广交好友~~ 想要讨论的可以留下msn~~~ 希望群友网友经常能提出问题,一起解决,共同提高

CDMA, WCDMA, TCP/IP, VOIP, SIP, SS7, MPLS

上一篇 / 下一篇  2009-10-29 19:22:48 / 个人分类:常识

  什么是SIP
  SIP是一个应用层的信令控制协议。用于创建、修改和释放一个或多个参与者的会话。这些会话可以好似Internet多媒体会议、IP电话或多媒体分发。会话的参与者可以通过组播(multicast)、网状单播(unicast)或两者的混合体进行通信。
  SIP是类似于HTTP的基于文本的协议。SIP可以减少应用特别是高级应用的开发时间。由于基于IP协议的SIP利用了IP网络,固定网运营商也会逐渐认识到SIP技术对于他们的深远意义。
  使用 SIP,服务提供商可以随意选择标准组件。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP 对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。
  SIP它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特 点,SIP 使用 Internet 的会话描述协议 (SDP) 来描述终端设备的特点。SIP 自身也不提供服务质量 (QoS),它与负责语音质量的资源保留设置协议 (RSVP) 互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议 (LDAP)、负责身份验证的远程身份验证拨入用户服务 (RADIUS) 以及负责实时传输的 RTP 等多个协议。
  SIP 的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着SIP可以用于众多应用和服务中,包括交互式游戏、 音乐和视频点播以及语音、视频和 Web 会议。SIP消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。SIP如同电子邮件客户机一样重用 MIME 类型描述,因此与会话相关的应用程序可以自动启动。SIP 重用几个现有的比较成熟的 Internet 服务和协议,如 DNS、RTP、RSVP 等。不必再引入新服务对 SIP 基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。
  对 SIP 的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于 SIP 的旧设备不会妨碍基于 SIP 的新服务。例如,如果旧 SIP 实施不支持新的 SIP 应用所用的方法/标头,则会将其忽略。
  SIP 独立于传输层。因此,底层传输可以是采用 ATM 的 IP。SIP 使用用户数据报协议 (UDP) 以及传输控制协议 (TCP),将独立于底层基础设施的用户灵活地连接起来。SIP 支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。
  通信提供商及其合作伙伴和用户越来越渴求新一代基于 IP 的服务。现在有了 SIP(The Session Initiation Protocol 会话启动协议),一解燃眉之急。SIP 是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,现在已成了 Internet 工程任务组 (IETF) 的规范。
  今天,越来越多的运营商、CLEC(竞争本地运营商)和 ITSP(IP 电话服务商)都在提供基于 SIP 的服务,如市话和长途电话技术、在线信息和即时消息、IP Centrex/Hosted PBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商 (ISV) 正在开发新的开发工具,用来为运营商网络构建基于 SIP 的应用程序以及 SIP 软件。网络设备供应商 (NEV) 正在开发支持 SIP 信令和服务的硬件。现在,有众多 IP 电话、用户代理、网络代理服务器、VOIP 网关、媒体服务器和应用服务器都在使用 SIP。
  SIP 从类似的权威协议--如 Web 超文本传输协议 (HTTP) 格式化协议以及简单邮件传输协议 (SMTP) 电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管 SIP 使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP 支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。
  本白皮书对 SIP 及其作用进行了概括性的介绍。它还介绍了 SIP 从实验室开发到面向市场的过程。本白皮书说明 SIP 提供哪些服务以及正在实施哪些促进发展的方案。它还详细介绍了 SIP 与各种协议不同的重要特点并说明如何建立 SIP 会话。
  SIP 较为灵活,可扩展,而且是开放的。它激发了 Internet 以及固定和移动 IP 网络推出新一代服务的威力。SIP 能够在多台 PC 和电话上完成网络消息,模拟 Internet 建立会话。
  与存在已久的国际电信联盟 (ITU) SS7 标准(用于呼叫建立)和 ITU H.323 视频协议组合标准不同,SIP 独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于 Web 的内容。
  SIP 大大优于现有的一些协议,如将 PSTN 音频信号转换为 IP 数据包的媒体网关控制协议 (MGCP)。因为 MGCP 是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用 SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。
  例如,SIP 服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用 MGCP、H.323 或 SS7 标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用 SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。
  而且,因为 SIP 的消息构建方式类似于 HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如 Java)来创建应用程序。对于等待了数年希望使用 SS7 和高级智能网络 (AIN) 部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用 SIP,只需数月时间即可实现高级通信服务的部署。
  这种可扩展性已经在越来越多基于 SIP 的服务中取得重大成功。Vonage 是针对用户和小企业用户的服务提供商。它使用 SIP 向用户提供 20,000 多条数字市话、长话及语音邮件线路。Deltathree 为服务提供商提供 Internet 电话技术产品、服务和基础设施。它提供了基于 SIP 的 PC 至电话解决方案,使 PC 用户能够呼叫全球任何一部电话。Denwa Communications 在全球范围内批发语音服务。它使用 SIP 提供 PC 至 PC 及电话至 PC 的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于 Web 的个性化服务。
  某些权威人士预计,SIP 与 IP 的关系将发展成为类似 SMTP 和 HTTP 与 Internet 的关系,但也有人说它可能标志着 AIN 的终结。迄今为止,3G 界已经选择 SIP 作为下一代移动网络的会话控制机制。Microsoft 已经选择 SIP 作为其实时通信策略并在 Microsoft XP、Pocket PC 和 MSN Messenger 中进行了部署。Microsoft 同时宣布 CE.net 的下一个版本将使用基于 SIP 的 VoIP 应用接口层,并承诺向用户 PC 提供基于 SIP 的语音和视频呼叫。
  另外,MCI 正在使用 SIP 向 IP 通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用 SIP 将不断地实现各种功能。

MPLS在百度百科中为本词条的同义词,已为您做自动跳转。
编辑词条

多协议标签交换

  多协议标签交换
  (MPLS:Multi-Protocol Label Switching)
  多协议标签交换(MPLS)是一种用于快速数据包交换和路由的体系,它为网络数据流量提供了目 标、路由、转发和交换等能力。更特殊的是,它具有管理各种不同形式通信流的机制。MPLS 独立于第二和第三层协议,诸如 ATM 和 IP。它提供了一种方式,将 IP 地址映射为简单的具有固定长度的标签,用于不同的包转发和包交换技术。它是现有路由和交换协议的接口,如 IP、ATM、帧中继、资源预留协议(RSVP)、开放最短路径优先(OSPF)等等。
  在 MPLS 中,数据传输发生在标签交换路径(LSP)上。LSP 是每一个沿着从源端到终端的路径上的结点的标签序列。现今使用着一些标签分发协议,如标签分发协议(LDP)、RSVP 或者建于路由协议之上的一些协议,如边界网关协议(BGP)及 OSPF。因为固定长度标签被插入每一个包或信元的开始处,并且可被硬件用来在两个链接间快速交换包,所以使数据的快速交换成为可能。
  MPLS 主要设计来解决网路问题,如网路速度、可扩展性、服务质量(QoS)管理以及流量工程,同时也为下一代 IP 中枢网络解决宽带管理及服务请求等问题。
  在这部分,我们主要关注通用 MPLS 框架。有关 LDP、CR-LDP 和 RSVP-TE 的具体内容可以参考个别文件。
  协议结构
  MPLS 标签结构:
  20 23 24 32 bit
  Label Exp S TTL
  Label ― Label 值传送标签实际值。当接收到一个标签数据包时,可以查出栈顶部的标签值,并且系统知道:A、数据包将被转发的下一跳;B、在转发之前标签栈上可能执行的操 作,如返回到标签进栈顶入口同时将一个标签压出栈;或返回到标签进栈顶入口然后将一个或多个标签推进栈。
  Exp ― 试用。预留以备试用。
  S ― 栈底。标签栈中最后进入的标签位置,该值为0,提供所有其它标签入栈。
  TTL ― 生存期字段(Time to Live),用来对生存期值进行编码。
  MPLS 结构协议组包括:
  MPLS:相关信令协议,如 OSPF、BGP、ATM PNNI等。
  LDP:标签分发协议(Label Distribution Protocol)
  CR-LDP:基于路由受限标签分发协议(Constraint-Based LDP)
  RSVP-TE:基于流量工程扩展的资源预留协议(resource Reservation Protocol – Traffic Engineering)
  1.1.1 MPLS基本概念
  多协议标签交换MPLS最初是为了提高转发速度而提出的。与传统IP路由方式相比,它在数据转发时,只在网络边缘分析IP报文头,而不用在每一跳都分析IP报文头,从而节约了处理时间。
  MPLS起源于IPv4(Internet Protocol version 4),其核心技术可扩展到多种网络协议,包括IPX(Internet Packet Exchange)、Appletalk、DECnet、CLNP(Connectionless Network Protocol)等。“MPLS”中的“Multiprotocol”指的就是支持多种网络协议。
  有关MPLS的详细介绍可参考RFC3031(Multiprotocol Label Switching Architecture)。
  转发等价类
  MPLS作为一种分类转发技术,将具有相同转发处理方式的分组归为一类,称为转发等价类FEC(Forwarding Equivalence Class)。相同转发等价类的分组在MPLS网络中将获得完全相同的处理。
  转发等价类的划分方式非常灵活,可以是源地址、目的地址、源端口、目的端口、协议类型、VPN等的任意组合。例如,在传统的采用最长匹配算法的IP转发中,到同一个目的地址的所有报文就是一个转发等价类。
  标签
  标签是一个长度固定、只具有本地意义的短标识符,用于唯一标识一个分组所属的转发等价类FEC。在某些情况下,例如要进行负载分担,对应一个FEC可能会有多个标签,但是一个标签只能代表一个FEC。
  标签由报文的头部所携带,不包含拓扑信息,只具有局部意义。标签的长度为4个字节,封装结构如图1-1所示。
  标签共有4个域:
  l Label:20比特,标签值字段,用于转发的指针;
  l Exp:3比特,保留,用于试验,现在通常用做CoS(Class of Service);
  l S:1比特,栈底标识。MPLS支持标签的分层结构,即多重标签,S值为1时表明为最底层标签;
  l TTL:8比特,和IP分组中的TTL(Time To Live)意义相同。
  标签与ATM的VPI/VCI以及Frame. Relay的DLCI类似,是一种连接标识符。
  l 如果链路层协议具有标签域,如ATM的VPI/VCI或Frame. Relay的DLCI,则标签封装在这些域中;
  l 如果链路层协议没有标签域,则标签封装在链路层和IP层之间的一个垫层中
  Frame. mode:帧模式
  Cell mode:信元模式
  标签交换路由器
  标签交换路由器LSR(Label Switching Router)是MPLS网络中的基本元素,所有LSR都支持MPLS协议。
  LSR由两部分组成:控制单元和转发单元。
  l 控制单元负责标签的分配、路由的选择、标签转发表的建立、标签交换路径的建立、拆除等工作;
  l 转发单元则依据标签转发表对收到的分组进行转发。
  标签发布协议
  标签发布协议是MPLS的控制协议,它相当于传统网络中的信令协议,负责FEC的分类、标签的分配以及LSP的建立和维护等一系列操作。
  MPLS可以使用多种标签发布协议。
  l 包括专为标签发布而制定的协议,例如:LDP(Label Distribution Protocol)、CR-LDP(Constraint-Routing Label Distribution Protocol);
  l 也包括现有协议扩展后支持标签发布的,例如:BGP(Border Gateway Protocol)、RSVP(Resource Reservation Protocol)。
  NE80E支持上述标签发布协议,并支持手工配置标签。
  标签交换路径
  一个转发等价类在MPLS网络中经过的路径称为标签交换路径LSP(Label Switched Path)。
  LSP在功能上与ATM和Frame. Relay的虚电路相同,是从入口到出口的一个单向路径。LSP中的每个节点由LSR组成,根据数据传送的方向,相邻的LSR分别称为上游LSR和下游LSR。
  标签交换路径LSP分为静态LSP和动态LSP两种。静态LSP由管理员手工配置,动态LSP则利用路由协议和标签发布协议动态产生。
  。
  位于MPLS域边缘、连接其它用户网络的LSR称为边缘LSR,即LER(Label Edge Router),区域内部的LSR称为核心LSR。核心LSR可以是支持MPLS的路由器,也可以是由ATM交换机等升级而成的ATM-LSR。域内部的 LSR之间使用MPLS通信,MPLS域的边缘由LER与传统IP技术进行适配。
  分组被打上标签后,沿着由一系列LSR构成的标签交换路径LSP传送,其中,入节点LER被称为Ingress,出节点LER被称为Egress,中间的节点则称为Transit。
  简要介绍MPLS的基本工作过程:
  1. LDP和传统路由协议(如OSPF、ISIS等)一起,在各个LSR中为有业务需求的FEC建立路由表和标签映射表;
  2. 入节点Ingress接收分组,完成第三层功能,判定分组所属的FEC,并给分组加上标签,形成MPLS标签分组,转发到中间节点Transit;
  3. Transit根据分组上的标签以及标签转发表进行转发,不对标签分组进行任何第三层处理;
  4. 在出节点Egress去掉分组中的标签,继续进行后面的转发。
  由此可以看出,MPLS并不是一种业务或者应用,它实际上是一种隧道技术,也是一种将标签交换转发和网络层路由技术集于一身的路由与交换技术平台。这个平台不仅支持多种高层协议与业务,而且,在一定程度上可以保证信息传输的安全性。
  1.1.3 MPLS的体系结构
  在MPLS的体系结构中:
  l 控制平面(Control Plane)之间基于无连接服务,利用现有IP网络实现;
  l 转发平面(Forwarding Plane)也称为数据平面(Data Plane),是面向连接的,可以使用ATM、帧中继等二层网络。
  MPLS使用短而定长的标签(label)封装分组,在数据平面实现快速转发。
  在控制平面,MPLS拥有IP网络强大灵活的路由功能,可以满足各种新应用对网络的要求。
  对于核心LSR,在转发平面只需要进行标签分组的转发。
  对于LER,在转发平面不仅需要进行标签分组的转发,也需要进行IP分组的转发,前者使用标签转发表LFIB,后者使用传统转发表FIB(Forwarding Information Base)。
  1.1.4 MPLS与路由协议
  LDP利用路由转发表建立LSP
  LDP通过逐跳方式建立LSP时,利用沿途各LSR路由转发表中的信息来确定下一跳,而路由转发表中的信息一般是通过IGP、BGP等路由协议收集的。LDP并不直接和各种路由协议关联,只是间接使用路由信息。
  通过已有协议的扩展支持MPLS标签分发
  虽然LDP是专门用来实现标签分发的协议,但LDP并不是唯一的标签分发协议。通过对BGP、RSVP(Resource Reservation Protocol)等已有协议进行扩展,也可以支持MPLS标签的分发。
  通过某些路由协议的扩展支持MPLS应用
  在MPLS的应用中,也可能需要对某些路由协议进行扩展。例如,基于MPLS的VPN应用需要 对BGP进行扩展,使BGP能够传播VPN的路由信息;基于MPLS的流量工程TE(Traffic Engineering)需要对OSPF或IS-IS协议进行扩展,以携带链路状态信息。
  LSPM: LSP Management
  1.1.5 参考信息
  如果要更详细了解MPLS的原理,请参考以下文档。
  RFC3031:Multiprotocol Label Switching Architecture
  1.2 MPLS的应用
  随着ASIC技术的发展,路由查找速度已经不是阻碍网络发展的瓶颈。这使得MPLS在提高转发速度方面不再具备明显的优势。
  但由于MPLS结合了IP网络强大的三层路由功能和传统二层网络高效的转发机制,在转发平面采 用面向连接方式,与现有二层网络转发方式非常相似,这些特点使得MPLS能够很容易地实现IP与ATM、帧中继等二层网络的无缝融合,并为流量工程 TE(Traffic Engineering)、虚拟专用网VPN(Virtual Private Network)、服务质量QoS(Quality of Service)等应用提供更好的解决方案。
  1.2.1 基于MPLS的VPN
  传统的VPN一般是通过GRE(Generic Routing Encapsulation)、L2TP(Layer 2 Tunneling Protocol)、PPTP(Point to Point Tunneling Protocol)、IPSec协议等隧道协议来实现私有网络间数据流在公网上的传送。而LSP本身就是公网上的隧道,所以用MPLS来实现VPN有天然 的优势。
  基于MPLS的VPN就是通过LSP将私有网络的不同分支联结起来,形成一个统一的网络,如图1-6所示。基于MPLS的VPN还支持对不同VPN间的互通控制。图1-6中:
  l CE(Customer Edge)是用户边缘设备,可以是路由器,也可以是交换机或主机;
  l PE(Provider Edge)是服务商边缘路由器,位于骨干网络。
  在骨干网络中,还存在P(Provider),是服务提供商网络中的骨干路由器,不与CE直接相连。P设备只需要具备基本MPLS转发能力,不维护VPN信息。
  基于MPLS的VPN具有以下特点:
  l PE负责对VPN用户进行管理、建立各PE间LSP连接、同一VPN用户各分支间路由分派。
  l PE间的路由分派通常是用LDP或扩展的BGP协议实现。
  l 支持不同分支间IP地址复用和不同VPN间互通。
  1.2.2 基于MPLS的QoS
  NE80E支持基于MPLS的流量工程和差分服务Diff-Serv特性,在保证网络高利用率的同时,可以根据不同数据流的优先级实现差别服务,从而为语音,视频数据流提供有带宽保证的低延时、低丢包率的服务。
  由于全网实施流量工程的难度比较大,因此,在实际的组网方案中往往通过差分服务模型来实施QoS。
  Diff-Serv的基本机制是在网络边缘,根据业务的服务质量要求将该业务映射到一定的业务 类别中,利用IP分组中的DS(Differentiated Service)字段(由ToS域而来)唯一的标记该类业务;然后,骨干网络中的各节点根据该字段对各种业务采取预先设定的服务策略,保证相应的服务质 量。
  Diff-Serv对服务质量的分类和标签机制与MPLS的标签分配十分相似,事实上,基于MPLS的Diff-Serv就是通过将DS的分配与MPLS的标签分配过程结合来实现的。

SS7

  SS7:Signaling System 7(信令系统#7)
  信令系统#7(SS7:Signaling System #7)是由 ITU-T 定义的一组电信协议,主要用于为电话公司提供局间信令。SS7 中采用的是公共信道信令技术(CCS:common-channel signaling),也就是带外(out-of-band)信令技术,即为信令服务提供独立的分组交换网络。北美以外 SS7 通常被称为 C7。
  SS7是一种数字信令系统,适用于无线和有线的公共交换电话网。这个标准定义了通过交换数字信令来建立呼叫、寻找路由和控制网络元素的过程和协议。它的功能十分全面,主要特征如下:
  1、基本的呼叫建立、管理和终止过程。
  2、个人通信服务(PCS)、无线漫游和移动用户认证等无线业务。
  3、市话号码移植业务。
  4、免费电话(800)和长途线路服务(900).
  5、各种增值服务,例如呼叫转移、来电显示和三方通话等。
  6、提供有效、安全的全球通信。





TAG:

 

评分:0

我来说两句

Open Toolbar