Java GC 机制与内存分配策略

发表于:2017-8-09 10:00

字体: | 上一篇 | 下一篇 | 我要投稿

 作者:未知    来源:CSDN

  收集算法是内存回收的方法论,垃圾收集器是内存回收的具体实现
  自动内存管理解决的是:给对象分配内存 以及 回收分配给对象的内存
  为什么我们要了解学习 GC 与内存分配呢?
  在 JVM 自动内存管理机制的帮助下,不再需要为每一个new操作写配对的delete/free代码。但出现内存泄漏和溢出的问题时,如果不了解虚拟机是怎样使用内存的,那么排查错误将是一项非常艰难的工作
  GC(垃圾收集器)在对堆进行回收前,会先确定哪些对象“存活”,哪些已经“死去”。那么就有了 对象存活判定算法 。
  对象存活判定算法
  引用计数算法:
  算法思想:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值加1,当引用失效时,计数器值减1,任何时刻计数器为0的对象就是不可能再被使用的。
  优点:实现简单,判断效率也很高
  缺点:很难解决对象之间相互循环引用的问题
  可达性分析算法:
  算法思想:通过一系列的“GC Roots”对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是不可用的。
  如图:object5、object6、object7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
  可作为 GC Roots 的对象包括以下:
  1.虚拟机栈中引用的对象
  2.方法区中类静态属性引用的对象
  3.方法区中常量引用的对象
  4.本地方法栈中 JNI 引用的对象
  生存还是死亡?
  即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候他们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:
  如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法,当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。
  如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它,这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是:如果一个对象在finalize()方法中执行缓慢,或者发生了死循环,将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统的奔溃。
  finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()方法中成功拯救自己,只需重新与引用链上的任何一个对象建立关联即可,比如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收“的集合,如果对象这时候还没有逃脱,那基本上它就真的被回收了。
  另外,任何一个对象的finalize()方法都只会被系统自动调用一次。finalize()能做的所有工作,使用try-finally或者其他方式都可以做的更好,更及时,所以建议大家完全可以忘掉Java语言中有这个方法的存在。详见《深入理解Java虚拟机》
21/212>
《2023软件测试行业现状调查报告》独家发布~

关注51Testing

联系我们

快捷面板 站点地图 联系我们 广告服务 关于我们 站长统计 发展历程

法律顾问:上海兰迪律师事务所 项棋律师
版权所有 上海博为峰软件技术股份有限公司 Copyright©51testing.com 2003-2024
投诉及意见反馈:webmaster@51testing.com; 业务联系:service@51testing.com 021-64471599-8017

沪ICP备05003035号

沪公网安备 31010102002173号