	Do You Abort Connections When ASP.NET Pages Timeout?
	Do You Use Pre-Authentication with Basic Authentication?
	Do You Use UnsafeAuthenticatedConnectionString with Windows Authentication?
	Have You Configured Your Connections?
	Have You Tuned the Thread Pool on the Server and Client?

	More Information

	Remoting
	Do You Use MarshalByRef and MarshalByValue Appropriately?
	Do You Use the HttpChannel?
	Do You Need to Transfer Large Amounts of Data over the HttpChannel?
	Which Formatter Do You Use To Serialize Data?
	Do You Send All The Data Across The Wire?
	Do You Serialize ADO.NET Objects using BinaryFormatter?
	Have You Considered Asynchronous Calls to the Remote Component?
	More Information

	Data Access
	Do You Use Connections Efficiently?
	Do You Use Commands Efficiently?
	Do You Use Stored Procedures?
	Do You Use Transact-SQL?
	Do You Use Parameters?
	Do you use DataReaders?
	Do You Use DataSets?
	Do You Use Transactions?
	Do You Use Binary Large Objects (BLOBS)?
	Do You Page Through Data?
	More Information

	Summary
	Additional Resources

	Part IV: Database Server Performance and Scalability
	Chapter 14: Improving SQL Server Performance
	Objectives
	Overview
	How to Use This Chapter
	SQL: Scale Up vs. Scale Out
	Optimize the Application Before Scaling Up or Scaling Out
	Address Historical and Reporting Data
	Scale Up for Most Applications
	Scale Out When Scaling Up Does Not Suffice or Is Cost-Prohibitive
	More Information

	Performance and Scalability Issues
	Schema
	Devote the Appropriate Resources to Schema Design
	Separate OLAP and OLTP Workloads
	Normalize First, Denormalize for Performance Later
	Define All Primary Keys and Foreign Key Relationships
	Define All Unique Constraints and Check Constraints
	Choose the Most Appropriate Data Type
	Use Indexed Views for Denormalization
	Partition Tables Vertically and Horizontally

	Queries
	Know the Performance and Scalability Characteristics of Queries
	Write Correctly Formed Queries
	Return Only the Rows and Columns Needed
	Avoid Expensive Operators Such as NOT LIKE
	Avoid Explicit or Implicit Functions in WHERE Clauses
	Use Locking and Isolation Level Hints to Minimize Locking
	WITH NOLOCK and WITH READUNCOMMITTED
	UPDLOCK
	TABLOCK

	Use Stored Procedures or Parameterized Queries
	Minimize Cursor Use
	Avoid Long Actions in Triggers
	Use Temporary Tables and Table Variables Appropriately
	Limit Query and Index Hints Use
	Fully Qualify Database Objects

	Indexes
	Create Indexes Based on Use
	Keep Clustered Index Keys As Small As Possible
	Consider Range Data for Clustered Indexes
	Create an Index on All Foreign Keys
	Create Highly Selective Indexes
	Consider a Covering Index for Often-Used, High-Impact Queries
	Use Multiple Narrow Indexes Rather than a Few Wide Indexes
	Create Composite Indexes with the Most Restrictive Column First
	Consider Indexes on Columns Used in WHERE, ORDER BY, GROUP BY, and DISTINCT Clauses
	Remove Unused Indexes
	Use the Index Tuning Wizard

	Transactions
	Avoid Long-Running Transactions
	Avoid Transactions that Require User Input to Commit
	Access Heavily Used Data at the End of the Transaction
	Try to Access Resources in the Same Order
	Use Isolation Level Hints to Minimize Locking
	Ensure That Explicit Transactions Commit or Roll Back

	Stored Procedures
	Use Set NOCOUNT ON in Stored Procedures
	Do Not Use the Sp_ Prefix for Custom Stored Procedures

	Execution Plans
	Evaluate the Query Execution Plan
	Avoid Table and Index Scans
	Evaluate Hash Joins
	Evaluate Bookmarks
	Evaluate Sorts and Filters
	Compare Actual vs. Estimated Rows and Executions
	More Information

	Execution Plan Recompiles
	Use Stored Procedures or Parameterized Queries
	Use Sp_executesql for Dynamic Code
	Avoid Interleaving DDL and DML in Stored Procedures, Including the Tempdb database DDL
	Avoid Cursors over Temporary Tables
	More Information

	SQL XML
	Avoid OPENXML over Large XML Documents
	Avoid Large Numbers of Concurrent OPENXML Statements over XML Documents
	More Information

	Tuning
	Use SQL Profiler to Identify Long-Running Queries
	Take Note of Small Queries Called Often
	Use Sp_lock and Sp_who2 to Evaluate Locking and Blocking
	Evaluate Waittype and Waittime in master..sysprocesses
	Use DBCC OPENTRAN to Locate Long-Running Transactions

	Testing
	More Information

	Monitoring
	Keep Statistics Up to Date
	Use SQL Profiler to Tune Long-Running Queries
	Use SQL Profiler to Monitor Table and Index Scans
	Use Performance Monitor to Monitor High Resource Usage
	Set Up an Operations and Development Feedback Loop
	More Information

	Deployment Considerations
	Use Default Server Configuration Settings for Most Applications
	Locate Logs and the Tempdb Database on Separate Devices from the Data
	Provide Separate Devices for Heavily Accessed Tables and Indexes
	Use the Appropriate RAID Configuration
	Use Multiple Disk Controllers
	Pre-Grow Databases and Logs to Avoid Automatic Growth and Fragmentation Performance Impact
	Maximize Available Memory
	Manage Index Fragmentation
	Keep Database Administrator Tasks in Mind

	Summary
	Additional Resources

	Part V: Measuring, Testing, and Tuning
	Chapter 15: Measuring .NET Application Performance
	Objectives
	Overview
	How to Use This Chapter
	Goals of Measuring
	Response Time or Latency
	Throughput
	Resource Utilization
	Workload Profile

	Metrics
	How Measuring Applies to Life Cycle
	Tools and Techniques
	System and Platform Metrics
	Network Monitoring Tools
	Profiling Tools
	Tools for Analyzing Log Files
	Application Instrumentation

	Instrumentation
	What Options Are Available?
	When Do You Use Each Option?
	Event Tracing for Windows (ETW)
	Windows Management Instrumentation (WMI)
	Custom Performance Counters
	Enterprise Instrumentation Framework (EIF)
	Trace and Debug Classes

	System Resources
	Processor
	Memory
	Disk I/O
	Network I/O

	.NET Framework Technologies
	CLR and Managed Code
	What to Measure
	How to Measure
	Memory
	Working Set
	Exceptions
	Contention
	Threading
	Code Access Security
	Timing Your Code Path

	ASP.NET
	What to Measure
	How to Measure
	Throughput
	Cost of Throughput

	Requests
	Queues
	Response Time and Latency
	Cache Utilization
	Errors and Exceptions
	Sessions
	Determining an Optimum Value for Session Timeout
	In Process vs. Remote Session Stores

	Loading
	ViewState Size
	Page Size
	Page Cost
	Worker Process Restarts

	Web Services
	What to Measure
	How to Measure
	Serialization Cost

	Enterprise Services
	What to Measure
	How to Measure
	Components Services Administration Tool
	Optimum Size for the Object Pool
	Third-Party Tools

	Remoting
	What to Measure
	How to Measure
	Throughput
	Serialization Cost and Amount of Data
	Number of TCP Connections

	Interop
	What to Measure
	How to Measure
	Chattiness of Marshaled Interfaces

	ADO.NET/Data Access
	What to Measure
	How to Measure
	Connection Pooling — SqlConnection
	Connection Pooling — OleDbConnection
	Indexes
	Cache
	Transactions
	Locks

	Summary
	Additional Resources

	Chapter 16: Testing .NET Application Performance
	Objectives
	Overview
	How to Use This Chapter
	Performance Testing
	Goals of Performance Testing
	Performance Objectives
	Response Time or Latency
	Throughput
	Resource Utilization
	Workload

	Tools
	Load Testing Process
	Input
	Steps
	Step 1. Identify Key Scenarios
	Step 2. Identify Workload
	Step 3. Identify Metrics
	Step 4. Create Test Cases
	Test Case for the Sample E-Commerce Application
	Expected Results

	Step 5. Simulate Load
	Step 6. Analyze the Results
	More Information

	Output

	Stress-Testing Process
	Input
	Steps
	Step 1. Identify Key Scenarios
	Step 2. Identify Workload
	Step 3. Identify Metrics
	Step 4. Create Test Cases
	Step 5. Simulate Load
	Step 6. Analyze the Results

	Workload Modeling
	Testing Considerations
	Do Not Place Too Much Stress on the Client
	Create Baselines for Your Test Setup
	Allow for Think Time in Your Test Script
	Consider Test Duration
	Minimize Redundant Requests During Testing
	Consider Simultaneous vs. Concurrent Users
	Set an Appropriate Warm-up Time

	Best Practices for Performance Testing
	Do
	Do Not

	Metrics
	Metrics for All Servers
	Web Server-Specific Metrics
	SQL Server-Specific Metrics

	Reporting
	Workload Profile
	Performance Objectives
	Web Server Metrics
	SQL Server Metrics

	Analysis of Performance Data
	Throughput vs. User Load
	Response Time vs. User Load
	Processor vs. User Load
	Potential Bottlenecks

	Summary
	Additional Resources

	Chapter 17: Tuning .NET Application Performance
	Objectives
	Overview
	How to Use This Chapter
	Categories for Tuning
	Performance Tuning Process
	1. Establish a Baseline
	2. Collect Data
	Use a Constant Workload
	Format the Results

	3. Analyze Results
	4. Configure
	5. Test and Measure

	Bottleneck Identification
	What Are Bottlenecks?
	How to Identify Bottlenecks
	Measure Response Time, Throughput, and Resource Utilization Across User Loads
	Analyzing Response Time Across User Loads
	Measuring Throughput Across User Loads
	Analyzing Resource Utilization Across User Loads

	Measure Metrics that Help You Capture a More Granular View of Your Application
	More Information

	System Tuning
	CPU
	Metrics
	Bottlenecks
	Tuning Options

	Memory
	Configuration Overview
	Metrics
	Bottlenecks
	Tuning Options
	Deciding When to Add Memory
	Page File Optimization
	More Information

	Disk I/O
	Configuration Overview
	Metrics
	Tuning Options

	Network I/O
	Configuration Overview
	Metrics
	Bottleneck Identification
	Tuning Options

	.NET Framework Tuning
	CLR Tuning
	Metrics
	Bottlenecks

	ASP.NET Tuning
	Configuration Overview
	<processModel>
	<httpRuntime>

	Thread Pool Attributes
	Metrics
	Bottlenecks
	Tuning Options
	Tune the Thread Pool Using the Formula for Reducing Contention
	Tuning the Thread Pool for Burst Load Scenarios
	Tuning the Thread Pool When Calling COM Objects
	Evaluating the Change
	More Information

	Configure the Memory Limit
	/3GB Switch
	IIS 6

	Configure Timeouts Aggressively
	Evaluate Configuring RequestQueueLimit
	Disable Tracing and Debugging
	Disable Session State If You Do Not Use It
	If You Use Session State, Then Reduce Timeouts
	Evaluating the Change

	Disable View State If You Do Not Need It
	If You Upload Large Files, Consider maxRequestLength
	Consider Web Gardens for Scenarios that Benefit from Processor Affinity
	Additional Considerations

	Enterprise Services Tuning
	Configuration Overview
	Metrics
	Tuning Options
	Tune the Application Pool Size
	Tune Object Pool Size to Preallocate and Set Thresholds
	Optimize Idle Time Management for Server Applications
	Use Packet Privacy Only if You Need Encryption
	Set DisableAsyncFinalization Only When Clients Do Not Call Dispose

	Web Services Tuning
	Tuning Options
	Tune the Thread Pool Using the Formula for Reducing Contention
	Configure maxconnections
	Before Making the Change
	Evaluating the Change

	Prioritize and Allocate Connections Across Discrete Web Services
	Consider the responseDeadlockInterval Attribute
	If You Upload Large Files, Configure maxRequestLength

	Remoting Tuning
	Tuning Options
	Consider Using a Longer Lease Time for Objects that Are Expensive to Create
	Consider Shorter Lease Times for Objects that Consume Lots of Shared or Important Resources
	Tuning the Lease Time

	ADO.NET Tuning
	Configuration Overview
	Metrics
	Bottlenecks
	Too Many Connections

	Tuning Options
	Consider Tuning Your Pool Size If Needed

	SQL Server Tuning
	Metrics
	Bottlenecks
	Tuning Options
	If There Are Other Applications on the System, Set SQL Server Memory to a Fixed Amount
	Update Statistics
	Choose Hardware-Level RAID Rather Than Software RAID When You Can
	Choose RAID 0+1 (Striped Mirror) Where You Can

	Internet Information Services (IIS) Tuning
	More Information

	Summary
	Additional Resources

	Checklists
	Checklist: ADO.NET Performance
	Checklist: Architecture and Design Review for Performance and Scalability
	Checklist: ASP.NET Performance
	Checklist: Enterprise Services Performance
	Checklist: Interop Performance
	Checklist: Managed Code Performance
	Checklist: Remoting Performance
	Checklist: SQL Server Performance
	Checklist: Web Services Performance
	Checklist: XML Performance

	How Tos
	How To: Improve Serialization Performance
	How To: Monitor the ASP.NET Thread Pool Using Custom Counters
	How To: Optimize SQL Indexes
	How To: Optimize SQL Queries
	How To: Page Records in .NET Applications
	How To: Perform Capacity Planning for .NET Applications
	How To: Scale .NET Applications
	How To: Submit and Poll for Long-Running Tasks
	How To: Time Managed Code Using QueryPerformanceCounter and QueryPerformanceFrequency
	How To: Use ACT to Test Performance and Scalability
	How To: Use ACT to Test Web Services Performance
	How To: Use CLR Profiler
	How To: Use Custom Performance Counters from ASP.NET
	How To: Use EIF
	How To: Use SQL Profiler

	Index
	Additional Resources

