关闭

Linux进程的睡眠和唤醒简析

发表于:2014-9-12 09:38

字体: | 上一篇 | 下一篇 | 我要投稿

 作者:johnny_HITWH    来源:51Testing软件测试网采编

  B进程:
  100 spin_lock(&list_lock);
  101 list_add_tail(&list_head, new_node);
  102 spin_unlock(&list_lock); 
  103 wake_up_process(processa_task);
  这里会出现一个问题,假如当A进程执行到第3行后第4行前的时候,B进程被另外一个处理器调度投入运行。在这个时间片内,B进程执行完了它所有的指令,因此它试图唤醒A进程,而此时的A进程还没有进入睡眠,所以唤醒操作无效。在这之后,A 进程继续执行,它会错误地认为这个时候链表仍然是空的,于是将自己的状态设置为TASK_INTERRUPTIBLE然后调用schedule()进入睡眠。由于错过了B进程唤醒,它将会无限期的睡眠下去,这就是无效唤醒问题,因为即使链表中有数据需要处理,A 进程也还是睡眠了。
  3、避免无效唤醒
  如何避免无效唤醒问题呢?我们发现无效唤醒主要发生在检查条件之后和进程状态被设置为睡眠状态之前, 本来B进程的wake_up_process()提供了一次将A进程状态置为TASK_RUNNING 的机会,可惜这个时候A进程的状态仍然是TASK_RUNNING,所以wake_up_process()将A进程状态从睡眠状态转变为运行状态的努力 没有起到预期的作用。要解决这个问题,必须使用一种保障机制使得判断链表为空和设置进程状态为睡眠状态成为一个不可分割的步骤才行,也就是必须消除竞争条 件产生的根源,这样在这之后出现的wake_up_process ()就可以起到唤醒状态是睡眠状态的进程的作用了。
  找到了原因后,重新设计一下A进程的代码结构,就可以避免上面例子中的无效唤醒问题了。
  A进程:
1 set_current_state(TASK_INTERRUPTIBLE);
2 spin_lock(&list_lock);
3 if(list_empty(&list_head)) {
4 spin_unlock(&list_lock);
5 schedule();
6 spin_lock(&list_lock);
7 }
8 set_current_state(TASK_RUNNING);
9
10 /* Rest of the code ... */
11 spin_unlock(&list_lock);
  可以看到,这段代码在测试条件之前就将当前执行进程状态转设置成TASK_INTERRUPTIBLE了,并且在链表不为空的情况下又将自己置为TASK_RUNNING状态。这样一来如果B进程在A进程进程检查了链表为空以后调用wake_up_process(),那么A进程的状态就会自动由原来TASK_INTERRUPTIBLE变成TASK_RUNNING,此后即使进程又调用了schedule(),由于它现在的状态是TASK_RUNNING,所以仍然不会被从运行队列中移出,因而不会错误的进入睡眠,当然也就避免了无效唤醒问题。
  4、Linux内核的例子
  在Linux操作系统中,内核的稳定性至关重要,为了避免在Linux操作系统内核中出现无效唤醒问题,Linux内核在需要进程睡眠的时候应该使用类似如下的操作:
  /* ‘q’是我们希望睡眠的等待队列 */
  DECLARE_WAITQUEUE(wait,current);
  add_wait_queue(q, &wait);
  set_current_state(TASK_INTERRUPTIBLE);
  /* 或TASK_INTERRUPTIBLE */
  while(!condition) /* ‘condition’ 是等待的条件*/
  schedule(); 
  set_current_state(TASK_RUNNING);
  remove_wait_queue(q, &wait);
  上面的操作,使得进程通过下面的一系列步骤安全地将自己加入到一个等待队列中进行睡眠:首先调用DECLARE_WAITQUEUE ()创建一个等待队列的项,然后调用add_wait_queue()把自己加入到等待队列中,并且将进程的状态设置为 TASK_INTERRUPTIBLE 或者TASK_INTERRUPTIBLE。然后循环检查条件是否为真:如果是的话就没有必要睡眠,如果条件不为真,就调用schedule()。当进程 检查的条件满足后,进程又将自己设置为TASK_RUNNING 并调用remove_wait_queue()将自己移出等待队列。
  从上面可以看到,Linux的内核代码维护者也是在进程检查条件之前就设置进程的状态为睡眠状态,
  然后才循环检查条件。如果在进程开始睡眠之前条件就已经达成了,那么循环会退出并用set_current_state()将自己的状态设置为就绪,这样同样保证了进程不会存在错误的进入睡眠的倾向,当然也就不会导致出现无效唤醒问题。
  下面让我们用linux 内核中的实例来看看Linux 内核是如何避免无效睡眠的,这段代码出自Linux2.6的内核(linux-2.6.11/kernel/sched.c: 4254):
  4253 /* Wait for kthread_stop */
  4254 set_current_state(TASK_INTERRUPTIBLE);
  4255 while (!kthread_should_stop()) {
  4256 schedule();
  4257 set_current_state(TASK_INTERRUPTIBLE);
  4258 }
  4259 __set_current_state(TASK_RUNNING);
  4260 return 0; 
  上面的这些代码属于迁移服务线程migration_thread,这个线程不断地检查kthread_should_stop(),直到kthread_should_stop()返回1它才可以退出循环,也就是说只要kthread_should_stop()返回0该进程就会一直睡 眠。从代码中我们可以看出,检查kthread_should_stop()确实是在进程的状态被置为TASK_INTERRUPTIBLE后才开始执行的。因此,如果在条件检查之后但是在schedule()之前有其他进程试图唤醒它,那么该进程的唤醒操作不会失效。
  小结
  通过上面的讨论,可以发现在Linux 中避免进程的无效唤醒的关键是在进程检查条件之前就将进程的状态置为TASK_INTERRUPTIBLE或TASK_UNINTERRUPTIBLE,并且如果检查的条件满足的话就应该将其状态重新设置为TASK_RUNNING。这样无论进程等待的条件是否满足, 进程都不会因为被移出就绪队列而错误地进入睡眠状态,从而避免了无效唤醒问题。
22/2<12
《2024软件测试行业从业人员调查问卷》,您的见解,行业的声音!

关注51Testing

联系我们

快捷面板 站点地图 联系我们 广告服务 关于我们 站长统计 发展历程

法律顾问:上海兰迪律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2024
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪ICP备05003035号

沪公网安备 31010102002173号