发布新日志

  • 转:音频编码汇总

    2009-05-06 16:56:56

    PCMU(G.711U)

    类型:Audio
    制定者:ITU-T
    所需频宽:64Kbps(90.4)
    特性:PCMU和PCMA都能提供较好的语音质量,但是它们占用的带宽较高,需要64kbps。
    优点:语音质量优
    缺点:占用的带宽较高
    应用领域:voip
    版税方式:Free
    备 注:PCMU and PCMA都能够达到CD音质,但是它们消耗的带宽也最多(64kbps)。如果网络带宽比较低,可以选用低比特速率的编码方法,如G.723或 G.729,这两种编码的方法也能达到传统长途电话的音质,但是需要很少的带宽(G723需要5.3/6.3kbps,G729需要8kbps)。如果带 宽足够并且需要更好的语音质量,就使用PCMU 和 PCMA,甚至可以使用宽带的编码方法G722(64kbps),这可以提供有高保真度的音质。
                                                                                                                

    PCMA(G.711A)
    类型:Audio
    制定者:ITU-T
    所需频宽:64Kbps(90.4)
    特性:PCMU和PCMA都能提供较好的语音质量,但是它们占用的带宽较高,需要64kbps。
    优点:语音质量优
    缺点:占用的带宽较高
    应用领域:voip
    版税方式:Free
    备 注:PCMU and PCMA都能够达到CD音质,但是它们消耗的带宽也最多(64kbps)。如果网络带宽比较低,可以选用低比特速率的编码方法,如G.723或 G.729,这两种编码的方法也能达到传统长途电话的音质,但是需要很少的带宽(G723需要5.3/6.3kbps,G729需要8kbps)。如果带 宽足够并且需要更好的语音质量,就使用PCMU 和 PCMA,甚至可以使用宽带的编码方法G722(64kbps),这可以提供有高保真度的音质。



    ADPCM(自适应差分PCM)
    类型:Audio
    制定者:ITU-T
    所需频宽:32Kbps
    特性:ADPCM(adaptive difference pulse code modulation)综合了APCM的自适应特性和DPCM系统的差分特性,是一种性能比较好的波形编码。它的核心想法是:
           ①利用自适应的思想改变量化阶的大小,即使用小的量化阶(step-size)去编码小的差值,使用大的量化阶去编码大的差值;
           ②使用过去的样本值估算下一个输入样本的预测值,使实际样本值和预测值之间的差值总是最小。
    优点:算法复杂度低,压缩比小(CD音质>400kbps),编解码延时最短(相对其它技术)
    缺点:声音质量一般
    应用领域:voip
    版税方式:Free
    备 注:ADPCM (ADPCM Adaptive Differential Pulse Code Modulation), 是一种针对 16bit (或者更高?) 声音波形数据的一种有损压缩算法, 它将声音流中每次采样的 16bit 数据以 4bit 存储, 所以压缩比 1:4. 而压缩/解压缩算法非常的简单, 所以是一种低空间消耗,高质量声音获得的好途径。
                                                                                                                  

    LPC(Linear Predictive Coding,线性预测编码)
    类型:Audio
    制定者:
    所需频宽:2Kbps-4.8Kbps
    特性:压缩比大,计算量大,音质不高,廉价
    优点:压缩比大,廉价
    缺点:计算量大,语音质量不是很好,自然度较低
    应用领域:voip
    版税方式:Free
    备 注:参数编码又称为声源编码,是将信源信号在频率域或其它正交变换域提取特征参数,并将其变换成数字代码进行传输。译码为其反过程,将收到的数字序列经变 换恢复特征参量,再根据特征参量重建语音信号。具体说,参数编码是通过对语音信号特征参数的提取和编码,力图使重建语音信号具有尽可能高的准确性,但重建 信号的波形同原语音信号的波形可能会有相当大的差别。如:线性预测编码(LPC)及其它各种改进型都属于参数编码。该编码比特率可压缩到2Kbit/s- 4.8Kbit/s,甚至更低,但语音质量只能达到中等,特别是自然度较低。


    CELP(Code Excited Linear Prediction,码激励线性预测编码)
    类型:Audio
    制定者:欧洲通信标准协会(ETSI)
    所需频宽:4~16Kbps的速率
    特性:改善语音的质量:
           ① 对误差信号进行感觉加权,利用人类听觉的掩蔽特性来提高语音的主观质量;
           ②用分数延迟改进基音预测,使浊音的表达更为准确,尤其改善了女性语音的质量;
           ③ 使用修正的MSPE准则来寻找 “最佳”的延迟,使得基音周期延迟的外形更为平滑;
           ④根据长时预测的效率,调整随机激励矢量的大小,提高语音的主观质量;       ⑤ 使用基于信道错误率估计的自适应平滑器,在信道误码率较高的情况下也能合成自然度较高的语音。
           结论:
           ① CELP算法在低速率编码环境下可以得到令人满意的压缩效果;
           ②使用快速算法,可以有效地降低CELP算法的复杂度,使它完全可以实时地实现;
           ③CELP可以成功地对各种不同类型的语音信号进行编码,这种适应性对于真实环境,尤其是背景噪声存在时更为重要。
    优点:用很低的带宽提供了较清晰的语音
    缺点:
    应用领域:voip
    版税方式:Free
    备 注:1999年欧洲通信标准协会(ETSI)推出了基于码激励线性预测编码(CELP)的第三代移动通信语音编码标准自适应多速率语音编码器(AMR), 其中最低速率为4.75kb/s,达到通信质量。CELP 码激励线性预测编码是Code Excited Linear Prediction的缩写。CELP是近10年来最成功的语音编码算法。
           CELP语音编码算法用线性预测提取声道参数,用一个包含许多典型的激励矢量的码本作为激励参数,每次编码时都在这个码本中搜索一个最佳的激励矢量,这个激励矢量的编码值就是这个序列的码本中的序号。
           CELP已经被许多语音编码标准所采用,美国联邦标准FS1016就是采用CELP的编码方法,主要用于高质量的窄带语音保密通信。CELP (Code-Excited Linear Prediction) 这是一个简化的 LPC 算法,以其低比特率著称 (4800-9600Kbps),具有很清晰的语音品质和很高的背景噪音免疫性。CELP是一种在中低速率上广泛使用的语音压缩编码方案。
                                                                                                             

    G.711
    类型:Audio
    制定者:ITU-T
    所需频宽:64Kbps
    特性:算法复杂度小,音质一般
    优点:算法复杂度低,压缩比小(CD音质>400kbps),编解码延时最短(相对其它技术)
    缺点:占用的带宽较高
    应用领域:voip
    版税方式:Free
    备注:70年代CCITT公布的G.711 64kb/s脉冲编码调制PCM。
                                                                                                                

    G.721
    类型:Audio
    制定者:ITU-T
    所需频宽:32Kbps
    特性:相对于PCMA和PCMU,其压缩比较高,可以提供2:1的压缩比。
    优点:压缩比大
    缺点:声音质量一般
    应用领域:voip
    版税方式:Free
    备注:子带ADPCM(SB-ADPCM)技术。G.721标准是一个代码转换系统。它使用ADPCM转换技术,实现64 kb/s A律或μ律PCM速率和32 kb/s速率之间的相互转换。


    G.722
    类型:Audio
    制定者:ITU-T
    所需频宽:64Kbps
    特性:G722能提供高保真的语音质量
    优点:音质好
    缺点:带宽要求高
    应用领域:voip
    版税方式:Free
    备注:子带ADPCM(SB-ADPCM)技术
                                                                                                                  

    G.723(低码率语音编码算法)
    类型:Audio
    制定者:ITU-T
    所需频宽:5.3Kbps/6.3Kbps
    特性:语音质量接近良,带宽要求低,高效实现,便于多路扩展,可利用C5402片内16kRAM实现53coder。达到ITU-TG723要求的语音质量,性能稳定。可用于IP电话语音信源编码或高效语音压缩存储。
    优点:码率低,带宽要求较小。并达到ITU-TG723要求的语音质量,性能稳定。
    缺点:声音质量一般
    应用领域:voip
    版税方式:Free
    备 注:G.723语音编码器是一种用于多媒体通信,编码速率为5.3kbits/s和6.3kbit/s的双码率编码方案。G.723标准是国际电信联盟 (ITU)制定的多媒体通信标准中的一个组成部分,可以应用于IP电话等系统中。其中,5.3kbits/s码率编码器采用多脉冲最大似然量化技术 (MP-MLQ),6.3kbits/s码率编码器采用代数码激励线性预测技术。
                                                                                                                

    G.723.1(双速率语音编码算法)
    类型:Audio
    制定者:ITU-T
    所需频宽:5.3Kbps(22.9)
    特 性:能够对音乐和其他音频信号进行压缩和解压缩,但它对语音信号来说是最优的。G.723.1采用了执行不连续传输的静音压缩,这就意味着在静音期间的比 特流中加入了人为的噪声。除了预留带宽之外,这种技术使发信机的调制解调器保持连续工作,并且避免了载波信号的时通时断。
    优点:码率低,带宽要求较小。并达到ITU-TG723要求的语音质量,性能稳定,避免了载波信号的时通时断。
    缺点:语音质量一般
    应用领域:voip
    版税方式:Free
    备注:G.723.1算法是 ITU-T建议的应用于低速率多媒体服务中语音或其它音频信号的压缩算法,其目标应用系统包括H.323、H.324等多媒体通信系统 。目前该算法已成为IP电话系统中的必选算法之一。
                                                                                                                   

    G.728
    类型:Audio
    制定者:ITU-T
    所需频宽:16Kbps/8Kbps
    特性:用于IP电话、卫星通信、语音存储等多个领域。G.728是一种低时延编码器,但它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。G.728还采用了自适应后置滤波器来提高其性能。
    优点:后向自适应,采用自适应后置滤波器来提高其性能
    缺点:比其它的编码器都复杂
    应用领域:voip
    版税方式:Free
    备注:G.728 16kb/s短延时码本激励线性预测编码(LD-CELP)。1996年ITU公布了G.728 8kb/s的CS-ACELP算法,可以用于IP电话、卫星通信、语音存储等多个领域。16 kbps G.728低时延码激励线性预测。
           G.728是低比特线性预测合成分析编码器(G.729和G.723.1)和后向ADPCM编码器的混合体。G.728是LD-CELP编码器,它一次只 处理5个样点。对于低速率(56~128 kbps)的综合业务数字网(ISDN)可视电话,G.728是一种建议采用的语音编码器。由于其后向自适应特性,因此G.728是一种低时延编码器,但 它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。G.728还采用了自适应后置滤波器来提高其性能。


    G.729
    类型:Audio
    制定者:ITU-T
    所需频宽:8Kbps
    特性:在良好的信道条件下要达到长话质量,在有随机比特误码、发生帧丢失和多次转接等情况下要有很好的稳健性等。这种语音压缩算法可以应用在很广泛的领域中,包括IP电话、无线通信、数字卫星系统和数字专用线路。
           G.729算法采用“共轭结构代数码本激励线性预测编码方案”(CS-ACELP)算法。这种算法综合了波形编码和参数编码的优点,以自适应预测编码技术为基础,采用了矢量量化、合成分析和感觉加权等技术。
           G.729编码器是为低时延应用设计的,它的帧长只有10ms,处理时延也是10ms,再加上5ms的前视,这就使得G.729产生的点到点的时延为25ms,比特率为8 kbps。
    优点:语音质量良,应用领域很广泛,采用了矢量量化、合成分析和感觉加权,提供了对帧丢失和分组丢失的隐藏处理机制
    缺点:在处理随机比特错误方面性能不好。
    应用领域:voip
    版税方式:Free
    备 注:国际电信联盟(ITU-T)于1995年11月正式通过了G.729。 ITU-T建议G.729也被称作“共轭结构代数码本激励线性预测编码方案”(CS-ACELP),它是当前较新的一种语音压缩标准。G.729是由美 国、法国、日本和加拿大的几家著名国际电信实体联合开发的。
                                                                                                                   

    G.729A
    类型:Audio
    制定者:ITU-T
    所需频宽:8Kbps(34.4)
    特性:复杂性较G.729低,性能较G.729差。
    优点:语音质量良,降低了计算的复杂度以便于实时实现,提供了对帧丢失和分组丢失的隐藏处理机制
    缺点:性能较G.729差
    应用领域:voip
    版税方式:Free
    备注:96年ITU-T又制定了G.729的简化方案G.729A,主要降低了计算的复杂度以便于实时实现,因此目前使用的都是G.729A。
                                                                                                          

    GIPS
    类型:Audio
    制定者:瑞典Global IP Sound公司
    所需频宽:
    特性:GIPS技术可根据带宽状况自动调节编码码率,提供低码率高质量的音频。GIPS的核心技术(网络自适应算法,丢包补偿算法和回声消除算法)可很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果。
    优点:很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果
    缺点: 不是Free
    应用领域:voip
    版税方式:每年支付一笔使用权费用
    备 注:GIPS音频技术是由来自瑞典的全球顶尖的语音处理高科技公司--"GLOBAL IP SOUND"提供的专用于互联网的语音压缩引擎系统。GIPS技术可根据带宽状况自动调节编码码率,提供低码率高质量的音频。GIPS的核心技术(网络自 适应算法,丢包补偿算法和回声消除算法)可很好地解决语音延迟与回声问题,带来完美音质,提供比电话还清晰的语音通话效果。
                                                                                                             

    Apt-X
    类型:Audio
    制定者:Audio Processing Technology 公司
    所需频宽:10Hz to 22.5 kHz,56kbit/s to 576 kbit/s(16 bit 7.5 kHz mono to 24-bit, 22.5kHz stereo)
    特性:主要用于专业音频领域,提供高品质的音频。其特点是:
           ①采用4:1:4的压缩与放大方案;
           ②硬件低复杂度;
           ③极低的编码延迟;
           ④由单芯片实现;
           ⑤单声道或立体声编解码;
           ⑥只需单设备即可实现22.5kHz的双通道立体声;
           ⑦高达48kHz的采样频率;
           ⑧容错性好;
           ⑨完整的AUTOSYNC™编解码同步方案;
           ⑩低功率消耗
    优点:高品质的音频,硬件复杂度低,设备要求低
    缺点:不是Free
    应用领域:voip
    版税方式:一次性付费
    备注:子带ADPCM(SB-ADPCM)技术


    NICAM(Near Instantaneous Companded Audio Multiplex 准瞬时压扩音频复用)
    类型:Audio
    制定者:英国BBC广播公司
    所需频宽:728Kbps
    特性:应用范围及其广泛,可用它进行立体声或双语广播
    优点:应用范围及其广泛,信噪比高,动态范围宽、音质同CD相媲美,故名丽音,因此NICAM又称为丽音
    缺点:不是Free,频宽要求高
    应用领域:voip
    版税方式:一次性付费
    备注:NICAM也称丽音,它是英文Near-Instantaneously Companded Audio Multiplex的缩写,其含义为准瞬时压扩音频复用,是由英国BBC广播公司开发研究成功的。
           通俗地说NICAM技术实际上就是双声道数字声技术,其应用范围及其广泛,最典型的应用便是电视广播附加双声道数字声技术,利用它进行立体声或双语广播, 以充分利用电视频道的频谱资源。这是在常规电视广播的基础上无需增加许多投资就可以实现的。在进行立体声广播时,它提高了音频的信号质量,使其接近CD的 质量。而且还可以利用NICAM技术进行高速数据广播及其他数据传输的增殖服务,这在当今的信息化社会中似乎就显得尤为重要了!
                                                                                                          

    MPEG-1 audio layer 1
    类型:Audio
    制定者:MPEG
    所需频宽:384kbps(压缩4倍)
    特性:编码简单,用于数字盒式录音磁带,2声道,VCD中使用的音频压缩方案就是MPEG-1层Ⅰ。
    优点:压缩方式相对时域压缩技术而言要复杂得多,同时编码效率、声音质量也大幅提高,编码延时相应增加。可以达到“完全透明”的声音质量(EBU音质标准)
    缺点:频宽要求较高
    应用领域:voip
    版税方式:Free
    备注:MPEG-1声音压缩编码是国际上第一个高保真声音数据压缩的国际标准,它分为三个层次:
    --层1(Layer 1):编码简单,用于数字盒式录音磁带
    --层2(Layer 2):算法复杂度中等,用于数字音频广播(DAB)和VCD等
    --层3(Layer 3):编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍
                                                                                                                

    MUSICAM(MPEG-1 audio layer 2,即MP2)
    类型:Audio
    制定者:MPEG
    所需频宽:256~192kbps(压缩6~8倍)
    特性:算法复杂度中等,用于数字音频广播(DAB)和VCD等,2声道,而MUSICAM由于其适当的复杂程度和优秀的声音质量,在数字演播室、DAB、DVB等数字节目的制作、交换、存储、传送中得到广泛应用。
    优点:压缩方式相对时域压缩技术而言要复杂得多,同时编码效率、声音质量也大幅提高,编码延时相应增加。可以达到“完全透明”的声音质量(EBU音质标准)
    缺点:
    应用领域:voip
    版税方式:Free
    备注:同MPEG-1 audio layer 1
                                                                                                       

    MP3(MPEG-1 audio layer 3)
    类型:Audio
    制定者:MPEG
    所需频宽:128~112kbps(压缩10~12倍)
    特 性:编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍,2声道。MP3是在综合MUSICAM和ASPEC的优点的基础上提出的混合压 缩技术,在当时的技术条件下,MP3的复杂度显得相对较高,编码不利于实时,但由于MP3在低码率条件下高水准的声音质量,使得它成为软解压及网络广播的 宠儿。
    优点:压缩比高,适合用于互联网上的传播
    缺点:MP3在128KBitrate及以下时,会出现明显的高频丢失
    应用领域:voip
    版税方式:Free
    备注:同MPEG-1 audio layer 1

    MPEG-2 audio layer
    类型:Audio
    制定者:MPEG
    所需频宽:与MPEG-1层1,层2,层3相同
    特性:MPEG-2的声音压缩编码采用与MPEG-1声音相同的编译码器,层1, 层2和层3的结构也相同,但它能支持5.1声道和7.1声道的环绕立体声。
    优点:支持5.1声道和7.1声道的环绕立体声
    缺点:
    应用领域:voip
    版税方式:按个收取
    备注:MPEG-2的声音压缩编码采用与MPEG-1声音相同的编译码器,层1, 层2和层3的结构也相同,但它能支持5.1声道和7.1声道的环绕立体声。


    AAC(Advanced Audio Coding,先进音频编码)
    类型:Audio
    制定者:MPEG
    所需频宽:96-128 kbps
    特性:AAC可以支持1到48路之间任意数目的音频声道组合、包括15路低频效果声道、配音/多语音声道,以及15路数据。它可同时传送16套节目,每套节目的音频及数据结构可任意规定。
           AAC主要可能的应用范围集中在因特网网络传播、数字音频广播,包括卫星直播和数字AM、以及数字电视及影院系统等方面。AAC使用了一种非常灵活的熵编 码核心去传输编码频谱数据。具有48 个主要音频通道,16 个低频增强通道,16 个集成数据流, 16 个配音,16 种编排。
    优点:支持多种音频声道组合,提供优质的音质
    缺点:
    应用领域:voip
    版税方式:一次性收费
    备注:AAC于1997年形成国际标准ISO 13818-7。先进音频编码(Advanced Audio Coding--AAC)开发成功,成为继MPEG-2音频标准(ISO/IEC13818-3)之后的新一代音频压缩标准。
           在MPEG-2制订的早期,本来是想将其音频编码部分保持与MPEG-1兼容的。但后来为了适应演播电视的要求而将其定义成为一个可以获得更高质量的多声 道音频标准。理所当然地,这个标准是不兼容MPEG-1的,因此被称为MPEG-2 AAC。换句话说,从表面上看,要制作和播放AAC,都需要使用与MP3完全不同的工具。
                                                                                                                

    Dolby AC-3
    类型:Audio
    制定者:美国杜比公司
    所需频宽:64kbps
    特性:提供的环绕立体声系统由5个全频带声道加一个超低音声道组成,6个声道的信息在制作和还原过程中全部数字化,信息损失很少,细节丰富,具有真正的立体声效果,在数字电视、DVD和家庭影院中广泛使用。
    优点:环绕立体声,信息损失很少,细节丰富,具有真正的立体声效果
    缺点:
    应用领域:voip
    版税方式:按个收取
    备 注:杜比数字AC-3(Dolby Digital AC-3):美国杜比公司开发的多声道全频带声音编码系统,它提供的环绕立体声系统由5个全频带声道加一个超低音声道组成,6个声道的信息在制作和还原过 程中全部数字化,信息损失很少,细节丰富,具有真正的立体声效果,在数字电视、DVD和家庭影院中广泛使用。
                                                                                                               

    ASPEC(Audio Spectral Perceptual Entropy Coding)
    类型:Audio
    制定者:AT&T
    所需频宽:64kps
    特性:音频质量获得显著改善,不过计算复杂度也大大提高,而且在回响、低码率时声音质量严重下降。
    优点:音频质量获得显著改善
    缺点:计算复杂度的提高。块边界影响、预计算复杂度的提高。回响、低码率时声音质量严重下降
    应用领域:voip
    版税方式:按个收取
    备注:变换压缩技术
                                                                                                      

    PAC(Perceptual Audio Coder)
    类型:Audio
    制定者:AT&T
    所需频宽:64kps
    特性:音频质量获得显著改善,不过在回响、低码率时声音质量严重下降。
    优点:音频质量获得显著改善
    缺点:块边界影响、预回响、低码率时声音质量严重下降
    应用领域:voip
    版税方式:按个收取
    备注:变换压缩技术
                                                                                                       

    HR
    类型:Audio
    制定者: 飞利浦
    所需频宽:8Kbps
    特性:以增加GSM网络容量为目的,但是会损害语音质量;由于现在网络频率紧缺,一些大的运营商已经在大城市密集地带开通此方式以增加容量。
    优点:系统容量大
    缺点:语音质量差
    应用领域:GSM
    版税方式:按个收费
    备注:HF半速率,是一种GSM语音编码方式。


    FR
    类型:Audio
    制定者:飞利浦
    所需频宽:13Kbps
    特性:是一般的GSM手机的通信编码方式,可以获得达到4.1左右Qos的语音通信质量(国际电联规定语音通信质量Qos满分为5)
    优点:语音质量得到了提高
    缺点:系统容量降低
    应用领域:GSM
    版税方式:按个收费
    备注:FR全速率,是一种GSM语音编码方式。
                                                                                  

    EFR
    类型:Audio
    制定者:飞利浦
    所需频宽:13Kbps
    特性:用于GSM手机基于全速率13Kbps的语音编码和发送,可以获得更好更清晰的语音质量(接近Qos4.7),需要网络服务商开通此项网络功能,手机才能配合实现。
    优点:音质好
    缺点:需要网络服务商开通此项网络功能,且系统容量降低
    应用领域:GSM
    版税方式:按个收费
    备注:EFR增强型全速率,一种GSM网络语音的编码方式。


    GSM-AMR(Adaptive Multi-Rate)
    类型:Audio
    制定者:飞利浦
    所需频宽:8Kbps(4.75 Kbps~12.2 Kbps)
    特性: 可以对语音进行替换和消音,平滑噪音,支持间断式传输,对语音进行动态侦查。能在各种网络条件下提供优质的语音效果。
    优点:音质出色
    缺点:
    应用领域:GSM
    版税方式:按个收费
    备 注:GSM-ASM是一种广泛使用在GPRS和W-CDMA网络上的音频标准。在规范ETSI GSM06.90中对GSM-AMR进行了定义。AMR语音编码是GSM 2+和WCDMA的默认编码标准,是第三代无线通讯系统的语音编码标准。GSM-AMR标准基于ACELP(代数激励线性预测)编码。它能在广泛的传输条 件下提供高品质的语音效果。
                                                                                                      

    EVRC(Enhanced Variable Rate Coder,增强型可变速率编码器)
    类型:Audio
    制定者:美国Qualcomm通信公司(即高通)
    所需频宽:8Kbps或13Kbps
    特性:支持三种码率(9.6 Kbps, 4.8 Kbps 和 1.2 Kbps),噪声抑制,邮件过滤。能在各种网络条件下提供优质的语音效果。
    优点:音质出色
    缺点:
    应用领域:CDMA
    版税方式:按个收费
    备 注:EVRC编码广泛使用于CDMA网络。EVRC标准遵循规范TIA IS-127的内容。EVRC编码基于RCELP(松弛码激励线性预测)标准。该编码可以以Rate 1(171bits/packet),Rate 1/2(80bits/packet)或是Rate 1/8(16bits/packet)的容量进行操作。在要求下,它也能产生空包(0bits/packet)。


    QCELP(QualComm Code Excited Linear Predictive,受激线性预测编码)
    类型:Audio
    制定者:美国Qualcomm通信公司(即高通)
    所需频宽:8k的语音编码算法(可工作于4/4.8/8/9.6Kbps等固定速率上,而且可变速率地工作于800Kbps~9600Kbps之间)
    特 性:使用适当的门限值来决定所需速率。QCELP是一种8k的语音编码算法(可以在8k的速率下提供接近13k的话音压缩质量)。这是一种可变速率话音编 码,根据人的说话特性(大家应该能够体会我们日常的沟通和交流时并不是一直保持某种恒定的方式讲话,有间断、有不同的声音频率等都是人的自然表达)而采取 的一种优化技术。
    优点:话音清晰、背景噪声小,系统容量大
    缺点: 不是Free
    应用领域:CDMA
    版税方式:每年支付一笔使用权费用
    备 注:QCELP,即QualComm Code Excited Linear Predictive(QualComm受激线性预测编码)。美国Qualcomm通信公司的专利语音编码算法,是北美第二代数字移动电话(CDMA)的 语音编码标准(IS95)。这种算法不仅可工作于4/4.8/8/9.6kbit/s等固定速率上,而且可变速率地工作于 800bit/s~9600bit/s之间。QCELP算法被认为是到目前为止效率效率最高的一种算法,它的主要特点之一,是使用适当的门限值来决定所需 速率。I‘1限值懈景噪声电平变化而变化,这样就抑制了背景噪声,使得即使在喧闹的环境中,也能得到良好的话音质量, CDMA8Kbit/s的话音近似GSM 13Mbit/s的话音。CDMA采用QCELP编码等一系列技术,具有话音清晰、背景噪声小等优势,其性能明显 优于其他无线移动通信系统,语音质量可以与有线电话媲美。 无线辐射低。
  • 转:常用编解码介绍(网上的资料)

    2009-05-06 16:54:45

    这里只对常见的视频音频编码做一个系统的简单介绍,并不进行详细探讨。由于我的知识有限,难免有错误的地方,欢迎来信指正。

    MPEG 系列

    MPEG 即(Moving Pictures Experts Group 运动图象专家组,属于ISOInternational Organization for Standardization 国际标准组织,他们开发了一系列视频音频编码,最为大家熟悉的就是 MP3MPEG-1/2/4

    • MPEG-1

    较早的视频编码,质量比较差,主要用于 CD-ROM 存储视频,国内最为大家熟悉的就是 VCDVideo CD),他的视频编码就是采用 MPEG-1

    • MPEG-2

    MPEG-1 的基础上开发的一种视频编码,它的质量远远好于 MPEG-1,所以被运用在了 DVD-Video 上面,MPEG-2 DVD-Video 唯一指定的视频编码。MPEG-2 不光运用于 DVD-Video ,现在大部分 HDTV(高清电视)也采用 MPEG-2 编码,分辨率达到了 1920x1080。由于 MPEG-2 的普及,本来为 HDTV 准备的 MPEG-3 最终宣告放弃。

    • MPEG-4

    为了应对网络传输等环境,传统的 MPEG-1/2 已经不能适应,所以促使了 MPEG-4 的诞生。MPEG-4 采用了一系列新技术,来满足在低带宽下传输较高视频质量的需求。DivXXviDMS MPEG4 都是采用的 MPEG-4 视频编码,除了在 DVDRip 上面的应用,3GPP 现在也接纳了 MPEG-4 作为视频编码方案。

    • MPEG-4 AVC

    它和 MPEG-4 是两种不同的编码,主要是在极低码率下 MPEG-4 表现并不好,而 AVC 更加适合低带宽传输。在高码率上,AVC 的表现也要好过 MPEG-4,所以现在大有取代 MPEG-4 的趋势。下一代 HD DVD Blue Ray Disc 已经正式接纳 AVC 为视频编码方案之一,相信 AVC 的发展前途会非常好。

    • MPEG Audio Layer 1/2

    也就是 MP1MP2 ,较早的音频编码,是 MP3 的前身,主要用于 VCDDVDSVCD 的音频编码。

    • MPEG Audio Layer 3

    大名鼎鼎的 MP3,已经成为网络音频的主流格式,能在 128kbps 的码率接近 CD 音质。

    • MPEG-2 AAC

    MPEG-2 上开发的一种新的音频编码,和传统的 MPEG Audio 不兼容,它的质量理论上高于 MP3,并且支持多声道。在 96kbps 的码率范围内就能接近 CD 音质,比 MP3 更加适合地码率传输。

    • MPEG-4 AAC

    AAC 已经作为 MPEG-4 标准的音频编码,当然 MPEG-4 Audio 还有其他多种音频编码。

    • MPEG-4 aacPlus

    采用了 SBR 频带复制技术的 AACSBR 技术能够让音频编码降低一半的码率而音质不会有太大改变,已经成为 MPEG-4 标准的一部分。

    • MPEG-4 VQF

    NTT 开发的一种音频格式,曾经销声匿迹了一段时间,只在 Nero 里面见到过它的身影。现在搭上 SBR 技术又进入了 MPEG-4 标准,似乎不甘心就这么被遗忘,据说在低比特率下表现比 aacPlus 更好。

    • mp3PRO

    MP3 加上 SBR 技术诞生的一种产品,但是并没有得到多大推广,更没有进入标准。

    • MP3 Surround

    MP3 插上多声道的翅膀,Fraunhofer 开发的又一种 MP3 升级产品,听说 DivX 6 准备将它作为音频编码。Fraunhofer 一直都在围绕着 MP3 升级,mp3PROMP3 Surround,这些产品都能和传统 MP3 兼容,但是随着层出不穷的新编码,不知道 MP3 还能走多远。

    DVD系列

    说了 MPEG ,就不能不提这个 MPEG-2 最大受益者——DVD。当然,这里是指 DVD-Video DVD-Audio,也会涉及一些HD DVDDVD 的编码都属于应用级的,它们自己并不开发编码,这一点要和 MPEG 区别开来。

    • Dolby Digital AC3

    DVD 事实上的音频编码标准,现在所有的 DVD 都采用它压缩音频,提供了最大 5.1 声道的输出支持,能在有限的空间存储高质的音频。

    • Dolby Digital Plus

    下一代 HD DVD 的音频编码,是 AC3 的升级版本,支持 7.1 甚至更多的声道,码率范围也有大幅提升。

    • MLP Lossless

    HD DVD 上的无损音频编码,同样为 Dolby 公司开发,最高采样能达到 192KHz,也为 DVD-Audio 的音频编码标准。

    • DTS

    DTS 最初是为电影院开发的音频系统,后来才应用于 DVD 中。它是 AC3 的有力竞争者,不过在 DVD 中只有 D9 才能够看到他的身影,虽然广大发烧友都在鼓吹它的效果超过 AC3,但是测试出来并不如想象中的那么好,特别是高频方面不及 AC3

    • DTS-HD

    下一代 HD DVD 的音频编码,它和 Dolby Digital Plus 都被指定为强制编码,看来在未来会和 Dolby 平分秋色。

    • LPCM

    没有压缩的 PCM 编码,只能存储两声道,但是采样率能够高达 96KHz,是 DVD-Video 中音质最好的一种,当然体积也是最大的。

    • MPEG Audio

    主要是 MP2,应用于 PAL 制式的 DVD,压缩率高,支持多声道(MPEG-2 规范都支持多声道)。

    • DSD

    这个似乎扯远了,不过作为 DVD-Audio 的最大竞争对手 SACD,顺带介绍一下。DSDDirect Stream Digital)直接比特流数字,由 Sony 推出,能够避免传统 PCM 编码的弊端,达到非常高的品质。最高采样和 DVD-Audio 一样,192KHz

    H.26X系列

    “ITUInternational Telecommunication Union)国际电传视讯联盟主导的编码系列,主要应用于实时视频通信领域,如会议电视等。由于现在 MPEG 系列也开始向这个领域进军,所以这两个组织也开始了密切的合作,如最近热门的 AVC/H.264,就是由 ITU 旗下的“VCEGVideo Coding Experts Group)视频编码专家组“ISOInternational Organization for Standardization)国际标准组织旗下的“MPEG Moving Pictures Experts Group)运动图象专家组联合制作发布的。

    • H.261

    H.261ITU-T为在综合业务数字网(ISDN)上开展双向声像业务(可视电话、视频会议)而制定的,它是最早的运动图像压缩标准,它详细制定了视频编码的各个部分,包括运动补偿的帧间预测、DCT变换、量化、熵编码,以及与固定速率的信道相适配的速率控制等部分。

    • H.263

    H.263ITU-T为低于64kb/s的窄带通信信道制定的视频编码标准,它是在H.261基础上发展起来的。

    • H.263+

    H.263 的第二个版本,加入了许多新技术来扩展 H.263 的应用范围。

    • H.263++

    H.263+ 上增加了几个选项,来增强码流在恶劣信道上的抗误码性能,同时提高增强编码效率。

    • H.264

    也就是前面提到的 MPEG-4 AVCH.264是由ISO/IECITU-T组成的联合视频组(JVT)制定的新一代视频压缩编码标准。在ISO/IEC中该标准命名为AVC (Advanced Video Coding),作为MPEG-4标准的第10个选项;在ITU-T中正式命名为H.264标准。

    3GPP

    现在通讯领域最热门的话题之一,既然说了 MPEG ITU,和这两个千丝万缕的 3GPP 应用就不得不提了。3GPP 的视频采用了 MPEG-4 H.263 两种编码,可能还将加入 H.264,音频方面音乐压缩采用 AAC,语音则采用先进的 AMR,另一个 aacPlus 随着 V2 版本的推出,底码率下的效果更加突出,也有望加入标准。

    Windows Media系列

    Microsoft 公司主导的音频视频编码系列,它的出现主要是为了进行网络视频传输,现在已经向 HDTV 方面进军,开发了 WMV HD 应用。

    • Microsoft MPEG-4 v1/v2/v3

    最早的 ASF 采用的视频编码,基于 MPEG-4 技术开发,DivX3.11 就是基于 Microsoft MPEG-4 v3 破解出来的,后来才进行了重写。

    • Windows Media Video 7

    Microsoft 正式开发的第一个 Windows Media Video,开始脱离了 MPEG-4,和 MPEG-4 不兼容,从这一点上可见微软的野心。可惜这个版本压缩效果非常烂,打破了微软一飞冲天的美梦,不过它在压缩速度上非常快,现在网络上有很多采用这种格式压缩的 WMV

    • Windows Media Video 8

    WMV7 基础上改进的版本,质量上面进不了不少。

    • Windows Media Video 9

    微软的重头戏,不光是这一个编码,V9 系列更是一个平台,让微软有足够的能力挑战 MPEGITU 等标准化组织。虽然这个版本并没有微软吹得那么厉害,特别是低码率下比较差,不过跟以前版本相比进步还是非常多的。特别是 WMV HD 的应用,让微软也跻身视频标准领域。

    • Windows Media Video 9 Professional

    WMV HD 应用的编码,和 WMV9 兼容,在高比特率上进行了优化,画面非常优秀。(不过几M的码率能不优秀吗?全是体积换来的。)

    • Windows Media Video 9 Advanced Profile

    随着 Windows Media Player 10 推出的编码器,能够更进一步控制 WMV9 的质量。但是不能在老版本的 WMP9 上播放,也就是不兼容老版本的 WMP9,真不知微软在搞什么?

    • Windows Media Video 9 Screen

    静态屏幕无损压缩编码,质量非常好,压缩率高,只针对如屏幕等变化非常小的环境。

    • Windows Media Video 9 Image

    静态图像压缩编码。

    • Windows Media Audio v1/v2

    微软最早的音频编码技术,用于 ASF 中,后来被破解也用在 DivX Audio 中,质量比较差。

    • Windows Media Audio 7/8/9

    随着各种不同的 WMV 而推出的相应的音频编码,质量节节提升,不过还没有达到 64kbps CD音质的神化。

    • Windows Media Audio 9 Professional

    WMA9 中出现的新编码,主要用于多声道编码和高采样率音频的编码,质量不错。

    • Windows Media Audio 9 Voice

    针对语音的编码,最高 20kbps ,不过和 AMR 相比,效果就太差了。

    • Windows Media Audio 9 Lossless

    无损音频编码,可以完美保留CD原质量,是CD备份的不错选择,不过代价是体积过大。

    RealMedia系列

    RealNetworks 所开发的系列编码技术,也是主要用于网络传输,在底码率下表现不错。

    • RealVideo G2

    早期的 RealVideo 编码,质量比较糟糕,不过那时在网络上算是很先进了,毕竟当时能用网络看视频的人不多。

    • RealVideo 8

    随着 RealPlayer 8 推出的视频格式,是现在主流的网络视频编码之一。编码速度较慢,质量也只能算一般。

    • RealVideo 9

    RealNetworks 开发的新一代编码,质量进步了很多,特别是在底码率下,而且编码速度很快,做到了速与质的很好统一。

    • RealVideo 10

    RealVideo 9 基础上加入了一些参数,如 EHQ 等,更加精确控制码率,和 RealVideo 9 兼容。

    • RealAudio Cook

    早期的音频编码,但是在现在看来,仍然质量不错,可惜最高码率 96kbps。应用到了两代音频编码中:RealAudio G2RealAudio 8

    • RealAudio Cook Multichannel

    Cook 的改进版本,增加了5.1声道的支持,应用到了 RealAudio 10 Multichannel 中。

    • RealAudio Sipro

    采用了 Sipro 语音编码技术,主要针对语音编码,应用在更早期的 RealAudio 4.0RealAudio 5.0 中。

    • RealAudio ATRAC3

    Sony 公司开发的 ATRAC3 编码,被 RealNetworks 公司购买过来应用到了 RealAudio 8 中,以弥补 Cook 高码率上的不足。

    • RealAudio AAC

    AAC 音频编码,用于 RealAudio 10 中。

    • RealAudio aacPlus

    aacPlus 音频编码,用于 RealAudio 10 中,不过并没有随 RealProducer 发行,需要单独购买。

    • RealAudio Lossless

    无损音频编码。

    QuickTime系列

    QuickTime 并不是一个编码,而是一个多媒体平台,它的上面有众多编码,这里只介绍几个主流的编码器。

    • Sorenson Video 2

    Sorenson Media 公司开发的编码器,主要用于 QuickTime 4 的视频编码,质量较差。

    • Sorenson Video 3

    Sorenson Media 公司随 QuickTime 5 发布的编码器,质量很不错,已经成为 QuickTime 的标准视频编码,网络上大部分电影预告片都采用这种编码。

    • Apple MPEG-4

    Apple 公司自己开发的 MPEG-4 编码器,随 QuickTime 6 发布,质量很差。

    • Apple H.264

    Apple 公司自己开发的 H.264 编码器,随 QuickTime 7 发布,支持 HDTV

    • QDesign Music 1

    QDesign 公司开发的音频编码器,这个版本现在已经开不到它的身影了。

    • QDesign Music 2

    QDesign Music 的第二个版本,也是最后一个版本,在时下这些先进的音频编码面前,它已经没有生命力了,主要应用于网上的电影预告片。

    • Qualcomm PureVoice

    Qualcomm

Open Toolbar